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Abstract. For more than a decade, it has been observed that network traffic exhibits long-range
dependence and many models have been proposed relating this property to heavy-tailed flow durations.
However, none of these models consider correlations at flow scale. Such correlations exist and will
become more prominent in the future Internet with the emergence of flow-aware control mechanisms
correlating a flow’s transmission to its characteristics (size, duration, etc.).

In this work, we study the impact of the correlation between flow rates and durations on the
long-range dependence of aggregate traffic. Our results extend those of existing models by showing
that two possible regimes of long-range dependence exist at different time scales. The long-range
dependence in each regime can be stronger or weaker than standard predictions, depending on the
conditional statistics between the flow rates and durations. In the independent case, our proposed
model consistently reduces to former approaches.

The pertinence of our model is validated on real web traffic traces, and its ability to accurately
explain the Hurst parameter is validated on both web traces and numerical simulations.
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1. Motivation

In the last years, a considerable research effort has been devoted to the mathematical modeling of
network traffic, with particular emphasis on statistical approaches. However, comprehensive modeling
of all the characteristics of the traffic is a very arduous problem for it encompasses several difficulties
of different natures, such as transport protocols, control mechanisms, or complexity due to the users’
behavior. The design of identifiable models, while sufficiently versatile to account for essential charac-
teristics of real traffic, is therefore an important issue for many applications such as the simulation of
realistic traces for numerical studies, or the detection of abnormal traffic behaviors.

An important step ahead in this direction was the discovery in 1993 of the self-similar nature of ag-
gregate traffic time series at large time scales [26, 40]. Following up, several models appeared, proposing
the heavy-tailed nature of the activity periods (the flow durations) as a plausible origin of self-similarity,
and formalizing the relation between αON, the heavy-tail exponent of the flow-duration distribution and
H , the Hurst self-similarity parameter:

H =
3− αH

2
,(1.1a)

where αH = min(αON, 2).(1.1b)

These seminal works opened up a vast debate regarding the importance of the long-range dependence
property in network-traffic time series. Yet, it is now commonly reckoned that due to its large-scale
nature, long-range dependence only impacts the queueing performance of large buffers (see e.g. [33])
which are not so many in modern networks. Nonetheless, the generation of realistic traffic traces remains
highly demanding in terms of reliable sources at the flow-level [4]. As a result, the clear comprehension
of the long-term correlations produced by these models is not only interesting on its own, but it can
also serve other purposes, like characterizing the performance of load estimators, or designing new
procedures for load change detection [34]. Moreover, as we will see, the model we propose takes into
account certain traffic features that the emergence of flow-aware control mechanisms in the future
Internet may significantly accentuate. We present our contribution as a first step towards a better
understanding of the impact of those mechanisms on the traffic properties.
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So far though, all existing models that lead to relation (1.1), rely on the simplifying assumption
that all flows have the same (mean) throughput no matter what their size (or duration). In particular,
this implies that the tail indices αSI and αON of the flow-size and of the flow-duration distributions
respectively, are equal and thus, interchangeable in relation (1.1). For real world traffic, however, this
independence assumption rarely holds, and the tail indices αSI and αON are different in general (as it
has been observed on web traffic since 1997 [12, 35]).

Several sensible causes can explain a possible statistical dependence between the flows’ rates and
durations (or sizes), among which the transient phase of the TCP protocol or the existence of mirror
sites to speed up large files transfer over the net, to cite only two. More importantly, this flow-scale

correlation is likely to become an inherent feature of the future Internet as flow-aware control procedures
will advisedly condition the flows’ treatment (e.g. the transmission rate) to their characteristics (e.g.
their duration or their size).

In these conditions, relation (1.1) is not ensured to be reliably usable to predict the Hurst parameter
of the aggregate traffic. Hence, a model that explicitly includes the correlation between flow rates
and durations is lacking to understand the impact of these flow-scale dependencies on aggregate traffic
properties, and to accurately predict the resulting Hurst parameter.

In this paper, we address this challenge and we propose an extension of prior models including the
correlation between flows’ rates and durations, that makes explicit the individual effects of αON and αSI

on self-similarity. Flows are represented as a marked planar Poisson process. This non-classical view-
point allows us to simply calculate the autocovariance function of the aggregate traffic’s instantaneous
bandwidth and to deduce the resulting Hurst parameter.

The rest of the article is organized as follows. We first briefly review in Section 2 existing models that
reproduce the long-range dependence property of network traffic. In Section 3, we propose an extension
of these models which includes the correlation between flows’ rates and durations, and we expose the
theoretical derivations leading to the aggregate traffic’s Hurst-parameter prediction. In Section 4, based
on numerical simulations and on recent web traffic traces, we experimentally demonstrate the pertinence
of our model and its ability to correctly predict the Hurst parameter. Finally, we conclude in Section 5.

2. Related work

There exists a large number of models able to reproduce the long-range dependence property [7, 17].
We describe here only those which explicitly ground the origin of long-range dependence in the notion
of flows. Following up Mandelbrot’s idea, these models rely on the introduction of a heavy-tailed
distribution of infinite variance. We distinguish two categories of such models, which mainly differ in
the flow arrival process: the renewal models and the infinite source Poisson models.

2.1. Renewal models. Renewal models are based on the same general setting firstly introduced by
Mandelbrot in 1969 [32] in an economical context. Each source, emitting only one flow at a time,
is modeled as a renewal reward process, where the inter-arrival time (i.e. the interval between two
consecutive flows) is heavy-tailed; and the reward is the rate of the flow. Many variants of such models
have been considered, mainly differing in the distribution of the reward [43, 27, 28] (see also [17]).
We present here only briefly the particular variant where the reward strictly alternates between 0 and
1: the classical on/off model [44]. This model allows including the notion of idle time between the
transmission of two flows through the off periods. Moreover, on- and off-periods distributions can
have different tail indices αON and αOFF. Both distributions are assumed to have a finite mean (i.e.,
αON, αOFF > 1), and at least one of these distributions is assumed to have an infinite variance (i.e.,

αON < 2 or αOFF < 2). We denote by W
(n)
t the instantaneous rate of source n at time t (W

(n)
t = 0 or

1), and define the cumulative input process from M aggregated sources:

WTt =

∫ Tt

0

M∑

n=1

W (n)
u du.

