
30/09/2013

1

© Yves.Ledru@imag.fr 2013 Page 1

An introduction to formal
specifications and JML

Are invariant properties always
true?

Yves Ledru
Université Grenoble-1

Laboratoire d’Informatique de Grenoble

Yves.Ledru@imag.fr

2013

© Yves.Ledru@imag.fr 2013

Are invariant properties always true?

• Invariant properties are not as stable as
expected. They may become false, and this
may remain undetected for a while…

• In this lesson, we will have a careful look at
when the invariant is actually checked…

Page 2

30/09/2013

2

© Yves.Ledru@imag.fr 2013

1. Inside a method

• The invariant is checked on entry and on exit of the
methods of the class.

• It is not checked inside the method, unless the
method calls another method of the class.

Page 3

public class XandY {
public int x = 0;
public int y = 0;
//@ public invariant y == 2*x;

public void inc(){
x+=1;

y+=2;
}

Here the invariant is false but this is not checked!
Pre-check

Post-check

© Yves.Ledru@imag.fr 2013

Inside a method (2)

Page 4

public void doubleInc(){
x+=1;
inc();
y+=2;

}

Invariant will be checked when entering inc()

...JMLInvariantError: by method XandY.inc@pre... when
'y' is 0
'x' is 1
'this' is XandY@24c98b07
at XandY.checkInv$instance$XandY(XandY.java:114)
at XandY.inc(XandY.java:323)
at XandY.internal$doubleInc(XandY.java:18)
at XandY.doubleInc(XandY.java:465)

30/09/2013

3

© Yves.Ledru@imag.fr 2013

2. Helper methods

Page 5

© Yves.Ledru@imag.fr 2013

Refactoring complex code…

• Sometimes the code of a method becomes too
complex

• It would be easier to restructure the method and
share common parts with other methods.

• Example: in the class of a balanced tree

Page 6

public class BalancedTree{
…

//@ invariant IsBalanced();
public void ins(int v){…}
public void del(int v){…}
public void balance(){…}

public void insert(int v){ins(v); balance()}
public void delete(int v){del(v); balance()}

Problem: the invariant
will be checked here!

30/09/2013

4

© Yves.Ledru@imag.fr 2013

Solution : private helper methods

• The internal methods are declared as
« helper » and private.

• The invariant is not checked when entering or
leaving an « helper » method.

Page 7

public class BalancedTree{
…

//@ invariant IsBalanced();
private /*@ helper @*/ void ins(int v){…}
private /*@ helper @*/ void del(int v){…}
private /*@ helper @*/ void balance(){…}

public void insert(int v){ins(v); balance()}
public void delete(int v){ins(v); balance()}

© Yves.Ledru@imag.fr 2013

Why helper methods are private?

• Because private methods can’t be called
outside the class.

• So there is no danger that an outside call will
put the object in a visible state that does not
satisfy the invariant.

• It is the responsibility of a public method
which calls a private helper method to restore
the invariant before returning.

Page 8

30/09/2013

5

© Yves.Ledru@imag.fr 2013

A simpler example

Page 9

public int x = 0;
public int y = 0;

//@ public invariant y == 2*x;

public void inc(){
incX();
incY();
incY();

}

private /*@ helper @*/ void incX(){
x+=1;

}
private /*@ helper @*/ void incY(){
y+=1;

}

Invariant will not be checked when
leaving incX()or entering incY()

© Yves.Ledru@imag.fr 2013

3. Direct modification of public
attributes of the class

Page 10

30/09/2013

6

© Yves.Ledru@imag.fr 2013

Accessing public attributes

• External objects may directly modify the public
variables of the class.

• The invariant may be invalidated and this will remain
undetected until the next call to a method of the
class

• We already experimented this when testing the
invariant of the class

Page 11

@Test
public void test_1() {
SetAsTree s=new SetAsTree();
s.ltree = s;
s.skip();
}

Invariant is false at this point and will
only be checked when entering skip()

The test class is external to SetAsTree.

© Yves.Ledru@imag.fr 2013

Use private attributes!

• To avoid external unchecked modifications of
the public variables, use private variables,
associated to getters and setters.

• Declare these variables as /*@ spec_public
@*/ to refer to these in the JML assertions.

Page 12

30/09/2013

7

© Yves.Ledru@imag.fr 2013

Defining a property across objects.

Page 13

© Yves.Ledru@imag.fr 2013

Properties involving several
classes/objects

• Sometimes, the invariant involves objects of
several classes.

• The invariant is usually expressed in one of
the classes.

• As a result, it is not checked on exit of the
methods of the other class!

