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Are invariant properties always true?

• Invariant properties are not as stable as 
expected. They may become false, and this
may remain undetected for a while…

• In this lesson, we will have a careful look at
when the invariant is actually checked…
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1. Inside a method

• The invariant is checked on entry and on exit of the 
methods of the class.

• It is not checked inside the method, unless the 
method calls another method of the class.
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public class XandY {
public int x = 0;
public int y = 0;
//@ public invariant y == 2*x;

public void inc(){
x+=1;

y+=2;
}

Here the invariant is false but this is not checked!
Pre-check

Post-check
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Inside a method (2)
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public void doubleInc(){
x+=1;
inc();
y+=2;

}

Invariant will be checked when entering inc()

...JMLInvariantError: by method XandY.inc@pre... when
'y' is 0
'x' is 1
'this' is XandY@24c98b07
at XandY.checkInv$instance$XandY(XandY.java:114)
at XandY.inc(XandY.java:323)
at XandY.internal$doubleInc(XandY.java:18)
at XandY.doubleInc(XandY.java:465)
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2. Helper methods
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Refactoring complex code…

• Sometimes the code of a method becomes too
complex

• It would be easier to restructure the method and 
share common parts with other methods.

• Example: in the class of a balanced tree
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public class BalancedTree{
…

//@ invariant IsBalanced();
public void ins(int v){…}
public void del(int v){…}
public void balance(){…}

public void insert(int v){ins(v); balance()}
public void delete(int v){del(v); balance()}

Problem: the invariant 
will be checked here!
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Solution : private helper methods

• The internal methods are declared as 
« helper » and private.

• The invariant is not checked when entering or 
leaving an « helper » method.
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public class BalancedTree{
…

//@ invariant IsBalanced();
private /*@ helper @*/ void ins(int v){…}
private /*@ helper @*/ void del(int v){…}
private /*@ helper @*/ void balance(){…}

public void insert(int v){ins(v); balance()}
public void delete(int v){ins(v); balance()}
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Why helper methods are private?

• Because private methods can’t be called
outside the class.

• So there is no danger that an outside call will
put the object in a visible state that does not 
satisfy the invariant.

• It is the responsibility of a public method
which calls a private helper method to restore 
the invariant before returning.
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A simpler example
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public int x = 0;
public int y = 0;

//@ public invariant y == 2*x;

public void inc(){
incX();
incY();
incY();

}

private /*@ helper @*/ void incX(){
x+=1;

}
private /*@ helper @*/ void incY(){
y+=1;

}

Invariant will not be checked when
leaving incX()or entering incY()
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3. Direct modification of public 
attributes of the class
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Accessing public attributes

• External objects may directly modify the public 
variables of the class.

• The invariant may be invalidated and this will remain
undetected until the next call to a method of the 
class 

• We already experimented this when testing the 
invariant of the class
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@Test
public void test_1() {
SetAsTree s=new SetAsTree();
s.ltree = s;
s.skip();
}

Invariant is false at this point and will
only be checked when entering skip()

The test class is external to SetAsTree.
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Use private attributes!

• To avoid external unchecked modifications of 
the public variables, use private variables, 
associated to getters and setters.

• Declare these variables as /*@ spec_public
@*/ to refer to these in the JML assertions.
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Defining a property across objects.
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Properties involving several
classes/objects

• Sometimes, the invariant involves objects of 
several classes. 

• The invariant is usually expressed in one of 
the classes.

• As a result, it is not checked on exit of the 
methods of the other class!
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Class SimpleCounter
Method setC()

class TwoCounters
Invariant involving two SimpleCounters

A call to setC() may
invalidate the invariant,
and remain undetected!
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In detail…
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public class TwoCounters {
private /*@ spec_public @*/ SimpleCounter sc1;
private /*@ spec_public @*/ SimpleCounter sc2;
//@ public invariant sc1.getC() <= sc2.getC();

public TwoCounters(SimpleCounter c1, SimpleCounter c2){
sc1 = c1; sc2 = c2;}

public void skip(){ }

public class SimpleCounter {
public int c;
//@ public invariant c >= 0;

public SimpleCounter(){c = 0;}
public /*@ pure @*/ int getC(){return c;}

//@ requires v >= 0;
public void setC(int v) {c = v;}
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An incorrect execution…
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public class MisUseTwoCounters {
public static void main(String[] args) {
SimpleCounter c1 = new SimpleCounter();
SimpleCounter c2 = new SimpleCounter();
TwoCounters tc = new TwoCounters(c1,c2);
c1.setC(10);
System.out.println("Counters: "+c1.getC()+" "+c2.getC());
tc.skip();

}

Counters: 10 0
Exception ...JMLInvariantError: by method TwoCounters.skip@pre
<File "TwoCounters.java", line 15, character 15> regarding specifications at
File "TwoCounters.java", line 7, character 40 when

'this' is TwoCounters@3ee2cf81
at TwoCounters.checkInv$instance$TwoCounters(TwoCounters.java:273)
at TwoCounters.skip(TwoCounters.java:490)

The println was executed!
The error was found later…
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Use a single point of entry!

• The problem here is that a third party (program 
MisUseTwoCounters) has kept a reference to c1 and c2
stored in the private fields of TwoCounters.

• A correct implementation would make TwoCounters as the 
single point of entry in the data structure.

• Calls to the setters of SimpleCounter should be wrapped into
methods of TwoCounters.
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SimpleCounter c1 = new SimpleCounter();
SimpleCounter c2 = new SimpleCounter();
TwoCounters tc = new TwoCounters(c1,c2);
c1.setC(10);

public void setC1(int v){
sc1.setC(v);

}
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5. Case of inherited invariants
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Invariant inheritance

• The invariant of A
is inherited in B

• The invariant of class B is:
Inv_A(x) && Inv_B(x)

• B also inherits method f_x()

• On exit of f_x(), only Inv_A(x)is checked

• On exit of g_x(), Inv_A(x)&& Inv_B(x) are checked
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class A
int x
//@ invariant Inv_A(x);
f_x(){…}

class B
//@ invariant Inv_B(x);
g_x(){…}
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Invariant inheritance (2)

• As a result, the following
program may break the 
invariant of B:

B b = new B();
// both invariants are checked here
b.f_x();
// only Inv_A(x) was checked at this point!
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class A
int x
//@ invariant Inv_A(x);
f_x(){…}

class B
//@ invariant Inv_B(x);
g_x(){…}
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Trying it on a simple example…
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public class EvenCounter extends SimpleCounter {
//@ public invariant c%2 == 0;

public void inc2(){c+=2;}
public void skip(){ }

public static void main(String[] args) {
EvenCounter ec = new EvenCounter();
ec.inc2();
ec.setC(7);
ec.setC(9);
ec.skip();
}

}

The invariant of EvenCounter
is not checked here

...JMLInvariantError: by method EvenCounter.skip@pre …
regarding specifications at File "EvenCounter.java", … when

'c' is 9
…
at EvenCounter.skip(EvenCounter.java:474)
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Single point of entry

• In order to avoid this problem, the methods of 
A should be systematically redefined in B.

• B becomes the single point of entry!
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Conclusion
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Conclusion

• Make sure that your invariant is actually
checked!
– Use private and protected variables to force the 

execution of associated methods

– When the invariant involves several classes, 
make sure that there is a single point of entry

– If you are not sure, you can always force the 
check by calling a method of the class (skip).

• Helper methods introduce a controlled
flexibility in the enforcement of the invariant.
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