Clustering

Applications Overview of methods

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

The Problem

Given a cloud of data points we'd like to understand their structure

More formally:

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters

Clustering is a hard problem!

Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving
- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces look different:
 Almost all pairs of points are at about the same distance

Clustering Sky Objects: SkyCat

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Problem: Cluster into similar objects, e.g., galaxies, stars, quasars, etc.
- Sloan Digital Sky Survey is a newer, better version of this

Example: Clustering CD's

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really?
- Represent a CD by a set of customers who bought it
- Similar CDs have similar sets of customers, and vice-versa

Example: Clustering Documents

- Problem: Group together documents on the same topic
- Documents with similar sets of words may be about the same topic
- Dual formulation: a topic is a group of words that co-occur in many documents
 - Cluster words instead of documents

Cosine, Jaccard, Euclidean

- Different ways of representing documents or CDs lead to different distance measures
- Document = set of words
 - Jaccard distance
- Document = point in space of words
 - $(x_1, x_2, ..., x_N)$, where $x_i = 1$ iff word i appears in doc
 - Euclidean distance
- Document = vector in space of words
 - Vector from origin to $(x_1, x_2, ..., x_N)$
 - Cosine distance

Overview: Methods of Clustering

Hierarchical:

- Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one
- Divisive (top down):
 - Start with one cluster and recursively split it

- Maintain a set of clusters
- Points belong to "nearest" cluster

