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Lecture	1	recap

• Defined	games	in	normal	form
• Defined	dominance	notion
– Iterative	deletion
– Does	not	always	give	a	solution

• Defined	best	response	and	Nash	equilibrium
– Computed	Nash	equilibrium	in	some	examples

à Are	some	Nash	equilibria better	than	others?
à Can	we	always	find	a	Nash	equilibrium?
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Outline

1. Coordination	games	and	Pareto	optimality
2. Games	with	continuous	action	sets
– Equilibrium	computation	and	existence	theorem
– Example:	Cournot duopoly
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Outline

1. Coordination	games	and	Pareto	optimality
2. Games	with	continuous	action	sets
– Equilibrium	computation	and	existence	theorem
– Example:	Cournot duopoly
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The	Investment	Game
• The	players:	you
• The	strategies:	each	of	you	chooses	between	investing	
nothing	in	a	class	project	($0)	or	investing	($10)

• Payoffs:
– If	you	don’t	invest	your	payoff	is	$0
– If	you	invest	you	make	a	net	profit	of	$5	(gross	profit	=	
$15;	investment	$10) if	more	than	90%	of	the	class	
chooses	to	invest.	Otherwise,	you	lose	$10

• Choose	your	action	(no	communication!)
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Nash	equilibrium

• What	are	the	Nash	equilibria?

• Remark:	to	find	Nash	equilibria,	we	used	a	
“guess	and	check	method”
– Checking	is	easy,		guessing	can	be	hard
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The	Investment	Game	again
• Recall	that:
– Players:	you
– Strategies:	invest	$0	or	invest	$10
– Payoffs:

• If	no	invest	à $0
$5	net	profit	if	≥	90%	invest

• If	invest	$10	à
-$10	net	profit	if	<	90%	invest

• Let’s	play	again!	(no	communication)

• We	are	heading	toward	an	equilibrium
èThere	are	certain	cases	in	which	playing	converges	in	a	
natural	sense	to	an	equilibrium 7



Pareto	domination

• Is	one	equilibrium	better	than	the	other?

• In	the	investment	game?
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Definition: Pareto	domination
A	strategy	profile	s	Pareto	dominates	strategy	
profile	s’	iif for	all	i,	ui(s)≥ui(s’)	and	there	exists	j	
such	that	uj(s)>uj(s’);	
i.e.,	all	players	have	at	least	as	high	payoffs	and	
at	least	one	player	has	strictly	higher	payoff.



Convergence	to	equilibrium	in	the	
Investment	Game

• Why	did	we	converge	to	the	wrong	NE?
• Remember	when	we	started	playing
– We	were	more	or	less	50	%	investing

• The	starting	point	was	already	bad	for	the	people	
who	invested	for	them	to	lose	confidence

• Then	we	just	tumbled	down

• What	would	have	happened	if	we	started	with	
95%	of	the	class	investing?
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Coordination	game
• This	is	a	coordination	game

– We’d	like	everyone	to	coordinate	their	actions	and	invest
• Many	other	examples	of	coordination	games

– Party	in	a	Villa
– On-line	Web	Sites
– Establishment	of	technological	monopolies	(Microsoft,	HDTV)
– Bank	runs

• Unlike	in	prisoner’s	dilemma,	communication	helps in	
coordination	games	à scope	for	leadership
– In	prisoner’s	dilemma,	a	trusted	third	party	(TTP)	would	need	to	

impose	players	to	adopt	a	strictly	dominated	strategy
– In	coordination	games,	a	TTP	just	leads	the	crowd	towards	a	

better	NE	point	(there	is	no	dominated	strategy)
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Battle	of	the	sexes

• Find	the	NE

• Is	there	a	NE	better	than	the	other(s)?

2,1 0,0
0,0 1,2

Opera

Soccer

Opera

Player	1

Player	2
Soccer

11



Coordination	Games
• Pure	coordination	games:	there	is	no	conflict	whether	
one	NE	is	better	than	the	other
– E.g.:	in	the	investment	game,	we	all	agreed	that	the	NE	
with	everyone	investing	was	a	“better”	NE

• General	coordination	games:	there	is	a	source	of	
conflict	as	players	would	agree	to	coordinate,	but	one	
NE	is	“better”	for	a	player	and	not	for	the	other
– E.g.:	Battle	of	the	Sexes

è Communication	might	fail	in	this	case
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Pareto	optimality

• Battle	of	the	sexes?	
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Definition: Pareto	optimality
A	strategy	profile	s	is	Pareto	optimal	if	there	
does	not	exist	a	strategy	profile	s’	that	Pareto
dominates	s.



