## **Introduction to the Social Web**

**Recommendation and Mining** 

#### Sihem Amer-Yahia updated by Vincent Leroy

# Sihem Amer-Yahia

 Ph.D. in CS, 1999, Univ. of Paris-Orsay & INRIA, France



- Research Scientist, at&t labs: 1999-2006
- Senior Research Scientist, Yahoo! Research: 2006-2011
  - Member of the jury of a young PhD student, Vincent Leroy
- Principal Research Scientist, QCRI: 2011-12
- Since Dec 2011: DR1 CNRS@LIG
  - Big Data Management and Query Processing for Search and Recommendation and their application to Social Computing, Large-scale information exploration algorithms
  - Head of the SLIDE team (ScaLable Information Discovery and Exploitation) at LIG (among which …)

## **Social Content Sites**

#### • Web destinations that let users:

- Consume and produce content
  - Videos / photos / articles /...
  - tags / ratings / reviews /...
- Engage in social activities with
  - friends / family / colleagues / acquaintances /...
  - people with similar interests / located in the same area /...

#### • Two major driving factors:

- Social activities improve the attractiveness of traditional content sites
  - the "similar traveler" feature improves user engagement
- Content is critical to the value of social networking sites
  - a significant amount of user time is spent browsing other people's photos, posts, etc.

## **Social Content Sites**

#### Users engage the system

- Contribute content
- Disclose information about themselves
- Need help navigating the ever-growing cyber-city maze

#### Ultimate goal

- Personalize search and information discovery
- Predict what a user's interests will be in the future
- Understand user behavior
- Many social content sites, collaborative tagging sites are one particular kind

- Flickr, YouTube, Delicious, photo tagging in Facebook

#### **Recommendation Outline**

- Recommender Systems
  - What are recommender systems and how do they work?
  - Example application: Hotlist Recommendation on Delicious
  - How are recommender systems evaluated?
- Recommendation challenges
  - Well-known challenges
  - Recommendation diversity
  - Group recommendation



## **Recommender System**



#### **Motivation**

- Amazon makes 20-30% of its sales from recommendations. Only 16% of people go to Amazon with explicit intent to buy something
- Collected data matters more than the algorithm.
  - Amazon's algorithm is essentially a large product-product correlation matrix for the past hour, but it works for them because they collect so much data through user actions
- A lot of types of data can be used: votes, ratings, clicks, page-view time, purchases, tagging...

#### Academia: An Overview

- Early days: 3 papers by HCI researchers (1995)
- Today: over 1000 papers
  - ACM RecSys09
    - 203 submissions, thereof 140 long and 63 short papers
    - acceptance rate for long papers of 17% and of 34% overall
  - Fields: CS/IS, marketing, DM/statistics, MS/OR

#### Netflix \$1M Prize Competition

- Data: ≈18K movies, ≈500K customers, 100M ratings
- \$1M Prize: improve Netflix RMSE rates by 10%
- $\approx 40$ K contestants from 179 countries
- Winners in June 2009: a coalition of four: <u>BellKor's Pragmatic Chaos</u> with statisticians, machine learning experts and computer engineers from America, Austria, Canada and Israel — declared that it had produced a program that improves the accuracy of the predictions by 10.05 percent.

#### **Recommendation Outline**

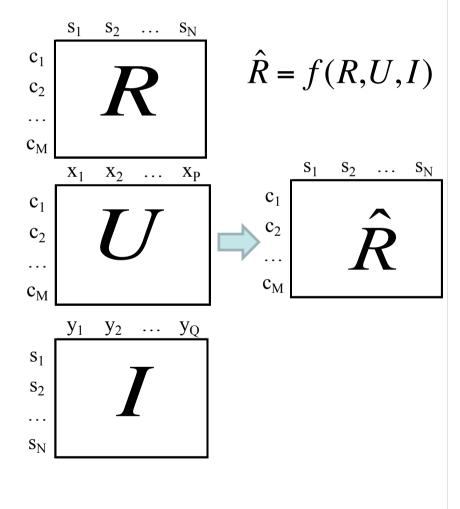
#### Recommender Systems

- What are recommender systems and how do they work?
- Example application: Hotlist Recommendation on Delicious
- How are recommender systems evaluated?
- Recommendation challenges
  - Well-known challenges
  - Recommendation diversity
  - Group recommendation

#### **Recommendation Model**

#### • Input

- Rating matrix *R*: r<sub>ij</sub> rating user c<sub>i</sub> assigns to item s<sub>j</sub>
   (*explicit* Vincent rates Westworld 5/5, or *implicit* Vincent listened to Explosions in the sky 659 times)
- User attribute matrix U: x<sub>ij</sub> attribute x<sub>j</sub> of user c<sub>i</sub> (e.g. demographic attributes)
- Item attribute matrix *I*: y<sub>ij</sub> attribute y<sub>j</sub> of item s<sub>i</sub> (e.g. product category, tags)
- Output
  - Predicted new matrix  $\hat{R}$



## **Types of Recommendations**

#### Content-based

- How similar is an item *i* to items *u* has liked in the past?
- Uses metadata for measuring similarity
- Works even when no ratings are available on items
- Requires metadata!

