Introduction to Map-Reduce

Sources

Apache Hadoop

Yahoo! Developer Network

Hortonworks

Cloudera

Practical Problem Solving with Hadoop and Pig

Slides will be available at
http://lig-membres.imag.fr/leroyv/

« Big Data »

* Google, 2008

— 20 PB/day

— 180 GB/job (variable)
* Web index

— 50B pages

— 15PB

e Large Hadron Collider (LHC) @ CERN :
produces 15PB/year

Capacity of a (large) server

* RAM: 256 GB
* Hard drive capacity: 24TB
* Hard drive throughput: 100MB/s

Solution: Parallelism

e 1 server
— 8 disks
— Read the Web: 230 days

 Hadoop Cluster @ Yahoo
— 4000 servers

— 8 disks/server
— Read the Web in parallel: 1h20

Data center Google

Pitfalls in parallelism

* Synchronization
— Mutex, semaphores ...

* Programming models
— Shared memory (multicores)
— Message passing (MP1)
* Difficulties
— Programming / debugging (deadlocks ...)
— Optimizing
— Elasticity (adding/removing machines)
— Costly (experts)
— Not reusable

Fault tolerance

A server fails every few months
1000 servers ...

— MTBF (mean time between failures) < 1 day
A big job may take several days
— There will be failures, this is normal

— Computations should finish within a reasonable time
- You cannot start over in case of failures

Checkpointing, replication
— Hard to code by hand

MAP-REDUCE MODEL

What are Map and Reduce ?

2 simple functions inspired from functional
programming

—map (*2) [1,2,3] = [2,4,6]

— reduce (+) [2,4,6] = 12

Generic

Can be instantiated and combined to solve
many different problems

The developer provides the function applied

Map-Reduce: Keys and Values

* Map-Reduce processes key/value pairs

— Map is applied independently on every key/value
pair
map(key, value) =2 list(key, value)

— Reduce is applied to all values associated with the

same key
reduce(key,list(value)) =2 list(key,value)

— The types of keys and values taken as input does
not have to be the same as the output

Example: Counting frequency of words

* Input: Afile of 2 lines

—1,"abcaabc"
— 2,"abbccacchb”

* Qutput
— 3,3
— b, 3
—C, 2
—aa, 1
— bb, 1
— cc, 2

Word frequency: Mapper

 Map processes a portion (line) of text
— Split words
— For each word, count one occurence
— Key not used in this example (line number)
 Map(String line, Output output){
foreach String word in line.split() {
output.write(word, 1)
}

}

Word frequency: Reducer

* For each key, Reduce processes all the
corresponding values

— Add number of occurrences

* Reduce(String word, List<Int> occurrences,

Output output){
iInt count =0
foreach int occ in occurrences {
count += occ
}

output.write(word,count)

}

Map

Reduce

Execution plan

1,"abcaabc"

2, "abbccacchb"

a, 1
bb, 1
cc, 1
a, 1
cc, 1
b, 1

a, 3

b, 3

cC,2

aa, 1

bb, 1

cc, 2

HDFS : DISTRIBUTED FILE SYSTEM

Random vs Sequential disk access

 Example
— DB 100M users
— 100B/user
— Alter 1% records

e Random access
— Seek, read, write: 30mS
— 1M users =2 8h20

* Sequential access

— Read ALL Write ALL
— 2x 10GB @ 100MB/S = 3 minutes

— It is often faster to read all and write all sequentially

Distributed File System (HDFS)

e Goal
— Fault tolerance (redundancy)
— Performance (parallel access)

* Large files
— Sequential reads
— Sequential writes

* “in place” data processing

— Data is stored on the machines that process it

* Better usage of machines (no dedicated filer)
* Less network bottlenecks (better performance)

HDFS model

* Data organized in files and directories
- mimics a standard file system

* Files divided in blocks (default: 64MB) spread
on servers

 HDFS reports the data layout to the Map-

Reduce framework
- If possible, process data on the machines

where it is already stored

Fault tolerance

* File blocks replicated (default: 3) to tolerate
failures

* Placement according to different parameters
— Power supply
— Network equipment

— Diverse servers to increase the probability of
having a “close” copy

* Checksum of data to detect corrupter blocks
(also available in modern file systems)

Master/Worker architecture

A master, the NameNode
— Manage the space of file names
— Manages access rights
— Supervise operations on files, blocks ...