Outline

1. Coordination	games	and	Pareto	optimality
2. Games	with	continuous	action	sets
– Equilibrium	computation	and	existence	theorem
– Example:	Cournot duopoly
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The	partnership	game	(see	exercise	
sheet	2)

• Two	partners	choose	effort	si in	Si=[0,	4]
• Share	revenue	and	have	quadratic	costs

u1(s1 ,	s2)	=	½	[4	(s1 +	s2 +	b	s1 s2)]	- s12

u2(s1 ,	s2)	=	½	[4	(s1 +	s2 +	b	s1 s2)]	- s22

• Best	responses:
ŝ1 =	1	+	b	s2 =	BR1(s2)
ŝ2 =	1	+	b	s1 =	BR2(s1)
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Finding	the	best	response	(with	twice	
continuously	differentiable	utilities)
∂u1(s1, s2 )

∂s1
= 0

∂2u1(s1, s2 )
∂2s1

≤ 0

• First	order	condition	(FOC)

• Second	order	condition	(SOC)

• Remark:	the	SOC	is	automatically	satisfied	if	ui(si,s-i)	is	
concave	in	si for	all	s-i (very	standard	assumption)

• Remark	2:	be	careful	with	the	borders!
– Example	u1(s1,	s2)	=	10-(s1+s2)2
– S1=[0,	4],	what	is	the	BR	to	s2=2?
– Solving	the	FOC,	what	do	we	get?

– When	the	FOC	solution	is	outside	Si,	the	BR	is	at	the	border16



Nash	equilibrium	graphically

• NE	is	fixed	point	of	(s1,	s2)	à (BR(s2),	BR(s1)) 17
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Best	response	correspondence

• Definition:	ŝi is	a	BR	to	s-i if	ŝi solves	max ui(si ,	s-i)
• The	BR	to	s-i may	not	be	unique!
• BR(s-i):	set	of	si that	solve	max ui(si ,	s-i)	
• The	definition	can	be	written:	
ŝi is	a	BR	to	s-i if

• Best	response	correspondence	of	i:	s-i à BRi(s-i)
• (Correspondence	=	set-valued	function)
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ŝi ∈ BRi (s−i ) = argmax
si

ui (si, s−i )



Nash	equilibrium	as	a	fixed	point

• Game
• Let’s	define																			(set	of	strategy	profiles)
and	the	correspondence

• For	a	given	s,	B(s)	is	the	set	of	strategy	profiles	s’	
such	that	si’	is	a	BR	to	s-i for	all	i.	

• A	strategy	profile	s* is	a	Nash	eq.	iif
(just	a	re-writing	of	the	definition)	
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N, Si( )i∈N , ui( )i∈N( )
S = ×i∈N Si

B : S→ S
     s B(s) = ×i∈N BRi (s−i )

s* ∈ B(s*)



Kakutani’s fixed	point	theorem

20

Theorem: Kakutani’s fixed	point	theorem
Let	X be	a	compact	convex	subset	of	Rn and	let	

be	a	set-valued	function	for	which:
• for	all											,	the	set										is	nonempty	convex;
• the	graph	of	f	is	closed.
Then	there	exists														such	that x* ∈ f (x*)x* ∈ X

x ∈ X f (x)
f : X→ X



Closed	graph	(upper	hemicontinuity)

• Definition:	f	has	closed	graph	if	for	all	sequences	(xn)	and	(yn)	
such	that	yn is	in	f(xn)	for	all	n,	xnàx and	ynày,	y	is	in	f(x)

• Alternative	definition:	f	has	closed	graph	if for	all	x	we	have	the	
following	property:	for	any	open	neighborhood	V	of	f(x),	there	
exists	a	neighborhood	U	of	x	such	that	for	all	x	in	U,	f(x)	is	a	
subset	of	V.

• Examples:
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Existence	of	(pure	strategy)	Nash	
equilibrium

• Remark:	the	concave	assumption	can	be	relaxed
22

Theorem: Existence	of	pure	strategy	NE
Suppose	that	the game																																	satisfies:	
• The	action	set						of	each	player	is	a	nonempty	

compact	convex	subset	of	Rn

• The	utility					of	each	player	is	continuous	in			
(on			)	and	concave	in				(on				)

Then,	there	exists	a	(pure	strategy)	Nash	
equilibrium.

N, Si( )i∈N , ui( )i∈N( )
Si

ui s
si SiS



Proof
• Define	B	as	before.	B	satisfies	the	assumptions	of	
Kakutani’s fixed	point	theorem

• Therefore	B	has	a	fixed	point	which	by	definition	is	a	
Nash	equilibrium!

• Now,	we	need	to	actually	verify	that	B	satisfies	the	
assumptions	of	Kakutani’s fixed	point	theorem!
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Example:	the	partnership	game
• N	=	{1,	2}
• S	=	[0,4]x[0,4]	compact	convex
• Utilities	are	continuous	and	concave

u1(s1 ,	s2)	=	½	[4	(s1 +	s2 +	b	s1 s2)]	- s12
u2(s1 ,	s2)	=	½	[4	(s1 +	s2 +	b	s1 s2)]	- s22

• Conclusion:	there	exists	a	NE!

