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CONTEXT
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DEFINITIONS (1)
• Set of items I  

(e.g. I={potatoes, milk, sugar …}, all products sold in 
the store)

• Transaction T is a subset of I  
(in our case a customer receipt)

• Database D is a collection of transactions 
(e.g. all receipts in a store for a month)
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DEFINITIONS (2)

• An Itemset P is a subset of I, and P occurs in a 
transaction T if P is a subset of T  
(e.g. the itemset {milk, eggs} occurs in the 
transaction {milk, eggs, chocolate})

• The support of an itemset P in a database D is the 
number of transactions in D in which P occurs
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ITEMSET MINING EXAMPLE

• ItemSets with support at least 3
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FINDING FREQUENT ITEMSETS

• Hasse diagram of itemsets: 2I possibilities 
A retail store sells 10k products, brute-force too expensive!
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APRIORI PROPERTY

• Given an ItemSet P and P’, a superset of P  
support(P’,D) ≤ support(P,D) 
e.g. there are less customers that buy {rice, 
seaweed, soy sauce} than customers that buy {rice, 
soy sauce}

• If we know that P is not frequent, there is no need 
to check if supersets of P are frequent
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APRIORI ALGORITM (1)

• Recursive algorithm  
Find frequent ItemSets of size k, then generate 
candidates of size k+1

• Given a candidate P of size k+1, if any of its 
subsets of size k is not frequent, then P cannot be 
frequent 
No need to compute its support! (expensive)
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APRIORI ALGORITM (2)
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ASSOCIATION RULES (1)
• ItemSet {rice, seaweed, soy sauce} 

{rice}                              {seaweed, soy sauce}  
{seaweed}                       {rice, soy sauce}  
{soy sauce}                      {rice, seaweed}  
{rice, seaweed}                {soy sauce}  
{rice, soy sauce}               {seaweed}  
{soy sauce, seaweed}        {rice}  

11



ASSOCIATION RULES (1I)

• Association rule A      B

• Support of the rule: support(A)

• Confidence (precision): support(A∪B)/support(A) 
equivalent to conditional probability of B given A
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RETAIL DATASETS
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Apriori algorithm by Agrawal & Srikant (1994)

x47k

Intermarché (2014)

x300M

x9M
?x200k



MINING LARGE-SCALE  
RETAIL DATA

Vincent Leroy



GOALS

• Coverage: generate rules about any item

• Scalability: process millions of receipts

• Quality: identify the most remarkable rules
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ARCHITECTURE OVERVIEW
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TopPI: 
MINING THE LONG TAIL

17



ITEMSET MINING: SOTA

• 20 years of research to accelerate mining
• Standardized benchmark datasets
• LCM algorithm as a building block

• Focus on high support ItemSets
• Find all ItemSets s.t. support > threshold
• Find the k most frequent ItemSets
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LONG-TAILED DISTRIBUTION
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FREQUENT ITEMSETS  
AND THE LONG TAIL (2)
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ITEM-CENTRIC MINING
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TopPI OUTPUT
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Support ItemSet

9,395,643 Grated Cheese

861,304 Grated Cheese, 
Cream

793,310 Grated Cheese, 
10 eggs

652,493 Grated Cheese, 
Butter

597,144 Grated Cheese, 
Bacon

top(Grated Cheese)

Support ItemSet

14,887 Sushi Rice

5,935 Sushi Rice, 
Seaweed

3,669 Sushi Rice, 
Rice Vinegar

1,843 Sushi Rice, Seaweed, 
Rice Vinegar

1,762 Sushi Rice, 
Wasabi

top(Sushi Rice)



TREE-SHAPED MINING
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Figure 2: CIS enumeration tree on our example dataset (Table 2a). hP, ii denotes the closure
extension operation.

Definition 1. An itemset Q ✓ I is a closure extension of a closed itemset
P ✓ I if 9e /2 P , called an extension item, such that Q = clo(P [ {e}).

TopPI enumerates CIS by recursively performing closure extensions, starting
from the empty set. In this context, pruning the solution space means avoiding
one or many recursive calls. In Table 2a, {0, 1, 2} is a closure extension of both
{0, 1} and {2}. This example shows that, starting from simple itemsets of size
1, a new itemset of size 2 can be generated by two different closure extensions.
Uno et al. [7] introduced two principles which guarantee that each closed itemset
is traversed only once in the exploration. We adapt their principles as follows.
First, extensions are restricted to items smaller than the previous extension.
Furthermore, we prune extensions that do not satisfy the first-parent criterion:

Definition 2. Given a closed itemset P and an item e /2 P , hP, ei is the first
parent of Q = clo(P [ {e}) only if max (Q \ P ) = e.

The extension enumeration order and the first parent test shapes the closure
extensions lattice as a tree. Figure 2 shows the itemsets tree for the dataset in
Table 2a. h{2}, 1i is the first parent of {0, 1, 2}, but h{2}, 0i is not. Therefore
the branch produced by h{2}, 0i is pruned.

These enumeration principles also lead to the following property: by ex-
tending P with e, TopPI can only recursively generate itemsets Q such that
max (Q \ P) = e. As we detail in Section 4, this is fundamental to parallelize
both the CIS enumeration and TopPI’s pruning.

Example enumeration. Figure 2 shows how and in which order CFIS are enu-
merated in TopPI on the sample dataset of Table 2a. The itemsets generated
by extending a closed itemset P are located in the sub-tree rooted at P .

1 The algorithm starts by checking if any item in D appears in all trans-
actions. Such items belong to the empty itemset’s closure, clo(;). As in most
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TID Transaction
t0 {0, 1, 2}
t1 {0, 1, 2}
t2 {0, 1}
t3 {2, 3}
t4 {0, 3}

(a) Input D

item top(i): P , support(P )
i 1st 2nd

0 {0}, 4 {0, 1}, 3
1 {0, 1}, 3 {0, 1, 2}, 2
2 {2}, 3 {0, 1, 2}, 2
3 {3}, 2

(b) TopPI results for k = 2

Table 2: Sample dataset

2. Item-Centric Mining

2.1. Preliminaries
The data contains items drawn from a set I. Each item has an integer

identifier, referred to as an index, which provides an order on I. A dataset D
is a collection of transactions, denoted {t1, ..., tn}, where t

j

✓ I. An itemset
P is a subset of I. A transaction t

j

is an occurrence of P if P ✓ t

j

. Given
a dataset D, the projected dataset for an itemset P is the dataset D restricted
to the occurrences of P : D[P ] = {t | t 2 D ^ P ✓ t}. In the example dataset
shown in Table 2a, D[{0, 1}] = {t0, t1, t2}. To further reduce its size, all items
of P can be removed, giving the reduced dataset of P : D

P

= {t \ P | t 2 D[P ]}.
Hence, in the example, D{0,1} = {{2}, {2}, {}}.

The number of occurrences of an itemset in D is called its support and
denoted supportD(P ). More formally, supportD(P ) = supportD[P ](P ) = |D

P

|.
An itemset P is said to be closed if there exists no itemset P

0 � P such that
support(P ) = support(P 0). The greatest itemset P

0 ◆ P having the same
support as P is called the closure of P , further denoted as clo(P ). For example,
in the dataset shown in Table 2a, the itemset {1, 2} has a support equal to 2
and clo({1, 2}) = {0, 1, 2}.

2.2. The item-centric mining problem
Given a dataset D and an integer k, our goal is to return, for each item in

D, the k most frequent closed itemsets containing this item. Table 2b shows the
solution to this problem applied to the dataset in Table 2a with k = 2. Note
that we purposely ignore itemsets that occur only once, as they do not show a
behavioral pattern.

2.3. Key principles of closed frequent itemsets enumeration
Several algorithms aim at mining closed itemsets (CIS) present in a dataset [5–

7]. For efficiency reasons, TopPI borrows some principles developed for the LCM
algorithm [4]: the closure extension, that generates new CIS from previously
computed ones, and the first parent that avoids redundant computation. We
define these principles below.
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Recursion using an expand function 
to add an item to an ItemSet (LCM)
Anti-monotony of ItemSet support 
for pruning



TOP-k PROCESSING
• General principle

• Maintain Lower Bound on current top-k
• Maintain Upper Bound on unseen results
• Prune when UB < LB

• Applicability in TopPI
• One top-k per item
• Bounds on support of ItemSets (anti-monotony)
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OVERVIEW OF TopPI (1)

• Support-based pruning
• Carefully determine which ItemSets can be generated in a branch
• Eliminate branches that cannot improve any top-k (result-space is not 

monotonic!)
• Insert (partial) ItemSets early to raise LBs

• Dataset reduction
• Use LBs to eliminate items that will not be in relevant ItemSets
• Instantiate in memory when gain is significant (RAM, L3, L2, L1)

• Optimize, optimize, optimize

26

Tree-shaped exploration guided by top-k(s) pruning



OVERVIEW OF TopPI (2)
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startBranch

expand

Pruning Module

Top-k collector 

• Top(Cheese)
• Top(Rice)
• Top(Wasabi)

early collection
dynamic threshold

collect

prune?



