NoSQL Databases

Vincent Leroy

Database

* Large-scale data processing
— First 2 classes: Hadoop, Spark

— Perform some computation/transformation over a full
dataset

— Process all data

* Selective query
— Access a specific part of the dataset

— Manipulate only data needed (1 record among
millions)
— Database system

Processing / Database Link

Batch Job
(Hadoop, Spark)

Stream Job e.g. sentiment
(Spark, Storm) analysis

Load data >

Write results

Write results

Database

Serve
queries
Insert
records

Application 2

e.g. Twitter
trend
Application 3 rends pgge

Application 1

Different types of databases

* So far we used HDFS @I!Iilil a/o]a]5)
— A file system can be seen as a very basic database

— Directories / files to organize data
— Very simple queries (file system path)
— Very good scalability, fault tolerance ...
e Other end of the spectrum: Relational
Databases
— SQL query language, very expressive

— Limited scalability (generally 1 server) R

My

PostgreSQL

Size / Complexity

A

Graph DB
> Relational
.E DB
2 DB
o Column DB
&
8 Key/Value

DB
>

Size

The NoSQL Jungle

Document Database

Graph Databases

.- — > o
‘: Couchbase :.. NEO4]
'.MarkLogic '

0 Graph
mongo DB The Distributed Graph Database

Wide Column Stores Key-Value Databases
e redis Ll aCcCcurmuLo

amazon HYPE RTABLE
DynamoD

AEROSPIKE

. sriak

—/»W Cassandra le’BﬂHCETEE
Amazon SimpleDB

@cloudtxt http:/fwww.aryannava.com

Goal of these slides

* Present an overview of the NoSQL landscape
— Trade-off in choosing a solution
— Theorems and principles

* Not a manual to learn specific DBs
— Too many of them
— Not that complicated (especially K/V stores)
— Focus on Neo4j graph DB in lab work

Relational Databases: SQL

* SQL language born 1974

— Still used by most data processing systems
(including Spark)

—>Learn it! Don’t be a victim of the NoSQL hype!

Relational Databases model

* Data organized as tables
— Row = record
— Column = attribute

* Relations between tables
— Integrity constraints

Select title from courses natural join takes_courses group by ClassID having count(*) > 10

Students
» ID# | Name |Phone DOB
500 | Matt 555-4141 06/03/70
501 Jenny 867-5309 3/15/81
502 | Sean 876-9123 10/31/82
i
ID# ClassID | Sem
v
500 1001 Fallo2 ClassID | Title ClassNum
501 1002 Fall02 1001 Intro to Informatics 1101
501 1002 SprO3 1002 Data Mining 1400
502 1003 5203 1003 Intemet and Society 1400
Takes_Course Courses 9

ACID properties

Atomicity

— Transaction are all or nothing (e.g. when adding a bi-directional
friendship relation, it’s added both ways or not at all)

Consistency

— Only valid data written (e.g. cannot say a student takes a course
that is not in the courses table)

Isolation

— When multiple transactions execute simultaneously, they
appear as if they were executed sequentially (aka serializability)

Durability

— When data has been written and validated, it is permanent (i.e.
no data loss, even in the case of some failures)

— Easy life for the developer

Why NoSQL then?

What does NoSQL mean?

— No SQL

— New SQL

— Notonly SQL ...

SQL strong properties limit its ability to scale to very large
datasets

— Relax some properties to deal with larger datasets (ACID)

— But at what cost?

SQL is very structured (each record has the same columns
...), Web data often is not

— Semi-structured data

— Unstructured data

— Graph data

CAP

* Consistency

— When multiple operations execute simultaneously, it
appears as if they were executed one after the other
(A of ACID)

* Availability

— Every request received by a non failed node must be
answered

e Partition tolerance

— System must respond correctly even if network fails

CAP theorem

* Impossible to have 3 simultaneously
— Choose CA, CP, or AP
— In a centralized system, no need for P

 Relational databases have CA

— In a distributed system, you cannot ignore P
* Distributed databases choose CP or AP

CAP intuition

2 solutions:

» Refuse to answer in case of partition
* Answer but risk inconsistencies

A:3
A: 2 A: 3
B:5
Client Client
1 2

Partition

NoSQL and CAP

Relational (Comparison) Avallablllty
Key-value
Column-oriented/ Tabular
Document oriented

Each client can always read and write

CA AP
RDBMSs Aster Data Dynamo Cassandra
(MySQL, Greenplum Voldemort SimpleDB
Postgres, Vertica Tokyo Cabinet CouchDB

etc) KAI

Riak

Partltlon

onsistency

CP Tolerance
All clients alwayg BigTable MongoDB Berkeley DB The system works well
have the same view Hypertable Terrastore MemcacheDB despite physical network

of the data HBase Scalaris Redis partitions

Weaker consistency models

Eventual consistency
— When there is no partition, DB is consistent
— In case of partition, DB can return stale data

— Once partition is gone, there is a time limit on how long it takes
for consistency to return

Different levels of consistency (consistency / cost trade-
off)

— Causal consistency

— Read-your-writes consistency

— Session consistency

— Monotonic read consistency

— Monotonic write consistency

- Again, many choices, so many different systems

Vector clocks & conflict detection

QJ0C,

l write handled by A

D ([A, 1])

Causality-based partial
order over events that

happen in the system.

Document version
history: a counter for
each node that updated

the document.

If all update counters in
Vi are smaller or equal
to all update counters in

V2, then Vi precedes V2.

17

Vector clocks & conflict detection

OO

1 write handled by A

D ([A I])

l write handled by A

D2 ([A, 2])

Causality-based partial
order over events that

happen in the system.

Document version
history: a counter for
each node that updated

the document.

If all update counters in
Vi are smaller or equal
to all update counters in

V2, then Vi precedes V2.