• Ok,	for	this	game,	we	already	knew	it!
• But	the	theorem	is	much	more	general	and	
applies	to	games	where	finding	the	equilibrium	is	
much	more	difficult
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One	more	word	on	the	partnership	
game	before	we	move	on

• We	have	found	(see	exercises)	that	
– At	Nash	equilibrium:	

s*1 =	s*2 =1/(1-b)	
– To	maximize	the	sum	of	utilities:

sW1 =	sW2 =1/(1/2-b) >	s*1
• Sum	of	utilities	called	social	welfare
• Both	partners	would	be	better	off	if	they	
worked	sW1 (with	social	planner,	contract)

• Why	do	they	work	less	than	efficient?	
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Externality
• At	the	margin,	I	bear	the	cost	for	the	extra	unit	of	effort	
I	contribute,	but	I’m	only	reaping	half	of	the	induced	
profits,	because	of	profit	sharing

• This	is	known	as	an	“externality”
èWhen	I’m	figuring	out	the	effort	I	have	to	put	I	don’t	
take	into	account	that	other	half	of	profit	that	goes	to	
my	partner

èIn	other	words,	my	effort	benefits	my	partner,	not	just	
me

• Externalities	are	omnipresent:	public	good	problems,	
free	riding,	etc.	(see	more	in	the	netecon course)
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Outline

1. Coordination	games	and	Pareto	optimality
2. Games	with	continuous	action	sets
– Equilibrium	computation	and	existence	theorem
– Example:	Cournot duopoly
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Cournot Duopoly
• Example	of	application	of	games	with	continuous	
action	set

• This	game	lies	between	two	extreme	cases	in	
economics,	in	situations	where	firms	(e.g.	two	
companies)	are	competing	on	the	same	market
– Perfect	competition
– Monopoly

• We’re	interested	in	understanding	what	happens	
in	the	middle	
– The	game	analysis	will	give	us	interesting	economic	
insights	on	the	duopoly	market
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Cournot Duopoly:	the	game
• The	players:	2	Firms,	e.g.,	Coke	and	Pepsi

• Strategies:	quantities	players	produce	of	identical
products:	qi,	q-i
– Products	are	perfect	substitutes

• Cost	of	production:	c	*	q
– Simple	model	of	constant	marginal	cost

• Prices:	p	=	a	– b	(q1 +	q2)	=	a	– bQ
– Market-clearing	price
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Price	in	the	Cournot duopoly

30
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Cournot Duopoly:	payoffs
• The	payoffs:	firms	aim	to	maximize	profit

u1(q1,q2)	=	p	*	q1 – c	*	q1
p	=	a	– b	(q1 +	q2)

Øu1(q1,q2)	=	a	*	q1 – b	*	q21 – b	*	q1 q2 – c	*	q1

• The	game	is	symmetric	

Øu2(q1,q2)	=	a	*	q2 – b	*	q22 – b	*	q1 q2 – c	*	q2
31



Cournot Duopoly:	best	responses
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Cournot Duopoly:	best	response	
diagram	and	Nash	equilibrium
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Best	response	at	q2=0

• BR1(q2=0)	=	(a-c)/(2b)
• Interpretation:	
monopoly	quantity

Ømarginal	revenue	=	
marginal	cost
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When	is	BR1(q2)	=	0?	
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• BR1(q2=(a-c)/b)	=	0
• Perfect	competition	
quantity

ØDemand	=	marginal
cost
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Cournot Duopoly:	best	response	
diagram	and	Nash	equilibrium
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Strategic	substitutes/complements

• In	Cournot duopoly:	the	more	the	other	player	
does,	the	less	I	would	do

è This	is	a	game	of	strategic	substitutes
– Note:	of	course	the	goods	were	substitutes
–We’re	talking	about	strategies	here

• In	the	partnership	game,	it	was	the	opposite:	
the	more	the	other	player	would	the	more	I	
would	do

è This	is	a	game	of	strategic	complements
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Cournot duopoly:	Market	perspective

• Total	industry	
profit	
maximized	for	
monopoly
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Cartel,	agreement

• How	could	the	
firms	set	an	
agreement	to	
increase	profit?

• What	can	the	
problems	be	
with	this	
agreement	?
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Cournot Duopoly:	last	observations

• How	do	quantities	and	prices	we’ve	
encountered	so	far	compare?

Perfect	
Competition
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Summary

• Coordination	games
– Pareto	optimal	NE	sometimes	exist
– Scope	for	communication	/	leadership

• Games	with	continuous	action	sets	(pure	
strategies)
– Compute	equilibrium	with	FOC,	SOC
– Equilibrium	exists	under	concavity	and	continuity	
conditions

– Cournot duopoly
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