SINGLE SERVER 
PERFORMANCE
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Dataset #items #transactions Exec. time

Receipts 222k 290M 4 min

Receipts, 
by client 222k 9M 11 min

32 threads, 128 GB RAM, k=50

1 year of sales in minutes on a single server



MINING OVERHEAD
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DISTRIBUTED ALGORITHM
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Fortunately, some (Web) datasets are more challenging 
ex: WebDocs 8h on a single server

Distribute on Hadoop

Challenges:
• Partition into many mining task
• No communication between tasks



PARTITIONING ITEMS
Each task is responsible for a set of items and produces all 
necessary patterns
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top(Rice) 
top(Wasabi)

top(Chocolate) 
top(Seaweed)

Drawback: some ItemSets are enumerated multiple times



PARTITIONING THE TREE
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Each task is responsible for some branches of the enumeration 
tree and computes a top-k for all items

top(Rice) 
top(Wasabi) 
top(Chocolate) 
top(Seaweed)

Drawback: multiple top-k per item, less pruning

top(Rice) 
top(Wasabi) 
top(Chocolate) 
top(Seaweed)



HYBRID STRATEGY
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Figure 5: Hadoop implementation of TopPI

extensions by increasing item order. Given two items e and f successive in
the enumeration of the extensions of an itemset P (Algorithm 1, Line 20), the
executions of prune(P, e,D

P

, ") and prune(P, f,D
P

, ") are extremely similar
(Algorithm 3). The loop of Lines 3–5 enumerates the items of P in both cases.
As e < f , in the execution of prune(P, f,D

P

, "), the loop of Lines 6–11 can
be divided into an iteration on i 2 I | i < e ^ i 62 P and an execution for
i = e. Thus, the execution of prune(P, e,D

P

, ") is a prefix of the execution
of prune(P, f,D

P

, "). To take full advantage of this property, whenever prune

returns true, TopPI stores an upper bound on the extension support for which
this result holds. For the following extension f , if supportDP

(f) is below this
bound, it is safe to skip the loop of Lines 3–5 as well as the prefix of the loop
of lines 6–11, significantly reducing the execution time of prune. Lines 9–10
cause rare exceptions to this rule, which are correctly handled by TopPI using
an additional flag.

In the loop of lines 6–11, the computation of the closure in line 10 is an
expensive operation. Similarly to our previous optimization, given an execution
prune(P, f,D

P

, "), for any item i considered in this loop expand(P , i ,D
P

, ") has
been executed previously, as i < e. Hence, this closure has in fact already been
computed in line 17 of Algorithm 1, and TopPI can reuse this result. This is
the reason why we perform the closure of P [ {i} and not of P [ {e, i}, which
would be more precise but is not pre-computed.

4. Scaling TopPI

We first present the multithreaded version of TopPI, designed to take full
advantage of the multi-core CPUs available on servers. Then, to scale beyond
the capacity of a single server, we present a distributed version of TopPI designed
for MapReduce [9]. The goal is to divide the mining process into independent
subtasks executed on workers while (i) ensuring the output completeness, (ii)
avoiding redundant computation, and (iii) maintaining pruning performance.

4.1. Shared-memory TopPI
The enumeration of CISs by TopPI follows a tree structure, described in Sec-

tion 2.3. As shown by Négrevergne et al. [10], such enumeration can be adapted
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Phase 1: Partition items and tree 
Phase 2: Partition tree

Close to no mining 
overhead



HADOOP SPEEDUP
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Supermarket dataset, k=1000
• Excellent CPU time scalability
• I/O overhead



TopPI CONCLUSION
• Item-centric mining

• Redefines mining target for long-tailed data
• Provides coverage and scalability

• Top-k based on support
• Enables pruning (anti-monotony)
• Frequency is important, but is all that is frequent 

interesting?
35



QUALITY?
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Support ItemSet

581,042 Chocolate cream

58,569 Chocolate cream, 
Vanilla cream

32,701 Chocolate cream, 
Grated cheese

30,451 Chocolate cream, 
Cola

29,671 Chocolate cream, 
Butter

top(Chocolate cream)



CAPA:
IDENTIFYING INTERESTING RULES
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ASSOCIATION RULES

38

Product rule

Demographic rule



RANKING RULES

• Basic measures

• Recall

• Confidence

• Advanced measures

• Over 34!

• No guidelines
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Target Associations Input transactions T Desired association rules
demo_assoc: {demo(c) [ cat(p)|ht, c, pi 2 D} A segment tends to purchase products in a category.

segment ! category min support is 1,000 {< 35, F, ⇤}! Baby food
{⇤, ⇤, Nord}! Sodas

{> 65, ⇤, Gironde}! Bordeaux wine
prod_assoc_t: {[ht,cj ,pii2Dp

i

|t 2 T} Products purchased simultaneously.
product(s) ! product min support is 1,000 {vanilla cream}! chocolate cream

prod_assoc_c: {[htj ,c,pii2Dp

i

|c 2 C} Customers’ product associations over time.
product(s) ! product min support is 10,000 {Pork sausage, mustard}! dry Riesling

Table 3: Our mining scenarios and example association rules.

Measure Formula Group

One-Way Support P (B|A)⇥ log

2

P (AB)

P (A)P (B)

Relative Risk P (B|A)/P (B|¬A)

Odd Multiplier P (AB)P (¬B)

P (B)P (A¬B)

Zhang P (AB)�P (A)P (B)

max(P (AB)P (¬B),P (B)P (A¬B))

Yule’s Q 3
P (AB)P (¬A¬B)�P (A¬B)P (B¬A)

P (AB)P (¬A¬B)+P (A¬B)P (B¬A)

Yule’s Y 3

p
P (AB)P (¬A¬B)�

p
P (A¬B)P (B¬A)p

P (AB)P (¬A¬B)+

p
P (A¬B)P (B¬A)

Odds Ratio 3
P (AB)P (¬A¬B)

P (A¬B)P (B¬A)

Information Gain ⇤ log(P (AB)/(P (A)P (B)))
Lift ⇤ P (AB)/(P (A)P (B))

G

a

1

Added Value ⇤ P (B|A)� P (B)
Certainty Factor ⇤ (P (B|A)� P (B))/(1� P (B))
Confidence / Precision ⇤⌦ P (B|A)

Laplace Correction ⇤⌦ support(AB)+1

support(A)+2

Loevinger † 1� P (A)P (¬B)

P (A¬B)

Conviction † P (A)P (¬B)

P (A¬B)

Example and Counter-example Rate 1� P (A¬B)

P (AB)

Sebag-Schoenauer P (AB)

P (A¬B)

Leverage P (B|A)� P (A)P (B)

G

b

1

Least Contradiction P (AB)�P (A¬B)

P (B)

Accuracy P (AB) + P (¬A¬B)
G

2

Pearson’s �

2

. |T |⇥
⇣

(P (AB)�P (A)P (B))

2

P (A)P (B)

+ (P (¬AB)�P (¬A)P (B))

2

P (¬A)P (B)

⌘

+|T |⇥
⇣

(P (A¬B)�P (A)P (¬B))

2

P (A)P (B)

+ (P (¬A¬B)�P (¬A)P (¬B))

2

P (¬A)P (¬B)

⌘

Gini Index . P (A)⇥ (P (B|A)2 + P (¬B|A)2) + P (¬A)⇥ (P (B|¬A)2+
P (¬B|¬A)2)� P (B)2 � P (¬B)2

J-measure P (AB)log(P (B|A)

P (B)

) + P (A¬B)log(P (¬B|A)

P (¬B)

)

� Linear Correlation Coefficient P (AB)�P (A)P (B)p
P (A)P (B)P (¬A)P (¬B)

Two-Way Support Variation P (AB)⇥ log

2

P (AB)

P (A)P (B)

+ P (A¬B)⇥ log

2

P (A¬B)

P (A)P (¬B)

+

P (¬AB)⇥ log

2

P (¬AB)

P (¬A)P (B)

+ P (¬A¬B)⇥ log

2

P (¬A¬B)

P (¬A)P (¬B)

Fisher’s exact test

⇣ |T |⇥P (B)
|T |⇥P (AB)

⌘⇣ |T |⇥P (¬B)
|T |⇥P (A¬B)

⌘

⇣ |T |
|T |⇥P (A)

⌘

Jaccard P (AB)/(P (A) + P (B)� P (AB))

G

3

Cosine P (AB)p
P (A)P (B)

Two-Way Support P (AB)⇥ log

2

P (AB)

P (A)P (B)

G

4

Piatetsky-Shapiro P (AB)� P (A)P (B)
Klosgen

p
P (AB)max(P (B|A)� P (B), P (A|B)� P (A))

Specificity P (¬B|¬A)
G

5

Recall P (A|B)

Collective Strength P (AB)+P (¬B|¬A)

P (A)P (B)+P (¬A)P (¬B)

⇥ 1�P (A)P (B)�P (¬A)P (¬B)

1�P (AB)�P (¬B|¬A)

G

6

Table 4: Interestingness measures of a rule A! B. ⇤, . indicate measures that produce the same rule ranking
when a single target is selected. 3, †,  , ⌦ indicate measures that always produce the same rule ranking. |T |
is the number of transactions. P (A) = support(A)/|T |.

4



EXAMPLE OF RANKINGS (1)

40

TABLE III
INTERESTINGNESS MEASURES OF A RULE A! B. ⇤, . INDICATE MEASURES PRODUCING IDENTICAL RULE RANKINGS WHEN B IS FIXED. ⌃, †,  , ⌦

INDICATE MEASURES THAT ALWAYS PRODUCE THE SAME RULE RANKING. |T | IS THE NUMBER OF TRANSACTIONS. P (A) = support(A)/|T |.

