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Incentive Mechanisms for Internet Congestion Management:
Fixed-Budget Rebate versus Time-of-Day Pricing
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Abstract—Mobile data traffic has been steadily rising in the
past years. This has generated a significant interest in the deploy-
ment of incentive mechanisms to reduce peak-time congestion.
Typically, the design of these mechanisms requires information
about user demand and sensitivity to prices. Such information
is naturally imperfect. In this paper, we propose a fixed-budget
rebate mechanism that gives each user a reward proportional
to his percentage contribution to the aggregate reduction in
peak time demand. For comparison, we also study a time-of-
day pricing mechanism that gives each user a fixed reward per
unit reduction of his peak-time demand. To evaluate the two
mechanisms, we introduce a game-theoretic model that captures
the public good nature of decongestion. For each mechanism,
we demonstrate that the socially optimal level of decongestion is
achievable for a specific choice of the mechanism’s parameter. We
then investigate how imperfect information about user demand
affects the mechanisms’ effectiveness. From our results, the fixed-
budget rebate pricing is more robust when the users’ sensitivity
to congestion is “sufficiently” convex. This feature of the fixed-
budget rebate mechanism is attractive for many situations of
interest and is driven by its closed-loop property, i.e., the unit
reward decreases as the peak-time demand decreases.

Index Terms—congestion pricing; lottery-based incentive
mechanisms; public good provisioning; probabilistic pricing

I. INTRODUCTION

The consumer demand for network bandwidth is steadily
growing. For instance, mobile data traffic nearly tripled during
each of the past three years due to increasing penetration of
mobile devices such as smartphones [1]. Numerous studies
indicate that this growth will continue as bandwidth intensive
applications like video streaming continue to gain popular-
ity [2]. The growing demand for bandwidth forces the Internet
Service Providers (ISPs) to adopt congestion management
schemes, including capacity expansion and pricing mech-
anisms. Although the ISPs have historically used flat-rate
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pricing, many ISPs are now interested in moving to tiered
pricing schemes [2], [3]. However, experiments have shown
that users prefer flat-rate pricing, and will pay a premium
to avoid being metered [4], [5]. This makes the adoption of
real-time pricing particularly challenging. Thus, novel pricing
mechanisms that balance the conflict between the need for
network decongestion and the users’ preference for flat prices
are of great practical interest.

Network bandwidth (and hence the level of congestion) is
not uniform during the course of a day; it drops at night
after the prime time evening hours. This variability in demand
can be exploited to design variable pricing mechanisms. For
instance, time-of-day pricing mechanisms have been designed
to incentivize users to shift a part of their demand to the
off-peak times [6], [7]. However, such mechanisms typically
require information about user demand; in particular, the
knowledge of user preferences about shifting their demand
from peak to off-peak times. In practice, this information may
be inaccurate or just too difficult to obtain due to privacy
concerns [7]. Thus, robustness to imperfect information about
user preferences must be taken into account in the design of
any practically viable mechanism.

Recently, a fixed-budget rebate mechanism (termed “raffle-
based scheme”) was proposed for decongestion of a shared
resource [8]. Decongestion is viewed as a public good: when
a user reduces/shifts his demand away from peak times, his
contribution benefits all the users sharing the resource. The
fixed-budget rebate mechanism in [8] is inspired by economic
ideas on incentivizing contributions to provision of public
goods [9]. In this mechanism, each user is entitled a reward
proportional to his percentage contribution to the total demand
reduction. An attractive feature of this mechanism is that, in
practice, it can be implemented via a lottery scheme, where
each participating user wins a prize with a probability equal
to the fraction he contributed to the total demand reduction.

In this article, we investigate the fixed-budget rebate mech-
anism, and compare it with the more traditional time-of-
day pricing mechanism for reducing Internet congestion. In
Sec. III, we introduce a game-theoretic model with a contin-
uum of non-atomic users. Each user chooses his peak time
and off-peak time demand to maximize his utility. The user
utility models both his benefit from peak time decongestion,
and his willingness to reduce/shift away from the peak time
period. The model allows us to compute the user equilibrium
welfare for both mechanisms: fixed-budget rebate and time-
of-day pricing. We compare their sensitivity to information
imperfections for the case when an ISP with imperfect infor-
mation about user demand chooses the mechanism parameters.
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Our results in Sec. IV can be summarized as follows:
(i) For any given parameters, for each mechanism, a Nash

equilibrium exists, and it is unique.
(ii) For the case when ISP has perfect information about

user demand, for each mechanism, the ISP can choose
the mechanism parameter to achieve the socially optimal
level of decongestion.

(iii) For the case when ISP has imperfect information about
user preferences, the fixed-budget rebate mechanism is
more robust to the time-of-day pricing mechanism a un-
der mild condition on the users’ sensitivity to congestion.

Our analysis reveals several desirable features of fixed-
budget rebate mechanism. First, the condition under which it
is more robust than the time-of-day-pricing can be interpreted
as “convex” user sensitivity to congestion (or delay). This
condition is expected to be predominant, especially for today’s
Internet which supports highly delay-sensitive applications.
This robustness of the fixed-budget rebate mechanism is driven
by its closed-loop property: as the aggregate demand shifts
away from peak time period, the user reward for his per unit
contribution decreases. Finally, if an ISP decides to implement
the fixed budget rebate mechanism, he knows the total reward
(or rebate) that he owes to the users even when the information
about user demand characteristics is imperfect. In contrast,
under the time-of-day pricing mechanism, the ISP will have
to design the mechanism based on an estimate of the total
expected reward that he will owe to the users.

The rest of the paper is organized as follows. Sec. II
discusses the related literature. We introduce the model in
Sec. III. In Sec. IV, we analyze the two incentive mechanisms
(Nash equilibrium and social optimum) and compare them in
terms of robustness to imperfect information. We conclude in
Sec. V. Proofs are relegated to Appendices.

II. RELATED WORK

Many pricing mechanisms have been proposed to manage
quality of services (QoS) in networks, see e.g., surveys [10],
[11], [12]. For instance, in [13], Honig and Steiglitz propose a
usage-based pricing mechanism, and analyze it using a model
with delay-sensitive users. Their results show how to find
the price that maximizes the provider’s revenue by solving
a fixed-point equation. A similar model is used in [14] where
Başar and Srikant analyze the many-users limit. They show
that, as the number of users increases, the provider’s revenue
per unit of bandwidth increases and conclude that this gives
providers an incentive to increase their network capacity. In a
number of papers, e.g., [15], [16], [17], pricing mechanisms
based on multiple classes of customers with different priorities
are proposed and analyzed in terms of equilibrium achieved
and optimal price per class. In [18], [19], Shen and Başar
investigate the performance of non-linear pricing in a model
similar to [14] and find an improvement of up to 38% over lin-
ear pricing in some cases. However, in all the aforementioned
papers, the demand is assumed stationary and the price is fixed
independently of the instantaneous network congestion or of
the time of the day. In contrast, in this paper, we investigate
linear pricing mechanisms that leverage the time variability of
user demand using a single priority class.

A few papers have proposed mechanisms with prices depen-
dent on congestion levels. In [20], Paschalidis and Tsitsiklis
propose a congestion-based pricing mechanism in the context
of loss networks (i.e., phone). They provide a dynamic pro-
gramming formulation of the revenue maximization problem
and of the welfare maximization problem. Then, they show
that this dynamic congestion pricing mechanism can be well
approximated by a simpler static time-of-day pricing. An
alternative mechanism called “Trade & Cap”, was recently
proposed by Londoño, Bestavros and Laoutaris [21]. It works
in two phases. First, users engage in a trading game where
they choose an amount of reserved bandwidth slots to buy
for hard-constraints traffic. In the second phase, the remaining
bandwidth is allocated to users as fluid bandwidth, in pro-
portion of their remaining “buying power”. They show that
this mechanism smoothes the aggregate demand to a certain
level. In their model, users have a cost function that increases
linearly with the total demand in a given slot. In this paper,
we consider simpler one-phase pricing mechanisms with fixed
parameters. Our model also differ from these papers in that
users have elastic demand and their utility is an arbitrary
function of the congestion level.

Two recent papers analyze time-of-day pricing mechanisms
over n time slots [6], [7]. In [6], Jiang, Parekh and Walrand
consider a model where users have unit demand. Each user
chooses one time-slot in which he transmits its entire demand,
to maximize his utility. The authors of [6] obtain a bound on
the price of anarchy due to users selfishness. In [7], Wong, Ha
and Chiang consider a model with users transmitting sessions
of random length. Sessions arrive as a Poisson process and
each session is characterized by a waiting function which
reflects the willingness of the user to delay his entire session
for a given time, in exchange for a reward given by the
provider. The authors show how to compute the optimal reward
levels in order to maximize the provider profit by balancing
the congestion cost due to demand exceeding capacity and
the reward amount. Further analysis of this mechanism called
“TUBE”, as well as implementation are provided in [22].
However, in their model, users are only sensitive to prices (the
effect of congestion on the user utility is not considered) and
the analysis is not game-theoretic. In this paper, we consider
a model with two time slots (peak and off-peak). We provide
a game-theoretic analysis. In our model, user utility functions
are the closest to [6] where user cost due to latency is an
arbitrary (convex) function of the load. However, our setup
differs from [6], as each user in our model can shift an arbitrary
continuous fraction of his demand from peak time to off-peak
time.