Then, the two following limit theorems hold [42]:

(2.1) lim
T→∞

lim
M→∞

WTt − E{WTt}

THM1/2
= σBH(t)
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and

(2.2) lim
M→∞

lim
T→∞

WTt − E{WTt}

T 1/αHM1/αH
= cΛαH(t),

where H is defined as in relation (1.1a) with αH = min(αON, αOFF) < 2, and σ and c are constants.
If both the on- and off-periods distributions have finite variance, the limit process is an ordinary
Brownian motion (exhibiting no long-range dependence), no matter what the order of the two limits.
Here, BH denotes a fractional Brownian motion of Hurst parameter H , that is a self-similar Gaussian
process, whose increments are stationary. Its increment process (called fractional Gaussian noise) is said
to be long-range dependent of Hurst parameter H , meaning that its autocovariance function decays as
a power law of index (2H − 2). The result (2.1), which establishes the long-range dependence of the
aggregate traffic’s bandwidth in the Gaussian limit has been widely used in the last decade to model
network traffic, since taking first the limit on the number of sources (i.e. aggregating the sources) shows
more natural. Conversely however, when time scale goes first to infinity, Equation (2.2) shows that
the limit process ΛαH is a Lévy stable motion: a self-similar process with stable marginals (i.e. non-
gaussian and heavy-tailed) and independent stationary increments. In the case where M and T tend
simultaneously to infinity, [37] gives conditions on the ratio between the growth rate of both quantities
that ensure one, or the other limit regimes (see also [18] where an intermediate case with a ratio between
these two conditions is studied). In practice, when the number of sources and the time scale are finite,
[23] provides sufficient conditions on the aggregation levels in both the horizontal (time) and the vertical
(flows) directions, for the Gaussian approximation to hold. One particularity of the on/off model is
that the flow arrival process is not Poisson in general [31]. However, if Equation (2.1) or (2.2) is rescaled
in such a way that the idle off periods grow with the number of sources, then the flow arrival process
tends towards a Poisson process [14]. In that case, the off durations (hence the index αOFF) have no
effect, and the model asymptotically becomes an infinite source Poisson model. Before entering into
details, let us mention that, whenever αON < αOFF, the predicted Hurst parameter does not depend
on αOFF. This particular situation was observed in early Internet traffic measurement [12] and more
recent measurement campaigns (see e.g. [6] in the context of social networks) also demonstrate that the
distributions of inter-session times have a lighter tail than that of session times.

2.2. Infinite source Poisson models. In the simplest version of the infinite source Poisson models,
flows arrive at the link as a Poisson process of rate λ. For each flow, data is transmitted at a fixed rate
(arbitrarily set to 1) during a heavy-tailed distributed random time with tail index αON. This model is
also known as the M/G/∞ model that was originally considered in [11]. Amazingly then, the same limit
equations (2.1) and (2.2) as for the on/off model are obtained, when replacing the number of sources
M by the flow-arrival rate λ, and posing αH = αON (see [17, 22]). Furthermore, it is shown in [37] that
the same conditions on the arrival rate and on the time scale growths determine the two limit regimes.
There exists many variants of this elementary M/G/∞ model, which all rely on the same mechanism:
a Poisson arrival process and a heavy-tailed distributed duration of flows. Differences mainly lie in
the way data is transmitted within a flow (see also a survey of infinite Poisson models in [20], and
the references in [37]). In [25], the authors consider an infinite source Poisson model with a general
form of “workload function” within a flow and establish the Gaussian limit result. In [36], a similar
model is considered (where the “workload function” is called “transmission schedule”), and the authors
establish the alternative convergence towards a Lévy motion. The Poisson shot-noise model developed
in [3], is morally very similar to the two previously introduced models. The “workload functions” or
“transmission schedules” are here termed “shots”, which still arrive according to a Poisson process. An
application of this model is proposed in [38] where the shape of the shot is representative of the AIMD
(Additive Increase Multiplicative Decrease) mechanism with Poisson losses. In [15], the authors consider
a model where the flow rate is a random variable that remains constant over the full duration of the
flow. The flow sizes are drawn at random according to a heavy-tailed distribution of tail index αSI and
the rate variable, drawn independently of the size, follows a finite-mean distribution. The flow duration
is then also a heavy-tailed random variable with the same index αON = αSI, and the model leads to
a long-range dependent traffic with Hurst parameter H defined as in relation (1.1). A similar model
where the durations and the rates are drawn independently is proposed in [16]. The last model that we
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mention in the infinite source Poisson model category is the Cluster Point Process (CPP) model [21],
based on a discrete point process approach. Flows are “clusters” of points (packets) and a flow-arrival
time is determined by the instant of its first packet. The flow-arrival process is Poisson, the number
of points in the cluster (the flow size) is heavy-tailed distributed with index αSI, and points (packets)
within a cluster (flows) follow a renewal process with some inter-arrival distribution determining the
mean flow rate. From point-processes theory [10, 13], the resulting aggregate traffic’s spectrum is shown
to correspond to long-range dependence with the same Hurst exponent H as in relation (1.1a) with
αH = αSI. As in the model of [15], the flow duration here is heavy-tailed distributed with tail index
αON = αSI, an equality that was disallowed in [12] by measurements on real Internet traffic. This can
be caused for example by the slow-start mechanism which, allowing larger flows to reach a higher mean
rate, naturally yields a lighter tail for the flow-duration distribution. The authors of [21] suggest the
use of a multi-class CPP, where small flows (mice class) would be allotted small rates and larger flows
(elephant class) higher rates. However, they do not develop further the implications on the aggregate
traffic, and the central question that we address in the present work remains open: When flow-duration
and flow-size distributions have different tail indices, which specific role do those play in the origin and
intensity of long-range dependence of the aggregate traffic?

2.3. Planar point process setting. Our proposed model is an infinite source Poisson model, where
flows are represented as a marked planar Poisson process. This setting was originally introduced in the
context of multifractal analysis in [5] to extend binomial multiplicative cascades, and reused in [9], also
to deal with multiplicative processes. To the best of our knowledge, in the context of additive processes,
this approach was only used in the aforementioned articles [15, 16] to derive long-range dependence.
Besides being very intuitive, this formalism allows readily computing the autocovariance function in the
case of non-independent marks (rates).