Measure Formula Group and description
One-Way Support P (B|A)⇥ log2

P (AB)
P (A)P (B)

Relative Risk P (B|A)/P (B|¬A)
Odd Multiplier (P (AB)P (¬B))/(P (B)P (A¬B))
Zhang P (AB)�P (A)P (B)

max(P (AB)P (¬B),P (B)P (A¬B))

Yule’s Q ⌃ P (AB)P (¬A¬B)�P (A¬B)P (B¬A)
P (AB)P (¬A¬B)+P (A¬B)P (B¬A)

Yule’s Y ⌃
p

P (AB)P (¬A¬B)�
p

P (A¬B)P (B¬A)p
P (AB)P (¬A¬B)+

p
P (A¬B)P (B¬A)

Odds Ratio ⌃ (P (AB)P (¬A¬B))/(P (A¬B)P (B¬A))
Information Gain ⇤ log(P (AB)/(P (A)P (B))) Highest confidence
Lift ⇤ P (AB)/(P (A)P (B)) G1 Very low recall
Added Value ⇤ P (B|A)� P (B) Favors frequent targets
Certainty Factor ⇤ (P (B|A)� P (B))/(1� P (B))
Confidence / Precision ⇤⌦ P (B|A)
Laplace Correction ⇤⌦ (support(AB) + 1)/(support(A) + 2)
Loevinger † 1� P (A)P (¬B)/P (A¬B)
Conviction † P (A)P (¬B)/P (A¬B)
Example and Counter-example Rate 1� P (A¬B)/P (AB)
Sebag-Schoenauer P (AB)/P (A¬B)
Leverage P (B|A)� P (A)P (B)
Least Contradiction (P (AB)� P (A¬B))/P (B) Very high confidence
Accuracy P (AB) + P (¬A¬B)

G2 Very low recall

Pearson’s �

2
. |T |⇥

⇣
(P (AB)�P (A)P (B))2

P (A)P (B) + (P (¬AB)�P (¬A)P (B))2

P (¬A)P (B)

⌘

+|T |⇥
⇣

(P (A¬B)�P (A)P (¬B))2

P (A)P (B) + (P (¬A¬B)�P (¬A)P (¬B))2

P (¬A)P (¬B)

⌘

Gini Index . P (A)⇥ (P (B|A)2 + P (¬B|A)2) + P (¬A)⇥ (P (B|¬A)2+
P (¬B|¬A)2)� P (B)2 � P (¬B)2

J-measure P (AB)log(P (B|A)
P (B) ) + P (A¬B)log(P (¬B|A)

P (¬B) )

� Linear Correlation Coefficient (P (AB)� P (A)P (B))/
p

P (A)P (B)P (¬A)P (¬B)
High confidence
Low recall
Low sensitivity (to
target frequency)

Two-Way Support Variation P (AB)⇥ log2
P (AB)

P (A)P (B) + P (A¬B)⇥ log2
P (A¬B)

P (A)P (¬B)+

P (¬AB)⇥ log2
P (¬AB)

P (¬A)P (B) + P (¬A¬B)⇥ log2
P (¬A¬B)

P (¬A)P (¬B)

Fisher’s exact test
� |T |⇥P (B)
|T |⇥P (AB)

�� |T |⇥P (¬B)
|T |⇥P (A¬B)

�
/

� |T |
|T |⇥P (A)

�

Jaccard P (AB)/(P (A) + P (B)� P (AB))

G3

Cosine P (AB)/
p

P (A)P (B) Average confidence
Average recall
Low sensitivity

Two-Way Support P (AB)⇥ log2
P (AB)

P (A)P (B)

G4

Piatetsky-Shapiro P (AB)� P (A)P (B)
Klosgen

p
P (AB)max (P (B|A)� P (B), P (A|B)� P (A)) Low confidence

Specificity P (¬B|¬A)
G5

High recall
Recall P (A|B) Lowest confidence

Collective Strength P (AB)+P (¬B|¬A)
P (A)P (B)+P (¬A)P (¬B) ⇥

1�P (A)P (B)�P (¬A)P (¬B)
1�P (AB)�P (¬B|¬A)

G6 Highest recall
Favors rare targets

We rely on YARN [13] to administer the cluster storing
sales records. Data is stored in an HBase database [14], and
processed using the MapReduce framework [15]. Sales records
are stored in the sales table. To avoid redundancy and ease
data processing, records are grouped by receipt before being
stored in sales. Thus, each receipt is a line in the table, and
the content of the receipt is stored in the meta column family.
We leverage HBase’s flexibility on columns by recording each
product identifier as a column qualifier, with information such
as the cardinality and the unit-price as a value. The row key
of each receipt is defined as storeId-day-customerId-receiptId.
The sales table is configured to be sorted by row key. This
allows operations such as selecting the sales records of a

given store to be efficiently performed in a single scan, while
selecting a specific time period can also be done by combining
1,884 ranges (one per store identifier). Given that customer
purchases may vary between geographical areas [16] and over
time, these operations are frequently used by analysts. This
data layout is optimized to perform these selections without
incurring unnecessary reads. That enables storage of large
amounts of data without increasing the cost of analyzing a
fixed number of records. Sales logs transferred from the stores
are first stored on the distributed file system HDFS, and then
loaded into HBase using MapReduce, as a daily batch job.

Each customer constitutes an entry in the customers table,
which records the segments she belongs to. After loading the

TABLE I
TOP-5 DEMOGRAPHICS ASSOCIATION RULES, ACCORDING TO DIFFERENT INTERESTINGNESS MEASURES. RULES ARE DENOTED {AGE, GENDER,
DEPARTMENT} ! product category. PRODUCT CATEGORIES WERE TRANSLATED TO ENGLISH, FRENCH DEPARTMENTS WERE LEFT UNCHANGED.

by confidence by Piatetsky-Shapiro [5] by Pearson’s �

2

{> 65, F, Aube} ! Dairy {⇤, ⇤, Nord} ! Liquids {⇤, ⇤, Somme} ! Cut cheese
{> 65, F, Aveyron} ! Dairy {⇤, ⇤, Nord} ! Soft drinks {⇤, F, Somme} ! Cut cheese

{> 65, F, Val de Marne} ! Dairy {⇤, ⇤, Nord} ! Beers {> 65, ⇤,Morbihan} ! Fresh milk
{> 65, F, Seine St Denis} ! Dairy {⇤, ⇤, Nord} ! Spreads {> 65, ⇤, Somme} ! Cut cheese

{> 65, F, Haute Saone} ! Dairy {⇤, F,Nord} ! Soft drinks {⇤, ⇤, F inistere} ! Canned pork

This drawback is alleviated by providing the ability to filter
out rules containing uninteresting products.

CAPA is made possible with jLCM, our distributed pattern
mining algorithm that is able to mine millions of patterns
in a few minutes [4]. jLCM can be constrained to focus
on different customer demographics and product taxonomies.
Thus, in addition to typical associations between products, it
finds associations between customer segments and products
and between products and categories.

In summary, this paper presents CAPA, a joint effort between
researchers in Academia and business experts at Intermarché.
The context and goals of the work are provided in Section II.
The architecture of CAPA is overviewed in Section III. In Sec-
tion IV, CAPA is deployed to perform an automatic grouping
of measures into 6 groups based on similarities in the rakings
they produce. These groups are then evaluated by retail experts
in Section V leading to insightful findings. The related work
is summarized in Section VI. Planned and possible evolutions
are finally discussed in Section VII.

II. CONTEXT

A. Dataset

We represent a dataset D as a set of records of the form
ht, c, pi, where t is a unique receipt identifier, c is a customer,
and p is a product purchased by c. When a customer purchases
multiple products at the same time, several records with the
same receipt identifier t are generated. The set of receipt
identifiers is denoted as T . Each receipt identifier is associated
with a unique customer, and multiple receipt identifiers can
be associated with the same customer. We do not use product
price or product cardinality in this work. The complete dataset
contains over 290 million unique receipts, spanning 3.5 billion
records, generated at a retail chain consisting of 1,884 stores
over the whole year of 2013.

The set of customers, C, contains over 9 million customers.
Each customer has demographic attributes. In this study, we
focus on 3 attributes: age, gender and location. The attribute
age takes values in {<35, 35-49, 50-65, >65} and the attribute
location admits French departments as values. Each customer
segment is described by a set of user attribute values that are
interpreted in the usual conjunctive manner. For example, the
segment {< 35 ,Paris} refers to young Parisian customers.

We use demo(c) to refer to the set of attribute values
of a customer c. For example, {35-49, female, Calvados}
represents a 48 year old female from the Calvados department,
whom we will refer to as Mary.

The set of products P contains over 200,000 entries, out of
which 55,786 have been sold more than a thousand times.
Products are organized in a taxonomy with 19,557 nodes
over 4 levels. Products are leaf nodes, and belong to all their
ancestor categories. The set of categories a product p belongs
to is denoted as cat(p). For example, chocolate cream belongs
to the categories Fresh food, Dairy, Ultra fresh and Desserts.

B. Mining Customer Receipts

1) Dataset Preparation: Our analysts are interested in
studying two kinds of buying patterns: those representing as-
sociations between customer segments and a product category
(young people in the north of France consume sodas), and
those associating a set of products to a single product (people
who purchase pork sausage and mustard also buy Riesling).
In all cases the analyst specifies B, a set of rule targets.

In the first case, coined demo_assoc, B contains one
or more categories. The analyst expects rules of the form
customer segment ! category, i.e. customers who purchase
products in the target category. The second case comes in
two variants: prod_assoc_t, a receipt-centric view where
products are found in the same receipt, and prod_assoc_c,
a customer-centric view where products are purchased by the
same customer over time. In these variants, B only contains
products (as opposed to categories in the first scenario) and
the analyst expects rules of the form set of products ! target
product p 2 B. The dataset D is transformed into a collection
of transactions T that is given as input to the mining process,
as summarized in Table II. The set T is constructed differently
for each scenario.