In this paper, we show that the problem of decongesting the
peak time can be seen as a public good provision problem.
Our model is closely related to the “raffle-based” incentive
mechanism, which has been recently proposed by Loiseau,
Schwartz, Musacchio, Amin and Sastry [8]. That work was
inspired by Morgan, who in [9] pioneered the investigation
of using the lotteries for public good provision. The public
good perspective has been applied in recent works by Sharma
and Teneketzis [23], [24] in the context of optimal power
allocation for wireless networks. The connection of lottery-
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based mechanism with public good provision was originally
noted in [9] and received an extensive attention in economic
literature (see [25]). The idea of lotteries has also been used
in different contexts. For instance, lottery scheduling is a
widely applied technique in resource scheduling in computer
operating systems [26]. Recent interest in the application of
lotteries to congestion management was facilitated by Merugu,
Prabhakar and Rama who demonstrated with a field study that
lottery-based mechanisms can be effectively used to reduce
congestion in transportation systems [27]. In contrast, our
contributions are methodological. We use a game-theoretic
model to analytically study the performance of a lottery-like
mechanism and compare it to a more standard time-of-day
pricing mechanism.

III. MODEL

Let us consider a shared Internet access point with capacity
C. Based on the usage patterns, let the day be divided into two
time periods: a peak time of duration Tp and an off-peak time
of duration To. We assume that each time period corresponds
to a stationary regime with respective loads ⇢p and ⇢o.

An access point is typically shared by a finite number of
users, each having his own preference for time periods which
we model by user type (the type of a user will typically depend
on the applications that he uses). To account for a large number
of users, we model the set of users as a continuum of non-
atomic users; i.e., each user contributes a negligible fraction
of the total demand. We use the measure-theoretic framework
similar to [28], [29]. Let (⇥,F) be a measurable space where
⇥ is the set of user types. We assume that the user types are
distributed according to a finite measure µ on (⇥,F)1. While
simpler modeling assumptions can be used (e.g., considering
only two types), using an arbitrary measure of types µ gives a
higher flexibility that can be interesting to fit real populations.

Note that for simplicity, we describe the population at the
granularity of types instead of users as in [28], [29]. This
is justified by the strict concavity of the user utilities (see
assumptions below) which implies that at Nash equilibrium,
all users of the same type choose the same action. As a
consequence, although we do require that the measure of users
is non-atomic (as for any non-atomic game), we do not require
that the measure of types µ itself is non-atomic. For instance, if
all users have the same type, measure µ is only constituted by
one atom. Yet, each user of each type remains infinitesimally
small, which means that the action of one user does not affect
the aggregate outcome.

A. User utility
Each user of type ✓ 2 ⇥ chooses his peak-time demand y✓

and his off-peak time demand z✓ to maximize his utility

u✓(y✓, z✓, y�✓, z�✓)=P✓ (y✓)+O✓ (z✓)�y✓Lp

✓Z

⇥
y✓dµ(✓)

◆

� z✓Lo

✓Z

⇥
z✓dµ(✓)

◆
� (y✓ + z✓) q � p, (1)

1Throughout the paper, we assume that all functions of ✓ are measurable.
In [28], Aumann notes that “the measurability assumption is of technical
significance only and constitutes no real economic restriction.”

where the notation y�✓ and z�✓ is standard: it denotes peak-
time and off-peak-time demand choices for all user types but
✓. In (1), P✓(·) and O✓(·) are the utilities that a user of type
✓ 2 ⇥ gets for his demand in the peak time and off-peak
time respectively. Lp(·) and Lo(·) are the disutilities due to
congestion in the peak time and off-peak time respectively.
These disutilities are per unit of demand, hence they are
multiplied by the demand in each time. Finally, quantity q � 0
is a fixed usage-based price (which could be zero) and quantity
p > 0 is a fixed monthly subscription price.

We assume that utilities P✓(·) and O✓(·) are twice
differentiable increasing strictly concave functions of the
demand. We assume that there is a fixed maximum peak-time
demand dp (per day) that could correspond for instance to a
subscription daily peak cap, that could be a maximum usable
demand (determined by technology limitation), or that could
be a maximum daily demand determined from empirical
data. For simplicity, we assume that this maximum peak-time
demand is the same for each user, but more general cases
could be handled easily2 (in that case, user-dependent prices
could also easily be handled). Each user can choose to shift
to off-peak time, or to simply not use, part of his maximum
peak-time demand. Additionally to the shifted peak-time
demand, each user could have an initial off-peak-time
demand. However, this additional demand does not modify
our analysis as long as the peak time remains more congested
than the off-peak time. For simplicity, we assume that the
initial off-peak-time demand is zero, i.e., the off-peak-time
demand only corresponds to shifted peak-time demand. Then,
we have the following constraint on the demands:

y✓ + z✓  dp, (✓ 2 ⇥). (2)

We assume that disutilities Lp(·) and Lo(·) are increasing
strictly convex functions of the aggregate demand in each
time (a similar assumption is made, e.g., by Jiang, Parekh and
Walrand [6]). This assumption is realistic and quite general. As
an example, let us focus on the average delay � as a measure
of the network quality, as in Honig and Steiglitz [13]. Our
assumption holds if (i) the disutility is an increasing convex
function of the average delay and (ii) the average delay is an
increasing strictly convex function of the aggregate demand or
equivalently of the load in the corresponding time:

⇢p = (CTp)
�1

Z

⇥
y✓dµ(✓), ⇢o = (CTo)

�1

Z

⇥
z✓dµ(✓).

Assumption (i) is natural: an increase of the delay from zero
to half a second creates no more disutility than from half
a second to one second. This assumption is also made in
[13]. Assumption (ii) holds for the vast majority of queueing
models considered in the literature. For example, it holds for
the processor sharing queue (the most classical model for 3G
and 4G networks [30]), for which the average delay is

� (⇢p) =
�0

1� ⇢p
, (3)

2If users differ by their maximum peak-time demand, each user could be
viewed as an appropriate number of users with identical maximum peak-
time demand. The proposed model still applies with measure µ defined for
all subset ⇥1 2 F by µ(⇥1) =

R
� d · ⌫(⇥1, dd) where � is the set of

maximum peak-time demands and measure ⌫ on ⇥⇥� represents the joint
distribution of types and demand.
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where �0 is a constant. It also holds for common models
of wired networks such as the M/D/1 model considered in
[13] and the M/M/1 model considered by Shen and Başar
[18], [19]. Finally, we assume that despite the effect of users
shifting part of their demand, the off-peak time remains
relatively uncongested so that

Lo

✓Z

⇥
z✓dµ(✓)

◆
' 0. (4)

This assumption is not strictly necessary but greatly simplifies
the presentation without affecting the important effects that we
consider in this model3.

For numerical illustrations of our model, we use the follow-
ing example of an Internet access point.

Example 1 (Internet access point). The capacity is C =
1 Gbps. Peak-time lasts Tp = 2 h (e.g., 6pm to 8pm), hence
To = 22 h. ⇥ = [0, 1] with a uniform distribution of types
µ(d✓) = Dp/dp · d✓, where Dp = 7.2 · 103 Gbits and dp =
7.2 Gbits (which corresponds to 1, 000 users with peak-time
capacity 1 Mbps). The latency disutility is Lp(⇢p) = L0�(⇢p)
where �(⇢p) is given by the PS model (3) and L0 = 0.065.
Peak-time utility is P✓(x✓) = (1 + ✓)P0 log(1 + x/dp) with
P0 = 130 and off-peak time utility is O✓ = 1/10 · P✓(·). The
subscription price is p = $50 and the usage-base price is zero.

B. User type distribution
On the timescale of a day, the population is heterogeneous

with user types distributed according to measure µ. However,
we assume that each user has a type that varies randomly
across the days of a month, with the same distribution µ.
Therefore, the population is homogeneous in average on the
timescale of a month. In particular, with this assumption, the
expected utility of each user on the timescale of a month
equals the daily aggregate welfare

W =

Z

⇥
u✓dµ(✓) (5)

normalized by µ(⇥).
Each user will buy a monthly contract (with subscription

price p) to use the service if his expected utility over the
month is positive, i.e., here if

W > 0. (6)
We assume that without any incentive mechanism, this

condition is satisfied. Then, our assumption guarantees that
with any welfare-improving incentive, each user will continue
to participate, i.e., to buy the monthly contract.

Note that if the population cannot be assumed homogeneous
at the timescale of a month, it is possible to divide it into
subpopulations that can be assumed homogeneous and to apply
our incentive mechanisms to each of these subpopulations.

