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Importance	of	reputation	systems
• Internet	enables	interactions	between	entities
• Benefit	depends	on	the	entities	ability	and	
reliability

• Revealing	history	of	previous	interaction:
– Informs	on	abilities
– Deter	moral	hazard

• Reputation:	numerical	summary	of	previous	
interactions	records
– Across	users	– can	be	weighted	by	reputation	
(transitivity	of	trust)

– Across	time
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Reputation	systems	operation
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Attacks	on	reputation	systems

• Whitewashing

• Incorrect	feedback

• Sybil	attack
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A	simplistic	model

• Prisoner’s	dilemma	again!	
• One	shot
– (D,	D)	dominant

• Infinitely	repeated	
– Discount	factor	δ
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Equilibrium	with	2	players

• Grim	=	Cooperate	unless	the	other	player	
defected	in	the	previous	round

• (Grim,	Grim)	is	a	subgame perfect	Nash	
equilibrium	if	δ≥1/2
–We	only	need	to	consider	single	deviations

• à If	users	do	not	value	future	enough,	they	
don’t	cooperate
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Game	with	N+1	Players	(N	odd)

• Each	round:	players	paired	randomly
• With	reputation	(reputation-grim):	agents	
begin	with	good	reputation	and	keep	it	as	long	
as	they	play	C	against	players	with	good	
reputation	and	D	against	those	with	bad	ones
– SPNE	if	δ ≥	1/2	

• Without	reputation	(personalized-grim):	keep	
track	of	previous	interaction	with	same	agent
– SPNE	if	δ ≥	1-1/(2N)	
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Whitewashing

• Play	D	and	come	back	as	new	user!
• Possible	to	avoid	this	with	entry	fee	f
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Different	settings

• How	to	enforce	honest	reporting	of	interaction	
experience?	

1. Objective	information	publicly	revealed:	can	just	
compare	report	to	real	outcome
– E.g.,	weather	prediction

2. No	objective	outcome	is	available
– E.g.,	product	quality	– not	objective
– E.g.,	product	breakdown	frequency	– objective	but	no	
revealed
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The	Brier	scoring	rule

• Expert	has	belief	q:
– Sunny	with	proba q,	rainy	with	proba 1-q

• Announces	prediction	p	(proba of	sunny)
• How	to	incentivize	honest	prediction?
– Give	him	“score”	
• S(p,	sunny)	=	1	- (1-p)2
• S(p,	rainy)	=	1	- p2

• Expected	score	S(p,	q)	=	1-q+q2-(p-q)2
–Maximized	at	p=q
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Proper	scoring	rules

• Definition:	a	scoring	rule	is	proper	if	
S(q,	q)	≥	S(p,	q)	for	all	p

• It	is	strictly	proper	if	the	inequality	is	strict	for	all	
p≠q

• Brier	rule	is	strictly	proper
• Other	strictly	proper	scoring	rule:	
– S(p,	state)	=	log	pstate

15



Different	settings

• How	to	enforce	honest	reporting	of	interaction	
experience?	

1. Objective	information	publicly	revealed:	can	just	
compare	report	to	real	outcome
– E.g.,	weather	prediction

2. No	objective	outcome	is	available
– E.g.,	product	quality	– not	objective
– E.g.,	product	breakdown	frequency	– objective	but	no	
revealed

16



Peering	agreement	rewarding

• Rewarding	agreement	is	not	good
• If	a	good	outcome	is	likely	(e.g.,	because	of	well	
noted	seller),	a	customer	will	not	report	a	bad	
experience

àpeer-prediction	method
– Use	report	to	update	a	reference	distribution	of	
ratings	(prior	distribution)

– Reward	based	on	comparison	of	probabilities	of	the	
reference	rating	and	the	actual	reference	report
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Model

• Product	of	given	quality	(called	type)	observed	
with	errors

• Each	rater	sends	feedback	to	central	
processing	center

• Center	computes	rewards	based	exclusively	on	
raters	indications	(no	independent	
information)
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Model	(2)

• Finite	number	of	types	t=1,	…,	T
• Commonly	known	prior	Pr0
• Set	of	raters	I
– Each	gets	a	‘signal’
– S={s1,	…,	sM}:	set	of	signals
– Si:	signal	received	by	i,	distributed	as	f(.|t)
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Example

