Network Economics

Lecture 1: Pricing of communication services

Patrick Loiseau EURECOM Fall 2016

References

- M. Chiang. "Networked Life, 20 Questions and Answers", CUP 2012. Chapter 11 and 12.
 - See the videos on <u>www.coursera.org</u>
- J. Walrand. "Economics Models of Communication Networks", in Performance Modeling and Engineering, Zhen Liu, Cathy H. Xia (Eds), Springer 2008. (Tutorial given at SIGMETRICS 2008).
 - Available online: <u>http://robotics.eecs.berkeley.edu/~wlr/Papers/EconomicModels_Sigmetrics.pdf</u>
- C. Courcoubetis and R. Weber. "Pricing communication networks", Wiley 2003.
- A. Odlyzko, "Will smart pricing finally take off?" To appear in the book "Smart Data Pricing," S. Sen, C. Joe-Wong, S. Ha, and M. Chiang (Eds.), Wiley, 2014.
 - Available at <u>http://www.dtc.umn.edu/~odlyzko/doc/smart.pricing.pdf</u>
- N. Nisam, T. Roughgarden, E. Tardos and V. Vazirani (Eds). "Algorithmic Game Theory", CUP 2007. Chapters 17, 18, 19, etc.
 - Available online: <u>http://www.cambridge.org/journals/nisan/downloads/Nisan_Non-printable.pdf</u>

Content

- 1. Introduction
- 2. The effect of congestion
- 3. Time dependent pricing
 - Parenthesis on congestion games and potential games
- 4. Pricing of differentiated services

Content

1. Introduction

- 2. The effect of congestion
- 3. Time dependent pricing
 - Parenthesis on congestion games and potential games
- 4. Pricing of differentiated services

Examples of data pricing practices

Residential Internet access

Most forfeits are unlimited

- Mobile data plans
 - AT&T moved to usage-based pricing in 2010
 - \$10/GB
 - Stopped all unlimited plans in 2012
 - Verizon did the same
 - In France: forfeits with caps (e.g., 3GB for Free)

Why were there unlimited plans before?

- (Unlimited plans called flat-rate pricing)
- Users prefer flat-rate pricing
 - Willing to pay more
 - Better to increase market share
 - <u>http://people.ischool.berkeley.edu/~hal/Papers/b</u> rookings/brookings.html
- The decrease in the cost of provisioning capacity exceeded the increase in demand

Why are providers moving to usagebased pricing?

- Demand is now growing faster than the amount of capacity per \$
- Distribution of capacity demand is heavytailed: a few heavy users account for a lot of the aggregate

How to balance revenue and cost?

- Usage-based pricing
- Increase flat-rate price
 - Fairness issue
- Put a cap
- Slow down certain traffic or price higher premium service
 - See last section
 - Orange has a forfeit for 1000 Euros / month, all unlimited with many services. Their customers (about 1000 in France) got "macarons" to apologize for the disruption in 2012.

Generalities on setting prices

- Tariff: function which determine the charge r(x) as a function of the quantity x bought
 - Linear tariff: r(x) = p x

Nonlinear tariff

- Price design is an art, depends on the context
- 3 rationales
 - The price should be market-clearing
 - Competition, regulations (e.g., no cross-subsidization)
 - Incentive compatibility

Regulations

- Prices are often regulated by governments
 - Telecom regulators ARCEP (France), FCC (USA)
 - \approx optimize social welfare (population + provider)
- Network neutrality debate
 - User choice
 - No monopoly
 - No discrimination
 - Provider-owned services
 - Protocol-level
 - Differentiation of consumers by their behavior
 - Traffic management and QoS
- Impact on peering economics

Modeling: consumer problem

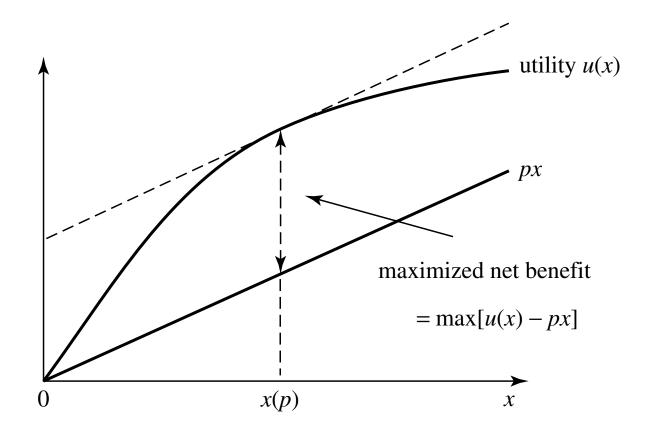
- Set of consumers N = {1, ..., n}
- Each consumer chooses the amount x consumed to maximize his utility – cost
- Under linear tariff (usage-based price p) $x_i(p) = \arg \max_x [u_i(x) - px]$
- Consumer surplus

$$CS_i = \max_x [u_i(x) - px]$$

• u(x) assumed concave

Consumer utility

• Example: u(x) = log(x) (proportional fairness)