C. Model reduction to one-dimensional strategy space
Before introducing the incentive mechanisms, we show

that our model can be reduced to a one-dimensional strategy
space focusing on the peak-time demand reduction. With

3If one wants to consider a non-zero off-peak-time disutility, this assump-
tion could be replaced by the relaxed assumption that when the aggregate
shifted demand increases, the marginal peak-time disutility reduction is higher
than the marginal off-peak-time disutility increase.

assumption (4), the utility (1) of a user of type ✓ 2 ⇥ can
be re-written as
u✓(y✓, z✓, y�✓) =P✓ (y✓)� y✓ · Lp

✓Z

⇥
y✓dµ(✓)

◆
� y✓ · q

+O✓ (z✓)� z✓ · q � p. (7)

Since we are interested in the reduction of peak time demand,
we define the difference between the maximum peak-time
demand and the chosen peak-time demand:

x✓ = dp � y✓, (✓ 2 ⇥). (8)
This peak-time demand reduction includes both the unused
peak-time demand and the peak-time demand shifted to off-
peak time. For a given x✓ 2 [0, dp], we define the optimal
shifted demand:

z
⇤
✓
(x✓) = argmax

z✓2[0,x✓]
[O✓(z✓)� z✓q] , (✓ 2 ⇥).

A user of type ✓ 2 ⇥ maximizing his utility (7) will choose a
couple (x✓, z✓) such that z✓ = z

⇤
✓
(x✓).4 As we are interested

in the reduction of congestion at peak-time, we restrict our
attention to the choice of x✓. Note that if q = 0, then
z
⇤(x✓) = x✓. Indeed, if there is no usage-based cost, off-

peak-time demand always gives higher utility than 0.
In the absence of latency, the maximal utility of a user is
ū✓=P✓ (dp � x

✓
)�(dp � x

✓
) q+O✓ (z

⇤
✓
(x

✓
))�z

⇤
✓
(x

✓
)q, (9)

for all ✓ 2 ⇥, where
x
✓
= argmax

x✓2[0,dp]

n
P✓ (dp � x✓)� (dp � x✓) q

+O✓ (z
⇤
✓
(x✓))� z

⇤
✓
(x✓)q

o
, (✓ 2 ⇥),

is the baseline peak-time demand reduction which maximizes
the latency-free utility. Latency and incentive mechanisms will
only result in users using less of their peak-time demand, i.e.,
increasing their choice of x✓ beyond x

✓
. Then, we define the

cost of shifting as the loss of utility incurred by a user when
reducing his peak-time demand:
c✓(x✓) = ū✓�

h
P✓ (dp � x✓)� (dp � x✓) q (10)

+O✓ (z
⇤
✓
(x✓))� z

⇤
✓
(x✓)q

i
, (✓ 2 ⇥).

(Note that with a slight abuse of terminology, we call c✓(x✓)
the cost of shifting whereas the peak-time demand reduction
x✓ can actually correspond to shifted demand and/or to unused
demand.) The definition of the baseline (9) guarantees that
c✓(x✓) is always positive. Moreover, with our assumptions
on functions P✓(·) and O✓(·), the cost of shifting c✓(·) is
differentiable and strictly convex on [0, dp]; and increasing
on [x

✓
, dp] (see details in Appendix A). Finally, to simplify

the proofs, we assume that the marginal cost of shifting is
bounded by a constant independent of ✓.

We view the aggregate peak-time demand reduction

G =

Z

⇥
x✓dµ(✓) (11)

as a public good to which each user contributes by his choice
of x✓. Indeed, when a user reduces his peak-time demand, the
benefits of reduced peak-time congestion is shared by all the
users. We define the function

4A function (x·, z·) corresponding to social welfare maximization also
satisfies z✓ = z⇤✓ (x✓) for all ✓ 2 ⇥.
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h(G) = �Lp (Dp �G) , (12)
where Dp = dpµ(⇥) is the aggregate maximum peak-time
demand. Function h(·) reflects the notion of how much users
benefit from the network decongestion at peak-time. With our
assumptions on Lp(·), h(·) is an increasing concave function
of the public good level G. The term �y✓Lp

�R
⇥ y✓dµ(✓)

�
=

(dp � x✓)h(G) in (7) has the interpretation that the benefit a
user gets from the peak-time decongestion is the product of his
peak-time demand (dp�x✓) times the benefit per unit demand
h(G). Notice that h(G) is negative, but its most important
characteristic is that it is increasing in G, i.e., the disutility
due to congestion reduces when G increases.

In summary, in view of (7)-(12), our peak-time decongestion
model reduces to a public good provision problem similar to
[8]: the utility of a user of type ✓ 2 ⇥ is

u✓(x✓, G) = ū✓ + (dp � x✓)h(G)� c✓(x✓)� p, (13)
where h(·) corresponds to the (unit) benefit from the public
good and c✓(·) corresponds to the cost of contribution. From
our assumptions, these functions satisfy:

(A1) h(·) is twice differentiable, strictly concave and increasing
on [0, Dp];

(A2) c✓(·) is positive, differentiable and strictly convex on
[0, dp]; and increasing on [x

✓
, dp], (✓ 2 ⇥);

(A3) sup✓2⇥ c
0
✓
(dp) < 1, (✓ 2 ⇥).

Notice that in our model, h(·) does not depend on the type.
All the type-dependency is carried by the cost of shifting. This
modeling choice ensures tractability of the equilibrium.

D. Incentive mechanisms
Individual users maximize their own utility (13), which

differs from maximizing (5). Thus, in general, the level of
public good and the aggregate user welfare achieved in the
individual maximization and in the social optimum differ.

To align Nash equilibrium and social optimum objectives,
the service provider can design mechanisms to incentivize
users to reduce their peak-time demand. In this paper, we
compare two different incentive mechanisms: a fixed-budget
rebate mechanism (denoted R or FBR) and a time-of-day
pricing mechanism (denoted T or TDP). Each mechanism
introduces a reward based on the peak-time demand reduction
x✓ below the maximum dp. For the service provider to finance
the respective reward, each mechanism also introduces an
increase in the subscription price. However, as we will see
(Corollary 1), each user’s net utility can be improved even
with this price increase. With mechanism j 2 {R, T}, the
user utility becomes

u
j

✓
(x✓, G) = u✓(x✓, G) +M

j(x✓, G), (✓ 2 ⇥). (14)
The fixed-budget rebate mechanism consists in giving each

user a reward proportional to his fraction of the total contri-
bution, i.e., of the functional form:

M
R(x✓, G) = R · x✓

G
��pR, [fixed-budget rebate] (15)

where R is a parameter of the mechanism chosen ex-anti
by the provider. In practice, this mechanism could be imple-
mented via randomization. For example, with a finite number
of users, it could be implemented by the simplest type of

lottery where each user wins the prize R with a probability
equal to his percentage contribution to the total amount of
peak-time demand reduction. In this case, (14) and (15) would
correspond to expected utilities. Other implementations (e.g.,
deterministic) are also possible. To complete the definition
of the fixed-budget rebate mechanism, we assume that if no
user reduces his peak-time demand then the reward is not
given. However, if the set of users who reduce their peak-
time demand is nonempty but of measure zero, then each
contributing user receives an infinite reward given in such a
way that the integral w.r.t. the measure of users is R. This is a
technical assumption for the measure-theoretic setting of the
non-atomic game. In practice, it reflects the fact that if only a
finite number of users contribute, their expected reward relative
to their fraction of the total demand grows to infinity as the
total number of users goes to infinity.

We notice here that the fixed-budget rebate mechanism
introduces uncertainty in the users bill as the reward depends
on the amount shifted by the other users. However, this
uncertainty is only one-sided: the maximum bill is known and
only the reward amount is uncertain. This asymmetry is crucial
to ensure good adoption of the mechanism.

The time-of-day pricing mechanism corresponds to a fixed
reward per unit of shifted demand:

M
T (x✓, G) = r · x✓ ��pT , [time-of-day pricing] (16)

where r is a parameter of the mechanism chosen ex-anti by the
provider. This mechanism is a variation of a conventional time-
of-day pricing mechanism, with an off-peak price subsidy. Its
implementation is straightforward.

In (15) and (16), �pj denotes the increase in the subscrip-
tion price that the service provider imposes to finance the
reward mechanism. Let G(eq) be the equilibrium level of public
good (in the next section, we show that the Nash equilibrium
is unique for both mechanism). We assume that the price �pj

is fixed in advance by the service provider to compensate the
reward, i.e., such that

R
⇥ M

j(x✓, G
(eq))dµ(✓) = 0 (note that

the expression of the aggregate welfare (5) is thus not directly
modified by the mechanisms, but only through the chosen
contributions x✓)5. Then,

�pR = R · dp

Dp

and �pT = rG
(eq) · dp

Dp

. (17)

From (17), we immediately see that the service provider has
to know the equilibrium to determine the price �pT for the
time-of-day pricing mechanism. An error in the estimation
of G

(eq) could have important consequences. In contrast,
such knowledge is not necessary for the fixed-budget rebate
mechanism where �pR only depends on the parameter R

chosen by the service provider.
The marginal utility with mechanism j 2 {R, T} is

@u
j

✓

@x✓

= �h(G)� c
0
✓
(x✓) +M

j 0(G), (✓ 2 ⇥), (18)

where
M

R0
(G) =

R

G
and M

T 0
(G) = r. (19)

5If users have different maximum peak-time demand for which they are
charged different subscription prices, it is also possible to impose a type-
dependent price increase �p✓ which compensate the reward, i.e., such thatR
⇥ Mj(x✓, G(eq))dµ(✓) = 0 is still satisfied.
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Notice that in (18), there is no h
0(G) term corresponding to

the variation of the aggregate due to the variation of a user’s
decision. This is because, in the non-atomic game, users are
negligible and do not account for the variation of G induced
by their action when taking their decision. In (18) and in all
future occasions, we abuse notation by denoting with a partial
derivative w.r.t. x✓ the marginal quantities corresponding to
variations following the variation of a user’s action.

