Network Economics

__

Lecture 2: Incentives in online systems I: free riding and effort elicitation

Patrick Loiseau
EURECOM
Fall 2016

References

Main:

- N. Nisam, T. Roughgarden, E. Tardos and V. Vazirani (Eds). "Algorithmic Game Theory", CUP 2007. Chapters 23 (see also 27).
 - Available online: <u>http://www.cambridge.org/journals/nisan/downloads/Nisan_Non-printable.pdf</u>

Additional:

- Yiling Chen and Arpita Gosh, "Social Computing and User Generated Content," EC'13 tutorial
 - Slides at http://www.arpitaghosh.com/papers/ec13_tutorialSCUGC.pdf and http://yiling.seas.harvard.edu/wp-content/uploads/SCUGC tutorial 2013 Chen.pdf
- M. Chiang. "Networked Life, 20 Questions and Answers", CUP 2012.
 Chapters 3-5.
 - See the videos on www.coursera.org

Outline

- 1. Introduction
- 2. The P2P file sharing game
- 3. Free-riding and incentives for contribution
- 4. Hidden actions: the principal-agent model

Outline

- 1. Introduction
- 2. The P2P file sharing game
- 3. Free-riding and incentives for contribution
- 4. Hidden actions: the principal-agent model

Online systems

- Resources
 - P2P systems
- Information
 - Ratings
 - Opinion polls
- Content (user-generated content)
 - P2P systems
 - Reviews
 - Forums
 - Wikipedia
- Labor (crowdsourcing)
 - AMT
- In all these systems, there is a need for users contribution

P2P networks

- First ones: Napster (1999), Gnutella (2000)
 - Free-riding problem
- Many users across the globe self-organizing to share files
 - Anonymity
 - One-shot interactions
 - → Difficult to sustain collaboration
- Exacerbated by
 - Hidden actions (nondetectable defection)
 - Cheap pseudonyms (multiple identities easy)

Incentive mechanisms

- Good technology is not enough
- P2P networks need incentive mechanisms to incentivize users to contribute
 - Reputation (KaZaA)
 - Currency (called scrip)
 - Barter (BitTorrent) direct reciprocity

Extensions

- Other free-riding situations
 - E.g., mobile ad-hoc networks, P2P storage
- Rich strategy space
 - Share/not share
 - Amount of resources committed
 - Identity management
- Other applications of incentives / reputation systems
 - Online shopping, forums, etc.

Outline

- 1. Introduction
- 2. The P2P file sharing game
- 3. Free-riding and incentives for contribution
- 4. Hidden actions: the principal-agent model

The P2P file-sharing game

- Peer
 - Sometimes download → benefit
 - Sometimes upload → cost
- One interaction ~ prisoner's dilemma

	С	D
С	2, 2	-1, 3
D	3, -1	0, 0

Prisoner's dilemma

Dominant strategy: D

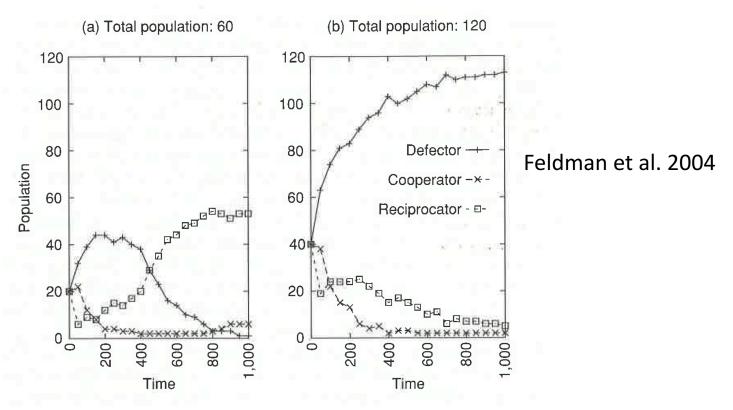
Socially optimal (C, C)

2, 2 -1, 3

D

C

Single shot leads to (D, D)


Socially undesirable

3, -1 0, 0

- Iterated prisoner's dilemma
 - Tit-for-tat yields socially optimal outcome

P₂P

Many users, random interactions

Direct reciprocity does not scale

P₂P

- Direct reciprocity
 - Enforced by Bittorrent at the scale of one file but not over several files
- Indirect reciprocity
 - Reputation system
 - Currency system

How to treat new comers

- P2P has high turnover
- Often interact with stranger with no history

- TFT strategy with C with new comers
 - Encourage new comers
 - BUT Facilitates whitewashing

Outline

- 1. Introduction
- 2. The P2P file sharing game
- 3. Free-riding and incentives for contribution
- 4. Hidden actions: the principal-agent model

Reputation

- Long history of facilitating cooperation (e.g. eBay)
- In general coupled with service differentiation
 - Good reputation = good service
 - Bad reputation = bad service

Ex: KaZaA

Trust

- EigenTrust (Sep Kamvar, Mario Schlosser, and Hector Garcia-Molina, 2003)
 - Computes a global trust value of each peer based on the local trust values

