Name:

NetEcon final exam

January 21, 2014 Patrick Loiseau

For each question, check all boxes corresponding to correct answers. There may be zero, one or several.

1.	Consider a game with n users sharing the same communication link. Each user i chooses a non-negative consumption x_i and receives a utility $u_i(x_i, x_{-i}) = f(x_i) - (x_1 + + x_n) - p_i$ where $f(.)$ is an increasing concave function and p_i is the price for user i. The social welfare is the sum of utilities of all users. If $p_i = 0$ for each user i, the consumptions chosen by users at Nash equilibrium maximize the social welfare. Social welfare is always maximal at Nash equilibrium. Social welfare is maximized at Nash equilibrium if the price imposed to each user equals the externality that he imposed on the society.				
2.	An expert has a belief q about with probability q and rain w reports a prediction p (i.e., sh probability p tomorrow") and called S(.). For any scoring rule, the truthfully her belief. If S(.) is the Brier or the dominant for the expectation in the content of	ith proba e announ l she is re he expert e logarith rt to repo oring rul ue belief.	bility 1-q ces "it wi warded a has an in mic scor ort her true, then it	on the next day. She ll be sunny with according to a scoring rule acentive to report ing rule, then it is strictly be belief.	
3.	Consider a 2-players attacker defender game. The attacker has 2 actions, attack (a) or not-attack (na) and the defender has 2 actions, monitor (m) or not monitor (nm). The payoffs are (with $\alpha_c>0$, $\alpha_f>0$, $\alpha_s>0$, $\beta_c>0$, $\beta_s>0$):				
	defender				
		m	nm		
	a	-β _c , α _c	β_s , - α_s		
	attacker				

0, 0

	 There is no pure strategy Nash equilibrium. All Nash equilibria are in pure strategy. This is a zero-sum game. At the Nash equilibrium, the probability that the attacker attacks depends only on the payoff parameters of the defender α_c, α_f, α_s.
4.	Auctions. We consider auctions with a single item, where there is one seller and there are n buyers with independent identically distributed private value. In a first-price auction, bidding truthfully is weakly dominant. In a second-price auction, bidding truthfully is weakly dominated. The expected revenue for the seller is strictly higher in a first-price auction than in a second price auction. The expected revenue for the seller is strictly smaller in a first-price auction than in a second price auction.