For both mechanisms, the marginal reward M
j 0 is indepen-

dent of the individual contribution x✓. Due to the term �h(G)
in (18), the marginal utility decreases when G increases.
Intuitively, if the congestion is lower at peak time, a user would
want to use it more. Hence he would want to reduce less his
peak-time demand. This decrease of the marginal utility is
accentuated by the term M

R0
(G) = R/G in the case of the

fixed-budget reward mechanism.

IV. ANALYSIS

In this section,6 we show that, for each mechanism, there
exists a unique Nash equilibrium. Then, we show that for
appropriate values of the mechanisms parameters, they achieve
social optimum and that for a wide range of parameters,
both mechanisms are welfare improving. Finally, we compare
the two mechanisms based on their sensitivity to imperfect
information about the user utilities.

For clarity, we will use the following notation:
�R (⇥, µ, h, {c✓}✓2⇥, R) and �T (⇥, µ, h, {c✓}✓2⇥, r)
are the non-atomic games where users selfishly optimize
their own utility (14) in the fixed-budget rebate mechanism
and in the time-of-day pricing mechanism respectively. We
denote with the superscript (eq) the quantities at equilibrium
in both games and we explicitly write their dependence on r

and R or on other parameters whenever necessary to avoid
ambiguity. Similarly, we denote with the superscript ⇤ the
social optimum quantities corresponding to the maximization
of (5), and denote explicitly their dependence on parameters
whenever necessary.

A. Nash equilibrium existence and uniqueness
We define a Nash equilibrium of the non-atomic game �j

(j 2 {R, T}) as a function x
(eq) : ⇥ ! [0, dp] such that for

all ✓ 2 ⇥, uj

✓
(x✓, x

(eq)
�✓

)  u
j

✓
(x(eq)

✓
, x

(eq)
�✓

), 8x✓ 2 [0, dp]. Due
to the strict concavity of the utility u

j

✓
, it is equivalent to x

(eq)

satisfying the first-order conditions (FOCs)

@u
j

✓

@x✓

8
<

:

 0, 8✓ : x✓ = 0,
= 0, 8✓ : x✓ 2 (0, dp),
� 0, 8✓ : x✓ = dp,

(20)

where @u
j
✓

@x✓
is given by (18), and satisfying (11).

The first theorem establishes existence and uniqueness of
the Nash equilibrium for both incentive mechanisms.

Theorem 1. For the fixed-budget rebate mechanism, for any
R � 0, there exists a unique Nash equilibrium x

(eq)(R).
The same result holds for the time-of-day pricing mecha-

nism, for any r � 0.

6Some of the first results of this section appeared in [8] for the fixed-budget
rebate mechanism. They are extended here to handle both mechanisms.
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Fig. 1. Illustration of the fixed-point equation (21) for Example 1. The
dashdotted line corresponds to the amount G that users shifts (r.h.s. of (21)).
The dashed and solid lines correspond to the aggregate amount G(resp) that
users would want to shift (l.h.s. of (21)) given G has been shifted for the fixed-
budget rebate and time-of-day pricing mechanisms respectively. To obtain
G(eq) = G⇤ = 78, 000, parameters were set to R = $5, 500 and r =
$9/Gbit. The corresponding subscription price increase is $5.5.

Intuitively, for a given level of public good G, each
user of type ✓ 2 ⇥ chooses his best response contribution
x

(resp)
✓

(G) 2 [0, dp] to maximize his utility. Then, integrating
the contribution of each type gives the amount of public good
G

(resp)(G) that users want to provide in response to a given G.
An equilibrium occurs when both quantities are equal, which
corresponds to solving the fixed-point equation

G
(resp)(G) = G. (21)

Fig. 1 illustrates the two terms of the fixed-point equation
for both mechanisms. As we mentioned, a key feature of our
model is that the higher the level of public good G is (i.e., the
lower peak-time congestion is), the fewer users are willing
to reduce their peak-time demand (the marginal utility (18)
is decreasing in G). Therefore the aggregate best response
G

(resp)(G) decrease when G increases and this decrease is
faster for the fixed-budget rebate mechanism for which the
marginal utility decreases faster. Moreover, G(resp)(G) is con-
tinuous, which leads to a unique fixed point. The continuity of
G

(resp)(G) is due to assumption (A2) (a linear cost of shifting
could induce discontinuities where a slight modification of G
would make some users switch from not reducing their peak-
time demand to reducing it by dp).

B. Social optimum
We now show that the social optimum is unique and

coincides with the Nash equilibrium of both mechanisms for
parameters R

⇤ and r
⇤ given in the next theorem.

Theorem 2. The following characterizes the social optimum:
(i) There exists a function x

⇤, uniquely determined almost-
everywhere, which maximizes the aggregate welfare (5).

(ii) For the fixed-budget rebate mechanism, we have
x
(eq)(R) = x

⇤ almost-everywhere (and hence
G

(eq)(R) = G
⇤) for R = R

⇤, where
R

⇤ = G
⇤
h
0(G⇤)(D �G

⇤). (22a)

The same result holds for the time-of-day pricing mech-
anism for r = r

⇤, where

r
⇤ = h

0(G⇤)(D �G
⇤). (22b)



7

TABLE I
EFFECT OF THE INCENTIVE MECHANISMS ON CONGESTION FOR

EXAMPLE 1 (CF. FIG. 1). THE RIGHT COLUMN CORRESPOND TO ANY OF
THE TWO MECHANISM WITH ITS OPTIMAL PARAMETERS R⇤ = $5, 500

AND r⇤ = $9/GBIT (I.E., TO SOCIAL OPTIMUM).

no incentive mechanism
incentive mechanism

with optimal parameter
(= social optimum)

G 55 Gbits 565 Gbits
W 28,000 78,000
⇢p 0.99 0.92

�(⇢p) 130 s 12 s
⇢o 0.092 0.098

�(⇢o) 1.10 s 1.11 s

Intuitively, this result holds because the externality faced
by a user (�h(G) +M

j 0) in the game corresponding to any
mechanism is independent of his type. Therefore, by fixing a
reward that is also independent of the type, it is possible to
achieve social optimum (similarly to a Pigovian tax [31]).

For Example 1, Tab. I illustrates the effect of the incentive
mechanisms with the optimal parameters of Theorem 2: they
permit a 180% increase of the aggregate welfare which, in
our model, also correspond to a 180% increase of the average
utility of each user over the timescale of a month. Peak-time
congestion is significantly decreased: the load is decreased by
7% but the average delay drops by 90%. On the other hand,
off-peak time decongestion is hardly increased.

C. Nash equilibrium variation with the mechanism parameters

In this section, we investigate the variation of the equilib-
rium quantities when the mechanism parameters r and R vary.
For ease of exposition, we first assume that the participation
constraint (6) is not imposed (we will come back to the
effect of the participation constraint later in this section, see
Proposition 4). Then, we have the following results on the
variations of the equilibrium contributions.

Proposition 1. If the participation constraint (6) is not im-
posed, for the fixed-budget rebate mechanism, we have:

(i) For any R
0
> R, x(eq)

✓
(R0) � x

(eq)
✓

(R) (8✓ 2 ⇥); and
the inequality is strict if 0 < x

(eq)
✓

(R) < dp.
(ii) For any R

0
> R, G

(eq)(R0) � G
(eq)(R); and the

inequality is strict if 0 < G
(eq)(R) < Dp.

(iii) There exists a threshold R̄ > R
⇤ such that, for any R �

R̄, x(eq)
✓

(R) = dp for all ✓ 2 ⇥ and G
(eq)(R) = Dp.7

The same results hold for the time-of-day pricing mechanism
by changing R to r everywhere.

Intuitively, since the marginal utility (18) increases with the
reward parameters, the equilibrium contributions of each user
increases (result (i)); and similarly for the equilibrium level
of public good (result (ii)). The existence of the thresholds
R̄ and r̄ (result (iii)) is a consequence of assumption (A3)
which means that reducing even the last bit of his peak-time
demand implies a finite marginal cost for the user, which can
be compensated by a large-enough reward. Clearly, a case with

7To avoid ambiguity on the definition of the thresholds r̄, R̄, we assume
that they are the smallest possible such thresholds.

such a large reward will not happen in practice, nevertheless
we include it here for completeness of the model analysis.