#### Collaborative filtering

Treat items and users as vectors of ratings, compute vector distance

## Taxonomy of Traditional Recommendation Methods

- Recommendation approach [Balabanovic & Shoham 1997]
  - Content-based, collaborative filtering
- Nature of the prediction technique
  - Heuristic-based (uses matrix as is), model-based
- Support for rating/transaction data
  - Both, rating-only [R], transaction-only [T]

|                         | Heuristic-based | Model-based |
|-------------------------|-----------------|-------------|
| Content-based           |                 |             |
| Collaborative filtering |                 |             |

## **Content-based, Heuristic-based**

- Item similarity methods
  - Information Retrieval (IR) Techniques
  - Treat each item as a document
  - Item similarity computed as document similarity

|                         | Heuristic-based | Model-based |
|-------------------------|-----------------|-------------|
| Content-based           |                 |             |
| Collaborative filtering |                 |             |

## **Similarity Measures**

- Use attributes of items to build an item profile
- User profile v<sub>i</sub> of user c<sub>i</sub> constructed by aggregating profiles of items c<sub>i</sub> has experienced
- Ex:
  - Justin Bieber (Pop 723, R&B 428, Canada 109)
  - Selena Gomez (Pop 341, Female Vocalist 156)
  - $\rightarrow$  Similarity = 0.77

$$\hat{r}_{ij} = score(\mathbf{v}_i, \mathbf{y}_j)$$
$$\hat{r}_{ij} = \cos(\mathbf{v}_i, \mathbf{y}_j) = \frac{\mathbf{v}_i \cdot \mathbf{y}_j}{\|\mathbf{v}_i\|_2 \cdot \|\mathbf{y}_j\|_2}$$

## **TF-IDF: relevance in Information Retrieval**

- Some attributes are very frequent (e.g. *rock* or *pop* tags on music)
  - Not able to differentiate items accurately
- Romantic ballads is much less frequent
  - Sharing this tag is much more meaningful
- Term Frequency:
  - The more a term is present in a document the more meaningful it is for this document (equivalent to tag frequency for an item)
- Inverse Document Frequency:
  - The fewer documents contain this term, the more meaningful it is (equivalent to a tag only used on a few items is more meaningful than a tag used on all items)

## **Term Frequency**

#### Variants of TF weight

| weighting scheme         | TF weight                                                     |
|--------------------------|---------------------------------------------------------------|
| binary                   | 0,1                                                           |
| raw frequency            | $f_{t,d}$                                                     |
| log normalization        | $1 + \log(f_{t,d})$                                           |
| double normalization 0.5 | $0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$ |
| double normalization K   | $K + (1-K) rac{f_{t,d}}{ \max_{\{t' \in d\}} f_{t',d}}$      |

#### **Inverse Document Frequency**

#### Variants of IDF weight

| weighting scheme                         | IDF weight ( $n_t =  \{d \in D: t \in d\} $ )                     |
|------------------------------------------|-------------------------------------------------------------------|
| unary                                    | 1                                                                 |
| inverse document frequency               | $\log rac{N}{n_t}$                                               |
| inverse document frequency smooth        | $\log(1+\frac{N}{n_t})$                                           |
| inverse document frequency max           | $\log \biggl( 1 + \frac{\max_{\{t' \in d\}} n_{t'}}{n_t} \biggr)$ |
| probabilistic inverse document frequency | $\log rac{N-n_t}{n_t}$                                           |

# Item Similarity based on IR

- Account for TF and IDF when building the vector of an item / user
- Item attributes are word occurrences in each document

 $y_{ij} = TF_{ij} \cdot IDF_j$ 

- *TF<sub>ij</sub>* term frequency: frequency of word y<sub>j</sub> occurring in the description of item s<sub>j</sub>;
- *IDF<sub>j</sub>* inverse document frequency: inverse of the frequency of word y<sub>i</sub> occurring in descriptions of all items

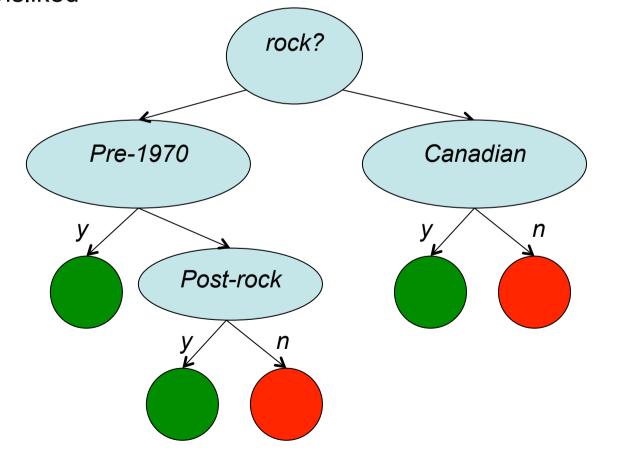
## **Content-based, Model-based**

- Classification models [Pazzani & Billsus 1997; Mooney & Roy 1998]
- One-class Naïve Bayes classifier [Schwab et al. 2000]
- Latent-class generative models [Zhang et al. 2002]

|                         | Heuristic-based | Model-based |
|-------------------------|-----------------|-------------|
| Content-based           |                 |             |
| Collaborative filtering |                 |             |

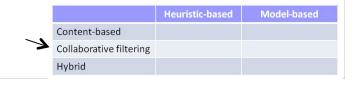
## **Tree-based classification model**

- Train a classifier using attributes to predict 2 classes:
  - Liked
  - Disliked



# **Collaborative Filtering Algorithms**

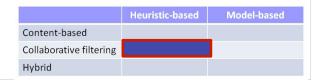
- Non-Personalized Summary Statistics
- K-Nearest Neighbor
- Dimensionality Reduction
- Content + Collaborative Filtering
- Graph Techniques
- Clustering
- Classifier Learning