In demo_assoc, a transaction is a tuple built for each
receipt ht, c, pi by associating demo(c) with cat(p). For Mary,
the record h234567,Mary , chocolate creami is mapped to
the transaction h 35-49, female, Calvados, chocolate cream,
Fresh food, Dairy, Ultra fresh, Dessertsi. The number of
transactions is equal to |D|, and each transaction contains
the segments a customer belongs to, and the categories of
the product purchased. In prod_assoc_t, T is built by
grouping the records in D by receipt identifier, t. For each
t, we generate a transaction as the set of products bought in
a single visit to the store {p|ht, c, pi 2 D}. If Mary has a
store receipt containing the products cream, yogurt, cola, a
transaction containing the 3 products is generated. This leads
to a total of |T | transactions, where each transaction is a subset
of P . In prod_assoc_c, we generate the set of transactions
T by grouping records in D by customer. For each customer
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TABLE I
TOP-5 DEMOGRAPHICS ASSOCIATION RULES, ACCORDING TO DIFFERENT INTERESTINGNESS MEASURES. RULES ARE DENOTED {AGE, GENDER,
DEPARTMENT} ! product category. PRODUCT CATEGORIES WERE TRANSLATED TO ENGLISH, FRENCH DEPARTMENTS WERE LEFT UNCHANGED.

by confidence by Piatetsky-Shapiro [5] by Pearson’s �

2

{> 65, F, Aube} ! Dairy {⇤, ⇤, Nord} ! Liquids {⇤, ⇤, Somme} ! Cut cheese
{> 65, F, Aveyron} ! Dairy {⇤, ⇤, Nord} ! Soft drinks {⇤, F, Somme} ! Cut cheese

{> 65, F, Val de Marne} ! Dairy {⇤, ⇤, Nord} ! Beers {> 65, ⇤,Morbihan} ! Fresh milk
{> 65, F, Seine St Denis} ! Dairy {⇤, ⇤, Nord} ! Spreads {> 65, ⇤, Somme} ! Cut cheese

{> 65, F, Haute Saone} ! Dairy {⇤, F,Nord} ! Soft drinks {⇤, ⇤, F inistere} ! Canned pork

This drawback is alleviated by providing the ability to filter
out rules containing uninteresting products.

CAPA is made possible with jLCM, our distributed pattern
mining algorithm that is able to mine millions of patterns
in a few minutes [4]. jLCM can be constrained to focus
on different customer demographics and product taxonomies.
Thus, in addition to typical associations between products, it
finds associations between customer segments and products
and between products and categories.

In summary, this paper presents CAPA, a joint effort between
researchers in Academia and business experts at Intermarché.
The context and goals of the work are provided in Section II.
The architecture of CAPA is overviewed in Section III. In Sec-
tion IV, CAPA is deployed to perform an automatic grouping
of measures into 6 groups based on similarities in the rakings
they produce. These groups are then evaluated by retail experts
in Section V leading to insightful findings. The related work
is summarized in Section VI. Planned and possible evolutions
are finally discussed in Section VII.

II. CONTEXT

A. Dataset

We represent a dataset D as a set of records of the form
ht, c, pi, where t is a unique receipt identifier, c is a customer,
and p is a product purchased by c. When a customer purchases
multiple products at the same time, several records with the
same receipt identifier t are generated. The set of receipt
identifiers is denoted as T . Each receipt identifier is associated
with a unique customer, and multiple receipt identifiers can
be associated with the same customer. We do not use product
price or product cardinality in this work. The complete dataset
contains over 290 million unique receipts, spanning 3.5 billion
records, generated at a retail chain consisting of 1,884 stores
over the whole year of 2013.

The set of customers, C, contains over 9 million customers.
Each customer has demographic attributes. In this study, we
focus on 3 attributes: age, gender and location. The attribute
age takes values in {<35, 35-49, 50-65, >65} and the attribute
location admits French departments as values. Each customer
segment is described by a set of user attribute values that are
interpreted in the usual conjunctive manner. For example, the
segment {< 35 ,Paris} refers to young Parisian customers.

We use demo(c) to refer to the set of attribute values
of a customer c. For example, {35-49, female, Calvados}
represents a 48 year old female from the Calvados department,
whom we will refer to as Mary.

The set of products P contains over 200,000 entries, out of
which 55,786 have been sold more than a thousand times.
Products are organized in a taxonomy with 19,557 nodes
over 4 levels. Products are leaf nodes, and belong to all their
ancestor categories. The set of categories a product p belongs
to is denoted as cat(p). For example, chocolate cream belongs
to the categories Fresh food, Dairy, Ultra fresh and Desserts.

B. Mining Customer Receipts

1) Dataset Preparation: Our analysts are interested in
studying two kinds of buying patterns: those representing as-
sociations between customer segments and a product category
(young people in the north of France consume sodas), and
those associating a set of products to a single product (people
who purchase pork sausage and mustard also buy Riesling).
In all cases the analyst specifies B, a set of rule targets.

In the first case, coined demo_assoc, B contains one
or more categories. The analyst expects rules of the form
customer segment ! category, i.e. customers who purchase
products in the target category. The second case comes in
two variants: prod_assoc_t, a receipt-centric view where
products are found in the same receipt, and prod_assoc_c,
a customer-centric view where products are purchased by the
same customer over time. In these variants, B only contains
products (as opposed to categories in the first scenario) and
the analyst expects rules of the form set of products ! target
product p 2 B. The dataset D is transformed into a collection
of transactions T that is given as input to the mining process,
as summarized in Table II. The set T is constructed differently
for each scenario.

In demo_assoc, a transaction is a tuple built for each
receipt ht, c, pi by associating demo(c) with cat(p). For Mary,
the record h234567,Mary , chocolate creami is mapped to
the transaction h 35-49, female, Calvados, chocolate cream,
Fresh food, Dairy, Ultra fresh, Dessertsi. The number of
transactions is equal to |D|, and each transaction contains
the segments a customer belongs to, and the categories of
the product purchased. In prod_assoc_t, T is built by
grouping the records in D by receipt identifier, t. For each
t, we generate a transaction as the set of products bought in
a single visit to the store {p|ht, c, pi 2 D}. If Mary has a
store receipt containing the products cream, yogurt, cola, a
transaction containing the 3 products is generated. This leads
to a total of |T | transactions, where each transaction is a subset
of P . In prod_assoc_c, we generate the set of transactions
T by grouping records in D by customer. For each customer

TABLE III
INTERESTINGNESS MEASURES OF A RULE A! B. ⇤, . INDICATE MEASURES PRODUCING IDENTICAL RULE RANKINGS WHEN B IS FIXED. ⌃, †,  , ⌦

INDICATE MEASURES THAT ALWAYS PRODUCE THE SAME RULE RANKING. |T | IS THE NUMBER OF TRANSACTIONS. P (A) = support(A)/|T |.

Measure Formula Group and description
One-Way Support P (B|A)⇥ log2

P (AB)
P (A)P (B)

Relative Risk P (B|A)/P (B|¬A)
Odd Multiplier (P (AB)P (¬B))/(P (B)P (A¬B))
Zhang P (AB)�P (A)P (B)

max(P (AB)P (¬B),P (B)P (A¬B))

Yule’s Q ⌃ P (AB)P (¬A¬B)�P (A¬B)P (B¬A)
P (AB)P (¬A¬B)+P (A¬B)P (B¬A)

Yule’s Y ⌃
p

P (AB)P (¬A¬B)�
p

P (A¬B)P (B¬A)p
P (AB)P (¬A¬B)+

p
P (A¬B)P (B¬A)

Odds Ratio ⌃ (P (AB)P (¬A¬B))/(P (A¬B)P (B¬A))
Information Gain ⇤ log(P (AB)/(P (A)P (B))) Highest confidence
Lift ⇤ P (AB)/(P (A)P (B)) G1 Very low recall
Added Value ⇤ P (B|A)� P (B) Favors frequent targets
Certainty Factor ⇤ (P (B|A)� P (B))/(1� P (B))
Confidence / Precision ⇤⌦ P (B|A)
Laplace Correction ⇤⌦ (support(AB) + 1)/(support(A) + 2)
Loevinger † 1� P (A)P (¬B)/P (A¬B)
Conviction † P (A)P (¬B)/P (A¬B)
Example and Counter-example Rate 1� P (A¬B)/P (AB)
Sebag-Schoenauer P (AB)/P (A¬B)
Leverage P (B|A)� P (A)P (B)
Least Contradiction (P (AB)� P (A¬B))/P (B) Very high confidence
Accuracy P (AB) + P (¬A¬B)

G2 Very low recall

Pearson’s �

2
. |T |⇥

⇣
(P (AB)�P (A)P (B))2

P (A)P (B) + (P (¬AB)�P (¬A)P (B))2

P (¬A)P (B)

⌘

+|T |⇥
⇣

(P (A¬B)�P (A)P (¬B))2

P (A)P (B) + (P (¬A¬B)�P (¬A)P (¬B))2

P (¬A)P (¬B)

⌘

Gini Index . P (A)⇥ (P (B|A)2 + P (¬B|A)2) + P (¬A)⇥ (P (B|¬A)2+
P (¬B|¬A)2)� P (B)2 � P (¬B)2

J-measure P (AB)log(P (B|A)
P (B) ) + P (A¬B)log(P (¬B|A)

P (¬B) )

� Linear Correlation Coefficient (P (AB)� P (A)P (B))/
p

P (A)P (B)P (¬A)P (¬B)
High confidence
Low recall
Low sensitivity (to
target frequency)

Two-Way Support Variation P (AB)⇥ log2
P (AB)

P (A)P (B) + P (A¬B)⇥ log2
P (A¬B)

P (A)P (¬B)+

P (¬AB)⇥ log2
P (¬AB)

P (¬A)P (B) + P (¬A¬B)⇥ log2
P (¬A¬B)

P (¬A)P (¬B)

Fisher’s exact test
� |T |⇥P (B)
|T |⇥P (AB)

�� |T |⇥P (¬B)
|T |⇥P (A¬B)

�
/

� |T |
|T |⇥P (A)

�

Jaccard P (AB)/(P (A) + P (B)� P (AB))

G3

Cosine P (AB)/
p

P (A)P (B) Average confidence
Average recall
Low sensitivity

Two-Way Support P (AB)⇥ log2
P (AB)

P (A)P (B)

G4

Piatetsky-Shapiro P (AB)� P (A)P (B)
Klosgen

p
P (AB)max (P (B|A)� P (B), P (A|B)� P (A)) Low confidence

Specificity P (¬B|¬A)
G5

High recall
Recall P (A|B) Lowest confidence

Collective Strength P (AB)+P (¬B|¬A)
P (A)P (B)+P (¬A)P (¬B) ⇥

1�P (A)P (B)�P (¬A)P (¬B)
1�P (AB)�P (¬B|¬A)

G6 Highest recall
Favors rare targets

We rely on YARN [13] to administer the cluster storing
sales records. Data is stored in an HBase database [14], and
processed using the MapReduce framework [15]. Sales records
are stored in the sales table. To avoid redundancy and ease
data processing, records are grouped by receipt before being
stored in sales. Thus, each receipt is a line in the table, and
the content of the receipt is stored in the meta column family.
We leverage HBase’s flexibility on columns by recording each
product identifier as a column qualifier, with information such
as the cardinality and the unit-price as a value. The row key
of each receipt is defined as storeId-day-customerId-receiptId.
The sales table is configured to be sorted by row key. This
allows operations such as selecting the sales records of a

given store to be efficiently performed in a single scan, while
selecting a specific time period can also be done by combining
1,884 ranges (one per store identifier). Given that customer
purchases may vary between geographical areas [16] and over
time, these operations are frequently used by analysts. This
data layout is optimized to perform these selections without
incurring unnecessary reads. That enables storage of large
amounts of data without increasing the cost of analyzing a
fixed number of records. Sales logs transferred from the stores
are first stored on the distributed file system HDFS, and then
loaded into HBase using MapReduce, as a daily batch job.