Proposition 1 implies that for large enough parameters, the
equilibrium level of public good will be positive. Let us define,
for the fixed-budget rebate mechanism, R as the smallest
parameter value such that G

(eq)(R) > 0 for R > R; and
similarly r for the time-of-day pricing mechanism. Then we
have the following result characterizing these thresholds.

Proposition 2. For the fixed-budget rebate mechanism, R =
0, i.e., G

(eq)(R) > 0 for any R > 0 (if the participation
constraint (6) is not imposed).

For the time-of-day pricing mechanism, r � 0.

The intuition behind Proposition 2 is as follows. For the
fixed-budget rebate mechanism, for any R > 0, the marginal
reward is infinite at G = 0. All users want to contribute hence
this is not an equilibrium. In contrast, for the time-of-day
pricing mechanism, the marginal reward is constant. If it is
small enough so that the marginal utility of almost-all user
types is non-positive at G = 0, then it is the equilibrium.

Note that Proposition 2 holds independently of the value of
G

⇤ and is consistent with Theorem 2. In particular, if G⇤ = 0,
then social optimum is achieved at Nash equilibrium for the
fixed-budget rebate mechanism only for R = R

⇤ = 0; whereas
social optimum is achieved at Nash equilibrium for the time-
of-day pricing mechanism for any r smaller than r.

The next proposition describes the evolution of the aggre-
gate welfare with the mechanism parameters.

Proposition 3. If the participation constraint (6) is not im-
posed, for the fixed-budget rebate mechanism, the equilibrium
aggregate welfare W

(eq)(R) is increasing in [0, R⇤], decreas-
ing in [R⇤

, R̄] and constant for R � R̄.
For the time-of-day pricing mechanism, the equilibrium

aggregate welfare W
(eq)(r) is constant on [0, r]. For r � r,

the same results as for the fixed-budget rebate mechanism hold
by changing R to r everywhere.

Proposition 3, illustrated on Fig. 2 shows that the welfare
is unimodal. If G

⇤
> 0, it increases to its only maximum at

R
⇤ or r

⇤ and then decreases. If G
⇤ = 0 (hence R

⇤ = 0 and
r
⇤ = r), the welfare is maximal at R = 0 or r = 0 (i.e.,

with no incentive mechanism) and it only decreases (after a
constant phase for the time-of-day pricing mechanism).

In extreme cases where the reward parameter is too large,
the equilibrium aggregate welfare may become negative. For
instance, consider a case where the usage-based price q is
so high compared to the off-peak time utility O✓(·) that all
users have zero off-peak time demand. If the reward is larger
than R̄ or r̄, then users would not use the service at all and
the aggregate welfare would be �pµ(⇥) < 0. In that case, the
participation constraint is not satisfied, hence users will simply
not buy the service. The next proposition, which is easily
derived using the monotonicity of Proposition 3, describes
how the previous results are changed when introducing the
participation constraint.

Proposition 4. If the participation constraint (6) is imposed,
for the fixed-budget rebate mechanism, there exists a threshold
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Rmax 2 (R⇤
,1] such that

(i) For all R < Rmax, all the users buys the monthly sub-
scription and the results of Proposition 1, Proposition 2
and Proposition 3 hold.

(ii) For all R > Rmax, no user buys the monthly subscription,
hence the welfare is zero.

The same results hold for the time-of-day pricing mechanism
by changing R to r everywhere.

The effect of the participation constraint is simple: below a
threshold Rmax or rmax, all the users participate and above this
threshold, no users participate. This is due to our assumption
that the population is homogeneous at the timescale of a
month. Since users are offered a monthly subscription, they
will buy it if they expected utility over the month is positive
which is equivalent to the aggregate welfare being positive.
Due to our assumption that the welfare is positive without any
incentive mechanism, we have Rmax > R

⇤, i.e., the welfare
is positive for any R  R

⇤. The threshold Rmax can even
be infinite if the off-peak time utility is high enough and the
usage-based price is small enough so that users have positive
utility over the month even without using the peak time.

The last result, which is a direct consequence of the previous
results of this section, shows that both mechanisms are welfare
improving for a wide range of parameters.

Corollary 1. If G⇤
> 0, the fixed-budget rebate mechanism

is strictly welfare improving for any parameter R in a range
(0, R0) where R0 2 (R⇤

, Rmax]:

W
(eq)(R) > W

(eq)(0), 8R 2 (0, R0).

The same results hold for the time-of-day pricing mechanism
by changing R to r everywhere, and 0 to r̄.

This result is important as it shows that, by implementing
an incentive mechanism with a parameter lying in a wide
range around an optimal parameter, the provider can increase
welfare. Fig. 2 shows that for Example 1, the time-of-day
pricing mechanism with any parameter in (0, 2r⇤) is welfare
improving, and the fixed-budget rebate mechanism with any
parameter in (0, 14R⇤) is welfare improving However, a
consequence of Proposition 3 is that both mechanisms can
“overshoot”: if R or r is too large (larger that R

⇤ or r
⇤),

G
(eq) can be larger than G

⇤ and the aggregate user welfare is
suboptimal. In a competitive environment, a provider would
not intentionally choose an overshooting parameter because
it would be a competitive disadvantage as compared to a
provider choosing an optimal parameter. However, if the
provider has imperfect information about user utilities, it may
overshoot unintentionally. Fig. 2 suggests that in this case, the
aggregate welfare remains higher for the fixed-budget rebate
mechanism than for the time-of-day pricing mechanism. In the
next section, we investigate in details the robustness of each
mechanism to imperfect information about user utilities.

D. Comparison of the two incentive mechanisms
In this section, we compare the sensitivity of the

two incentive mechanisms to imperfect information about
user utilities. Let the games �R (⇥, µ, h, {c✓}✓2⇥, R

⇤) and
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Fig. 2. Variation of the equilibrium aggregate welfare with the reward
parameter for Example 1: (a) for the fixed-budget rebate mechanism – (b)
for the time-of-day pricing mechanism.

�T (⇥, µ, h, {c✓}✓2⇥, r
⇤) correspond to the baseline case of

perfect information considered in the previous sections and
suppose that R⇤ and r

⇤ have been chosen according to (22)
to induce a socially optimal level of public good at equilibrium
(i.e., G(eq) = G

⇤). We assume that G⇤ 2 (0, Dp). We analyze
the variations in equilibrium and in social optimum when
R

⇤ and r
⇤ are maintained for the respective mechanisms and

utilities are perturbed (i.e., actual utilities are different from
the estimation used by the provider to set the parameters).

We restrict our analysis to the case where only the cost of
shifting is perturbed and the rest of the utilities is unchanged.
Indeed, we argue that it is more difficult to obtain data on
the time preferences (the willingness to move demand from
peak time to off-peak time) than on the total demand or on
the sensitivity to delay. Therefore, the cost of shifting is more
likely to be imperfectly estimated by the provider. We consider
the following general form of the perturbed cost of shifting:

c̃✓(·) = c✓(·) + ✏ · p✓(·), (23)
where ✏ is a real number and p✓ : [0, dp] ! R is a continuously
differentiable function satisfying

sup
✓2⇥

sup
x2[0,dp]

|p0
✓
(x)| < 1.

Parameter ✏ is the perturbation magnitude and function p✓(·) is
the direction of the perturbation. For the analysis, we restrict
to small perturbations, i.e., |✏| small. For |✏| small enough, the
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perturbed functions c̃✓(·) satisfy assumption (A2-3). We as-
sume that the perturbation direction is such that the aggregate
best response has a non-zero perturbation at the order one in ✏

at the point G⇤ (the non-perturbed equilibrium). Otherwise, the
equilibrium point would not be changed by the perturbation.
For numerical illustrations, we will use the following simple
perturbation which satisfies the above conditions: p✓(·) = c✓(·)
for all types ✓ 2 ⇥, i.e., c✓(·) is scaled by a factor 1 + ✏

independent of the type.
Let G

(eq)
R

(✏) and G
(eq)
T

(✏) be the equilibrium levels
of public good in the games with perturbed utilities
�R (⇥, µ, h, {c̃✓}✓2⇥, R

⇤) and �T (⇥, µ, h, {c̃✓}✓2⇥, r
⇤), re-

spectively. Let W
(eq)
R

(✏) and W
(eq)
T

(✏) be the corresponding
equilibrium welfares. Let G

⇤(✏) and W
⇤(✏) be the socially

optimal level of public good with perturbed utilities, and the
corresponding welfare resulting from the maximization of (5)
where c✓(·) is replaced by c̃✓(·). To evaluate the variation of
G

(eq) with the perturbation, we need to evaluate the variation
of the aggregate best response G

(resp) (recall that G(eq) is the
fixed-point of G

(resp)(·), see (21)). (The variation of G
⇤ is

handled similarly since from Theorem 2, the social optimum
can also be seen as a Nash equilibrium in a mechanism
SO with unit reward given by (24c).) For this purpose, we
introduce, for each mechanism j 2 {R, T, SO}, the quantity
↵j equal to the opposite of the slope of G

(resp)(·) at the
common non-perturbed equilibrium point G

⇤ = G
⇤(0) (see

(33)). We define the following conditions:

(C1)
����

1

1 + ↵R

� 1

1 + ↵SO

���� <
����

1

1 + ↵T

� 1

1 + ↵SO

����,

(C2)
����

1

1 + ↵R

� 1

1 + ↵SO

���� >
����

1

1 + ↵T

� 1

1 + ↵SO

����.