## **Collaborative Filtering, Heuristic-based**

#### Neighborhood methods

- User-based algorithm [Breese et al. 1998; Resnick et al. 1994; Sarwar et al. 1998]
- Item-based algorithm [Deshpande & Karypis 2004; Linden et al. 2003; Sarwar et al. 2001]
- Similarity fusion [Wang et al. 2006]
- Weighted-majority [Delgado and Ishii 1999]
- Matrix reduction methods (SVD, PCA processing) [Goldberg et al. 2001; Sarwar et al. 2000]
- Association rule mining [Lin et al. 2002]
- Graph-based methods [Aggarwal et al. 1999; Huang et al. 2004, 2007]



# Collaborative Filtering, Heuristic-based (examples from Rajaraman and Ullman book)

|   | HP1      | HP2      | HP3 | $\mathbf{TW}$ | SW1 | SW2      | SW3 |
|---|----------|----------|-----|---------------|-----|----------|-----|
| Α | 4        |          |     | 5             | 1   |          |     |
| В | <b>5</b> | <b>5</b> | 4   |               |     |          |     |
| С |          |          |     | 2             | 4   | <b>5</b> |     |
| D |          | 3        |     |               |     |          | 3   |



|              | HP1 | HP2      | HP3 | $\mathbf{TW}$ | SW1 | SW2      | SW3 |
|--------------|-----|----------|-----|---------------|-----|----------|-----|
| Α            | 4   |          |     | 5             | 1   |          |     |
| В            | 5   | <b>5</b> | 4   |               |     |          |     |
| $\mathbf{C}$ |     |          |     | <b>2</b>      | 4   | <b>5</b> |     |
| D            |     | 3        |     |               |     |          | 3   |

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

Jaccard(A,B) = 1/5 < 2/4 = Jaccard(A,C)

#### Cosine

|              | HP1 | HP2      | HP3 | $\mathbf{TW}$ | SW1 | SW2      | SW3 |
|--------------|-----|----------|-----|---------------|-----|----------|-----|
| Α            | 4   |          |     | 5             | 1   |          |     |
| В            | 5   | <b>5</b> | 4   |               |     |          |     |
| $\mathbf{C}$ |     |          |     | <b>2</b>      | 4   | <b>5</b> |     |
| D            |     | 3        |     |               |     |          | 3   |

$$ext{similarity} = \cos( heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$
 , where  $A_i$  and  $B_i$  are

components of vector A and B respectively.

cos(A,B) = 0.380 > 0.322 = cos(A,C)

# **Normalizing ratings**

|              | HP1 | HP2 | HP3  | $\mathbf{TW}$ | SW1  | SW2 | SW3 |
|--------------|-----|-----|------|---------------|------|-----|-----|
| Α            | 2/3 |     |      | 5/3           | -7/3 |     |     |
| В            | 1/3 | 1/3 | -2/3 |               |      |     |     |
| $\mathbf{C}$ |     |     |      | -5/3          | 1/3  | 4/3 |     |
| D            |     | 0   |      | -             | -    | -   | 0   |

Replace each rating with its difference with the mean (average) for that user Low ratings become negative High ratings are positive

Cosine: users with opposite views on common movies will have vectors in opposite directions and users with similar opinions about movies rated in common will have a small angle.

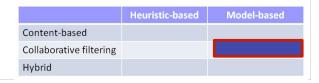
cos(A,B) = 0.092 > -0.559 = cos(A,C)

## **K** Nearest Neigbhors recommendation

- Using Ratings Matrix select k most similar users
- Aggregate their ratings to create a ranking of items
  - E.g. 3 users that love the same series as Jon love Stranger Things, and I haven't seen it
     → recommend Stranger Things to Jon

## **Collaborative Filtering, Model-based**

- Matrix reduction methods [Takacs et al. 2008; Toscher et al. 2008]
- Latent-class generative model [Hofmann 2004; Kumar et al. 2001; Jin et al. 2006]
- User-profile generative model [Pennock et al. 2000; Yu et al. 2004]
- User-based classifiers [Billsus & Pazzani 1999; Pazzani & Billsus 1997]
- Item dependency (Bayesian) networks [Breese et al. 1998; Heckerman et al. 2000]



# Alternating Least Squares (ALS)

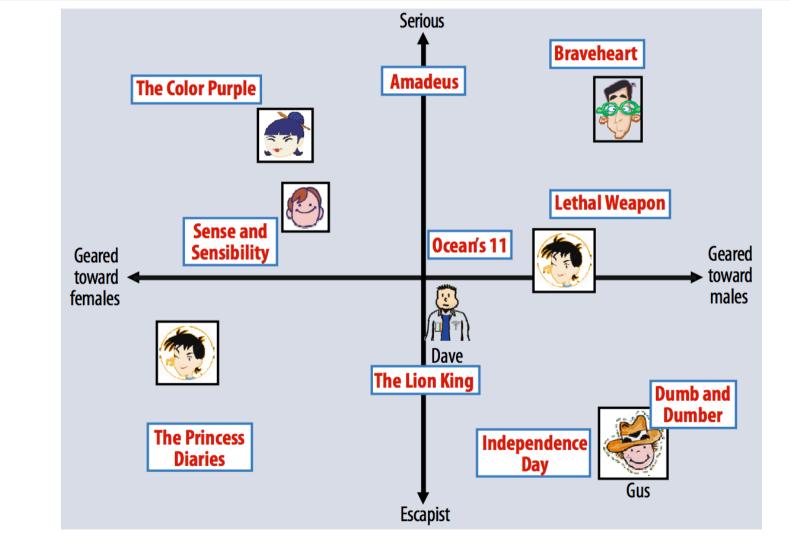
- The type of approach that won the Netflix prize!
- Matrix Factorization method
  - Represent users and items as vectors  $p_u$  and  $q_i$
  - Prediction  $\hat{r}_{ui} = q_i^T p_u$
- How do you learn these vectors?