Each customer constitutes an entry in the customers table,
which records the segments she belongs to. After loading the
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TABLE III
INTERESTINGNESS MEASURES OF A RULE A! B. ⇤, . INDICATE MEASURES PRODUCING IDENTICAL RULE RANKINGS WHEN B IS FIXED. ⌃, †,  , ⌦

INDICATE MEASURES THAT ALWAYS PRODUCE THE SAME RULE RANKING. |T | IS THE NUMBER OF TRANSACTIONS. P (A) = support(A)/|T |.

Measure Formula Group and description
One-Way Support P (B|A)⇥ log2

P (AB)
P (A)P (B)

Relative Risk P (B|A)/P (B|¬A)
Odd Multiplier (P (AB)P (¬B))/(P (B)P (A¬B))
Zhang P (AB)�P (A)P (B)

max(P (AB)P (¬B),P (B)P (A¬B))

Yule’s Q ⌃ P (AB)P (¬A¬B)�P (A¬B)P (B¬A)
P (AB)P (¬A¬B)+P (A¬B)P (B¬A)

Yule’s Y ⌃
p

P (AB)P (¬A¬B)�
p

P (A¬B)P (B¬A)p
P (AB)P (¬A¬B)+

p
P (A¬B)P (B¬A)

Odds Ratio ⌃ (P (AB)P (¬A¬B))/(P (A¬B)P (B¬A))
Information Gain ⇤ log(P (AB)/(P (A)P (B))) Highest confidence
Lift ⇤ P (AB)/(P (A)P (B)) G1 Very low recall
Added Value ⇤ P (B|A)� P (B) Favors frequent targets
Certainty Factor ⇤ (P (B|A)� P (B))/(1� P (B))
Confidence / Precision ⇤⌦ P (B|A)
Laplace Correction ⇤⌦ (support(AB) + 1)/(support(A) + 2)
Loevinger † 1� P (A)P (¬B)/P (A¬B)
Conviction † P (A)P (¬B)/P (A¬B)
Example and Counter-example Rate 1� P (A¬B)/P (AB)
Sebag-Schoenauer P (AB)/P (A¬B)
Leverage P (B|A)� P (A)P (B)
Least Contradiction (P (AB)� P (A¬B))/P (B) Very high confidence
Accuracy P (AB) + P (¬A¬B)

G2 Very low recall

Pearson’s �

2
. |T |⇥

⇣
(P (AB)�P (A)P (B))2

P (A)P (B) + (P (¬AB)�P (¬A)P (B))2

P (¬A)P (B)

⌘

+|T |⇥
⇣

(P (A¬B)�P (A)P (¬B))2

P (A)P (B) + (P (¬A¬B)�P (¬A)P (¬B))2

P (¬A)P (¬B)

⌘

Gini Index . P (A)⇥ (P (B|A)2 + P (¬B|A)2) + P (¬A)⇥ (P (B|¬A)2+
P (¬B|¬A)2)� P (B)2 � P (¬B)2

J-measure P (AB)log(P (B|A)
P (B) ) + P (A¬B)log(P (¬B|A)

P (¬B) )

� Linear Correlation Coefficient (P (AB)� P (A)P (B))/
p

P (A)P (B)P (¬A)P (¬B)
High confidence
Low recall
Low sensitivity (to
target frequency)

Two-Way Support Variation P (AB)⇥ log2
P (AB)

P (A)P (B) + P (A¬B)⇥ log2
P (A¬B)

P (A)P (¬B)+

P (¬AB)⇥ log2
P (¬AB)

P (¬A)P (B) + P (¬A¬B)⇥ log2
P (¬A¬B)

P (¬A)P (¬B)

Fisher’s exact test
� |T |⇥P (B)
|T |⇥P (AB)

�� |T |⇥P (¬B)
|T |⇥P (A¬B)

�
/

� |T |
|T |⇥P (A)

�

Jaccard P (AB)/(P (A) + P (B)� P (AB))

G3

Cosine P (AB)/
p

P (A)P (B) Average confidence
Average recall
Low sensitivity

Two-Way Support P (AB)⇥ log2
P (AB)

P (A)P (B)

G4

Piatetsky-Shapiro P (AB)� P (A)P (B)
Klosgen

p
P (AB)max (P (B|A)� P (B), P (A|B)� P (A)) Low confidence

Specificity P (¬B|¬A)
G5

High recall
Recall P (A|B) Lowest confidence

Collective Strength P (AB)+P (¬B|¬A)
P (A)P (B)+P (¬A)P (¬B) ⇥

1�P (A)P (B)�P (¬A)P (¬B)
1�P (AB)�P (¬B|¬A)

G6 Highest recall
Favors rare targets

We rely on YARN [13] to administer the cluster storing
sales records. Data is stored in an HBase database [14], and
processed using the MapReduce framework [15]. Sales records
are stored in the sales table. To avoid redundancy and ease
data processing, records are grouped by receipt before being
stored in sales. Thus, each receipt is a line in the table, and
the content of the receipt is stored in the meta column family.
We leverage HBase’s flexibility on columns by recording each
product identifier as a column qualifier, with information such
as the cardinality and the unit-price as a value. The row key
of each receipt is defined as storeId-day-customerId-receiptId.
The sales table is configured to be sorted by row key. This
allows operations such as selecting the sales records of a

given store to be efficiently performed in a single scan, while
selecting a specific time period can also be done by combining
1,884 ranges (one per store identifier). Given that customer
purchases may vary between geographical areas [16] and over
time, these operations are frequently used by analysts. This
data layout is optimized to perform these selections without
incurring unnecessary reads. That enables storage of large
amounts of data without increasing the cost of analyzing a
fixed number of records. Sales logs transferred from the stores
are first stored on the distributed file system HDFS, and then
loaded into HBase using MapReduce, as a daily batch job.

Each customer constitutes an entry in the customers table,
which records the segments she belongs to. After loading the

TABLE I
TOP-5 DEMOGRAPHICS ASSOCIATION RULES, ACCORDING TO DIFFERENT INTERESTINGNESS MEASURES. RULES ARE DENOTED {AGE, GENDER,
DEPARTMENT} ! product category. PRODUCT CATEGORIES WERE TRANSLATED TO ENGLISH, FRENCH DEPARTMENTS WERE LEFT UNCHANGED.

by confidence by Piatetsky-Shapiro [5] by Pearson’s �

2

{> 65, F, Aube} ! Dairy {⇤, ⇤, Nord} ! Liquids {⇤, ⇤, Somme} ! Cut cheese
{> 65, F, Aveyron} ! Dairy {⇤, ⇤, Nord} ! Soft drinks {⇤, F, Somme} ! Cut cheese

{> 65, F, Val de Marne} ! Dairy {⇤, ⇤, Nord} ! Beers {> 65, ⇤,Morbihan} ! Fresh milk
{> 65, F, Seine St Denis} ! Dairy {⇤, ⇤, Nord} ! Spreads {> 65, ⇤, Somme} ! Cut cheese

{> 65, F, Haute Saone} ! Dairy {⇤, F,Nord} ! Soft drinks {⇤, ⇤, F inistere} ! Canned pork

This drawback is alleviated by providing the ability to filter
out rules containing uninteresting products.

CAPA is made possible with jLCM, our distributed pattern
mining algorithm that is able to mine millions of patterns
in a few minutes [4]. jLCM can be constrained to focus
on different customer demographics and product taxonomies.
Thus, in addition to typical associations between products, it
finds associations between customer segments and products
and between products and categories.

In summary, this paper presents CAPA, a joint effort between
researchers in Academia and business experts at Intermarché.
The context and goals of the work are provided in Section II.
The architecture of CAPA is overviewed in Section III. In Sec-
tion IV, CAPA is deployed to perform an automatic grouping
of measures into 6 groups based on similarities in the rakings
they produce. These groups are then evaluated by retail experts
in Section V leading to insightful findings. The related work
is summarized in Section VI. Planned and possible evolutions
are finally discussed in Section VII.

II. CONTEXT

A. Dataset

We represent a dataset D as a set of records of the form
ht, c, pi, where t is a unique receipt identifier, c is a customer,
and p is a product purchased by c. When a customer purchases
multiple products at the same time, several records with the
same receipt identifier t are generated. The set of receipt
identifiers is denoted as T . Each receipt identifier is associated
with a unique customer, and multiple receipt identifiers can
be associated with the same customer. We do not use product
price or product cardinality in this work. The complete dataset
contains over 290 million unique receipts, spanning 3.5 billion
records, generated at a retail chain consisting of 1,884 stores
over the whole year of 2013.