If the slopes ↵j’s for the different mechanisms are close
enough, these conditions reduce to the following more intuitive
conditions (see details in Appendix G-B):

(C10) |r0
R
(G)� r

0
SO

(G)| < |r0
T
(G)� r

0
SO

(G)|, at G = G
⇤(0),

(C20) |r0
R
(G)� r

0
SO

(G)| > |r0
T
(G)� r

0
SO

(G)|, at G = G
⇤(0),

where r
0
R

, r0
T

, r0
SO

are the respective derivatives of the unit
rewards

rR(G) =
R

G
, (24a)

rT (G) = r, (24b)
rSO(G) = h

0(G)(D �G). (24c)

Then we have the following results.
Proposition 5. There exists ✏m > 0 such that, for any
perturbation (23) with ✏ 6= 0 and |✏| < ✏m,

(i) if condition (C1) is satisfied, then���G(eq)
R

(✏)�G
⇤(✏)

��� <
���G(eq)

T
(✏)�G

⇤(✏)
��� ;

(ii) if condition (C2) is satisfied, then���G(eq)
R

(✏)�G
⇤(✏)

��� >
���G(eq)

T
(✏)�G

⇤(✏)
��� .

The intuition behind Proposition 5 is the following: the
mechanism with the unit reward closer to the optimal unit
reward rSO(G) have an equilibrium closer to the social
optimum equilibrium G

⇤(✏). Since rR(G) and rSO(G) are
both decreasing functions, one expects rR(G) to be closer to

rSO(G) than rT (G). It is often the case. The fact that rR(G)
decreases when G increases is the closed-loop effect: the more
users reduce their peak-time demand, the lower the incentive
to reduce it is. However, if rR(G) decreases much faster that
rSO(G), rT (G) can be closer to rSO(G). This possibility is
covered by case (ii) of Proposition 5.

Fig. 3 illustrates the result of Proposition 5 with the pertur-
bation p✓(·) = c✓(·) for all ✓ 2 ⇥. As it turns out, Example 1
(Fig. 3-(a)) falls in case (i) of Proposition 5 (see the unit
rewards on Fig. 4); hence the fixed-budget rebate mechanism
remains closer to social optimum than the time-of-day pricing
mechanism. This is due to fact that the sensitivity to congestion
is “strongly convex”, i.e., function h(·) (12) is far from linear.
Hence, the optimal unit reward (24c) decreases “fast”, as for
the fixed-budget rebate mechanism. For the sole purpose of
illustrating numerically case (ii) of Proposition 5, we construct
the following example:

Example 2. Everything is defined as in Example 1, but the
disutility function is artificially contrived to have h(G) = 1.2 ·
10�3 · (G0.95 � D

0.95
p

). (The factor 1.2 · 10�3 is chosen to
yield the same social optimum level of public good G

⇤ than
in Example 1 when ✏ = 0.)

Ex. 2 is a contrived example where h(·) is almost linear so
that the optimal unit reward rSO is almost constant, as in the
time-of-day pricing mechanism. As a result, the time-of-day
pricing mechanism is closer to social optimum (Fig. 3-(b)).

Proposition 5 compares the distance between G
(eq) and G

⇤

for the two incentive mechanisms, when utilities are perturbed.
It holds for all perturbation directions {p✓(·)}✓2⇥ (satisfying
the conditions mentioned above). However, the direction of
the variation of G

(eq) and G
⇤ depends on the perturbation

directions {p✓(·)}✓2⇥. With the simple perturbation where
p✓(·) = c✓(·) for all ✓ 2 ⇥, Fig. 3 shows that G(eq) and G

⇤

decrease when ✏ increases (this could also be easily derived
analytically from the proof of Proposition 5). Intuitively, if
users are less willing to contribute due to a high cost of
shifting, the equilibrium and social optimal amount of public
good will be lower. With a general perturbation, the variation
of G(eq) and G

⇤ is determined by the variation of the aggregate
best response G

(resp) at the point G
⇤(0) when the utilities

perturbation is introduced.
From Proposition 5, we deduce the following result.

Theorem 3. There exists ✏m > 0 such that, for any perturba-
tion (23) with ✏ 6= 0 and |✏| < ✏m, we have:

(i) if condition (C1) is satisfied, then the fixed-budget rebate
mechanism is more robust than the time-of-day pricing
mechanism:

W
(eq)
T

(✏) < W
(eq)
R

(✏) < W
⇤(✏);

(ii) if condition (C2) is satisfied, then the time-of-day pricing
mechanism is more robust than the fixed-budget rebate
mechanism:

W
(eq)
R

(✏) < W
(eq)
T

(✏) < W
⇤(✏).

Theorem 3 is our main robustness result. It establishes
which of the two mechanisms remains closer to optimal after
the perturbation, in terms of welfare, i.e., in terms of user
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Fig. 3. Variation of the equilibrium amount of public good G(eq) when
functions c✓(·) are scaled by a factor (1+ ✏) starting from the baseline case:
(a) for Example 1 – (b) for Example 2.
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TABLE II
EQUILIBRIUM FOR EXAMPLE 1, WITH UTILITIES PERTURBED BY A
SCALING OF FACTOR (1 + ✏) WITH ✏ = 0.5. THE PARAMETERS ARE

CHOSEN BASED ON UNPERTURBED UTILITIES: R = $5, 500 AND
r = $9/GBIT (SEE FIG. 1).
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Fig. 5. Variation of the aggregate welfare W (eq) when functions c✓(·) are
scaled by a factor (1+✏) starting from the baseline case: (a) for Example 1 –
(b) for Example 2. For readability and robustness comparison, the difference
W ⇤(✏)�W (eq)(✏) is plotted.

expected utility over the timescale of a month (see Sec. III-B).
The conditions of Theorem 3 are the same as in Proposition 5:
mechanism j 2 {R, T} is more robust if its unit reward is
closer to the optimal unit reward. Since Example 1 satisfies
condition (C1) (due to “strong enough” convexity of the
sensitivity to congestion), the fixed-budget rebate mechanism
is more robust. It means that if the provider chooses the
parameters based on an imperfect estimation of the cost of
shifting c✓(·), the welfare of a population of users whose
actual cost of shifting is c̃✓(·) will be higher with the fixed-
budget rebate mechanism than with the time-of-day pricing
mechanism. Similarly, if the cost of shifting was varying
according to a given probability law and parameters R and
r were chosen based on expectations, the fixed-budget rebate
mechanism would give a higher expected welfare.

Fig. 5 illustrates our robustness results for a simple pertur-
bation. It shows that our analysis with ✏ close to zero extends
to larger perturbations. The numerical values for Example 1
are reported in Tab. II: for a 50% error in the cost-of-shifting
estimation (✏ = 0.5), the welfare is 20% below optimal with
the time-of-day pricing mechanism, whereas it is only 0.3%
below optimal with the fixed-budget rebate mechanism.
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V. CONCLUDING REMARKS

This paper provides a comparative analysis of two incentive
mechanisms of reducing peak-time congestion in Internet
broadband access: a fixed-budget rebate mechanism inspired
by the economic literature on public good provision by
means of lotteries, and a more standard for the network
literature time-of-day pricing mechanism. The fixed-budget
rebate mechanism can be interpreted as probabilistic pricing:
in this mechanism, each user’s reward depends not only on his
contribution but also on the contribution of the other users. We
suggest that this mechanism has two advantages relative to the
time-of-day pricing mechanism with given prices for specific
time slots. Firstly, the fixed-budget rebate mechanism is easy
to implement via lottery-like scheme(s), for which a total
user reward is announced by the ISP in advance. Secondly,
it has built-in self-tuning, which appears to be attractive in
environments with imperfectly known demand.

Our paper uses a simplified model to provide a theoretical
structure that permits to understand the benefits of the fixed-
budget rebate mechanism over more standard approaches. The
deployment of the mechanism will raise a number of practical
questions. In particular, the ISP has to decide at which scale
to deploy the mechanism: deploying it at the scale of a
base station would involve too precise monitoring whereas
deploying it region-wide would face the issue that users do
not all share the same access bottleneck. We believe that
such decision should be made based on historical statistics on
each bottleneck that are accessible to ISPs. Our model also
considers only two time periods whereas it could be useful
for an ISP to use a finer subdivision of the day. Again, we
believe that the number of time periods should be determined
using historical data available to the provider. The fixed-budget
rebate mechanism could be easily extended to multiple time
periods and we believe that it would remain more robust than
the time-of-day pricing mechanism.