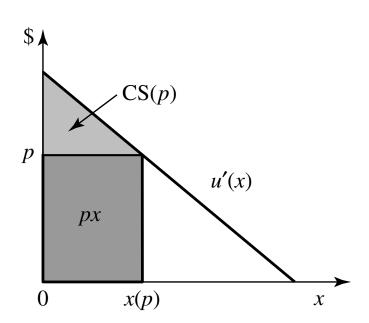


Demand functions

- Individual demand $x_i(p) = (u'_i)^{-1}(p)$
- Aggregate demand $D(p) = \sum_{i \in N} x_i(p)$
- Inverse demand function: p(D) is the price at which the aggregate demand is D
- For a single customer: p(x) = u'(x)

Illustrations

• Single user $CS(p) = \int_0^{x(p)} p(x) dx - px$



Multiple users: replace u'(x) by p(D)

Elasticity

• Definition: $\varepsilon = \frac{\partial D(p)/\partial p}{D(p)/p}$

• Consequence:

$$\frac{\Delta D}{D} = \varepsilon \frac{\Delta p}{p}$$

- |ε|>1: elastic
- |ε|<1: inelastic

Provider's problem: choose a tariff

• Many different tariffs

- Choosing the right one depends on context (art)
 User demand; costs structure; regulation; competition
- More information:
 - R. Wilson. "Nonlinear pricing", OUP 1997.

Flat-rate vs usage-based pricing

- Flat-rate: equivalent to p=0
 - There is a subscription price, but it does not play any role in the consumer maximization problem
- Illustration

Content

- 1. Introduction
- 2. The effect of congestion
- 3. Time dependent pricing
 - Parenthesis on congestion games and potential games
- 4. Pricing of differentiated services

The problem of congestion

- Until now, we have not seen any game
- One specificity with networks: congestion (the more users the lower the quality)
 - Externality
- Leads to a tragedy of the commons

Tragedy of the commons (1968)

- Hardin (1968)
- Herdsmen share a pasture
- If a herdsman add one more cow, he gets the whole benefit, but the cost (additional grazing) is shared by all
- Inevitably, herdsmen add too many cows, leading to overgrazing

Simple model of congestion

- Set of users N = {1, ..., n}
- Each user i chooses its consumption $x_i \ge 0$
- User i has utility $u_i(x) = f(x_i) - (x_1 + \dots + x_n)$
 - f(.) twice continuously differentiable increasing strictly concave
- We have a game! (one-shot)

Simple model: Nash equilibrium and social optimum

• NE: user i chooses x_i such that

$$f'(x_i) - 1 = 0$$

• SO: maximize

$$\sum_{i \in N} u_i(x) = \sum_{i \in N} [f_i(x) - (x_1 + \dots + x_n)]$$

- \rightarrow Gives for all i: $f'(x_i) n = 0$
- Summary: $x_i^{NE} = f'^{-1}(1)$

$$x_i^{SO} = f'^{-1}(n)$$

Illustration

Price of Anarchy

- Definition: $PoA = \frac{\text{Welfare at SO}}{\text{Welfare at NE}}$
- If several NE: worse one
- Congestion model: $PoA = \frac{f(x^{SO}) nx^{SO}}{f(x^{NE}) nx^{NE}}$
- Unbounded: for a given n, we can find f(.) such that PoA is as large as we want
- Users over-consume at NE because they do no fully pay the cost they impose on others

Congestion pricing

- One solution: make users pay the externality on the others, here user i will pay (n-1) x_i
- Utility becomes

 $u_i(x) = f(x_i) - (x_1 + \dots + x_n) - (n-1)x_i$

- FOC of NE is the same as SO condition, hence selfish users will choose a socially optimal consumption level
- We say that the congestion price "internalizes the externality"

Pigovian tax and VCG mechanism

• A. Pigou. "The Economics of Welfare" (1932).

