# Recommender Systems

#### **Collaborative Filtering**

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University



## Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N



### Similar Users (1)

|   | HP1 | HP2 | HP3 | TW | SW1 | SW2 | SW3 |
|---|-----|-----|-----|----|-----|-----|-----|
| A | 4   |     |     | 5  | 1   |     |     |
| B | 5   | 5   | 4   |    |     |     |     |
| C |     |     |     | 2  | 4   | 5   |     |
| D |     | 3   |     |    |     |     | 3   |

- Consider users  ${\it x}$  and  ${\it y}$  with rating vectors  ${\it r}_{\it x}$  and  ${\it r}_{\it y}$
- We need a similarity metric sim(x, y)
- Capture intuition that sim(A,B) > sim(A,C)

## Option 1: Jaccard Similarity

|   | HP1 | HP2 | HP3 | TW   | SW1 | SW2 | SW3 |
|---|-----|-----|-----|------|-----|-----|-----|
| A | 4   |     |     | 5    | 1   |     |     |
| B | 5   | 5   | 4   |      |     |     |     |
| C |     |     |     | $^2$ | 4   | 5   |     |
| D |     | 3   |     |      |     |     | 3   |

- $sim(A,B) = | r_A \cap r_B | / | r_A \cup r_B |$
- sim(A,B) = 1/5; sim(A,C) = 2/4
  - sim(A,B) < sim(A,C)</p>
- Problem: Ignores rating values!

## Option 2: Cosine similarity

|   | HP1 | HP2 | HP3 | TW     | SW1 | SW2 | SW3 |
|---|-----|-----|-----|--------|-----|-----|-----|
| A | 4   |     |     | 5      | 1   |     |     |
| B | 5   | 5   | 4   |        |     |     |     |
| C |     |     |     | $^{2}$ | 4   | 5   |     |
| D |     | 3   |     |        |     |     | 3   |

- = sim(A,B) = cos( $r_A$ ,  $r_B$ )
- sim(A,B) = 0.38, sim(A,C) = 0.32
  - sim(A,B) < sim(A,C), but not by much</p>
- Problem: treats missing ratings as negative

## Option 3: Centered cosine

Normalize ratings by subtracting row mean

|                | HP1 | HP2 | HP3  | TW   | SW1  | SW2 | SW3 |
|----------------|-----|-----|------|------|------|-----|-----|
| $\overline{A}$ | 4   |     |      | 5    | 1    |     |     |
| B              | 5   | 5   | 4    |      |      |     |     |
| C              |     |     |      | 2    | 4    | 5   |     |
| D              |     | 3   |      |      |      |     | 3   |
|                | 1   |     |      |      |      |     |     |
|                | HP1 | HP2 | HP3  | TW   | SW1  | SW2 | SW3 |
| $\overline{A}$ | 2/3 |     |      | 5/3  | -7/3 |     |     |
| B              | 1/3 | 1/3 | -2/3 |      |      |     |     |
| C              |     |     |      | -5/3 | 1/3  | 4/3 |     |
| D              | 1   |     |      | -    | -    |     |     |

## Centered Cosine similarity (2)

|   | l   |     | HP3  | TW   | SW1  | SW2 | SW3 |
|---|-----|-----|------|------|------|-----|-----|
| A | 2/3 |     |      | 5/3  | -7/3 |     |     |
| B | 1/3 | 1/3 | -2/3 |      |      |     |     |
| C |     | 1/3 |      | -5/3 | 1/3  | 4/3 |     |
| D |     | 0   |      | •    | ,    |     | 0   |

- = sim(A,B) = cos( $r_A$ ,  $r_B$ ) = 0.09; sim(A,C) = -0.56
  - sim(A,B) > sim(A,C)
- Captures intuition better
  - Missing ratings treated as "average"
  - Handles "tough raters" and "easy raters"
- Also known as Pearson Correlation