Page 14

Class SimpleCounter
Method setC()

class TwoCounters
Invariant involving two SimpleCounters

A call to setC() may
invalidate the invariant,
and remain undetected!

30/09/2013

8

© Yves.Ledru@imag.fr 2013

In detail…

Page 15

public class TwoCounters {
private /*@ spec_public @*/ SimpleCounter sc1;
private /*@ spec_public @*/ SimpleCounter sc2;
//@ public invariant sc1.getC() <= sc2.getC();

public TwoCounters(SimpleCounter c1, SimpleCounter c2){
sc1 = c1; sc2 = c2;}

public void skip(){ }

public class SimpleCounter {
public int c;
//@ public invariant c >= 0;

public SimpleCounter(){c = 0;}
public /*@ pure @*/ int getC(){return c;}

//@ requires v >= 0;
public void setC(int v) {c = v;}

© Yves.Ledru@imag.fr 2013

An incorrect execution…

Page 16

public class MisUseTwoCounters {
public static void main(String[] args) {
SimpleCounter c1 = new SimpleCounter();
SimpleCounter c2 = new SimpleCounter();
TwoCounters tc = new TwoCounters(c1,c2);
c1.setC(10);
System.out.println("Counters: "+c1.getC()+" "+c2.getC());
tc.skip();

}

Counters: 10 0
Exception ...JMLInvariantError: by method TwoCounters.skip@pre
<File "TwoCounters.java", line 15, character 15> regarding specifications at
File "TwoCounters.java", line 7, character 40 when

'this' is TwoCounters@3ee2cf81
at TwoCounters.checkInv$instance$TwoCounters(TwoCounters.java:273)
at TwoCounters.skip(TwoCounters.java:490)

The println was executed!
The error was found later…

30/09/2013

9

© Yves.Ledru@imag.fr 2013

Use a single point of entry!

• The problem here is that a third party (program
MisUseTwoCounters) has kept a reference to c1 and c2
stored in the private fields of TwoCounters.

• A correct implementation would make TwoCounters as the
single point of entry in the data structure.

• Calls to the setters of SimpleCounter should be wrapped into
methods of TwoCounters.

Page 17

SimpleCounter c1 = new SimpleCounter();
SimpleCounter c2 = new SimpleCounter();
TwoCounters tc = new TwoCounters(c1,c2);
c1.setC(10);

public void setC1(int v){
sc1.setC(v);

}

© Yves.Ledru@imag.fr 2013

5. Case of inherited invariants

Page 18

30/09/2013

10

© Yves.Ledru@imag.fr 2013

Invariant inheritance

• The invariant of A
is inherited in B

• The invariant of class B is:
Inv_A(x) && Inv_B(x)

• B also inherits method f_x()

• On exit of f_x(), only Inv_A(x)is checked

• On exit of g_x(), Inv_A(x)&& Inv_B(x) are checked

Page 19

class A
int x
//@ invariant Inv_A(x);
f_x(){…}

class B
//@ invariant Inv_B(x);
g_x(){…}

© Yves.Ledru@imag.fr 2013

Invariant inheritance (2)

• As a result, the following
program may break the
invariant of B:

B b = new B();
// both invariants are checked here
b.f_x();
// only Inv_A(x) was checked at this point!

Page 20

class A
int x
//@ invariant Inv_A(x);
f_x(){…}

class B
//@ invariant Inv_B(x);
g_x(){…}

30/09/2013

11

© Yves.Ledru@imag.fr 2013

Trying it on a simple example…

Page 21

public class EvenCounter extends SimpleCounter {
//@ public invariant c%2 == 0;

public void inc2(){c+=2;}
public void skip(){ }

public static void main(String[] args) {
EvenCounter ec = new EvenCounter();
ec.inc2();
ec.setC(7);
ec.setC(9);
ec.skip();
}

}

The invariant of EvenCounter
is not checked here

...JMLInvariantError: by method EvenCounter.skip@pre …
regarding specifications at File "EvenCounter.java", … when

'c' is 9
…
at EvenCounter.skip(EvenCounter.java:474)

© Yves.Ledru@imag.fr 2013

Single point of entry

• In order to avoid this problem, the methods of
A should be systematically redefined in B.

• B becomes the single point of entry!

Page 22

30/09/2013

12

© Yves.Ledru@imag.fr 2013

Conclusion

Page 23

© Yves.Ledru@imag.fr 2013

Conclusion

• Make sure that your invariant is actually
checked!
– Use private and protected variables to force the

execution of associated methods

– When the invariant involves several classes,
make sure that there is a single point of entry

– If you are not sure, you can always force the
check by calling a method of the class (skip).

• Helper methods introduce a controlled
flexibility in the enforcement of the invariant.

Page 24