3. A model including correlation between flow rates and durations

3.1. Definitions and notations. We consider the point process {(Ti, Di), i ≥ 0} depicted on Figure 1,
where Ti represents the arrival time of flow i and Di its duration, and we assume that it is a (planar)
Poisson process of intensity Λ [11, 24]. The intensity Λ is a measure that fixes the mean number of
points in any region of the plane; for instance Λ(C(t1)) is the mean value of the random variable formed
by the number of points lying in the cone C(t1) (i.e. the number of flows active at time t1, see Figure 1).
If the density of Λ is constant over the plane, the point process is called homogeneous. Here, to take
into account the heavy-tailed distribution of the flow size, the density of an infinitesimal square of size
dt× dd centered on (t, d), takes on the particular form:

(3.1) Λ(dt, dd) =

{
Cdtdd
dαON+1 if d ≥ dmin

0 otherwise
,

where dmin > 0 is the minimal flow duration, C is a positive constant, and αON > 1 is the tail index
of the flow-duration distribution. As Λ depends on d, the point process is clearly non-homogenous (the
smaller d is, the higher the density). However, since Λ does not vary with t, the arrival times Ti are
independent of the durations Di and the resulting traffic is stationary. With this particular form of
the intensity measure Λ, the planar Poisson process model is equivalent to an infinite source Poisson

model, with a finite flow arrival rate (λ =
∫∞

d=0

∫ 1

t=0 Λ(dt, dd) < ∞) and independent durations drawn
from a Pareto distribution of tail index αON. Each flow i emits data at a constant rate Ri ≥ 0, drawn
at random, over its full duration Di. The rates (Ri)i≥0 do form a sequence of independent random
variables, but in contrast to previous models (such as the ones proposed in [15, 16]), they are not
assumed independent of the durations (Di)i≥0. We will formalize the explicit statistical bond between
these two quantities later in this section, when it becomes necessary to pursue the calculations. We
designate by Si the size of flow i: Si = DiRi.

Let us consider two time instants t1 < t2 and let us introduce the following notations (see Figure 1):

(3.2) Wt1\t2 =
∑

(Ti,Di)∈C(t1)\C(t2)

Ri,
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λW = E{Wt1∩t2}

Di

Ti
t1 t2

Ri

time t

d
u
r
a
t
io

n
d

Wt1\t2

µW = E{Wt1\t2}

Wt2\t1

µW = E{Wt2\t1}

C(t1) C(t2)

Wt1∩t2

Figure 1. Setting of the model. Each point represents a flow. The x-coordinate
represents the start time Ti and the y-coordinate the duration Di. Ri is the rate of the
flow. At time t1, the active flows are those whose corresponding point on the graph lies
in cone C(t1) (the left border of the cones have a slope of −1).

(3.3) Wt1∩t2 =
∑

(Ti,Di)∈C(t1)∩C(t2)

Ri,

(3.4) Wt1 = Wt1\t2 +Wt1∩t2 =
∑

(Ti,Di)∈C(t1)

Ri,

and similarly for the variables Wt2\t1 and Wt2 . The random variable Wt1 is the instantaneous throughput
at time t1 (rates summation of all active flows at time t1). Wt1\t2 represents the traffic generated by
flows active at time t1 but no longer active at time t2, while Wt1∩t2 denotes traffic coming from flows
active at time t1 and still alive at time t2. We will use these two intermediate variables to facilitate our
derivations, and we define the corresponding means:

(3.5) λW = E{Wt1∩t2} = Λ(C(t1) ∩ C(t2)),

(3.6) µW = E{Wt1\t2} = E{Wt2\t1} = Λ(C(t1)\C(t2)) = Λ(C(t2)\C(t1)).

Last equality Λ(C(t1)\C(t2)) = Λ(C(t2)\C(t1)) simply comes from time-shift invariance of measure Λ.
Finally, with these notations, we have:

(3.7) E{Wt1} = E{Wt2} = λW + µW .

With this setting, we now compute the autocovariance of the instantaneous bandwidth Wt, in order
to evaluate the Hurst parameter. We recall that a stationary process is said long-range dependent of
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Hurst parameter H if its autocovariance function decreases like τ2H−2 when τ goes to infinity and where
1/2 < H < 1.

3.2. Computation of the instantaneous bandwidth’s autocovariance. With the notations intro-
duced in the preceding section, we now calculate the autocovariance function E{Wt1Wt2}−E{Wt1}E{Wt2}
of the instantaneous throughput Wt.

Lemma 3.1. If the planar point process {(Ti, Di), i ≥ 0} is Poisson, then

(3.8) E{Wt1Wt2} − E{Wt1}E{Wt2} = E{W 2
t1∩t2} − E{Wt1∩t2}

2 = Var{Wt1∩t2}.

Proof. With our notations:

E{Wt1Wt2} = E{Wt1\t2Wt2\t1}+ E{Wt1\t2Wt1∩t2}+ E{Wt1∩t2Wt2\t1}+ E{W 2
t1∩t2}.

Due to the Poisson assumption, the random variables Wt1\t2 ,Wt2\t1 ,Wt1∩t2 are mutually independent,
so that

E{Wt1Wt2} = E{Wt1\t2}E{Wt2\t1}+ E{Wt1\t2}E{Wt1∩t2}+ E{Wt1∩t2}E{Wt2\t1}+ E{W 2
t1∩t2}

= µ2
W + 2λWµW + E{W 2

t1∩t2}

= (λW + µW )2 − λ2
W + E{W 2

t1∩t2},

which readily yields the result in view of the definition of λW (Equation (3.5)) and of Equation (3.7). �

Lemma 3.1 shows that this autocovariance only depends on the variance of traffic generated by flows
that are active at times t1 and t2. It is quite natural and was noticed in [5, 9] in a different context. To
complete the calculation of the autocovariance function, we then need to compute Var{Wt1∩t2}.

If the flows’ rates were all equal to 1, Wt1∩t2 would simply be the number of points in C(t1)∩C(t2), and
the variance Var{Wt1∩t2} equal to λW (the mean and the variance of a Poisson process are equal). The
autocovariance would then be entirely controlled by the value of λW . Before carrying on the calculation,
let us denote by N the random variable corresponding to the number of points in C(t1)∩C(t2) and by

(3.9) λN = E{N},

its mean. Then, the autocovariance function takes on the general form:

Lemma 3.2.

(3.10) E{Wt1Wt2} − E{Wt1}E{Wt2} = λNE{R2
i },

where it is implicitly understood that the expectation of R2
i is computed in C(t1) ∩ C(t2).

Proof. To evaluate the value of Var{Wt1∩t2}, we successively compute the values of E{Wt1∩t2} and
E{W 2

t1∩t2}.

E{Wt1∩t2} = E{E{Wt1∩t2 |N}}

=

∞∑

k=1

E{

k∑

i=1

Ri|N = k}P(N = k)

=
∞∑

k=1

k∑

i=1

E{Ri|N = k}P(N = k)

=

∞∑

k=1

kE{Ri}P(N = k)

= λNE{Ri}.

E{W 2
t1∩t2} = E{E{W 2

t1∩t2 |N}}

=

∞∑

k=1

E{(

k∑

i=1

Ri)
2|N = k}P(N = k).
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By independence of the sequence (Ri)i≥0,

E{(

k∑

i=1

Ri)
2|N = k} = E{(

k∑

i=1

Ri)
2} = kE{R2

i }+ (k2 − k)E{Ri}
2,

so that

E{W 2
t1∩t2} =

∞∑

k=1

(kE{R2
i }+ (k2 − k)E{Ri}

2)P(N = k)

=

∞∑

k=1

kE{R2
i }P(N = k) +

∞∑

k=1

k2E{Ri}
2
P(N = k)−

∞∑

k=1

kE{Ri}
2
P(N = k)

= λNE{R2
i }+ (λN + λ2

N )E{Ri}
2 − λNE{Ri}

2

= λNE{R2
i }+ λ2

NE{Ri}
2.