- Used to limit malicious/inauthentic files
 - Defense against pollution attacks

Attacks against pollution systems

- Whitewashing
- Sybil attacks
- Collusion
- Dishonest feedback

- See next lecture...
- This lecture: how reputation helps in eliciting effort

A minimalist P2P model

- Large number of peers (players)
- Peer i has type θ_i (~ "generosity")
- Action space: contribute or free-ride
- x: fraction of contributing peers
- \rightarrow 1/x: cost of contributing

- Rational peer:
 - Contribute if $\theta_i > 1/x$
 - Free-ride otherwise

Contributions with no incentive mechanism

Assume uniform distribution of types

Contributions with no incentive mechanism (2)

Equilibria stability

Contributions with no incentive mechanism (3)

Equilibria computation

Contributions with no incentive mechanism (4)

• Result: The highest stable equilibrium contribution level x_1 increases with θ_m and converges to one as goes θ_m to infinity but falls to zero if $\theta_m < 4$

 Remark: if the distribution is not uniform: the graphical method still applies

Overall system performance

• W = ax-(1/x)x = ax-1

 Even if participation provides high benefits, the system may collapse

Reputation and service differentiation in P2P

- Consider a reputation system that can catch free-riders with probability p and exclude them
 - Alternatively: catch all free-riders and give them service altered by (1-p)

- Two effects
 - Load reduced, hence cost reduced
 - Penalty introduces a threat

Equilibrium with reputation

Q: individual benefit

R: reduced contribution

• T: threat

Equilibrium with reputation (2)

System performance with reputation

• W =
$$x(Q-R)+(1-x)(Q-T) = (ax-1)(x+(1-x)(1-p))$$

 Trade-off: Penalty on free riders increases x but entails social cost

- If p>1/a, the threat is larger than the cost
- → No free rider, optimal system performance a-1

FOX (Fair Optimal eXchange)

- Theoretical approach
- Assumes all peer are homogeneous, with capacity to serve k requests in parallel and seek to minimize completion time
- FOX: distributed synchronized protocol giving the optimum
 - i.e., all peers can achieve optimum if they comply
- "grim trigger" strategy: each peer can collapse the system if he finds a deviating neighbor

FOX equilibrium

Outline

- 1. Introduction
- 2. The P2P file sharing game
- 3. Free-riding and incentives for contribution
- 4. Hidden actions: the principal-agent model

Hidden actions

- In P2P, many strategic actions are not directly observable
 - Arrival/departure
 - Message forwarding
- Same with many other contexts
 - Packet forwarding in ad-hoc networks
 - Worker's effort
- Moral hazard: situation in which a party is more willing to take a risk knowing that the cost will be supported (at least in part) by others
 - E.g., insurance

Principal-agent model

- A principal employs a set of n agents: N = {1, ..., n}
- Action set A_i = {0, 1}
- Cost c(0)=0, c(1)=c>0
- The actions of agents determine (probabilistically) an outcome o in {0, 1}
- Principal valuation of success: v>0 (no gain in case of failure)
- Technology (or success function) t(a₁, ..., a_n): probability of success
- Remark: many different models exist
 - One agent, different action sets
 - Etc.

Read-once networks

- One graph with 2 special nodes: source and sink
- Each agent controls 1 link
- Agents action:
 - low effort \rightarrow succeed with probability γ in (0, 1/2)
 - High effort \rightarrow succeed with probability 1-γ in (1/2, 1)
- The project succeeds if there is a successful source-sink path

Example

AND technology

OR technology

Contract

- The principal agent can design a "contract"
 - Payment of p_i≥0 upon success
 - Nothing upon failure
- The agents are in a game:

$$u_i(a) = p_i t(a) - c(a_i)$$

 The principal wants to design a contract such that his expected profit is maximized

$$u(a,v) = t(a) \cdot \left(v - \sum_{i \in N} p_i\right)$$

Definitions and assumptions

- Assumptions:
 - $t(1, a_{-i}) > t(0, a_{-i})$ for all a_{-i}
 - -t(a)>0 for all a
- Definition: the marginal contribution of agent i given a_{-i} is

$$\Delta_i(a_{-i}) = t(1, a_{-i}) - t(0, a_{-i})$$

Increase in success probability due to i's effort

Individual best response

• Given a_{-i}, agent's i best strategy is

$$a_i = 1$$
 if $p_i \ge \frac{c}{\Delta_i(a_{-i})}$

$$a_i = 0$$
 if $p_i \le \frac{c}{\Delta_i(a_{-i})}$

Best contract inducing a

- The best contract for the principal that induces a as an equilibrium consists in
 - $-p_i = 0$ for the agents choosing $a_i = 0$
 - $p_i = \frac{c}{\Delta_i(a_{-i})}$ for the agents choosing $a_i = 1$

Best contract inducing a (2)

- With this best contract, expected utilities are
 - $-u_i = 0$ for the agents choosing $a_i = 0$