$$\min_{q_{*},p_{*}} \sum_{(u,i)\in\kappa} (r_{ui} - q_{i}^{T} p_{u})^{2} + \lambda(||q_{i}||^{2} + ||p_{u}||^{2})$$

- Minimize prediction error on known ratings ( $\kappa$ ) while keeping the model simple ( $\lambda$ ) to avoid *overfitting*
- 2 parameters: number of dimensions of vectors (hidden features, called rank), and regularization parameter  $\lambda$

<u>Read more:</u> https://goo.gl/6z09EG

## ALS on 2 dimensions



31 CS 6093 ©2011

# **Solving ALS**

- Fix user vectors
  - Solve equation to find optimal items vectors
- Fix item vector
  - Solve equation to find optimal user vectors
- Execute until convergence (or for *x* iterations)
- There is a Spark implementation of this!
  - Mllib

#### **Recommendation Outline**

- Recommender Systems
  - What are recommender systems and how do they work?
  - Example application: Hotlist Recommendation on Delicious
  - How are recommender systems evaluated?
- Recommendation challenges
  - Well-known challenges
  - Recommendation diversity
  - Group recommendation

| lel.icio.us                                                                    |                                                              |
|--------------------------------------------------------------------------------|--------------------------------------------------------------|
| Fresh Bookmarks Hotlist Ex                                                     | plore Tags                                                   |
| The most popular bookmarks on Delicious right now See more Popular bookmarks 🕤 | New b                                                        |
| Via savedelete.com                                                             | 100<br>ax-services ( tools ( resources ( online-fax-services |
| 10 Interesting CSS3 Experiments and Demos sixia sixrevisions.com               | SAVE 100<br>css3 css webdesign inspiration demos             |
| If the Earth Stood Still SAVE<br>via www.esri.com                              | science earth geography maps gravity                         |
| Introduction to MySQL Triggers   Nettuts+ SAVE<br>via net.tutsplus.com         | 83<br>mysql triggers database tutorial sql                   |

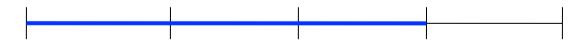
## del.icio.us Hotlists Experiment

#### • 116,177 del.icio.us users

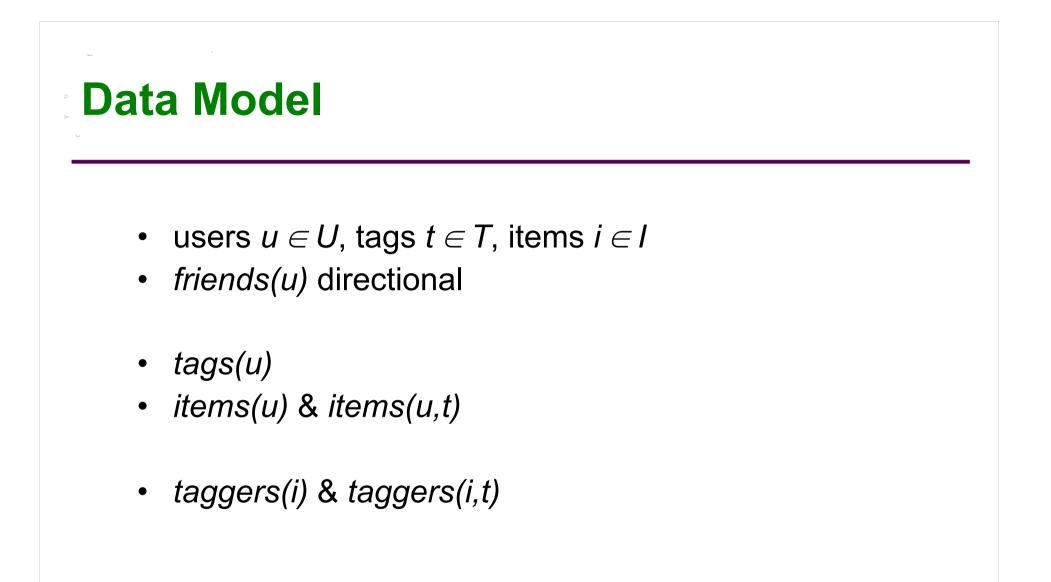
- who tagged 175,691 distinct URLs
- using 903 tags
- for a total of 2,322,458 tagging actions
- for 1 month in 2006

#### • Evaluate how networks predict user's interest

 J. Stoyanovich, S. Amer-Yahia, C. Yu, C. Marlow: Leveraging Tagging Behavior to Model Users' Interest in del.icio.us (AAAI Workshop on Social Information Processing 2008)



A/B testing: user behavior in first 3 weeks to predict 4<sup>th</sup> week



# Tagging data has a long tail

- we have to clean it for efficiency (relational processing)
- we removed unpopular tags (< 4 uses) & URLs (< 10 uses), reduced to 27% of original size</li>

### Global

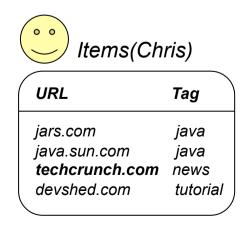
#### 10 URLs that are tagged most often over-all