�

Until now, we have not used the specific form of the measure Λ (Equation (3.1)), nor we have
considered an explicit form for the correlation between Ri and Di. The result of Lemma 3.2 depends
only on the Poisson hypothesis and on the independence assumption of the sequence (Ri)i≥0. It shows
that the autocovariance function is the product of two terms: λN and E{R2

i }. The first term λN (the
mean number of points in C(t1)∩C(t2)) depends only on the measure Λ (i.e. on the points repartition).
To compute the second term E{R2

i }, we need a functional model to describe the correlation between Ri

and Di.
Our goal here is to introduce a correlation which leads to different tail indices αSI and αON for the

flow-size and for the flow-duration distributions. As we already mentioned, independence between the
two random variables Ri and Di leads to identical tail indices, no matter what finite mean distribution
is chosen for Ri (see e.g. [15, 16]). Therefore, different tail indices αSI 6= αON can only come from a
statistical correlation between Ri and Di. A naive choice could be to deterministically set each flow

rate to Ri = KDβ−1
i , where β = αON

αSI
. In that case, we have Si = KDβ

i , which effectively leads
to a heavy-tailed flow-size distribution with tail index αSI different from αON. However, assuming
that a flow’s rate is deterministically imposed by its duration is not realistic. That is why, in our
model, Ri is a random variable but whose mean and variance are statistically conditioned to the flow

duration Di. The conditional expectation is set to E{Ri|Di} = KDβ−1
i (β > 0), as this is the sole

algebraic relation compatible with the desired heavy-tailed distributions with different tail indices. As
for the conditional variance, we also choose to model its dependence on Di with a power law of the
type: Var{Ri|Di} = V Dγ

i . Experimentally, this choice fits a larger number of real traffic data than
a constant conditional variance; from an analytic viewpoint, it permits a simple analysis of long-range
dependence in the aggregate traffic. Next proposition shows that, provided a simple condition on β and
γ, the prescription of these conditional moments indeed leads to a heavy-tailed flow-size distribution,
with tail parameter αON

β .

Proposition 3.1 (Flow-size distribution). Suppose that Di follows a Pareto distribution with tail index

αON. Suppose that E{Ri|Di} = KDβ−1
i and Var{Ri|Di} = V Dγ

i , with K and V two positive constants.

If γ < 2(β − 1), then the distribution of the flow size Si is heavy-tailed distributed with index αON

β :

(3.11) P(Si > s) ∼
s→∞

( s

K

)−αON
β

.

Proof. The proof is deferred to appendix A. �

Remark 3.1. When γ ≥ 2(β − 1), there is no guarantee that the flow-size distribution is heavy-tailed

with index αON

β .

Remark 3.2. Because we clearly have E{R2
i } = E{E{R2

i |Di}} = K2
E{D

2(β−1)
i } + V E{Dγ

i }, the rate

variable has finite variance if αON > γ and αON > 2(β−1). Moreover, it ensures that the autocovariance

function of the instantaneous bandwidth (Wt)t∈R exists, and also justifies the Gaussian approximation
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for the traffic. Similarly, since E{Si} = E{DiE{Ri|Di}} = KE{Dβ
i }, the condition αON > β warrants

a finite-mean distribution for the flow-size variable. This is consistent with a tail index larger than one

in Proposition 3.1 when γ < 2(β − 1).

We now have all the ingredients of our model to establish the algebraic decay of the resulting auto-
covariance function.

Proposition 3.2 (Autocovariance function of the instantaneous bandwidth (Wt)t∈R). Let flows be

modeled as a planar Poisson process with intensity Λ defined as in expression (3.1). Assume that

E{Ri|Di} = KDβ−1
i and Var{Ri|Di} = V Dγ

i , where K and V are two positive constants, and let:

(3.12)

{
α′ = αON − 2(β − 1),
α′′ = αON − γ.

If α′ > 1 and α′′ > 1, then

E{Wt1Wt2} − E{Wt1}E{Wt2} = CK2 1
α′(α′−1) (t2 − t1)

−α′+1

+CV 1
α′′(α′′−1)(t2 − t1)

−α′′+1.(3.13)

Proof. First note that the conditions α′ > 1 and α′′ > 1 guarantee the existence of the autocovariance

function (see Remark 3.2), and recall that E{R2
i } = K2

E{D
2(β−1)
i } + V E{Dγ

i }. Then calculating the
expectations via direct integration with the explicit form of the density of measure Λ (Equation (3.1))
yields:

E{D
2(β−1)
i } =

1

λN
C

1

α′(α′ − 1)
(t2 − t1)

−α′+1,

and

E{Dγ
i } =

1

λN
C

1

α′′(α′′ − 1)
(t2 − t1)

−α′′+1.

The result directly follows from Equation (3.10) of Lemma 3.2. �

Remark 3.3. If γ ≥ 2(β − 1) the result remains valid although the flow sizes may not be heavy-tailed

distributed with index αON

β .

Remark 3.4. As its autocovariance only depends on the time difference (t2 − t1), the instantaneous

bandwidth Wt is a second-order stationary process, consistently with the time-shift invariance of the

measure Λ.

Our main result lies in the algebraic decay of the autocovariance function of Proposition 3.2, where
two different regimes of long-range dependence coexist. Before presenting real traffic traces supporting
our model choice, let us comment and elaborate on the specific form of this autocovariance and its
interpretation.

3.3. Interpretation. The autocovariance (3.13) is the sum of two power-law terms decreasing with
different exponents: −α′ + 1 and −α′′ + 1. We denote by τ∗ the value of (t2 − t1) for which these two
terms coincide:

(3.14) τ∗ =

∣∣∣∣
α′(α′ − 1)

α′′(α′′ − 1)
·
V

K2

∣∣∣∣
1

2(β−1)−γ

.

Then, depending on wether (t2 − t1) stands below or above τ∗, one of the two power laws dominates in
Equation (3.13) and impose its decay to the autocovariance function. In terms of long-range dependen-
cies, each exponent corresponds to a Hurst parameter as in Equation (1.1a) (H = 3−αH

2 ), where αH is
either equal to α′ or to α′′. Rather than plotting the autocovariance (3.13), we represent in Figure 2 the
corresponding log-diagram [2]. A log-diagram corresponds to the logarithmic variance log S(j) of the
wavelet coefficients calculated at scale j (morally equivalent to the variance of the process aggregated
in consecutive time windows of size 2j∆, where ∆ is the data granularity). For a long-range dependent
process of Hurst parameter H , the corresponding log-diagram increases linearly with slope 2H .