In our model, we considered a monopolist and the reward
was financed by an increase in the subscription price. We
showed that both mechanisms still improve each user’s average
utility. In different scenarios, if the subscription price cannot
be increased, it would be possible to finance the reward by
a different means, e.g., by the reduction of the congestion
cost or by the higher number of customers that the provider
could accommodate with the same infrastructure due to lower
congestion.

Our model focuses on user welfare maximization rather than
on the cost savings for the ISP. However, we believe that both
objectives are consistent, as in an competitive environment,
increasing user welfare allows either to accommodate more
users with the same capacity or to reduce the capacity provi-
sioning costs for the same user base. A quantitative analysis of
these questions would require modeling of the cost structure
and of the competition (we could typically assume perfect
competition) and is left as future work.

To implement in practice the fixed-budget rebate mecha-
nism, an ISP will need to track separately the consumption
at peak and off-peak time. However, such separate accounting
is also needed for the time-of-day pricing mechanism and is

already technically possible in most settings (mobile access,
electricity with smart meters, etc.). The use of probabilistic
pricing also raises the question of contention billing and
verifiability. However, these transparency issues are the same
as in many other contexts where they have been successfully
solved (state lotteries, casinos, etc.). For instance, inspection
techniques similar to those used for gambling [32] could be
used here.

While our motivating application is telecommunications,
we believe that the fixed-budget rebate mechanism could be
modified for use in other applications such as electricity and
transportation networks. In the case of electricity demand
management, privacy and security considerations make our
mechanism advantageous relative to real-time pricing. Indeed,
our mechanism requires no real-time user-dispatcher com-
munication. In addition, unlike currently suggested real-time
pricing mechanisms (e.g., [33]), our mechanism requires only
aggregate data. We plan to explore these other applications in
future work.
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APPENDIX A
PROPERTIES OF THE COST OF SHIFTING

Let ✓ 2 ⇥. First, we show that the function x✓ 7! c✓(x✓),
defined by (10), is differentiable on [0, dp]. By assumption, the
function x✓ 7! P✓(dp � x✓)� (dp � x✓)q is differentiable so
we only need to show that the function x✓ 7! O✓(z⇤✓ (x✓)) �
z
⇤
✓
(x✓)q at z✓,max is differentiable on [0, dp]. Since the func-

tion z 7! O✓(z) is twice differentiable increasing strictly
concave by assumption, the function z 7! O✓(z)� zq is twice
differentiable strictly concave. Let z✓,max be its maximum on
[0, dp]. Then,

z
⇤
✓
(x✓) =

⇢
x✓ if x✓  z✓,max,

z✓,max if x✓ > z✓,max.

If z✓,max = 0 (hence z
⇤
✓
(x✓) = z✓,max, 8x 2 [0, dp]), or if

z✓,max = dp (hence z
⇤
✓
(x✓) = x✓, 8x 2 [0, dp]), then x✓ 7!

O✓(z⇤✓ (x✓)) � z
⇤
✓
(x✓)q is clearly differentiable on [0, dp]. If

z✓,max 2 (0, dp), we need to show that x✓ 7! O✓(z⇤✓ (x✓)) �
z
⇤
✓
(x✓)q is differentiable at the point z✓,max. But since z✓,max

is an interior maximum, we have O✓(z✓,max)�q = 0, therefore

both the left and right derivatives of x✓ 7! O✓(z⇤✓ (x✓)) �
z
⇤
✓
(x✓)q at z✓,max are zero.
Next, to show that the function x✓ 7! c✓(x✓) is strictly

convex on [0, dp], we show that its derivative is increasing.
By assumption that P✓(·) is strictly concave, the derivative of
x✓ 7! � [P✓(dp � x✓)� (dp � x✓)q] is increasing. Moreover,
the derivative of x✓ 7! � [O✓(z⇤✓ (x✓))� z

⇤
✓
(x✓)q] is increas-

ing on [0, z✓,max) and constant on [z✓,max, dp]. Therefore the
derivative of x✓ 7! c✓(x✓) is increasing.

Last, we show that x✓ 7! c✓(x✓) is increasing on [x
✓
, dp].

If x
✓
= dp, the result is trivial. If x

✓
< dp, by definition of

x
✓
, c

0
✓
(x

✓
) � 0. Hence, since we have shown that c

0
✓
(·) is

increasing, we have c
0
✓
(x✓) > 0, 8x 2 (x

✓
, dp] which gives

the result.

APPENDIX B
PROOF OF THEOREM 1

Let R and r be fixed and let j 2 {R, T}. For a given
G 2 [0, Dp], the best response (solving the FOCs (20)) defines
a measurable function x

(resp)(G) : ⇥ ! [0, dp] given for all
✓ 2 ⇥ by

x
(resp)
✓

(G)=

8
><

>:

0, if M j 0(G)� h(G)� c
0
✓
(0)  0,

dp, if M j 0(G)� h(G)� c
0
✓
(dp) � 0,

(c0
✓
)�1

⇣
M

j 0(G)� h(G)
⌘
, otherwise.

(25)

Due to assumption (A2), c
0
✓
(·) is strictly increasing, hence

invertible and with an increasing inverse function. Therefore,
(25) uniquely defines x

(resp)(G). Let

G
(resp)(G) =

Z

⇥
x

(resp)
✓

(G)dµ(✓) (26)

be the aggregate best response. By definition and strict con-
cavity of the utility function, a measurable function x :
⇥ ! [0, dp] is a Nash equilibrium if and only if there exists
G 2 [0, Dp] satisfying the fixed-point equation (21) such that
x = x

(resp)(G). To conclude the proof, we show that (21)
admits a unique fixed-point (see illustration on Fig. 1).
Lemma 1. There exists a unique solution of (21).

Proof: The r.h.s. of (21) (G) is clearly a strictly increasing
continuous function of G, from [0, Dp] to [0, Dp].

For the l.h.s. (G(resp)(G)), firstly note that it is a continuous
function of G. Indeed, due to assumption (A2), (c0

✓
(·))�1(·) is

strictly increasing continuous, hence x
(resp)
✓

(G) is continuous
in G for all ✓ 2 ⇥. Moreover, the function x

(resp)(G) :
⇥ ! [0, dp] is dominated by the constant function equal
to dp (i.e., |x(resp)(G)|  dp) which is integrable w.r.t. µ.
Therefore, for any G 2 [0, Dp] and for any sequence (Gn)n�0

which converges to G, we have x
(resp)(Gn) ����!

n!1
x

(resp)(G)

pointwise (by continuity of x(resp)
✓

(G) w.r.t to G for all ✓ 2 ⇥)
and by Lebesgue dominated convergence theorem,

lim
n!1

G
(resp)(Gn) = lim

n!1

Z

⇥
x

(resp)
✓

(Gn)dµ(✓)

=

Z

⇥

h
lim

n!1
x

(resp)
✓

(Gn)
i

dµ(✓)

= G
(resp)(G).

Clearly, the l.h.s. (G(resp)(G)) is also a non-increasing func-
tion of G taking values in [0, Dp]. Therefore, there is a unique
fixed-point of (21).
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APPENDIX C
PROOF OF THEOREM 2

We first prove (i). Let X be the set of functions x : ⇥ ! R
such that

R
⇥ |x✓| dµ(✓) < 1 and let X0 ⇢ X be the set of

functions x : ⇥ ! [0, dp]. Consider the aggregate welfare (5)
as a functional on X0 taking values in R:

W (x) = h

✓Z

⇥
x✓dµ(✓)

◆✓
Dp �

Z

⇥
x✓dµ(✓)

◆

�
Z

⇥
c✓(x✓)dµ(✓) +

Z

⇥
ū✓dµ(✓)� p

Dp

dp
.

Since X0 is compact and the functional W is continuous,
it has a maximum (see Corollary 38.10 of [34, p. 152]). Let
x
⇤ 2 X0 be such that W is maximal and let

G
⇤ =

Z

⇥
x
⇤
✓
dµ(✓).

Define the three subsets of ⇥: ⇥1, ⇥2 and ⇥3 where x
⇤ =

0, x
⇤ 2 (0, dp) and x

⇤ = dp respectively. We now derive
necessary conditions for x⇤ to maximize W in each subset.

We start with the subset ⇥2 corresponding to interior points.
Let y 2 X be such that y✓ = 0 for all ✓ 2 ⇥\⇥2. We define
the directional derivative (also called Gâteaux derivative) of
W around x

⇤ in the direction y as

dW (x⇤
, y) = lim

t!0

W (x⇤ + ty)�W (x⇤)

t
.

Then, we have

dW (x⇤
, y)=

Z

⇥2

y✓ ·[h0(G⇤)(Dp �G
⇤)�h(G⇤)�c

0
✓
(x⇤

✓
)] dµ(✓),

where the exchange between limit and integration in the last
term (giving �y✓c

0
✓
(x✓)) is justified by Lebesgue’s dominated

convergence theorem whenever
R
⇥ |y✓ · c0✓(x✓)| dµ(✓) < 1.