— Supervise the health of the file system (failures, load
balance...)

 Many (1000s) slaves, the DataNodes
— Store the data (blocks)
— Perform read and write operations

— Perform copies (replication, ordered by the
NameNode)

NameNode

* Stores the metadata of each file and block
(inode)
— File name, directory, blocks assotiated, position of
these blocks, number of replicas ...

* Keeps all in main memory (RAM)

— Limiting factor = number of files
— 60M objects in 16GB

DataNode

Manage and monitor the state of blocks
stored on the host file system (often Linux)

Directly accessed by the clients
— data never transit through the NameNode

Send heartbeats to the NameNode to show
that the server has not failed

Report to the NameNode if blocks are
corrupted

Writing a file

The client sends a query to the NameNode to create a new
file
The NameNode checks

— Client authorizations

— File system conflicts (existing file ...)

NameNode choses DataNodes to store file and replicas
— DataNodes “pipelined”

Blocks are allocated on these DataNodes
Stream of data sent to the first DataNode of the pipeline

Each DataNode forwards the data received to the next
DataNode in the pipeline

Reading a file

Client sends a request to the NameNode to read a file

NameNode checks the file exists and builds a list of DataNodes
containing the first blocks

For each block, NameNode sends the address of the DataNodes
hosting them

— List ordered wrt. Proximity to the client

Client connects to the closest DataNode containing the 15t block of
the file

Block read ends:

— Close connection to the DataNode

— New connection to the DataNode containing the next block
When all blocks are read:

— Query the NameNode to retrieve the following blocks

HDFS Structure

Namespace Metadata & Log

—
1 getLocations create

getFilelnfo NIBTRE e addBlock
2

3 blockReceiv

1
copy ad

read
write 2

2

B0 (] | | (B (] | | () (g —emicsle —

4

- l . write |write
= = 3

! gm

HDFS commands (directories)

* Create directory dir
S hadoop dfs -mkdir /dir

* List HDFS content
S hadoop dfs -Is

* Remove directory dir
S hadoop dfs -rmr /dir

HDFS commands (files)

* Copy local file toto.txt to HDFS dir/
S hadoop dfs -put toto.txt dir/toto.txt

* Copy HDFS file to local disk
S hadoop dfs -get dir/toto.txt ./

* Read file /dir/toto.txt
S hadoop dfs -cat /dir/toto.txt

e Remove file /dir/toto.txt
S hadoop dfs -rm /dir/toto.txt

APACHE HADOOP: MAPREDUCE
FRAMEWORK

Objective of the Map-Reduce
framework

Provide a simple and generic programming
model: map and reduce

Deploy execution automatically
Provide fault tolerance
Scalability to thousands of machines

Performance is important but not the priority

— What’s important is that jobs finish within reasonable
time

— If it’s to slow, add servers!
Kill It With Iron (KIWI principle)

What does the developer do?

* Provide the functions performed by Map and
Reduce (Java, C++)

— Application dependent

* Defines the data types (keys / values)
— If not standard (Text, IntWritable ...)

— Functions for seralization
e That’s all.

Imports

import java.io.IOException ;
import Jjava.util.* ;

import org.apache.hadoop.fs.Path ;

import org.apache.hadoop.io.IntWritable ;

import org.apache.hadoop.io.LongWritable ;

import org.apache.hadoop.10.Text ;

import org.apache.hadoop.mapreduce.Mapper ;

import org.apache.hadoop.mapreduce.Reducer ;

import org.apache.hadoop.mapreduce.JobContext ;

import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat ;
import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat ;
import org.apache.hadoop.mapreduce.Job ;

Do not use the old mapred API!

Mapper

// input key type, input value type, output key type,
output value type

public class WordCountMapper extends Mapper<LongWritable,
Text, , IntWritable> {

@Override

protected void map (LongWritable key, Text value,
Context context) throws IOException, InterruptedException

{
for (String word : value.toString () .split ("\\s+")) {

)
context.write (new (word), new IntWritable(l)):;

Reducer

// input key type, input value type, output key type,
output value type

public class WordCountReducer extends Reducer<Text,
IntWritable, , LongWritable> {

@Override

protected void reduce (Text key, Iterable<IntWritable>
values, Context context) throws IOException,
InterruptedException

long sum = 0;
for (IntWritable wvalue : values) {
sum += value.get ()