Figure 2 emphasizes the two domains separated by τ∗:
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τ ∗µON

αH = min(α′, α′′)

αH = max(α′, α′′)

Time scale 2j∆

Figure 2. Generic log-digram of the aggregate traffic: logS(j) versus time scale j
(plain line). The oblique dashed line represents power-law evolutions of the autocovari-
ance (3.13) with indices α′ and α′′ defined in Equation (3.12), which correspond to the
two distinguished regimes of long-range dependence (see text). Vertical dashed lines
materialize the thresholds µON and τ∗.

– at scales larger than τ∗, the smaller tail index αH = min(α′, α′′) governs the autocovariance decay,
meaning that it is the larger Hurst exponent that characterize the long-range dependence. This
situation, referred to as asymptotic long-range dependence, holds for time lags going to infinity; it
corresponds to the rigorous definition of long-range dependence.

– conversely, at scales smaller than τ∗, it is the term corresponding to the larger tail index αH =
max(α′, α′′), i.e. to the smaller Hurst exponent, which dominates the autocovariance. To contrast
with the asymptotic long-range dependence, this property is called pseudo long-range dependence as
it is holds only over a finite scale range, bounded from above by τ∗ and from below by the mean flow
duration µON. Indeed, as alluded in [21] and experimentally validated in [30], µON is a reasonable
lower scale bound beyond which long-range dependence due to the heavy-tail distribution of flow
duration is manifest.

The prevalence regions of these different Hurst parameters, as well as the comparison with long range
dependence of usual infinite source Poisson models, depend on the parameters β and γ.

Influence of parameters β and γ. As a first remark, notice that if β = 1 (α′′ = αON) or if γ = 0
(α′ = αON), the classical relations (1.1) straightforwardly apply to the respective scale domains. They
even extend to the entire scale axis when β = 1 and γ = 0, our model coinciding then to the usual
infinite source Poisson model with (second order) mutually independent rates and durations. We denote
by H0 = 3−αON

2 the corresponding Hurst parameter that we take as a reference to discuss the impact
of β and γ.
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In the general case, τ∗ delineates two long-range dependent regimes determined by α′ and α′′. In
terms of long-range dependence, our results are valid for all values of α′ and α′′ larger than one. Yet,
we restrict our discussion to the case α′ < α′′ (i.e. γ < 2(β − 1)), guaranteeing the flow-size variable
to be heavy-tailed distributed with index αSI =

αON

β (Proposition 3.1), as it is commonly observed on

real traffic traces. Then, the pseudo long-range dependence regime has a Hurst parameter H = H0+
γ
2 ,

whereas the Hurst parameter for the asymptotic long-range dependence regime reads H = H0 +(β− 1)
and depends on the conditional mean rate exponent β:

– If β > 1 (αSI < αON): This is the case that has been observed on Internet traces [12] and that
we also experience with the web trace of next section. In average, the achieved rate increases with
the duration of the flow, a situation due, for instance, to the transient behavior of some protocols
that penalize short connections. The asymptotic long-range dependence, controlled by the tail index
αH = α′ < αON, is then stronger than the one predicted by standard models that disregard flow-scale
correlations. It is worth noticing that, depending on the β value, αH can possibly be smaller, equal
to, or larger than αSI. This means that the tail index governing the long-range dependence does not
necessarily lie between αSI and αON, and can be smaller than both these tail indices.

– If β < 1 (αSI > αON): This situation, where the mean transmission rate of a flow decreases with its
duration, could happen with scheduling policies that aim at prioritizing short flows. In this case, the
asymptotic long-range dependence, controlled by the tail index αH = α′ > αON, is weaker than the one
predicted by existing models. It demonstrates that it is theoretically possible to reduce the long-range
dependence strength in aggregate traffic, by activating appropriate flow-aware control mechanisms.
Finally, notice that if γ > 2(β−1), the case β < 1 leads to a weakened (pseudo) long-range dependence
in the intermediate scale domain.

Besides their effect on the Hurst exponents, parameters β and γ can also impact the threshold τ∗,
although this latter mainly varies with the two constants K and V .

Influence of the mean K and of the variance V . The ratio V
K2 is mostly prominent in the determina-

tion of the frontier τ∗ separating the two long-range dependence regimes. Its effective role, however, is
conditioned to β and γ: τ∗ increases with V

K2 when γ < 2(β−1) and it decreases otherwise. In both cases
however, a large variance systematically extends the scale range where the Hurst parameter is governed
by the conditional variance of the flow rate (H = H0 +

γ
2 ), whereas a small variance broadens the scale

range where the Hurst parameter is determined by the conditional mean term (H = H0 + (β − 1)). In
the limit case V = 0, only this latter regime remains.

Let us mention that the time lag τ∗ where the two autocovariance terms intersect is proportional to
the characteristic flow duration for which mean squared rate and variance rate are equal:

(3.15) d∗ =

∣∣∣∣
V

K2

∣∣∣∣
1

2(β−1)−γ

.

Both quantities differ by a multiplicative factor
∣∣∣ α′(α′−1)
α′′(α′′−1)

∣∣∣
1

2(β−1)−γ

, independent of K and V . This is

coherent with the interpretation of the scale regions where the Hurst parameter is either prescribed by
the conditional variance H = H0+

γ
2 or by the conditional mean H = H0+(β−1). Notice though, that

whenever the multiplicative factor significantly differs from one, only τ∗ is meaningful to determine the
frontier between the two regimes.

Finally, let us stress that we limited our study to the long-range dependence of aggregate traffic, a
second-order statistical property fully determined by the autocovariance function. As a result, the first
two conditional moments E{Ri|Di} and Var{Ri|Di} were sufficient to identify this correlation structure
unambiguously. To investigate statistical properties of the instantaneous bandwidth at higher orders,
finer characterization of the conditional distribution P(Ri ∈ dr |Di) would be needed.

Remark 3.5. To model real traffic more accurately, one may want to use an heterogeneous mixture of

a certain number of different classes k, with the same power-law conditional moments but with different

indices βk and γk. Each class leads to a set of new tail exponents α′
k = αON − 2(βk − 1) and α′′

k =
αON−γk. Assuming that traffics from the different classes sum independently, it is clear that the smallest

of all these indices will asymptotically govern the autocovariance decrease and therefore imposes the
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long-range dependence parameter as in (1.1a). The correlation structure however, should behave more

intricately in the intermediate scale range.

4. Experimental results and discussion

This section drives an empirical study of our traffic model. Based on real web traces, we first present
experimental evidences that support our choices, and demonstrate the ability of our approach to predict
the Hurst parameter of aggregate traffic. Then we present a more systematic validation of our results
based on numerical simulations.