-
$$u_i = c \cdot \left(\frac{t(1, a_{-i})}{\Delta_i(a_{-i})} - 1\right)$$
 for the agents choosing $a_i = 1$

$$- u(a,v) = t(a) \cdot \left(v - \sum_{i:a_i=1}^{c} \frac{c}{\Delta_i(a_{-i})} \right) \text{ for the principal}$$

Principal's objective

- Choosing the actions profile a* that maximizes his utility u(a,v)
- Equivalent to choosing the set S^* of agents with $a_i=1$
- Depends on $v \rightarrow S^*(v)$

• We say that the principal contracts with i if $a_i=1$

Hidden vs observable actions

• Hidden actions: $u(a,v) = t(a) \cdot \left(v - \sum_{i:a_i=1} \frac{c}{\Delta_i(a_{-i})}\right)$ $u_i = c \cdot \left(\frac{t(1,a_{-i})}{\Delta_i(a_{-i})} - 1\right)$ if a_i =1 and 0 otherwise

- If actions were observable
 - Give p_i=c to high-effort agents regardless of success
 - Yields for the principal a utility equal to social welfare

$$u(a,v) = t(a) \cdot v - \sum_{i:a_i=1}^{n} c$$

 \rightarrow Choose a to maximize social welfare

(POU) Price of Unaccountability

- S*(v): optimal contract in hidden case
- S₀*(v): optimal contract in observable case

 Definition: the POU(t) of a technology t is defined as the worst-case ratio over v of the principal's utility in the observable and hidden actions cases

$$POU(t) = \sup_{v>0} \frac{t(S_0^*(v)) \cdot v - \sum_{i \in S_0^*(v)} c}{t(S^*(v)) \cdot \left(v - \sum_{i \in S^*(v)} \frac{c}{t(S^*(v)) - t(S^*(v) \setminus \{i\})}\right)^{3}}$$

Remark

• POU(t)>1

Optimal contract

We want to answer the questions:

- How to select the optimal contract (i.e., the optimal set of contracting agents)?
- How does it change with the principal's valuation v?

Monotonicity

- The optimal contracts weakly improves when v increases:
 - For any technology, in both the hidden- and observable-actions cases, the expected utility of the principal, the success probability and the expected payment of the optimal contract are all non-decreasing when v increases

Proof

Proof (2)

Consequences

- Anonymous technology: the success probability is symmetric in the players
- For technologies for which the success probability depends only on the number of contracted agents (e.g. AND, OR), the number of contracted agents is non-decreasing when v increases

Optimal contract for the AND technology

- Theorem: For any anonymous AND technology with $\gamma = \gamma_i = 1 \delta_i$ for all i
 - There exists a valuation finite v* such that for any v<v*, it is optimal to contract with no agent and for any v>v*, it is optimal to contract with all agents (for v=v*, both contracts are optimal)
 - The price of unaccountability is

$$POU = \left(\frac{1}{\gamma} - 1\right)^{n-1} + \left(1 - \frac{\gamma}{1 - \gamma}\right)$$

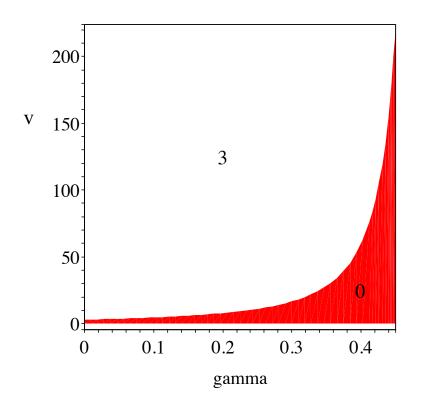
Remarks

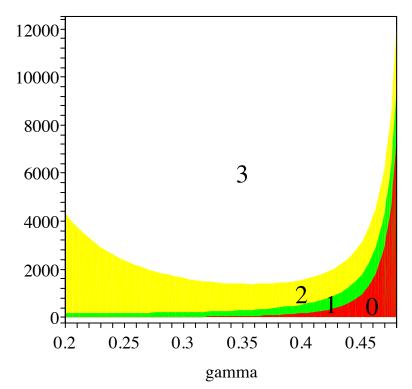
- Proof in M. Babaioff, M. Feldman and N. Nisan, "Combinatorial Agency", in Proceedings of EC 2006.
- POU is not bounded!
 - Monitoring can be beneficial, even if costly

Example

- n=2, c=1, $\gamma=1/4$
- Compute for all number of agents
 - t
 - $-\Delta$
 - Utility of principal

Optimal contract for the OR technology


- Theorem: For any anonymous OR technology with $\gamma = \gamma_i = 1 \delta_i$ for all i
 - There exist finite positive values v_1 , ..., v_n such that for any v in (v_k, v_{k+1}) , it is optimal to contract k agent. (For $v < v_0$, it is optimal to contract 0 agent, for $v > v_n$, it is optimal to contract n agent and for $v = v_k$, the principal is indifferent between contracting k-1 or k agents.)
 - The price of unaccountability is upper bounded by
 5/2


Example

- n=2, c=1, $\gamma=1/4$
- Compute for all number of agents
 - t
 - $-\Delta$
 - Utility of principal

Illustration

Number of contracted agents