 To enforce a socially optimal equilibrium, impose a tax equal to the marginal cost on society at SO

 Vickrey–Clarke–Groves mechanism (1961, 1971, 1973): a more general version where the price depends on the actions of others

– See later in the auctions lecture

Content

- 1. Introduction
- 2. The effect of congestion
- 3. Time dependent pricing
 - Parenthesis on congestion games and potential games
- 4. Pricing of differentiated services

Different data pricing mechanisms ("smart data pricing")

- Priority pricing (SingTel, Singapore)
- Two-sided pricing (Telus, Canada; TDC, Denmark)
- Location dependent pricing (in transportation networks)
- Time-dependent pricing
 - Static
 - Dynamic

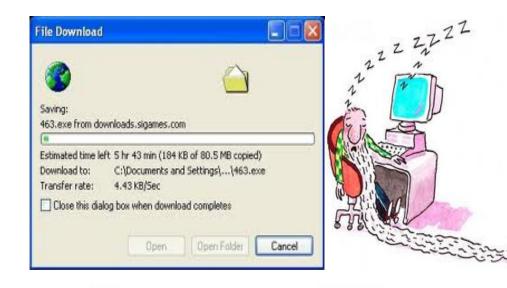
Examples

- Orange UK has a "happy hours" plan
 - Unlimited during periods: 8-9am, 12-1pm, 4-5pm, 10-11pm
- African operator MTN uses dynamic tariffing updated every hour

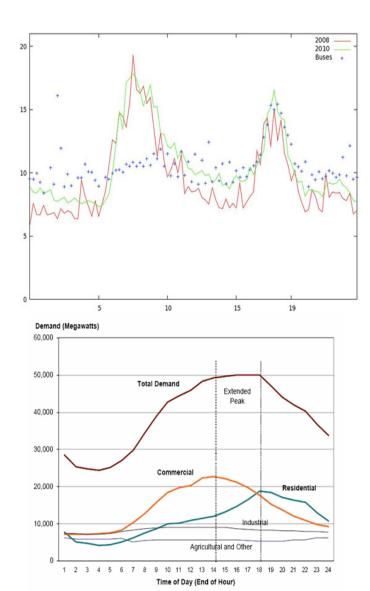
– Customers wait for cheaper tariffs

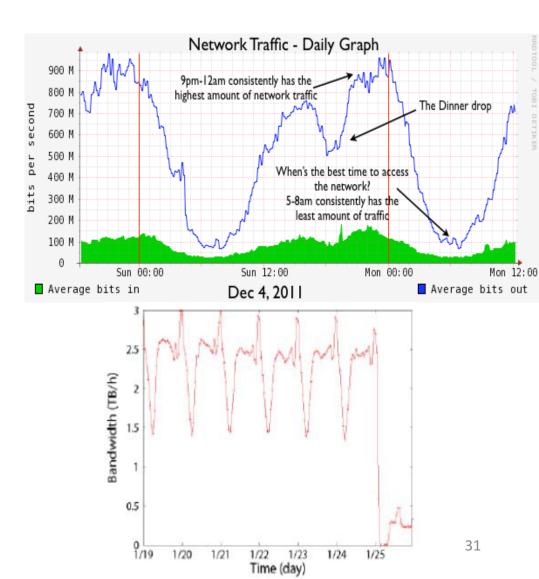
 Unior in India uses congestion dependent pricing

Different applications



Daily traffic pattern





Models of time-dependent pricing

- C. Joe-Wong, S. Ha, and M. Chiang. "Time dependent broadband pricing: Feasibility and benefits", in Proc. of IEEE ICDCS 2011.
 - Waiting function
 - Implementation (app)
- J. Walrand. "Economics Models of Communication Networks", in Performance Modeling and Engineering, Zhen Liu, Cathy H. Xia (Eds), Springer 2008.
- L. Jiang, S. Parekh and J. Walrand, "Time-dependent Network Pricing and Bandwidth Trading", in Proc. of IEEE International Workshop on Bandwidth on Demand 2008.
- P. Loiseau, G. Schwartz, J. Musacchio, S. Amin and S. S. Sastry. "Incentive Mechanisms for Internet Congestion Management: Fixed-Budget Rebate versus Time-of-Day Pricing", IEEE/ACM Transactions on Networking, 2013 (to appear).

