
Neural Networks: Multi-Layer Perceptron and Convolutional
Neural Networks

E. Gaussier, O. Goga, P. Loiseau (M. Tami, T. Thonet)

20 March 2020

This lab contains two parts: first a part on MLPs with the sklearn tool that you have used
during the previous lab; and second a tutorial to use the more powerful tool PyTorch with the
example of building a CNN for image classification.

Note: Due to the university closure, you will be doing the lab on your own at
home. We will be available to assist online at the regular lab time, Friday 8am–
1:15am. We also ask that you do the lab in one (or several) Jupyter notebooks where
you both put your code and answer questions, and that you send us the notebooks by
email at eric.gaussier@imag.fr and patrick.loiseau@inria.fr, by Sunday midnight.

Part I: Multi-Layer Perceptron with sklearn

The goal of this work is to study neural networks and in particular one of their common build-
ing blocks, namely Multi-Layer Perceptrons (MLPs). To this end, we will use the function
MLPClassifier from the module sklearn.neural_network. This function, that provides a
generic implementation of MLPs for classification purposes, is based on several parameters such
as the number of neurons on each hidden layer (hidden_layer_sizes), the activation/squashing
function (activation) and the optimization algorithm (solver). Do not hesitate to look at the
online documentation available at:
scikit-learn.org/stable/modules/generated/sklearn. neural_network.MLPClassifier.html

1 Learning Boolean Operators

In this first exercice, we want to learn the boolean operators AND, OR and XOR with an MLP.
These operators are defined by:
In the remainder, we will use a matrix X to represent the possible inputs and a vector y for the
associated outputs. For example, for the AND operator:

X = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] # Inputs
y = [0, 0, 0, 1] # Outputs

1

eric.gaussier@imag.fr
patrick.loiseau@inria.fr

Input Output
X1 X2 X1 AND X2 X1 OR X2 X1 XOR X2
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

After having specified a classifier from theMLPClassifier function, it can be trained on couples
(X, y) by calling classifier.fit(X, y). This classifier can then be used to predict the outputs
associated with given inputs X_test by calling classifier.predict(X_test) (note that X_test
can be equal to X).

1. Define an MLP classifier to learn the AND operator. This classifier should have no hidden
layers, a linear activation function (identity function) and rely on the lbfgs solver. Check
that the results predicted are correct.

2. Define an MLP classifier to learn the OR operator. As before, this classifier should have
no hidden layers, a linear activation function and rely on the lbfgs solver. Check that the
results predicted are correct.

3. Define an MLP classifier to learn the XOR operator:

(a) Using no hidden layers, a linear activation function and the lbfgs solver. Are the
predicted results correct? How do you explain that?

(b) Using two hidden layers comprising 4 neurons (first layer) and 2 neurons (second
layer), linear activation functions and the lbfgs solver. Are the predicted results in
this case correct? How do you explain that?

(c) Using two hidden layers comprising 4 neurons (first layer) and 2 neurons (second
layer), non-linear activation functions as the hyperbolic tangent function (tanh) and
the lbfgs solver. Retrain the model several times. Are the results predicted correct?
How do you explain that?

2 Image Classification

We are now interested in a more complex learning problem: identifying hand-written digits in
images. The dataset to be used is digits from scikit-learn. 90% of this dataset will be used
for training, and 10% for testing:

from s k l e a rn . da ta s e t s import l o ad_d ig i t s datase t = load_d ig i t s ()
X = datase t . data # Inputs
y = datase t . t a r g e t # Assoc ia ted ou tpu t s
train_X , test_X , train_y , test_y = t r a i n_t e s t_sp l i t (X, y , t e s t_ s i z e =0.1)

2

Learn classifiers on (train_X, train_y) playing with the MLP parameters: number of hidden
layers, number of neurons on each hidden layer, activation functions, solver, ... The performance
of each classifier will be evaluated on the test set on the basis of the classification accuracy:
from s k l e a rn . met r i c s import accuracy_score
test_y_pred = c l a s s i f i e r . p r ed i c t (test_X) # Pred ic ted r e s u l t s
print (" Accuracy␣ : " , accuracy_score (test_y , test_y_pred))

Which classifier performs best? Comment the results you obtain.

Part II: PyTorch and convolutional neural nets

The second part of the lab consists in implementing a CNN using PyTorch.
First, you will go through the standard PyTorch tutorial available at https://pytorch.org/

tutorials/beginner/deep_learning_60min_blitz.html. You will need to install torch and
torchvision. See https://github.com/pytorch/pytorch#installation for instructions. The
easiest in general is to install directly from binaries, see https://pytorch.org/. Then, go
through each of the four parts of the tutorial:

• https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html: basics of
tensors (ignore the last part on CUDA tensors)

• https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html: autograd
for automatic differentiation

• https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html:
basic neural nets

• https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html: Cifar10 clas-
sifier with CNN (ignore the last part on training on GPUs).

For each of the four parts, you can either download the corresponding notebook or execute it on
Google colab. Execute all the different pieces of codes and play with them to understand what
is behind the different functions.

Second, in a new notebook of your own (or in the same as the one where you did the MLP
in Part I), do the following:

• Implement the LeNet network as in the fourth part of the tutorial above for the MNIST
dataset (from torchvision).

• Compute the accuracy and compare it to the MLP accuracy; comment.

• Modify the network architecture (size of feature maps, size of kernel); comment.

• Modify the learning rate; comment.

• Bonus: implement dropout regularization in the training.

For each point, please include code and comments below it.

3

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://github.com/pytorch/pytorch#installation
https://pytorch.org/
https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

	Learning Boolean Operators
	Image Classification