#### Performance

coverage (global) = 3% scope (global) = 100%

| Rank | URL               | Votes |  |  |
|------|-------------------|-------|--|--|
| 1    | google.com        | 980   |  |  |
| 2    | facebook.com      | 820   |  |  |
| 3    | iTunes.com        | 729   |  |  |
| 4    | twitter.com       | 720   |  |  |
| 5    | jonasbrothers.com | 680   |  |  |
| 6    | cnn.com           | 678   |  |  |
| 7    | amazon.com        | 620   |  |  |
| 8    | yahoo.com         | 525   |  |  |
| 9    | youtube.com       | 524   |  |  |
| 10   | techcrunch.com    | 492   |  |  |

Global Top-10



|   | Items(Be                                                             | en)                                     |
|---|----------------------------------------------------------------------|-----------------------------------------|
| ( | URL                                                                  | Tag                                     |
|   | bbc.co.uk<br>pbs.org<br>tomwaits.com<br>nick-cave.com<br>loureed.com | news<br>news<br>music<br>music<br>music |



• If a user tags with *sports*, he is interested in sports-related content

| - interest(u,t) =  items(u,t)  /  items(u) |                |       |      |                   | Items(Ben) |                   |             |
|--------------------------------------------|----------------|-------|------|-------------------|------------|-------------------|-------------|
| -                                          | Top-10 for "ne | ws"   |      | Top-10 for "mus   | sic"       |                   | <i>,</i>    |
| Rank                                       | URL            | Votes | Rank | URL               | Votes      | bbc.co.uk         | Tag<br>news |
| 1                                          | cnn.com        | 610   | 1    | iTunes.com        | 542        | pbs.org           | news        |
| 2                                          | bbc.co.uk      | 503   | 2    | eMusic.com        | 420        | tomwaits.com      | music       |
| 3                                          | npr.org        | 427   | 3    | pandora.com       | 350        | nick-cave.com     | music       |
| 4                                          | nytimes.com    | 414   | 4    | thebeatles.com    | 330        | rollingstones.com | music /     |
| 5                                          | slashdot.org   | 392   | 5    | jonasbrothers.com | 215        |                   |             |
| 6                                          | reuters.com    | 330   | 6    | madonna.com       | 175        |                   |             |
| 7                                          | news.cnet.com  | 290   | 7    | rhapsody.com      | 148        |                   |             |
| 8                                          | msnbc.msn.com  | 250   | 8    | rollingstones.com | 133        |                   |             |
| 9                                          | news.yahoo.com | 180   | 9    | lastfm.com        | 120        |                   |             |
| 10                                         | digg.com       | 149   | 10   | beyonce.com       | 107        |                   |             |

Build one global hotlist per tag, use in one of two ways

best\_tag

hotlist = top-10 for tag for which user has highest interest

dominant\_tags

hotlist is a combination of up to 3 top-10 lists s.t. interest(u,t)  $\ge$  0.3 (user has strong interest for these tags)

## **Performance of Tag-based**

best\_tag coverage = 9% scope = 100%

dominant\_tags
1 tag coverage = 10%

2 tags coverage = 14%3 tags coverage = 18%

scope = 32% scope = 14% scope = 6%



Choose 10 most popular URLs from those tagged by a user's friends.

coverage (friends) = 43%
scope (friends) = 31%

### Common Interest Networks: URLinterest

Identify the seed -- a set of users who tag many of the same URLs as the user u ("agree with u"). Hotlist = 10 most popular URLs tagged by users in seed.

agr (u,f) =  $|\text{items}(u) \cap \text{items}(f)| / |\text{items}(u)|$   $U_{scope} = \{u \in U \mid \exists f \in U, \text{ agr}(u, f) > \text{threshold}\}$  $U_{seed} = \{f \in U \mid \text{agr}(u, f) > \text{threshold}\}$ 

thresh = 0.3 coverage = 61%scope = 1.2%thresh = 0.5 coverage = 71%scope = 0.7%

# Common Interest Networks: Tag-URL-Interest

Agreement across the board is rare, let's look at agreement per-tag: may agree with adviser on research, but with mom on cooking.

agr (u, f, t)=|items $(u, t) \cap$  items(f, t)| / |items(u, t)|

U<sub>scope</sub>, U<sub>scope</sub>defined as for url-interest, combined as in dominant-tags.

Scope (tag-url-interest) = 7%

## Tag/Interest-based Methods: a Comparison

Users in the intersection of dominant-tags, url-interest and tagurl-interest, with a strong interest in 2 tags, all thresholds = 0.3

|                  | U <sub>scope</sub> | avg (  <i>U<sub>seed</sub></i>  ) | coverage |
|------------------|--------------------|-----------------------------------|----------|
| dominant-tags    | 1235               | 26,856                            | 17%      |
| tag-url-interest | 1235               | 227                               | 82%      |
| url-interest     | 205                | 203                               | 85%      |

### **Recommendation Outline**

- Recommender Systems
  - What are recommender systems and how do they work?
  - Example application: Hotlist Recommendation on Delicious
  - How are recommender systems evaluated?
- Recommendation challenges
  - Well-known challenges
  - Recommendation diversity
  - Group recommendation