The set of customers, C, contains over 9 million customers.
Each customer has demographic attributes. In this study, we
focus on 3 attributes: age, gender and location. The attribute
age takes values in {<35, 35-49, 50-65, >65} and the attribute
location admits French departments as values. Each customer
segment is described by a set of user attribute values that are
interpreted in the usual conjunctive manner. For example, the
segment {< 35 ,Paris} refers to young Parisian customers.

We use demo(c) to refer to the set of attribute values
of a customer c. For example, {35-49, female, Calvados}
represents a 48 year old female from the Calvados department,
whom we will refer to as Mary.

The set of products P contains over 200,000 entries, out of
which 55,786 have been sold more than a thousand times.
Products are organized in a taxonomy with 19,557 nodes
over 4 levels. Products are leaf nodes, and belong to all their
ancestor categories. The set of categories a product p belongs
to is denoted as cat(p). For example, chocolate cream belongs
to the categories Fresh food, Dairy, Ultra fresh and Desserts.

B. Mining Customer Receipts

1) Dataset Preparation: Our analysts are interested in
studying two kinds of buying patterns: those representing as-
sociations between customer segments and a product category
(young people in the north of France consume sodas), and
those associating a set of products to a single product (people
who purchase pork sausage and mustard also buy Riesling).
In all cases the analyst specifies B, a set of rule targets.

In the first case, coined demo_assoc, B contains one
or more categories. The analyst expects rules of the form
customer segment ! category, i.e. customers who purchase
products in the target category. The second case comes in
two variants: prod_assoc_t, a receipt-centric view where
products are found in the same receipt, and prod_assoc_c,
a customer-centric view where products are purchased by the
same customer over time. In these variants, B only contains
products (as opposed to categories in the first scenario) and
the analyst expects rules of the form set of products ! target
product p 2 B. The dataset D is transformed into a collection
of transactions T that is given as input to the mining process,
as summarized in Table II. The set T is constructed differently
for each scenario.

In demo_assoc, a transaction is a tuple built for each
receipt ht, c, pi by associating demo(c) with cat(p). For Mary,
the record h234567,Mary , chocolate creami is mapped to
the transaction h 35-49, female, Calvados, chocolate cream,
Fresh food, Dairy, Ultra fresh, Dessertsi. The number of
transactions is equal to |D|, and each transaction contains
the segments a customer belongs to, and the categories of
the product purchased. In prod_assoc_t, T is built by
grouping the records in D by receipt identifier, t. For each
t, we generate a transaction as the set of products bought in
a single visit to the store {p|ht, c, pi 2 D}. If Mary has a
store receipt containing the products cream, yogurt, cola, a
transaction containing the 3 products is generated. This leads
to a total of |T | transactions, where each transaction is a subset
of P . In prod_assoc_c, we generate the set of transactions
T by grouping records in D by customer. For each customer
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Fig. 2. Hierarchical clustering of interestingness measures for a single target

commonly used in Information Retrieval. The core idea in
NDCG is to reward a ranked list Lm

R for placing an element
r of relevance rel

r

by rel

r

log rm .
The logarithmic part acts as a smoothing discount rate

representing the fact that as the rank increases, the analyst is
less likely to observe r. In our setting, there is no ground truth
to properly assess rel

r

. Instead, we use the ranking assigned by
m

0 as a relevance measure for r, with an identical logarithmic
discount. When summing over all of R, we obtain DCC ,
which presents the advantage of being a symmetric correlation
measure between two rankings L

m
R and L

m0

R .

DCC (Lm

R ,Lm

0

R ) =

X

r2R

1

log (1 + r

m0
) log (1 + r

m
)

We compute NDCC by normalizing DCC between 1 (iden-
tical rankings) and �1 (reversed rankings).

NDCC (Lm

R ,Lm

0

R ) =

dcc� avg

max� avg

where dcc = DCC (Lm

R ,Lm

0

R ), max = DCC (Lm

0

R ,Lm

0

R )

min = DCC (L⇤,Lm

0

R ), L⇤ = rev(Lm

0

R )

avg = (max+min)/2

5) Ranking comparison by example: We illustrate the dif-
ference between all ranking correlation measures with an
example in Table IV. This shows correlation of a ranking L

1

with 3 others, according to each measure. NDCC does indeed
penalize differences at higher ranks, and is more tolerant at
lower ranks.

B. Rankings comparison

We perform a comparative analysis of ranking measures, on
our 3 mining scenarios summarized in Table II. We generate
association rules A ! B where B is a single product
among a set of 64 previously studied by analysts. Overall we
obtain 1,651,024 association rules, and we compute one rule
ranking per product and per interestingness measure. Our first
observation is that the results we obtain for all scenarios lead
to the same conclusions. Therefore, we only report numbers
for prod_assoc_c.

TABLE IV
EXAMPLE RANKINGS AND CORRELATIONS

Ranking Content
L

1
r1, r2, r3, r4

L

2
r2, r1, r3, r4

L

3
r1, r2, r4, r3

L

4
r2, r3, r1, r4

Spearman ⌧ Overlap@2 NDCC
L

2 0.80 0.67 1 0.20
L

3 0.80 0.67 1 0.97
L

4 0.40 0.33 0.5 �0.18

While all measures are computed differently, we notice that
some of them always return the same ranking for association
rules of a given target. We identify them in Table III using
symbols. Other notable similarities include Sebag-Schoenauer
and lift (89% of rankings are equal), as well as Loevinger and
lift (87%). This difference between the number of interesting-
ness measures considered (34) and the number of different
rankings obtained (25) can easily be explained analytically
in the case of a fixed target. Indeed, for a given ranking,
P (B) is constant, which eliminates some of the differences
between interestingness measures. In addition, some measures
only have subtle differences which only appear when selecting
extreme values for P (A), P (B) and P (AB), which do not
occur in practice in our retail dataset.

1) Comparative analysis: We now evaluate similarity be-
tween interestingness measures that do not return the same
rankings. We compute a 34 ⇥ 34 correlation matrix of all
rankings according to each correlation measure described in
Section IV-A, and average them over the 64 target prod-
ucts. This gives us a ranking similarity between all pairs
of measures. We then rely on hierarchical clustering with
average linkage [20] to obtain a dendrogram of interestingness
measures and analyze their similarities. The dendrograms for
NDCC and ⌧ are presented in Figure 2. For better readability,
we merge sub-trees when correlation is above 0.9. To describe
the results more easily, we partition interestingness measures
into 6 groups, as indicated in the third column in Table III.
G

1

is by far the largest group: in addition to 4 measures that

are centralized and joined to the results of jLCM (which
provides P (AB) and P (B)). After this denormalization, each
row represents an association rule and has enough information
to compute its score. This table is then augmented with
34 columns, one for each measure implemented in CAPA,
and listed in Table III. Because large numbers are involved,
for Fisher’s exact test we actually use the logarithm of the
binomial coefficients, which are computed as logarithms of
the gamma function. This makes the calculation feasible, but
requires long iterations so we do it in parallel again (this
is easy to implement thanks to the denormalization). The
complete table is stored in a relational database.

The final component of CAPA is a web application allowing
the analyst to explore this augmented table. In any scenario,
the analyst picks a measure and selects a target product or
category, or a set of target products or categories. Association
rules are then returned in a table and sorted according to the
selected measure. A rule like yogurt ! cheese is displayed
with 3 values: support (number of customers who bought both
cheese and yogurt), confidence (fraction of yogurt buyers who
also bought cheese), recall (fraction of cheese buyers who
also bought yogurt). During the user study these figures help
analysts quickly judge the volume of sales for each rule.

IV. EMPIRICAL EVALUATION

We present an empirical evaluation of the 34 measures
for association rules introduced in Section II-C. Recall that
our goal, stated in Section II-D, is to assist the analyst
in selecting measures. Our evaluation consists in comparing
rankings produced by these measures on retail data to discover
which measures differ significantly in practice. We then use
that similarity to classify ranking measures into groups. We
annotate these groups based on the properties common to the
group. We discuss key insights obtained from experimentation
on each group. The goal of this evaluation is to automatically
detect similarities between interestingness measures and re-
duce the number of candidate measures to present to analysts
in the user study (Section V).

We first present in Section IV-A methods used to compare
ranked list. Then, we compare the resulting rankings in Sec-
tion IV-B). We conclude the empirical evaluation with the
selection of representative measures in Section IV-C.

A. Ranking similarity measures

In this section, we discuss some methods for comparison
of ranked lists. The first three methods are taken from the
literature. We then introduce NDCC, a new parameter-free
ranking similarity designed to emphasize differences at the
top of the ranking.

We are given of a set of association rules R to rank. We
interpret each measure, m, as a function that receives a rule
and generates a score, m : R ! R. We use L

m
R to denote

an ordered list composed of rules in R, sorted by decreasing
score. Thus, Lm

R =< r

1

, r

2

, . . . > s.t. 8i > i

0
m(ri) < m(ri0).

We generate multiple lists, one for each measure m, from the
same set R. L

m
R denotes a ranked list of association rules

according to measure m where the rank of rule r is given as
rank(r, L

m
R) = |{r0|r0 2 R, m(r

0
) � m(r)}|. To assess the

dissimilarity between two measures, m and m

0, we compute
the dissimilarity between their ranked lists, Lm

R and L

m0

R . We
use r

m as a shorthand notation for rank(r, Lm
R).

1) Spearman’s rank correlation coefficient: Given two
ranked lists L

m
R and L

m0

R , Spearman’s rank correlation [17]
computes a linear correlation coefficient that varies between 1

(identical lists) and �1 (opposite rankings) as shown below.