Model

- T+1 time periods {0, ..., T}
 - 0: not use the network
- Each user
 - class c in some set of classes
 - chooses a time slot to put his unit of traffic
 - $-x_t^c$: traffic from class c users in time slot t ($x^c = \sum_{t} x_t^c$)
- Large population: each user is a negligible fraction of the traffic in each time slot
- Utility of class c users: $u_c = u_0 [g_t^c + d(N_t)1_{t>0}]$ - g_t^c : disutility in time slot t
 - N_t: traffic in time slot t ($N_t = \sum_c x_t^c$)
 - d(.): delay increasing convex function

Equivalence with routing game

- See each time slot as a separate route
- Rq: each route could have a different delay

Wardrop equilibrium (1952)

- Similar to Nash equilibrium when users have negligible contribution to the total
 - A user's choice does not affect the aggregate
 - Called non-atomic
- Wardrop equilibrium: a user of class c is indifferent between the different time slots (for all c)
 - Implies that all time slots have the same disutility for each class: there exists λ_c 's such that

$$g_t^c + d(N_t) \mathbf{1}_{t>0} = \lambda_c$$
, for all *t* and all *c*

Example

• 1 class, g₁=1, g₂=2, d(N)=N², N₁+N₂=2

Social optimum

Individual utility for class c users

$$u_{c} = u_{0} - \left[g_{t}^{c} + d(N_{t})1_{t>0}\right]$$

- Social welfare: $W = Nu_0 - \sum_t \left[\sum_c \left[x_t^c g_t^c \right] + N_t d(N_t) 1_{t>0} \right]$
- How to achieve SO at equilibrium? $u_{c} = u_{0} - \left[g_{t}^{c} + d(N_{t})1_{t>0} + p_{t}\right]$

 $-p_t$: price in time slot t

Achieving SO at equilibrium

• Theorem: If

$$p_t = N_t d'(N_t)$$

then the equilibrium coincides with SO.

• This price internalizes the externality

Proof

(Congestion games)

- Previous example: each user chooses a resource and the utility depends on the number of users choosing the same resource
- Particular case of congestion games
 - Set of users {1, ..., N}
 - Set of resources A
 - Each user i chooses a subset $a_i \subset A$
 - n_j: number of users of resource j ($n_j = \sum_{i=1}^{N} 1_{j \in a_i}$)

- Utility:
$$u_i = -\sum_{j \in a_i} g_j(n_j)$$

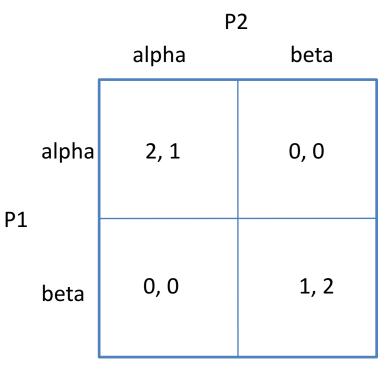
g_j increasing convex

(Potential games: definition)

- Game defined by
 - Set of users N
 - Action spaces A_i for user i in N
 - Utilities $u_i(a_i, a_{-i})$
- ... is a potential game if there exists a function Φ (called potential function) such that $u_i(a_i, a_{-i}) - u_i(a'_i, a_{-i}) = \Phi(a_i, a_{-i}) - \Phi(a'_i, a_{-i})$
- i.e., if i changes from a_i to a_i', his utility gain matches the potential increase

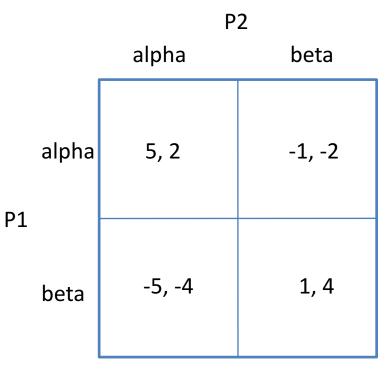
(Potential games examples)

• Battle of the sexes



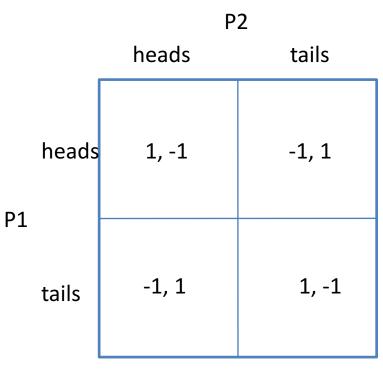
(Potential games examples 2)

• Battle of the sexes more complex



(Potential games examples 3)

• Heads and tails



(Properties of potential games)

- Theorem: every finite potential game has at least one pure strategy Nash equilibrium (the vector of actions maximizing Φ)
- More generally: the set of pure strategy Nash equilibria coincides with the set of local maxima of the potential Φ
- Many other properties on PoA, etc.