18

Vector clocks & conflict detection

@ @ l write handled by A Causality-based partial

order over events that
D ([A’ l]) happen in the system.

l write handled by A
Document version

D2 ([A, 2]) history:a counter for

each node that updated
write handled by B write handled by C P
the document.

Ds ([A, 2], [B, I]) E D ([A, 2], [C,1])

If all update counters in
Vi are smaller or equal
to all update counters in

V2, thenV precedes V2.

19

Vector clocks & conflict detection

@ @ l write handled by A Causality-based partial

order over events that

D ([A 1]) happen in the system.

l write handled by A
Document version

D2 [A 2]) history: a counter for

each node that updated
write handled by B write handled by C P
the document.

[A 2] [B I] D4 [A 2] [C I]) If all update counters in

\ / Vi are smaller or equal
conflict detected reconciliation handled by A to all update counters in

V2, then Vi precedes V2,

20

Vector clocks & conflict detection

@ @ l write handled by A

D ([A, 1])

l write handled by A

D2 ([A, 2])

write handled by B/ whandled by C

Ds ([A, 2], [BII]) ' Ds ([A 2], [C1)

conflict detect\ Aation handled by A

Ds ([A, 3], [B/1], [S1])

Causality-based partial
order over events that

happen in the system.

Document version
history: a counter for
each node that updated

the document.

If all update counters in
Vi are smaller or equal
to all update counters in

V2, then Vi precedes V2.

21

Vector clocks & conflict detection

OO

l write handled by A

D ([A, 1])

Vector Clocks can detect
a conflict. The conflict
resolution is left to the
application or the user.

The application might
resolve conflicts by
checking relative
timestamps, or with
other strategies (like

merging the changes).

Vector clocks can grow
quite large (!)

22

Vector clocks & conflict detection

00[C,

l write handled by A

D ([A, 1])

l write handled by A

D2 ([A. 2])

Vector Clocks can detect
a conflict. The conflict
resolution is left to the
application or the user.

The application might
resolve conflicts by
checking relative
timestamps, or with
other strategies (like

merging the changes).

Vector clocks can grow
quite large (!)

23

Vector clocks & conflict detection

@ @ l write handled by A

D ([A, 1])

l write handled by A

D2 ([A, 2])

write handled by f/ wodiﬁed replica

Ds ([A 2], [B, I]) D4 ([A, 2])

Vector Clocks can detect
a conflict. The conflict
resolution is left to the
application or the user.

The application might
resolve conflicts by
checking relative
timestamps, or with
other strategies (like
merging the changes).

Vector clocks can grow
quite large (!)

24

Vector clocks & conflict detection

00C,

‘I, write handled by A

D ([A, 1])

l write handled by A

D2 ([A, 2])

write handled by f/ wod:f ied replica

» ([A, 21, [By 1) D+ ([A, 2])
D3 2 D4, conflict

version misma\
detected resolved automatically

Ds ([A, 3], [B;1])

Vector Clocks can detect
a conflict. The conflict
resolution is left to the
application or the user.

The application might
resolve conflicts by
checking relative
timestamps, or with
other strategies (like

merging the changes).

Vector clocks can grow
quite large (!)

25

Key/Value store

* 2 basic operations, similar to the HashMap
data structure

— Put(K,V)
— Get(K)
* Often used for caching information in memory

— Facebook uses them a lot

&P redis M

26

Column/Tabular DB

e Data organized as rows with a primary key

— Flexible format, each row can have different fields
in a column family

— Relies on HDFS for fault tolerance
Column fxily cfl column family cf2

/ document \
(column)
row_key Ji [e

difl dif2 di.f3 a

Google R
BigTa%Ie HEHSE A

Ed

cassandra

Document DB

e Data stored as documents (often JSON)
* Richer than K/V stores

— Insert
— Delete
— Update
— Find
— Aggregation functions (Map, Reduce ...)
U
A ol

CouchDB

— Indexes

. mongo

28

Document DB

Table Collection
\ People \ "People”
_id name {
Row — | | | Claudia {
2 | Rubby "d Y, S~
"name": "Claudia"
I)
Column {
"id" 2", o
"name": "Rubby"
}
}

— Field

— BSON document —

Document Structure

{
fieldl:
field2:
field3:
fieldN:
}

valuel,
value2,

value3,

valueN

29

A document can
have one or
more documents
inside.

Document DB

[
{
"name": "France", Embedde
"capital" : ”Paris"
b
{ \
nnameu: "Japan" / Embedde
}
]
"id": 2,
name": "Rubby"

"friends": 354,

{

" id": Objectld ("51c4218"),
"name": "Claudia",

"NumberKids": 3,

"isActive": true,

"interests": ["swimming", "tennis"]
"favoriteCountries":

favorite Country":

d document

d document

> Embedded document
"name": "ltaly",

"capital": "Rome"

30

Graph DB

* Represent data as graphs
— Nodes / relationships with properties as K/V pairs

P _ 2§ name: Morpheus
' age: 29 —KNOWS - 4 W occupation: Total badass
\E! name: Thomas Andersson ’ rank: Captain
language: C++
name: Agent Smith
= version: 1.0b
disclosyfe: public
KNOWS o
. CODHD BY
name: Trinity age: 6 -
disclegure: secret

& y :

last name: Reagan name: The Architect
name: Cypher : -

KNOWS
age: 3 days

Graph DB: Neo4j

* Rich data format
— Query language as pattern matching
— Limited scalability

» Replication to scale reads, writes need to be done to
every replica

o .
Cypher Query Language @ NEOL)
Node Node
_— .
T ! TR B
MATCH (:Person { name:“Dan”}) -[:KNOWS]-> (:Person { name:“Ann"})
e S -~ - — - - -

Label Property Label Property

32