4.1. Real web traffic. We use a trace acquired at the output link of the in2p3 research center (Lyon,
France), with the capture tool MetroFlux [29]. The traffic is captured from the VLAN corresponding
to RENATER (french national research and education network) web traffic, which is encapsulated in
the 10 Gbps output link of in2p3. Although we captured more than one day of traffic, we restrict our
trace to a 30 minutes stationary trace, corresponding to the incoming traffic between 3pm and 3:30pm
on January 18, 2009. The mean throughput in this period is 127.3 Mbps, the mean flow duration is
0.12 s and the mean flow size 16 kBytes. The traffic variations are displayed on Figure 3-(a). While it is
essentially composed of web activity, this traffic also encompasses an unusual large number of elephant
flows, produced by the particular nature of experiments carried out at the in2p3 centre.

To analyze flow-level characteristics, we recover the flow sequence from the packet level trace using
the widely used definition of a flow: a flow is a set of packets sharing the same source and destination
IPs and ports, the same protocol, and with no inter-packet gap larger than some timeout that we set
here to 100 ms. This relatively small value of the timeout was chosen because a thorough analysis
of this particular trace revealed that many TCP connections are kept open even when idle, as they
certainly use the TCP keep-alive protocol [8]. The high number of such connections is likely to be
specific of the activities carried out at the in2p3 research center. On the other hand, most of the traffic
is intra-continental with a corresponding RTT smaller than 100 ms. Nonetheless, we also performed
the analysis with a timeout set to 1 s and verified that the results remain coherent and quite similar. 1

More generally though, as it was recently shown in [41], the flow definition can have a dramatic effect
on model matching; and the one we propose here may fail at fitting the data if one adopts a different
flow definition.

Figures 3-(b) and 3-(c) display the corresponding flow-size and flow-duration distributions. As ex-
pected, both exhibit power-law shapes, but with different tail indices: αSI = 0.88 and αON = 1.30.
These estimates were obtained with a state-of-the-art non-parametric wavelet method proposed in [19],
using the 5-th derivative of a Gaussian wavelet. To avoid the bias introduced by partially observed flows,
we retained only those whose starting and ending dates fall in the analyzed 30-minutes trace. Inevitably,
this amounts to truncate the distribution tail, reducing thus the effective scale-range used for the tail
exponent estimation. In accordance with our model, the empirical conditional mean and variance rate
plotted in Figures 3-(d) and 3-(e) respectively, obey a power-law dependence with respect to the flow
duration, over a significant scale range. We observe a small number of flows (22 in the analyzed trace)
whose duration is larger than 100s and yet, that present a small rate. As these flows correspond to
control traffic and they do not significantly contribute to the overall data traffic, we disregard them in
the sequel. In Figure 3-(d), a superimposed straight line with slope β = 1.48 equal to the ratio between
the tail indices αON and αSI, closely matches the estimated slope (β = 1.45) obtained from a direct
least-square fit of the data within the scale interval [1, 90] s. The estimated value γ = 0.43 corresponds
to the least-square fit of the conditional variance rate over the same scale interval, and, together with
β, they meet the condition γ < 2(β− 1) of Proposition 3.1. Let us mention that the estimation of γ, as
well as that of αSI, αON and β to a lesser extent, may be relatively sensitive to the chosen scale range

1The quantities estimated when the timeout is set to 1 s are the as follows: αSI = 0.99, αON = 1.33 (estimated with
the method of [19]), β = 1.34 (deduced from αON/αSI), to be compared to the value 1.31 (estimated from a least-square
regression of Fig. 3-(d) adapted to the new timeout), γ = 0.29 (estimated from a least-square regression of Fig. 3-(e)
adapted to the new timeout), K = 10

4.35 and V = 10
10.32 (estimated from the same least-square regressions). We deduce

τ∗ ∼ 2000 s and the predicted Hurst parameter in the pseudo long-range dependence regime H = 0.98, fully consistent
with the estimated value.
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Figure 3. Characteristics of the in2p3 trace: (a) Aggregate bandwidth evolution
(granularity 10 ms) – (b) Flow-size distribution, complementary cdf (dashed black:
Pareto with tail index α̂SI = 0.88 estimated with the method of [19]) – (c) Flow-duration
distribution, complementary cdf (dashed black: Pareto with tail index α̂ON = 1.30 es-
timated with the method of [19]) – (d) Conditional mean rate (dashed black: model

E{Ri|Di} = KDβ−1
i with β = α̂ON/α̂SI and value K = 105.34 estimated by least-square

fit in the range [1, 90] s) – (e) Conditional variance of the rate (dashed black: model
Var{Ri|Di} = V Dγ

i with values V = 1011.97 and γ = 0.43 estimated by least-square
fit in the range [1, 90] s). The mean flow duration is 0.12 s and the mean flow size is
16 kBytes. In plots (d) and (e), logarithmic binning was used.
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for regressing the data. For different regression ranges within the interval [1, 100] s, the estimate of γ
varies roughly from from 0.2 up to 0.5. No doubt that in our case, this sensitivity is accentuated by the
quite short length of our stationary trace that leads to only a limited scale domain.

From definition (3.12), we then deduce the exponents α′ = 0.34 and α′′ = 0.87. Theoretically,
α′ < 1 corresponds to a diverging autocovariance (3.13) as time lag (t2 − t1) goes to infinity; but since
we have a finite-size trace, the distributions are bounded and tail indices smaller than one (or Hurst
parameter larger than 1) can be observed over a finite scale range. As for γ, we estimate K = 105.34

and V = 1011.97 from the least-square fits of the plots in Figures 3-(d) and 3-(e), which leads to the
threshold τ∗ ∼ 1, 000 s.