(Properties of potential games 2)

- Best-response dynamics: players sequentially update their action choosing best response to others actions
- Theorem: In any finite potential game, the best-response dynamics converges to a Nash equilibrium
- Useful for distribution optimization algorithm design

- Channel selection/power allocation in wireless

(Congestion games vs potential games)

- Congestion games are potential games (Rosenthal 1973)
- Potential games are congestion games (Monderer and Shapley 1996)

Content

- 1. Introduction
- 2. The effect of congestion
- 3. Time dependent pricing
 - Parenthesis on congestion games and potential games
- 4. Pricing of differentiated services

Paris Metro Pricing (PMP)

One way to increase revenue: price differentiation

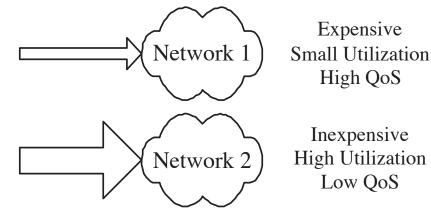
- PMP: Simplest possible type of differentiated services
- Differentiation is created by the different price
- Famous paper by A. Odlyzko in 1999
- Used in Paris metro in the 70's-80's

PMP toy example

- Network such that
 - Acceptable for VoIP if \leq 200 users
 - Acceptable for web browsing if \leq 800 users
- Demand
 - VoIP demand of 100 if price \leq 20
 - Web browsing demand of 400 if price ≤ 5
- How to set the price?
 - Charge 20: revenue of 20x100 = 2,000
 - Charge 5: revenue of 5x400 = 2,000

PMP toy example (2)

- Divide network into 2 identical subnetwork
- Each acceptable
 - for VoIP if \leq 100 users
 - for web browsing if \leq 400 users
- Charge 5 for one, 20 for the other
 - Revenue 100x20 + 400x5 = 4,000



Population model

- N users
- Network of capacity 2N
- Each user characterized by type θ
- Large population with uniform θ in [0, 1]
- Each user finds network acceptable if the number of users X and price p are such that

$$\frac{X}{2N} \le 1 - \theta \quad \text{and} \quad p \le \theta$$

Revenue maximization

- Assume price p
- If X users are present, a user of type θ connects if $\theta \in [p, 1-X/2N]$
- Number of connecting users binomial with mean $N(1-X/(2N)-p)^+$
- So, $\frac{X}{N} \approx \left(1 \frac{X}{2N} p\right)^+ \Rightarrow \frac{X}{N} = \frac{2 2p}{3}$
- Maximizing price: p=1/2, revenue N/6

PMP again

- Divide the network in two, each of capacity N
- Prices are p₁ and p₂, acceptable if

$$\frac{X}{N} \le 1 - \theta \quad \text{and} \quad p_i \le \theta$$

- If both networks are acceptable, a user takes the cheapest
- If both networks are acceptable and at the same price, choose the lowest utilization one
- Maximal revenue:
 - p₁=4/10, p₂=7/10
 - Revenue Nx9/40 \rightarrow 35% increase

Competition

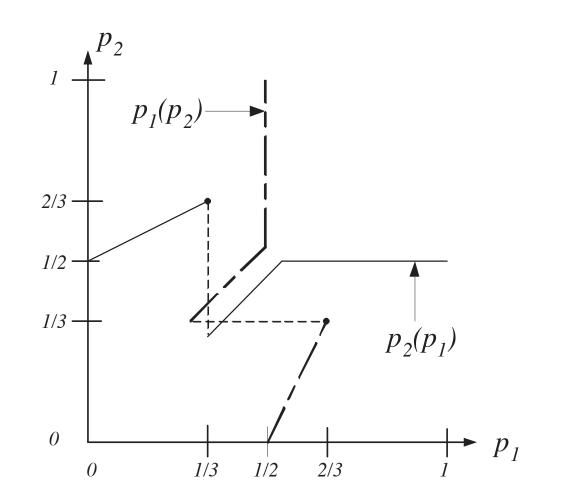
- What if the two sub-networks belong to two different operators?
- Maximum total revenue would be with One at $p_1=4/10 \rightarrow$ revenue Nx12/100

− One at $p_2=7/10 \rightarrow$ revenue Nx21/100

• But one provider could increase his revenue

Competition (2)

• There is no pure strategy NE



56