## **Rating Predictions**

- Let  $r_x$  be the vector of user x's ratings
- Let N be the set of k users most similar to x who have also rated item i
- Prediction for user x and item i
- Option 1:  $r_{xi} = 1/k \sum_{y \in N} r_{yi}$
- Option 2:  $r_{xi} = \sum_{y \in N} s_{xy} r_{yi} / \sum_{y \in N} s_{xy}$ where  $s_{xy} = sim(x,y)$

## Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
  - For item i, find other similar items
  - Estimate rating for item *i* based on ratings for similar items
  - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

s<sub>ij</sub>... similarity of items *i* and *j*r<sub>xj</sub>...rating of user *x* on item *j*N(i;x)... set items rated by *x* similar to *i*

- unknown rating

|        |   |   |   |   |   |   | user | S |   |   |    |    |    |
|--------|---|---|---|---|---|---|------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   |   | 5    |   |   | 5 |    | 4  |    |
|        | 2 |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4 |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    |
|        |   |   |   |   |   |   |      |   |   |   |    |    |    |

- rating between 1 to 5

|        |   |   |   |   |   |   | user | S |   |   |    |    |    |
|--------|---|---|---|---|---|---|------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   | ? | 5    |   |   | 5 |    | 4  |    |
|        | 2 |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4 |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    |

LICORC

- estimate rating of movie 1 by user 5

|        |          |   |   |   |   |   | user | S |   |   |    |    |    |                      |  |
|--------|----------|---|---|---|---|---|------|---|---|---|----|----|----|----------------------|--|
|        |          | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 | sim(1,m              |  |
|        | 1        | 1 |   | 3 |   | ? | 5    |   |   | 5 |    | 4  |    | 1.00                 |  |
|        | 2        |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  | -0.18                |  |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    | <u>0.41</u><br>-0.10 |  |
| Ε      | 4        |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    |                      |  |
|        | 5        |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  | -0.31                |  |
|        | <u>6</u> | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    | <u>0.59</u>          |  |

#### **Neighbor selection:**

Identify movies similar to movie 1, rated by user 5

#### Here we use Pearson correlation as similarity:

- 1) Subtract mean rating  $m_i$  from each movie i  $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

|        |          |   |   |   |   |   | user | S |   |   |    |    |    |             |
|--------|----------|---|---|---|---|---|------|---|---|---|----|----|----|-------------|
|        |          | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 | sim(1,m)    |
|        | 1        | 1 |   | 3 |   | ? | 5    |   |   | 5 |    | 4  |    | 1.00        |
|        | 2        |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  | -0.18       |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    | <u>0.41</u> |
| Ε      | 4        |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    | -0.10       |
|        | 5        |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  | -0.31       |
|        | <u>6</u> | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    | <u>0.59</u> |

**Compute similarity weights:** 

$$s_{13}$$
=0.41,  $s_{16}$ =0.59

|        |          |   |   |   |   |     | user | S |   |   |    |    |    |
|--------|----------|---|---|---|---|-----|------|---|---|---|----|----|----|
|        |          | 1 | 2 | 3 | 4 | 5   | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1        | 1 |   | 3 |   | 2.6 | 5    |   |   | 5 |    | 4  |    |
|        | 2        |   |   | 5 | 4 |     |      | 4 |   |   | 2  | 1  | 3  |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2   |      | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4        |   | 2 | 4 |   | 5   |      |   | 4 |   |    | 2  |    |
|        | 5        |   |   | 4 | 3 | 4   | 2    |   |   |   |    | 2  | 5  |
|        | <u>6</u> | 1 |   | 3 |   | 3   |      |   | 2 |   |    | 4  |    |

Predict by taking weighted average:

$$r_{15} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

#### Item-Item v. User-User

- In theory, user-user and item-item are dual approaches
- In practice, item-item outperforms user-user in many use cases
- Items are "simpler" than users
  - Items belong to a small set of "genres", users have varied tastes
  - Item Similarity is more meaningful than User Similarity