Name:

NetEcon final exam

February 11, 2015 Patrick Loiseau

For each question, check all boxes corresponding to correct answers. There may be zero, one or several.

Advice: Read the questions carefully!

1. Consider the following two-players game:

		P2		
		Α	В	
P1	Α	5, 2	-1, -1	
	В	-1, -1	2, 5	

It is a potential game with potential f such that $f(a, a)=6$, $f(a, b)=3$,
f(b, b)=6, f(b, a)=0.
It is not a congestion game.
It is a potential game with potential f such that $f(a, a)=0$, $f(a, b)=-6$,
f(b, b)=0, f(b, a)=-3.
It has a Nash equilibrium in pure strategy.

2. Consider the following simplified model of a P2P system where the two players can either cooperate (C) or defect (D):

		P2		
		С	D	
P1	С	2, 2	-1, 3	
	D	3, -1	0, 0	

	 This is a prisoner dilemma. If the game is played once (i.e., one-shot game), both players will cooperate at Nash equilibrium. If the game is played infinitely many times without a discount factor (which is equivalent to a discount factor δ=1), there exists a Nash equilibrium which maximizes the social welfare. If the game is played infinitely many times with a discount factor δ there exists a Nash equilibrium which maximizes the social welfare for any value of δ. 						
3.	3. Consider a 2-players attacker defender game. The attacker has 2 actions, attack (a) or not-attack (na) and the defender has 2 actions, monitor (m) or not monitor (nm). The payoffs are (with $\alpha_c>0$, $\alpha_f>0$, $\alpha_s>0$, $\beta_c>0$, $\beta_s>0$):						
		def	ender				
		m	nm				
	а	-β _c , α _c	β_s , - α_s				
	attacker na	0, -α _f	0, 0				
4.	 There exists no Nash equilibrium. All Nash equilibria are in mixed strategy. If α_s>α_f, the maxmin strategy (or safe strategy) for the defender is m. At the Nash equilibrium, the probability that the defender monitors depends only on the payoff parameters of the defender α_c, α_f, α_s. Auctions. We consider auctions with a single item, where there is one seller and there are n buyers with independent identically distributed private value. A second-price auction is equivalent to an open ascending auction. In a second-price auction, bidding truthfully is weakly dominant. The revenue for the seller is always the same in a first-price auction and in a second price auction. In a first-price auction, bidding truthfully is weakly dominated. 						