• Two	types:	H	(high)	and	L	(low)
– Pr0(H)=.5,	Pr0(L)=.5

• Two	possible	signals:	h	or	l
• f(h|H)=.85,	f(l|H)=.15,	f(h|L)=.45,	f(l|L)=.55	
– Pr(h)=.65,	Pr(l)=.35
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Game

• Rewards/others	ratings	revealed	only	after	
receiving	all	reports	from	all	raters

• à simultaneous	game

• xi:	i’s	report,	x	=	(x1,	…,	xI):	vector	of	
announcements

• xim:	i’s	report	if	signal	sm
• i’s	strategy:	
• τi(x):	payment	to	i if	vector	of	announcement	x21



Best	Response

• Best	response

• Truthful	revelation	is	a	Nash	equilibrium	if	this	
holds	for	all	i when	xim=sm

22



Example
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Scoring	rules

• How	to	assign	points	to	rater	i based	on	his	
report	and	that	of	j?

• Def:	a	scoring	rule	is	a	function	that,	for	each	
possible	announcement	assigns	a	score	to	each	
possible	value	s	in	S

• We	cannot	access	sj,	but	in	a	truthful	equilibrium,	
we	can	use	j’s	report

• Def:	A	scoring	rule	is	strictly	proper	if	the	rater	
maximizes	his	expected	score	by	announcing	his	
true	belief
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Logarithmic	scoring	rule

• Ask	belief	on	the	probability	of	an	event
• A	proper	scoring	rule	is	the	Logarithmic	
scoring	rule:	Penalize	a	user	the	log	of	the	
probability	that	he	assigns	to	the	event	that	
actually	occurred
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Peer-prediction	method

• Choose	a	reference	rater	r(i)	
• The	outcome	to	be	predicted	is	xr(i)

• Player	i does	not	report	a	distribution,	but	
only	his	signal
– The	distribution	is	inferred	from	the	prior

• Result:	For	any	mapping	r,	truthful	reporting	is	
a	Nash	equilibrium	under	the	logarithmic	
scoring	rule
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Proof
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Example
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Remarks

• Two	other	equilibria:	always	report	h,	always	
report	l
– Less	likely

• See	other	applications	of	Bayesian	estimation	
by	Amazon	reviews	in	M.	Chiang.	“Networked	
Life,	20	Questions	and	Answers”,	CUP	2012.	
Chapters	5.
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Transitive	trust	approach

• Assign	trust	values	to	agents	that	aggregate	
local	trust	given	by	others

• t(i,	j):	trust	that	i reports	on	j
• Graph
• Reputation	values
• Determine	a	ranking	of	vertices
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Example:	PageRank
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Example	2:	max-flow	algorithm
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Slide	in	case	you	are	ignorant	about	
max-flow	min-cut	theorem
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Example	3:	the	PathRank algorithm
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Definitions

• Monotonic:	if	adding	an	incoming	edge	to	v	
never	reduces	the	ranking	of	v
– PageRank,	max-flow,	PathRank

• Symmetric	if	the	reputation	F	commutes	with	the	
permutation	of	the	nodes
– PageRank
– Not	max-flow,	not	PathRank
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Incentives	for	honest	reporting

• Incentive	issue:	an	agent	may	improve	their	
ranking	by	incorrectly	reporting	their	trust	of	
other	agents

• Definition:	A	reputation	function	F	is	rank-
strategyproof if	for	every	graph	G,	no	agent	v	can	
improve	his	ranking	by	strategic	rating	of	others

• Result:	No	monotonic	reputation	system	that	is	
symmetric	can	be	rank-strategyproof
– PageRank	is	not
– But	PathRank is 37



Robustness	to	sybil attacks

• Suppose	a	node	can	create	several	nodes	and	
divide	the	incoming	trust	in	any	way	that	
preserves	the	total	incoming	trust

• Definition:	
– sybil strategy
– Value-sybilproof
– Rank-sybilproof
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Robustness	to	sybil attacks:	results

• Theorem:	There	is	no	symmetric	rank-
sybilproof function

• Theorem	(stronger):	There	is	no	symmetric	
rank-sybilproof function	even	if	we	limit	sybil
strategies	to	adding	only	one	extra	node

• à PageRank	is	not	rank-sybilproof
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Robustness	to	sybil attacks:	results	(2)

• Theorem:	The	max-flow	based	ranking	
algorithm	is	value-sybilproof
– But	it	is	not	rank-sybilproof

• Theorem:	The	PathRank based	ranking	
algorithm	is	value-sybilproof and	rank-
sybilproof
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