To investigate the long-range dependence of the aggregate traffic, we used the wavelet-based method
described in [2], with a Daubechies wavelet with three zero moments. This method provides a robust
estimation of the Hurst parameter within a confidence interval derived under normal assumption (we
checked that the traffic was fairly gaussian, with a kurtosis value equal to 3.15 at an aggregation scale
of 10 ms). Figure 4 displays the log-diagram of the aggregate traffic bandwidth calculated at the
granularity ∆ = 10 ms. It follows a linear trend that is characteristic of an underlying scaling law,
and whose slope reflects the Hurst parameter. By linear regression over the scale range [1.28, 40.96] s

(which lies far beyond the mean flow duration of 0.12 s), we estimate a Hurst exponent Ĥ = 0.92±0.06.
The upper bound of this regression scale interval stands far below the threshold τ∗ between the two
long-range dependence regimes. Under these circumstances, Proposition 3.2 predicts a dominating

Hurst exponent H = 3−α′′

2 = 1.06, which is slightly higher than the estimated value. In the present
case, relation (1.1) obtained with standard infinite source Poisson models, would yield a similar Hurst
estimate, slightly lower than the estimated value (0.85). Nonetheless, we believe that the elaborated
model of Section 3 fills a gap in traffic modeling and explains why approximate models that disregard
flow-level correlations, can still apply in restricted scale ranges. Moreover, our analysis sheds a new light
on the scaling observed from the real trace: it is not reminiscent of strict long-range dependence, but
of pseudo long-range dependence. The value observed for the threshold τ∗ indicates that asymptotic
long-range dependence can actually not be observed on realistic-length stationary traces, at least with
parameters similar to the one observed in our trace. It is also worth noticing that our study comes to
the same conclusion as in [1, 41], but using a different modeling path. As discussed above though, this
conclusion may vary with the considered flow definition: then, it is possible that another choice would
lead to a smaller τ∗ observable in practice. Future Internet traffic may also exhibit smaller τ∗ due to
increasing mean rates. Should this be the case, our model would certainly constitute a relevant tool to
predict the long-range dependence in the asymptotic regime beyond τ∗.

As a last remark, let us point out that the flow-arrival process (i.e. the count process associated with
the point process {Ti, i ≥ 0}) is not strictly Poisson, but exhibits a slight long-range dependence with
an estimated Hurst parameter of 0.65. However, after we shuffled the flow arrival times to annihilate
correlations in the flow arrival process, we verified that long-range dependence observed on the aggregate
traffic remained strictly unchanged. This is fully consistent with natural intuition drawn from the
knowledge of on/off models, and may also be explained by higher-level structure such as sessions, as
it is shown in [41].

With this experimental set, we were not able to confirm the existence of a second long-range de-
pendence regime, as the available data size did not permit to scrutinize scales beyond the critical time
lag τ∗. To more thoroughly study the ins and the outs of Proposition 3.2, we now resort to numerical
simulations.

4.2. Model validation via simulations. In this section, we use MATLAB simulations to generate
controlled traffic traces in order to demonstrate the ability of the model proposed in Section 3 to
accurately predict the Hurst parameter in different scale ranges and for different sets of parameters.

Our simulations consist in traffic from an infinite source Poisson model, where we consider sufficiently
large flow arrival rates to reach the Gaussian limit case [23] (see Section 2). Morevover, we use a fluid
simulation with constant bitrate over the full duration of the flow. Infinite source Poisson models
with independent but intra-flow-varying rates were proposed (see Section 2.2), leading to no difference
regarding large-scale correlations. It has also been experimentally verified in [30] that the protocol
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Figure 4. Log-diagram of the in2p3 aggregate traffic bandwidth in time windows of

size ∆ = 10 ms. The estimated value of the Hurst parameter is Ĥ = 0.92± 0.06 (scale
range of estimation: [1.28, 40.96] s). Recall that the mean flow duration is µON = 0.12 s.

specificities only affect short time-scale properties, but leave unchanged traffic features at coarser scale,
and in particular the long-range dependence property that we are interested in here. We therefore do
not consider such intra-flow-level refinements that fall out of the present scope.

4.2.1. The two long-range dependence regimes. Due to the lack of long-term stationarity, our previous
analysis of a real trace was confined to the pseudo long-range dependence regime. To overcome this
limitation, we generate a stationary trace possessing a flow structure very similar to the one of the in2p3
trace: Poisson flow arrival, αON = 1.2, µON = 0.12 s, β = 1.4, γ = 0.1, K = 105.4, V = 1012.3, but
with corresponding smaller values of τ∗ ∼ 300 s and of d∗ ∼ 100 s. We also generate the trace over a
much longer period (140 hours). The flows’ rates are drawn at random according to a family of gamma
distributions that adequately condition the rate’s mean and variance to the flow duration (we observed
that a gamma assumption is also reasonable for the in2p3 trace of previous section).

The resulting log-diagram of the bandwidth at granularity ∆ = 0.05 s is displayed on Figure 5.
Like the theoretical log-diagram of Figure 2, it clearly reveals the two long-range dependence regimes
discussed in Section 3.3. Moreover, the quantities τ∗ and d∗ seem to be reasonable separators of
these two domains. In both domains, the estimated Hurst parameters are in good agreement with the

theoretical values predicted by the model of Section 3: Ĥ = 0.98 ± 0.01, versus H = 0.95 for τ < τ∗

and Ĥ = 1.27 ± 0.10, versus H = 1.3 for τ > τ∗. Despite the restricted scale ranges retained for the
regression to impose a good separation with the threshold τ∗, small differences observed in each regime
are consistent with a reminiscent effect of the slope in the other regime.

In contrast to existing ones, the model developed in Section 3 shows that the positive correlation
(β > 1) that naturally exists between flow rates and flow durations in Internet traces is able to increase
long-term correlations in aggregate traffic. This effect was not observed in the previous section because of
a too large threshold τ∗ as compared to the short stationary trace. However, it is susceptible to become
a common feature of the future Internet traffic if, for instance, the variance V remains unchanged while
the mean flow rate keeps augmenting (hence threshold τ∗ diminishes).

4.2.2. Relation “H versus αON”. In this last section, we complete the numerical validation of the relation
between the Hurst parameter(s) and the tail index of the flow-duration distribution, when the conditional
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Figure 5. Log-diagram of the long-trace simulation’s aggregate traffic bandwidth in

time windows of size ∆ = 50 ms. The Hurst parameter’s estimations are Ĥ = 0.98±0.01

(in the scale range [0.8, 12] s) and Ĥ = 1.27± 0.10 (in the scale range [800, 13, 000] s).

parameters β and γ vary. The classical relation (1.1) have already been validated on simulators [39],
numerically [1] and on a real experimental platform [30]. Here, we concentrate on situations leading to
the observation of a new long-range dependence regime with a Hurst exponent that usual models fail

at predicting, but that our approach identified as H = 3−α′

2 = H0 + (β − 1), or H = 3−α′′

2 = H0 +
γ
2 ,

depending on the observed scale domain.
In the following experiments, µON = 0.1 s and K = 105.2 are kept constant with the same values

as in the previous section. For different values of the pairs (αON, β ; γ = 0) and (αON, γ ; β = 1.4),
we generate two collections of 25-hours traces. The first set with (αON, β) varying serves to validate

the relation H = 3−α′

2 = H0 + (β − 1), the conditional variance term is disabled (γ = 0) and the rate
variance set to an arbitrary small value V = 1. Conversely when the parameters’ pair (αON, γ) varies
and β = 1.4 remains constant, V is fixed to a sufficiently large value to ensure that the threshold τ∗ lies

beyond the observational scale range involved in the prediction expression H = 3−α′′

2 = H0 +
γ
2 . We

then confront the resulting Hurst exponents estimated in the adequate scale ranges to the theoretical
predictions of our model.