}

context.write (, new LongWritable (sum)) ;

Main

public class WordCountMain {

public static void main(String [] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser (conf,

args) .getRemainingArgs () ;
Job job = Job.getInstance(conf, "word count");
Jjob.setJarByClass (WordCountMain.class) ;
Jjob.setMapOutputKeyClass (Text.class) ;
Jjob.setMapOutputValueClass (IntWritable.class);
Jjob.setOutputKeyClass (Text.class);
job.setOutputValueClass (LongWritable.class);
Jjob.setMapperClass (WordCountMapper.class) ;
Jjob.setReducerClass (WordCountReducer.class) ;
Jjob.setInputFormatClass (TextInputFormat.class);
Job.setOutputFormatClass (TextOutputFormat.class) ;
FileInputFormat.addInputPath (job, new Path (otherArgs[0]));
FileOutputFormat.setOutputPath (job, new Path (otherArgs([1l]));

System.exit (Job.waitForCompletion(true) 2 0 : 1);

Terminology

MapReduce program = job
Jobs are submitted to the JobTracker
A job is divided in several tasks

— A Map is a task
— A Reduce is a task

Tasks are monitored by TaskTrackers
— A slow task is called a straggler

In MapReduce, barrier between map and reduce
(shuffle & sort)

— Need to wait for the slowest map before beginning to
reduce

Job execution

S hadoop jar wordcount.jar org.myorg.WordCount inputPath(HDFS)
outputPath(HDFS)

Check parameters
— Is there an output directory ?
— Does it already exist ?
— Is there an input directory ?

Compute splits

The job (MapReduce code), its configuration and splits are copied
with a high replication

Create an object to follow the progress a the tasks is created by the
JobTracker

For each split, create a Map
Create default number of reducers

Tasktracker

* TaskTracker sends a periodic signal to the
JobTracker

— Show that the node still functions

— Tell whether the TaskTracker is ready to accept a new
task

A TaskTracker is responsible for a node
— Fixed number of slots for map tasks
— Fixed number of slots for reduce tasks
— Tasks can be from different jobs
 Each task runs on its own JVM
— Prevents a task crash to crash the TaskTracker as well

Job Progress

A Map task reports on its progress, i.e. amount of the
split processed

For a reduce task, 3 states

— COpy
— sort

— reduce
Report sent to the TaskTracker
Every 5 seconds, report forwarded to the JobTracker

User can see the JobTracker state through Web
interface

Progress

80 +
70 +
60 +
50 +
40 +
30 +
20 +
10 ¢

12

Reduce Completion Graph - close

100

80
co

80 | copy
70 j sort
60
50
40
30

N

reduce

End of Job

* Output of each reducer written to a file

* Job tracker notifies the client and writes a report for the job

14/10/28 11:54:25 INFO mapreduce.Job: Job job 1413131666506 0070 completed
successfully

Job Counters
Launched map tasks=392
Launched reduce tasks=88
Data-local map tasks=392
[...]

Map-Reduce Framework
Map input records=622976332
Map output records=622952022
Reduce input groups=54858244
Reduce input records=622952022
Reduce output records=546559709

[...]

Server failure during a job

* Bugin a task
— task JVM crashes = TaskTracker JVM notified
— task removed from its slot

* Task become unresponsive
— timeout after 10 minutes
— task removed from its slot

e Each task may be re-run up to N times (default
7) in case of crashes

Combiner

Potential problem of a Map function: many key/value
pairs in the output

These pairs are copied to the reducer over the network
—> costly

Combiner: mini-reducer executed at the output of a
map to reduce the number of pairs

Combiner input types = Combiner output types = Map
output type

Combiner may be used by Hadoop
— The correctness of the program should not depend on it

conf.setCombiner(...)

Map

Combiner

2, "abbccacchb"

e

a, 1

bb, 1 a, 2
cc 1 bb, 1
a, 1 cc, 2
cc, 1 b, 1
b, 1

Combiner

Reduce

1,"abcaabc"
j

a, 1

b, 1 a, 1

c,1 , 2

aa, 1 c, 2

b, 1 aa, 1

c,1
a, [1,2] a3
b, [2,1] b, 3
2] |[—c2
aa, [1] —>| aa, 1
bb, [1] > bb, 1
cc, [2] > cc, 2