# **Evaluation Approaches**

#### Industry outcome

- Add-on sales
- Click-through rates

#### In research

- Offline: To anticipate the above beforehand
  - No actual users are involved and an existing dataset is split into a test and a training set
  - Using the ratings in the training set, predict the ratings in the test set
  - Predicted ratings are compared with ratings in the test set using different measures
  - In K-fold cross validation (a common cross validation technique), the data set is partitioned into K equal-sized subsets: one is retained and used as the test set, the other subsets are used as training set. This process is repeated K times, each time with a different test set.
- Online: User satisfaction

# **Evaluation Metrics**

- Accuracy Metrics
  - measure how well a user's ratings can be reproduced by the recommender system, and also how well a user's ranked list is predicted
  - 3 kinds of accuracy metrics
    - Predictive
    - Classification
    - Rank
- Other metrics:
  - Coverage, Confidence, Diversity, Novelty and Serendipity

# **Predictive Metrics**

- measure to what extent a recommender system can predict ratings of users.
- useful for systems that display the predicted ratings to their users.
- MAE = (|0|+|1|+|3|+|0|+|-2|+|0|+|2|)/7 = 1.143

$$MAE = \frac{1}{|B_i|} \sum_{b_k \in B_i} |r_i(b_k) - p_i(b_k)|$$

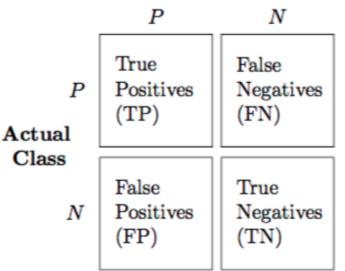
Also RMSE (Root Mean Squared Errors) as discussed for ALS

→ Several small errors is better than one big errors

|      | Ranking |    | Rating |    |
|------|---------|----|--------|----|
| Item | User    | RS | User   | RS |
| Α    | 1       | 1  | 5      | 5  |
| В    | 2       | 5  | 4      | 3  |
| D    | 3       | 4  | 4      | 4  |
| G    | 4       | 6  | 4      | 2  |
| Е    | 5       | 3  | 3      | 5  |
| С    | 6       | 2  | 2      | 5  |
| F    | 7       | 7  | 2      | 2  |

# **Classification Metrics**

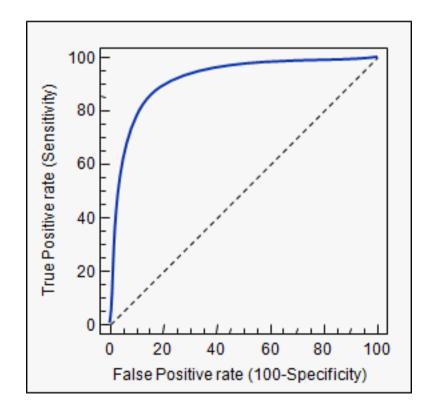
- measure to what extent a RS is able to correctly classify items as interesting or not.
   Predicted class
- Ignores rating difference



- Precision: TP/(TP+FP)
  - measures proportion of recommended items that are good
- Recall: TP/(TP+FN)
  - measures proportion of all good items recommended

# **ROC curve**

- Combine Recall and Precision
- Imagine a recommender that orders items from the most likely to the least likely



### Rank Metrics DCG, nDCG for list comparison

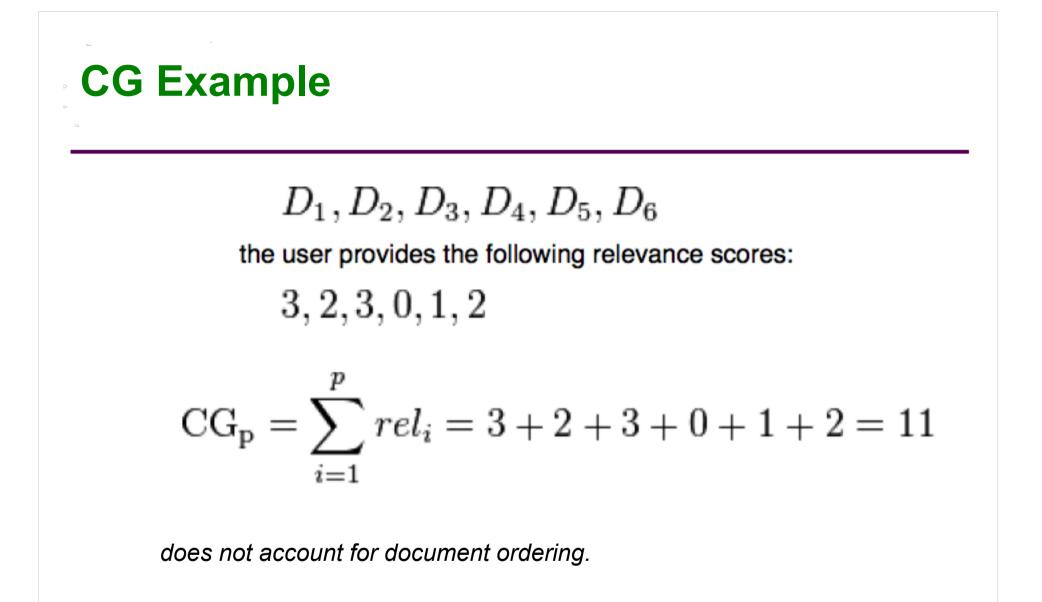
- A measure of effectiveness of a web search engine algorithm or related applications
- DCG measures the usefulness, or gain, of a document based on its position in the result list
- Two assumptions are made in using DCG:
  - Highly relevant documents are more useful when appearing earlier in a search engine result list (have higher ranks)
  - Highly relevant documents are more useful than marginally relevant documents, which are in turn more useful than irrelevant documents.
- DCG originates from an earlier, more primitive, measure called Cumulative Gain.