Spearman(Lm

R ,Lm

0

R ) = 1�
6

P
r2R

(r

m � r

m0
)

2

|R|(|R|2 � 1)

This coefficient depends only on the difference in ranks of the
element (rule) in the two lists, and not on the ranks themselves.
Hence, the penalization is the same for differences occurring
at the beginning or at the end of the lists.

2) Kendall’s ⌧ rank correlation coefficient: Kendall’s ⌧

rank correlation coefficient [18] is based on the idea of
agreement among element (rule) pairs. A rule pair is said to
be concordant if their order is the same in L

m
R and L

m0

R , and
discordant otherwise. ⌧ computes the difference between the
number of concordant and discordant pairs and divides by the
total number of pairs as shown below.

⌧(L

m
R, L

m0

R ) =

|C|� |D|
1

2

|R|(|R|� 1)

C = {(ri, rj)|ri, rj 2 R ^ i < j^
sgn(r

m
i � r

m
j ) = sgn(r

m0

i � r

m0

j )}

D = {(ri, rj)|ri, rj 2 R ^ i < j^
sgn(r

m
i � r

m
j ) 6= sgn(r

m0

i � r

m0

j )}

Similar to Spearman’s, ⌧ varies between 1 and �1, and
penalizes uniformly across all positions.

3) Overlap@k: Overlap@k is another method for ranked
lists comparison widely used in Information Retrieval. It is
based on the premise that in long ranked lists, the analyst is
only expected to look at the top few results that are highly
ranked. While Spearman and ⌧ account for all elements
uniformly, Overlap@k compares two rankings by computing
the overlap between their top-k elements only.

Overlap@k(Lm

R ,Lm

0

R ) =

|{r 2 R | rm  k ^ rm
0  k}|

k

4) Normalized Discounted Correlation Coefficient:
Overlap@k, Spearman’s and ⌧ sit at two different extremes.
The former is conservative in that it takes into consideration
only the top k elements of the list whereas the latter two take
too liberal an approach by penalizing all parts of the lists
uniformly. In practice, we aim for a good tradeoff between
these extremes.

To bridge this gap, we propose a new ranking correlation
measure coined Normalized Discounted Correlation Coeffi-
cient or NDCC. NDCC draws inspiration from NDCG, Nor-
malized Discounted Cumulative Gain [19], a ranking measure

Uniform: Spearman and Kendall’s τ 

Top Biased: Overlap@k and NDCC
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Fig. 2. Hierarchical clustering of interestingness measures for a single target

commonly used in Information Retrieval. The core idea in
NDCG is to reward a ranked list Lm

R for placing an element
r of relevance rel

r

by rel

r

log rm .
The logarithmic part acts as a smoothing discount rate

representing the fact that as the rank increases, the analyst is
less likely to observe r. In our setting, there is no ground truth
to properly assess rel

r

. Instead, we use the ranking assigned by
m

0 as a relevance measure for r, with an identical logarithmic
discount. When summing over all of R, we obtain DCC ,
which presents the advantage of being a symmetric correlation
measure between two rankings L

m
R and L

m0

R .

DCC (Lm

R ,Lm

0

R ) =

X

r2R

1

log (1 + r

m0
) log (1 + r

m
)

We compute NDCC by normalizing DCC between 1 (iden-
tical rankings) and �1 (reversed rankings).

NDCC (Lm

R ,Lm

0

R ) =

dcc� avg

max� avg

where dcc = DCC (Lm

R ,Lm

0

R ), max = DCC (Lm

0

R ,Lm

0

R )

min = DCC (L⇤,Lm

0

R ), L⇤ = rev(Lm

0

R )

avg = (max+min)/2

5) Ranking comparison by example: We illustrate the dif-
ference between all ranking correlation measures with an
example in Table IV. This shows correlation of a ranking L

1

with 3 others, according to each measure. NDCC does indeed
penalize differences at higher ranks, and is more tolerant at
lower ranks.

B. Rankings comparison

We perform a comparative analysis of ranking measures, on
our 3 mining scenarios summarized in Table II. We generate
association rules A ! B where B is a single product
among a set of 64 previously studied by analysts. Overall we
obtain 1,651,024 association rules, and we compute one rule
ranking per product and per interestingness measure. Our first
observation is that the results we obtain for all scenarios lead
to the same conclusions. Therefore, we only report numbers
for prod_assoc_c.

TABLE IV
EXAMPLE RANKINGS AND CORRELATIONS

Ranking Content
L

1
r1, r2, r3, r4

L

2
r2, r1, r3, r4

L

3
r1, r2, r4, r3

L

4
r2, r3, r1, r4

Spearman ⌧ Overlap@2 NDCC
L

2 0.80 0.67 1 0.20
L

3 0.80 0.67 1 0.97
L

4 0.40 0.33 0.5 �0.18

While all measures are computed differently, we notice that
some of them always return the same ranking for association
rules of a given target. We identify them in Table III using
symbols. Other notable similarities include Sebag-Schoenauer
and lift (89% of rankings are equal), as well as Loevinger and
lift (87%). This difference between the number of interesting-
ness measures considered (34) and the number of different
rankings obtained (25) can easily be explained analytically
in the case of a fixed target. Indeed, for a given ranking,
P (B) is constant, which eliminates some of the differences
between interestingness measures. In addition, some measures
only have subtle differences which only appear when selecting
extreme values for P (A), P (B) and P (AB), which do not
occur in practice in our retail dataset.

1) Comparative analysis: We now evaluate similarity be-
tween interestingness measures that do not return the same
rankings. We compute a 34 ⇥ 34 correlation matrix of all
rankings according to each correlation measure described in
Section IV-A, and average them over the 64 target prod-
ucts. This gives us a ranking similarity between all pairs
of measures. We then rely on hierarchical clustering with
average linkage [20] to obtain a dendrogram of interestingness
measures and analyze their similarities. The dendrograms for
NDCC and ⌧ are presented in Figure 2. For better readability,
we merge sub-trees when correlation is above 0.9. To describe
the results more easily, we partition interestingness measures
into 6 groups, as indicated in the third column in Table III.
G

1

is by far the largest group: in addition to 4 measures that

L1

L3

L2

L4
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Fig. 2. Hierarchical clustering of interestingness measures for a single target

commonly used in Information Retrieval. The core idea in
NDCG is to reward a ranked list Lm

R for placing an element
r of relevance rel

r

by rel

r

log rm .
The logarithmic part acts as a smoothing discount rate

representing the fact that as the rank increases, the analyst is
less likely to observe r. In our setting, there is no ground truth
to properly assess rel

r

. Instead, we use the ranking assigned by
m

0 as a relevance measure for r, with an identical logarithmic
discount. When summing over all of R, we obtain DCC ,
which presents the advantage of being a symmetric correlation
measure between two rankings L

m
R and L

m0

R .

DCC (Lm

R ,Lm

0

R ) =

X

r2R

1

log (1 + r

m0
) log (1 + r

m
)

We compute NDCC by normalizing DCC between 1 (iden-
tical rankings) and �1 (reversed rankings).

NDCC (Lm

R ,Lm

0

R ) =

dcc� avg

max� avg

where dcc = DCC (Lm

R ,Lm

0

R ), max = DCC (Lm

0

R ,Lm

0

R )

min = DCC (L⇤,Lm

0

R ), L⇤ = rev(Lm

0

R )

avg = (max+min)/2

5) Ranking comparison by example: We illustrate the dif-
ference between all ranking correlation measures with an
example in Table IV. This shows correlation of a ranking L

1

with 3 others, according to each measure. NDCC does indeed
penalize differences at higher ranks, and is more tolerant at
lower ranks.

B. Rankings comparison

We perform a comparative analysis of ranking measures, on
our 3 mining scenarios summarized in Table II. We generate
association rules A ! B where B is a single product
among a set of 64 previously studied by analysts. Overall we
obtain 1,651,024 association rules, and we compute one rule
ranking per product and per interestingness measure. Our first
observation is that the results we obtain for all scenarios lead
to the same conclusions. Therefore, we only report numbers
for prod_assoc_c.

TABLE IV
EXAMPLE RANKINGS AND CORRELATIONS

Ranking Content
L

1
r1, r2, r3, r4

L

2
r2, r1, r3, r4

L

3
r1, r2, r4, r3

L

4
r2, r3, r1, r4

Spearman ⌧ Overlap@2 NDCC
L

2 0.80 0.67 1 0.20
L

3 0.80 0.67 1 0.97
L

4 0.40 0.33 0.5 �0.18

While all measures are computed differently, we notice that
some of them always return the same ranking for association
rules of a given target. We identify them in Table III using
symbols. Other notable similarities include Sebag-Schoenauer
and lift (89% of rankings are equal), as well as Loevinger and
lift (87%). This difference between the number of interesting-
ness measures considered (34) and the number of different
rankings obtained (25) can easily be explained analytically
in the case of a fixed target. Indeed, for a given ranking,
P (B) is constant, which eliminates some of the differences
between interestingness measures. In addition, some measures
only have subtle differences which only appear when selecting
extreme values for P (A), P (B) and P (AB), which do not
occur in practice in our retail dataset.

1) Comparative analysis: We now evaluate similarity be-
tween interestingness measures that do not return the same
rankings. We compute a 34 ⇥ 34 correlation matrix of all
rankings according to each correlation measure described in
Section IV-A, and average them over the 64 target prod-
ucts. This gives us a ranking similarity between all pairs
of measures. We then rely on hierarchical clustering with
average linkage [20] to obtain a dendrogram of interestingness
measures and analyze their similarities. The dendrograms for
NDCC and ⌧ are presented in Figure 2. For better readability,
we merge sub-trees when correlation is above 0.9. To describe
the results more easily, we partition interestingness measures
into 6 groups, as indicated in the third column in Table III.
G

1

is by far the largest group: in addition to 4 measures that
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Target Associations Input transactions T Desired association rules
demo_assoc: {demo(c) [ cat(p)|ht, c, pi 2 D} A segment tends to purchase products in a category.

segment ! category min support is 1,000 {< 35, F, ⇤}! Baby food
{⇤, ⇤, Nord}! Sodas

{> 65, ⇤, Gironde}! Bordeaux wine
prod_assoc_t: {[ht,cj ,pii2Dp

i

|t 2 T} Products purchased simultaneously.
product(s) ! product min support is 1,000 {vanilla cream}! chocolate cream

prod_assoc_c: {[htj ,c,pii2Dp

i

|c 2 C} Customers’ product associations over time.
product(s) ! product min support is 10,000 {Pork sausage, mustard}! dry Riesling

Table 3: Our mining scenarios and example association rules.