Experimental results displayed in Figure 6 are in good agreement with the expected Hurst exponent
values. The slight deviation observed around the knee point of each theoretical curve (where the Hurst
parameter hits its critical value 1/2 and stabilzes) is fully consistent with the arguments exposed in
[1, 30] where the classical relation (1.1) is experimentally validated.

5. Conclusion

In this work, we extended the widely used relation (1.1) linking the aggregate traffic’s Hurst parameter
to the flow-duration distribution’s tail index. We proposed a variant of the infinite source Poisson model
where flow rates and flow durations are correlated (hence the flow-size and flow-duration distributions
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Figure 6. Validation of the relation “H versus αON” in the two different domains: (a)

For γ = 0 and three different values of β in the domain where H = 3−α′

2 = H0+(β−1)
(for β < 1, the Hurst parameter corresponds to the pseudo long-range dependence
regime; whereas it corresponds to the asymptotic long-range dependence for β > 1).

– (b) For β = 1.4 and two different values of γ in the domain where H = 3−α′′

2 =
H0 +

γ
2 (the Hurst parameter corresponds here to the pseudo long-range dependence

regime). Solid lines represent the theoretical relations, while dashed lines are drawn
from empirical estimations. Confidence intervals displayed are provided by the wavelet
method of [2].

have different tail indices αSI and αON). The model mainly relies on two parameters β and γ that fix
the power-law evolution of the first two conditional moments of the rate given the duration. The β
parameter also relates the two tail indices αON and αSI.

Then, we showed that there exists two possible regimes of long-range dependence, each corresponding
to a distinct heavy-tail phenomenon of intensity depending on β and γ respectively. We characterized
the threshold between those regimes, as a function of the β and γ parameters, but also of the rate’s mean
and variance. Our analysis of a real web-traffic trace revealed that this limit has such a value that the
observed domain on reasonable-length stationary traces corresponds to pseudo long-range dependence
and not to real (asymptotic) long-range dependence. On that point, our study joins the conclusions of
[1, 41], using a different modeling path. We also showed that, depending on the parameters β and γ,
the effect of the correlation between flow rates and durations can be either to accentuate or to weaken
the long-range dependence. Our results extend previously proposed predictions like relation (1.1), with
which it naturally coincides if the correlation vanishes.

The model proposed in this work is the first model, to the best of our knowledge, that includes
the correlation between flow rates and flow durations. This correlation is very important. It has
been observed for over a decade [12, 35] on Internet traces, and is likely to become an even more
important parameter in the future Internet with the emergence of flow-aware approaches. Our results
show how this correlation can modify the long-range dependence classically introduced by heavy-tailed
flow durations. Then, not only does our model show the impact of natural correlations (due e.g. to
protocol’s effects) on the aggregate traffic; but it also opens the possibility to finely control (e.g. reduce)
the long-range dependence via flow-aware control procedures. One limitation of our model though, is
that it considers an open-loop protocol (without feedback reaction); thus it may fail to model traffic
from highly congested links. This certainly is an interesting direction to investigate, in particular when
the correlation parameters possibly depend on the load (as it could be the case for instance with some
scheduling policies).
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From a mathematical viewpoint, our work introduces a new class of models based on non-independently-
marked point processes, from which various processes, such as the instantaneous throughput considered
in this paper, can be derived. The study of these processes, under various rescaling and limit regimes
and at both large and small scales, is certainly an interesting direction to complement the present work,
as they are likely to reveal new properties.
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Appendix A. Proof of Proposition 3.1

The proof relies on the fact that if γ < 2(β−1), the conditional variance of the rate is asymptotically

much smaller than its square mean so that the rate becomes almost deterministically equal to KDβ−1
i

for long durations.
Let s > 0 and ε > 0, and write:

P(Si > s) =

∫ ∞

dmin

P(Ri >
s

d
|Di = d)P(Di ∈ dd)

=

∫ ( s
K(1+ε) )

1
β

dmin

P(Ri >
s

d
|Di = d)P(Di ∈ dd)

+

∫ ( s
K(1−ε) )

1
β

( s
K(1+ε) )

1
β

P(Ri >
s

d
|Di = d)P(Di ∈ dd)

+

∫ ∞

( s
K(1−ε) )

1
β

P(Ri >
s

d
|Di = d)P(Di ∈ dd).

We denote by A(s, ε), B(s, ε) and C(s, ε) the three terms of this sum.

To handle the first term A(s, ε), note that for d ≤
(

s
K(1+ε)

) 1
β

, by Chebychev’s inequality,

P(Ri >
s

d
|Di = d) ≤ P(|Ri −Kdβ−1| >

s

d
−Kdβ−1|Di = d),

≤
V dγ

(
s
d −Kdβ−1

)2 .

Then, for some constants G independent of s and ε, we have:

A(s, ε) ≤

∫ ( s
K(1+ε) )

1
β

dmin

V dγ
(
s
d −Kdβ−1

)2
αON/dmin(
d

dmin

)αON+1 dd

= G

∫ s
1+ε

Kdβ
min

x
γ+2−αON

β
−1

(s− x)2
dx.

Using the series expansion:

1

(s− x)2
=

1

s2

∞∑

n=1

n
(x
s

)n−1

,
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with uniform convergence for x ∈ [Kdβmin,
s

1+ε ], we deduce:

A(s, ε) ≤ Gs
γ+2−αON

β
−2

∞∑

n=1

n(
γ+2−αON

β − 1 + n
)
(1 + ε)

γ+2−αON
β

−1+n

−
G

s

∞∑

n=1

n(Kdβmin)
γ+2−αON

β
−1

γ+2−αON

β − 1 + n

(
Kdβmin

s

)n

.

Since by hypothesis, γ < 2(β − 1), we can take ε of the form ε = ε(s) = s−η with 0 < η < 2(β−1)−γ
β ,

which ensures that

(A.1) A(s, ε) =
s→∞

o
(
s−

αON
β

)
.

It is easy to see that we also have:

(A.2) B(s, ε) =
s→∞

o
(
s−

αON
β

)
.

For the last term C(s, ε), application of Chebychev’s inequality again shows that:

C(s, ε) =

∫ ∞

( s
K(1−ε) )

1
β

(1 − δ(d))P(Di ∈ dd),

with

|δ(d)| ≤
V dγ−2(β−1)

ε2K2
.

Thus, recalling that we took ε = s−η with 0 < η < 2(β−1)−γ
β , it is clear that

(A.3) C(s, ε) =
s→∞

(
s

K(1− ε)

)−
αON

β

+ o
(
s−

αON
β

)
,

which completes the proof of Proposition 3.1.
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