### **Cumulative Gain: CG**

It is the sum of the graded relevance values of all results in a search result list.

The CG at a particular rank position p is defined as: where rel\_i is the graded relevance of the result at position i.

$$CG_p = \sum_{i=1}^{p} rel_i$$



### **Discounted Cumulative Gain: DCG**

DCG is that highly relevant documents appearing lower in a search result list should be penalized as the graded relevance value is reduced logarithmically proportional to the position of the result. The discounted CG accumulated at a particular rank position is defined as:

$$DCG_{p} = rel_{1} + \sum_{i=2}^{p} \frac{rel_{i}}{\log_{2}(i)}$$

No theoretical justification for using a logarithmic reduction factor other than it produces a smooth reduction.

An alternative formulation of DCG places stronger emphasis on retrieving relevant documents:

$$\text{DCG}_{p} = \sum_{i=1}^{p} \frac{2^{rel_{i}} - 1}{\log_{2}(i+1)}$$

#### $D_1, D_2, D_3, D_4, D_5, D_6$

**DCG Example** 

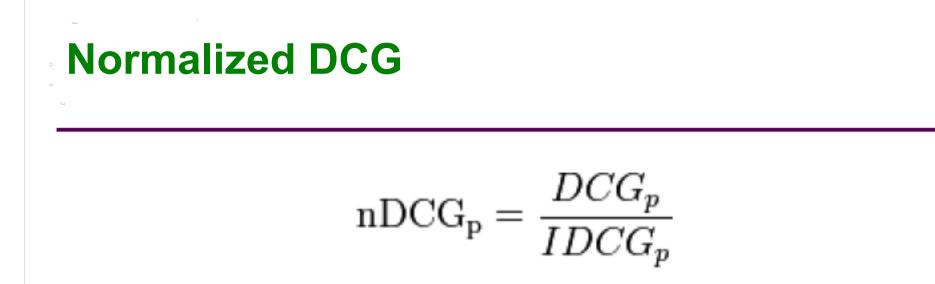
the user provides the following relevance scores:

3, 2, 3, 0, 1, 2

| i | $rel_i$ | $\log_2 i$ | $\frac{rel_i}{\log_2 i}$ |
|---|---------|------------|--------------------------|
| 1 | 3       | 0          | N/A                      |
| 2 | 2       | 1          | 2                        |
| 3 | 3       | 1.585      | 1.892                    |
| 4 | 0       | 2.0        | 0                        |
| 5 | 1       | 2.322      | 0.431                    |
| 6 | 2       | 2.584      | 0.774                    |

So the  $DCG_6$  of this ranking is:

$$DCG_6 = rel_1 + \sum_{i=2}^{6} \frac{rel_i}{\log_2 i} = 3 + (2 + 1.892 + 0 + 0.431 + 0.774) = 8.10$$



Search result lists vary in length depending on the query.

Comparing a search engine's performance from one query to the next cannot be consistently achieved using DCG alone.

The cumulative gain at each position for a chosen value of should be normalized across queries.

*Ideal DCG (IDCG) at position is obtained by sorting documents of a result list by relevance, producing the maximum possible DCG till position p.* 

#### $D_1, D_2, D_3, D_4, D_5, D_6$

#### **nDCG Example**

the user provides the following relevance scores:

3, 2, 3, 0, 1, 2

3, 3, 2, 2, 1, 0

The DCG of this ideal ordering, or IDCG, is then:

 $IDCG_{6} = 8.69$ 

And so the nDCG for this query is given as:

$$nDCG_6 = \frac{DCG_6}{IDCG_6} = \frac{8.10}{8.69} = 0.932$$

### **Recommendation Outline**

#### Recommender Systems

- What are recommender systems and how do they work?
- Example application: Hotlist Recommendation on Delicious
- How are recommender systems evaluated?

#### • (Some) Recommendation challenges

- Well-known challenges
- Recommendation diversity
- Group recommendation

# Well-Known Challenges

- The new user problem
- The recurring startup problem
- The sparse rating problem
- The scaling problem

# The New User Problem

- To be able to make accurate predictions, the system must first learn the user's preferences from the input the user provides (e.g., movie ratings, URL tagging).
- If the system does not show quick progress, a user may lose patience and stop using the system

# The Recurring Startup Problem

- New items are added regularly to recommender systems.
- A system that relies solely on users' preferences to make predictions would not be able to make accurate predictions on these items.
- This problem is particularly severe with systems that receive new items regularly, such as an online news article recommendation system.

# The Sparse Rating Problem

- In any recommender system, the number of ratings already obtained is very small compared to the number of ratings that need to be predicted.
- Effective generalization from a small number of examples is thus important.
- This problem is particularly severe during the startup phase of the system when the number of users is small.

# The Scaling Problem

- Recommender systems are normally implemented as a centralized algorithm and may be used by a very large number of users.
- Sometimes, predictions need to be made in real time and many predictions may potentially be requested at the same time.
- The computational complexity of the algorithms needs to scale well with the number of users and items in the system.

### **Recommendation Outline**

#### Recommender Systems

- What are recommender systems and how do they work?
- Example application: Hotlist Recommendation on Delicious
- How are recommender systems evaluated?
- Recommendation challenges
  - Well-known challenges
  - Recommendation diversity
  - Group recommendation

## **Diversification**

From the pool of relevant items, identify a list of items that are dissimilar to each other and maintain a high cumulative relevance, i.e., strike a good balance between relevance and diversity.