Measure Formula Group

One-Way Support P (B|A)⇥ log

2

P (AB)

P (A)P (B)

Relative Risk P (B|A)/P (B|¬A)

Odd Multiplier P (AB)P (¬B)

P (B)P (A¬B)

Zhang P (AB)�P (A)P (B)

max(P (AB)P (¬B),P (B)P (A¬B))

Yule’s Q 3
P (AB)P (¬A¬B)�P (A¬B)P (B¬A)

P (AB)P (¬A¬B)+P (A¬B)P (B¬A)

Yule’s Y 3

p
P (AB)P (¬A¬B)�

p
P (A¬B)P (B¬A)p

P (AB)P (¬A¬B)+

p
P (A¬B)P (B¬A)

Odds Ratio 3
P (AB)P (¬A¬B)

P (A¬B)P (B¬A)

Information Gain ⇤ log(P (AB)/(P (A)P (B)))
Lift ⇤ P (AB)/(P (A)P (B))

G

a

1

Added Value ⇤ P (B|A)� P (B)
Certainty Factor ⇤ (P (B|A)� P (B))/(1� P (B))
Confidence / Precision ⇤⌦ P (B|A)

Laplace Correction ⇤⌦ support(AB)+1

support(A)+2

Loevinger † 1� P (A)P (¬B)

P (A¬B)

Conviction † P (A)P (¬B)

P (A¬B)

Example and Counter-example Rate 1� P (A¬B)

P (AB)

Sebag-Schoenauer P (AB)

P (A¬B)

Leverage P (B|A)� P (A)P (B)

G

b

1

Least Contradiction P (AB)�P (A¬B)

P (B)

Accuracy P (AB) + P (¬A¬B)
G

2

Pearson’s �

2

. |T |⇥
⇣

(P (AB)�P (A)P (B))

2

P (A)P (B)

+ (P (¬AB)�P (¬A)P (B))

2

P (¬A)P (B)

⌘

+|T |⇥
⇣

(P (A¬B)�P (A)P (¬B))

2

P (A)P (B)

+ (P (¬A¬B)�P (¬A)P (¬B))

2

P (¬A)P (¬B)

⌘

Gini Index . P (A)⇥ (P (B|A)2 + P (¬B|A)2) + P (¬A)⇥ (P (B|¬A)2+
P (¬B|¬A)2)� P (B)2 � P (¬B)2

J-measure P (AB)log(P (B|A)

P (B)

) + P (A¬B)log(P (¬B|A)

P (¬B)

)

� Linear Correlation Coefficient P (AB)�P (A)P (B)p
P (A)P (B)P (¬A)P (¬B)

Two-Way Support Variation P (AB)⇥ log

2

P (AB)

P (A)P (B)

+ P (A¬B)⇥ log

2

P (A¬B)

P (A)P (¬B)

+

P (¬AB)⇥ log

2

P (¬AB)

P (¬A)P (B)

+ P (¬A¬B)⇥ log

2

P (¬A¬B)

P (¬A)P (¬B)

Fisher’s exact test

⇣ |T |⇥P (B)
|T |⇥P (AB)

⌘⇣ |T |⇥P (¬B)
|T |⇥P (A¬B)

⌘

⇣ |T |
|T |⇥P (A)

⌘

Jaccard P (AB)/(P (A) + P (B)� P (AB))

G

3

Cosine P (AB)p
P (A)P (B)

Two-Way Support P (AB)⇥ log

2

P (AB)

P (A)P (B)

G

4

Piatetsky-Shapiro P (AB)� P (A)P (B)
Klosgen

p
P (AB)max(P (B|A)� P (B), P (A|B)� P (A))

Specificity P (¬B|¬A)
G

5

Recall P (A|B)

Collective Strength P (AB)+P (¬B|¬A)

P (A)P (B)+P (¬A)P (¬B)

⇥ 1�P (A)P (B)�P (¬A)P (¬B)

1�P (AB)�P (¬B|¬A)

G

6

Table 4: Interestingness measures of a rule A! B. ⇤, . indicate measures that produce the same rule ranking
when a single target is selected. 3, †,  , ⌦ indicate measures that always produce the same rule ranking. |T |
is the number of transactions. P (A) = support(A)/|T |.

4
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Fig. 4. Avg. recall/confidence of the top-20 results of interestingness measures

always generate the same rankings, 14 other measures output
similar results. A second group, G

2

, comprising 2 measures,
is quite similar to G

1

according to NDCC . ⌧ also discovers
this similarity, but considers it lower, which shows that it is
mostly caused by high ranks. Jaccard is as a slight outlier in
G

3

according to NDCC . Indeed, when focusing on the first 20
elements (Overlap@20), only an average of 71% are shared
between Jaccard and the rest of G

3

. This situation also occurs
between Klosgen and the rest of G

5

. Interestingly, we observe
that, according to NDCC , G

5

is closest to G

6

and is negatively
correlated with the other groups. However, according to ⌧ , G

5

is very similar to G

4

and is negatively correlated with G

6

. This
difference between ranking measures illustrates the importance
of accounting for rank positions. When the top of the ranking
is considered more important, some similarities emerge.

We illustrate this behavior in Figure 3 by displaying corre-
lation between rankings obtained with different interestingness
measures. This experiment clearly shows that overall, cosine
(G

4

) is closer to specificity (G
5

) than Gini (G
3

), as the rank
difference observed in the results is overall smaller. However,
when focusing on the top-10 results of cosine, Gini assigns
closer ranks than specificity. This explains the difference in
clustering between NDCC /overlap and ⌧ /Spearman .

2) Annotating groups: While using hierarchical clustering
on interestingness measures allows the discovery of families of
measures, and their relative similarity, it does not fully explain
which types of results are favored by each of them. We propose
to compare their outputs according to the two most basic and
intuitive interestingness measures employed in data mining:
recall and confidence. recall represents the proportion of target
items that can be retrieved by a rule, that is, P (A|B). Its
counterpart, confidence, represents how often the consequent
is present when the antecedent is, that is, P (B|A). We present,
in Figure 4, the average recall and confidence of the top-20

rules ranked according to each interestingness measure. G

1

contains confidence, so it is expected to score the highest
on this dimension. G

2

is extremely close to G

1

, but obtains
slightly lower confidence and recall. We then have, in order of
increasing recall and decreasing confidence G

3

, G
4

and G

5

.
Finally, G

6

, which contains recall, obtains the highest recall
but the lowest confidence. Figure 4 also shows that executing
a Euclidean distance-based clustering, such as k-means, with
recall/confidence coordinates would lead to groups similar to
the ones obtained with hierarchical clustering. Hence, this
analysis is consistent with the hierarchical grouping and the
correlation with NDCC .

While we believe that NDCC better reflects the interpre-
tation of analysts browsing rules, it is important to note that
the grouping of interestingness measures created through this
evaluation is stable across all 4 correlation measures and for all
3 scenarios. Correlation between different families of measures
may vary, but measures within a single family always have a
high similarity. Thus, we conjecture that the obtained results
are true in the general case of food retailers and we can rely
on these groups to reduce the number of options presented to
analysts.

C. Selecting representative measures

We summarize the findings of the comparative evaluation in
the last column of Table III. We identify 6 families of measures
that behave similarly. Each family offers a different trade-off
in terms of confidence and recall, and thus ranks association
rules differently. We select the quality measure that most
represents each family of measures (i.e. with highest average
similarity) in order to confront the results of this analysis with
the opinion of domain experts in our user study. Taking a
general data mining perspective leads us to considering G

3

and G

4

as the most promising families for finding interesting
association rules. Indeed, it is important to achieve a good
trade-off between recall and confidence in order to find reliable
association rules that can be applied in a significant number of
cases. Hence, F1 score, that combines recall and confidence,
would prefer G

3

and G

4

to others.

V. USER STUDY

We now report the results of a user study with domain
experts from Intermarché. The goal of this study is to assess
the ability of interestingness measures to rank association
rules according to the needs of an analyst. As explained in
Section IV, we identified 6 families of measures, and selected a
representative of each group for the user study (their names are
in bold in Table III). We rely on the expertise of our industrial
partner to determine, for each analysis scenario, which family
produces the most interesting results. This experiment involved
2 experienced analysts from the marketing department of
Intermarché. We setup CAPA and let analysts select targets
multiple times in order to populate the web application’s
database with association rules (Section III-D). We let our
analysts interact with CAPA without any time restriction, and
collect their feedback in a free text form.



USER STUDY

• 2 experienced analysts from
• 6 groups of measures

• 1 representative per group
• For a given target, find which measure highlights 

the most interesting/usable rules
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USER STUDY INTERFACE
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USER STUDY RESULTS
• Precision is key

• Rules feel reliable and usable
• Unexpected results are unsettling

53

• Filtering eliminates surprises
• Precision/Recall trade-off favored

• Scrolling for anti-associations



CAPA CONCLUSION

• Generic framework for comparing rankings
• In retail, Lift is a good choice
• How do we promote anti-associations?

• Two-phase ranking to combine efficiency and 
quality
• TopPI mines top-1000 using support, then 

CAPA re-ranks for top-50 using Lift
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