# **Existing Solutions**

#### • Attribute-based diversification in 3 steps:

- pair-wise item-to-item distance function on item attributes
- Perform Diversification:
  - Optimize an overall score as a weighted combination of relevance
     and distance
  - Constrain either relevance or distance, maximizing the other
- Overhead of retrieving item attributes
- Explanation-Based Diversification

## **Recommendation Strategy**

 Estimate the rating of an unrated item (*i*) by the user
 (*u*) based on its similarity to items already rated and how *u* rated those items.

 $relevance(u, i) = \sum_{i' \in \mathcal{I}} ItemSim(i, i') \times rating(u, i')$ 

• Similarly, one could define a user-based strategy

 $\texttt{relevance}(u,i) = \Sigma_{u' \in \mathcal{U}} \texttt{UserSim}(u,u') \times \texttt{rating}(u',i)$ 

# **Explanation**

#### Basic Notion

- The set of objects because of which a particular item is recommended to the user
- Explanation for Item-Based Strategies
   Expl(u, i) = {i' ∈ I | ItemSim(i, i') > 0 & i' ∈ Items(u)}
- Explanation for User-Based Strategies

 $\texttt{Expl}(u,i) = \{u' \in \mathcal{U} \mid \texttt{UserSim}(u,u') > 0 \ \& \ i \in \texttt{Items}(u')\}$ 

# **Explanation-Based Diversity**

- Pair-wise diversity distance between two recommended items
  - Standard similarity measures like Jaccard similarity and cosine similarity
  - E.g. (Distance based on Jaccard similarity)

$$DD_u^J(i,i') = 1 - \frac{|\text{Expl}(u,i) \cap \text{Expl}(u,i')|}{|\text{Expl}(u,i) \cup \text{Expl}(u,i')|}.$$

• Diversity for the set of recommended items (S)

$$DD_u(S) = avg\{DD_u(i, i') \mid i, i' \in S\}$$

### **Diverse Recommendation Problem**

#### Top-K Recommendation with Diversification

Given a user u, find a subset S from the set of candidate items, such that |S| = k and the overall relevance of items in S and the diversity of S are balanced.

Cong Yu, Laks V. S. Lakshmanan, Sihem Amer-Yahia: Recommendation Diversification Using Explanations. ICDE 2009: 1299-1302

### **Recommendation Outline**

#### Recommender Systems

- What are recommender systems and how do they work?
- Example application: Hotlist Recommendation on Delicious
- How are recommender systems evaluated?
- Recommendation challenges
  - Well-known challenges
  - Recommendation diversity
  - Group recommendation

# **Group Recommendation (motivation)**

- How do you decide where to go to dinner with friends?
  - email/text/phone
  - not optimal for reaching consensus
- What if there was a system that knew each user's preferred list?
- What is the best way to model consensus?
- How to evaluate that?
- How to *efficiently* compute *group recommendations*?

### **Group Recommendation by Example**

- Task: recommend a movie to group G ={u1, u2, u3}
  - predictedRating(u1,"God Father") = 5
  - predictedRating(u2, "God Father") = 1
  - predictedRating(u3, "God Father") = 1
  - predictedRating(u1, "Roman Holiday") = 3
  - predictedRating(u2, "Roman Holiday") = 3
  - predictedRating(u3, "Roman Holiday") = 1
- Average Rating and Least Misery fail to distinguish between "God Father" and "Roman Holiday"

### **Group Reco Problem Definition**

**Consensus function** combines **relevance** (average or least misery) and **disagreement** (average pair-wise or variance) in the score of a group recommendation

 $\mathcal{F}(\mathcal{G},i) = w_1 \times \operatorname{rel}(\mathcal{G},i) + w_2 \times (1 - \operatorname{dis}(\mathcal{G},i)), \text{ where } w_1 + w_2 = 1.0 \text{ and each specifies the relative importance of relevance and disagreement in the overall recommendation score.}$ 

Problem: Given a user group G (formed on-the-fly) and a consensus function F, find the k best items according to F, such that each item is new to all users in G

S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, C. Yu: Group Recommendation: Semantics and Efficiency. VLDB 2009.

### In practice

- Choose your similarity measure wisely, you will have to try more than one
- Define your goal early with the domain expert to determine how to evaluate your approach
- Build a prototype ASAP
- Use existing tools whenever possible

### **Main references**

- Mining of Massive Datasets: A. Rajaraman and J. Ullman
- Overview of Recommendation Systems

http://web.stanford.edu/class/ee378b/papers/adomavicius-recsys.pdf

Collaborative Filtering: Chapter 9 of Mining Massive Datasets book

http://infolab.stanford.edu/~ullman/mmds/book.pdf

• Delicious recommendations

J. Stoyanovich, S. Amer-Yahia, C. Yu, C. Marlow: Leveraging Tagging Behavior to Model Users' Interest in del.icio.us (AAAI Workshop on Social Information Processing 2008)

Diverse recommendations

Cong Yu, Laks V. S. Lakshmanan, Sihem Amer-Yahia: Recommendation Diversification Using Explanations. ICDE 2009: 1299-1302

• Group recommendations

S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, C. Yu: Group Recommendation: Semantics and Efficiency. VLDB 2009.

• Evaluating recommender systems

http://essay.utwente.nl/59711/1/MA\_thesis\_J\_de\_Wit.pdf