This holds here due to assumption (A3).
For x⇤ to be optimal, it is necessary that dW (x⇤

, y) = 0, i.e.,Z

⇥2

y✓ · [h0(G⇤)(Dp �G
⇤)� h(G⇤)� c

0
✓
(x⇤

✓
)] dµ(✓) = 0.

For this to hold for any function y such that y✓ = 0 for all
✓ 2 ⇥\⇥2, it is necessary that we have

h
0(G⇤)(Dp �G

⇤)� h(G⇤)� c
0
✓
(x⇤

✓
) = 0, (27)

for almost-all ✓ 2 ⇥2, i.e., for almost-all ✓ such that x
⇤
✓
2

(0, dp).
We now treat the case of subset ⇥1, which corresponds the

points of the lower boundary. Let y 2 X be such that y✓ � 0
for all ✓ 2 ⇥1 and y✓ = 0 for all ✓ 2 ⇥\⇥1; that is y is a
direction that “pushes up” the values of x

⇤ that are at zero.
The directional derivative of W around x

⇤ in the direction y

is defined similarly to the previous case but with a limit t > 0:

dW (x⇤
, y) = lim

t!0+

W (x⇤ + ty)�W (x⇤)

t
,

which gives

dW (x⇤
, y)=

Z

⇥1

y✓ ·[h0(G⇤)(Dp �G
⇤)�h(G⇤)�c

0
✓
(x⇤

✓
)] dµ(✓).

For x⇤ to be optimal, it is necessary that dW (x⇤
, y)  0, i.e.,Z

⇥1

y✓ · [h0(G⇤)(Dp �G
⇤)� h(G⇤)� c

0
✓
(x⇤

✓
)] dµ(✓)  0.

For this to hold for any function y such that y✓ � 0 for all
✓ 2 ⇥1 and y✓ = 0 for all ✓ 2 ⇥\⇥1, it is necessary that

h
0(G⇤)(Dp �G

⇤)� h(G⇤)� c
0
✓
(x⇤

✓
)  0, (28)

for almost-all ✓ 2 ⇥1, that is for almost all ✓ such that x⇤
✓
= 0.

The case of subset ⇥3 is handled similarly and yields the
necessary condition:

h
0(G⇤)(Dp �G

⇤)� h(G⇤)� c
0
✓
(x⇤

✓
) � 0, (29)

for almost all ✓ such that x⇤
✓
= dp.

In summary, (27)-(29) show that for function x
⇤ to maxi-

mize W , it is necessary that x⇤ is solution of the FOCs (20)
where M

j 0(G) is replaced by h
0(G)(D � G). By assump-

tion (A1), this is a decreasing function of G. Therefore the
same proof as for Theorem 1 shows that x

⇤ is uniquely
determined almost-everywhere.

We now prove (ii). From the proof of part (i), it is clear
that if R = R

⇤ (resp. r = r
⇤), then the FOCs (20) at

a Nash equilibrium coincide with the optimality condition,
which gives the result.

APPENDIX D
PROOF OF PROPOSITION 1

We provide the proof for the fixed-budget rebate mechanism
(j = R). It is the same for the time-of-day pricing mechanism.

We first prove (i) using three cases.
Case 1: If G(eq)(R) = 0, then the result is obvious.
Case 2: If G(eq)(R) = Dp, then we have R/Dp�h(Dp)�

c
0
✓
(dp) � 0 for almost-all ✓ 2 ⇥, which implies R

0
/Dp �

h(Dp)� c
0
✓
(dp) � 0. Hence G

(eq)(R0) = Dp.
Case 3: If G(eq)(R) 2 (0, Dp). For a given G, x(resp)(G) of

(25) is non-decreasing when R increases to R
0, and strictly

increasing for ✓’s s.t. x
(resp)(G(eq)(R)) 2 (0, Dp). Since the

set of such ✓’s is of positive measure, the new fixed-point has
G

(eq)(R0) > G
(eq)(R).

From (i), (ii) follows clearly.
We finally prove (iii). The existence of the threshold R̄

follows from the fact that M
R0
(Dp) ����!

R!1
1, hence

M
R0
(Dp)�h(Dp)� c

0
✓
(dp) � 0 for almost-all ✓ 2 ⇥ beyond

R̄ (due to assumption (A3)).

APPENDIX E
PROOF OF PROPOSITION 2

For the fixed-budget rebate mechanism with R > 0, if
G = 0, the unit reward is infinite, hence each user wants to
contribute positively. Therefore, G = 0 is not an equilibrium.

APPENDIX F
PROOF OF PROPOSITION 3

We provide the proof for the fixed-budget rebate mechanism
(j = R). It is the same for the time-of-day pricing mechanism.

Let R � 0 and denote for simplicity x = x
(eq)(R) and

G = G
(eq)(R). Using the notation of the proof of Theorem 2

(Appendix C), the derivative of the welfare around x in the
direction y 2 X is

dW (x, y)=

Z

⇥
y✓ · [h0(G)(Dp �G)� h(G)� c

0
✓
(x✓)] dµ(✓).

Suppose first that R < R
⇤ and consider the direction y 2 X

such that
y✓ =

dx(eq)
✓

(R)

dR
, 8✓ 2 ⇥.
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By Proposition 1, we have G
(eq)(R)  G

⇤ and x
(eq)
✓

(R)  x
⇤
✓

for almost-all ✓ 2 ⇥. Therefore, we have y✓ � 0 for all ✓ 2
⇥2 [ ⇥3 and y✓ = 0 for ✓ 2 ⇥1 (recall that ⇥1, ⇥2 and ⇥3

are the subsets of ⇥ where x
⇤ = 0, x⇤ 2 (0, dp) and x

⇤ = dp

respectively). Moreover, we have h
0(G)(Dp � G) � h(G) �

c
0
✓
(x✓) � 0 for all ✓ 2 ⇥2 [⇥3. Indeed, in ⇥2, h0(G⇤)(Dp �

G
⇤) � h(G⇤) � c

0
✓
(x⇤

✓
) = 0 and h

0(G)(Dp � G) � h(G) �
h
0(G⇤)(Dp�G

⇤)�h(G⇤) (by concavity of h(G)(Dp�G)) and
c
0
✓
(x✓)  c

0
✓
(x⇤

✓
). In ⇥3, h0(G⇤)(Dp�G

⇤)�h(G⇤)�c
0
✓
(x⇤

✓
) �

0 and h
0(G)(Dp�G)�h(G) � h

0(G⇤)(Dp�G
⇤)�h(G⇤) and

c
0
✓
(x✓) = c

0
✓
(x⇤

✓
). We conclude that dW (x, y) � 0, therefore

W
(eq)(R) increases with R.
The case R 2 (R⇤

, R̄) is handled similarly and if R � R̄,
the equilibrium does not vary with R by Proposition 1-(iii).

APPENDIX G
PROOF OF PROPOSITION 5

A. Proof of the Proposition

From the proof of Theorem 1, we know that for any
mechanism j 2 {R, T}, G

(eq)
j

is the fixed-point solution
of (21). Here, we explicitly write the dependence in the
mechanism, i.e., for mechanism j, we denote by x

(resp)
j,✓

(G) the
individual best response (25), and by G

(resp)
j

(G) the aggregate
best response (26) to a given G 2 [0, Dp]. We use the
notation rj (rather than M

j 0) for the unit reward (see (24)).
From the proof of Theorem 2, we know that G

⇤ is found
as the fixed-point solution of the same equation (21) with
rj(G) = rSO(G) defined by (24c). Therefore, we will use
the notation G

⇤ = G
(eq)
SO

which emphasizes this similarity and
helps shorten the proof’s notation.

Before evaluating the variations of the equilibrium with ✏,
note that when ✏ = 0 (baseline), we have the same equilibrium:

G
(eq)
R

(0) = G
(eq)
T

(0) = G
(eq)
SO

(0), (30)

and the same unit rewards at equilibrium:
rR(G) = rT (G) = rSO(G) if G = G

(eq)
R

(0). (31)

When ✏ 6= 0, functions c✓ are perturbed. For a given G 2
[0, Dp], the aggregate best response is modified accordingly.
We denote by G

(resp)
j,✏

(G) the new aggregate best response.
Recall that we also denote by G

(eq)
j

(✏) the new equilibrium
point which is the fixed point of G

(resp)
j,✏

(·). The following
lemma readily implies the result of Proposition 5.

Lemma 2. For any j 2 {R, T, SO}, we have

G
(eq)
j

(✏) = G
(eq)
j

(0) +
J✏

1 + ↵j

+ o (✏) , (32)

where
J✏ = G

(resp)
j,✏

⇣
G

(eq)
R

(0)
⌘
�G

(resp)
j,0

⇣
G

(eq)
R

(0)
⌘

is a first-order quantity in ✏ independent of the mechanism j,
and

↵j = �
dG(resp)

j

dG

⇣
G

(eq)
R

(0)
⌘
. (33)

Proof: First note that G
(resp)
j,✏

⇣
G

(eq)
R

(0)
⌘

is continuously
differentiable with respect to ✏, and by assumption, the
first-order term in J✏ is non-zero. Moreover, due to (31),

G
(resp)
j,✏

⇣
G

(eq)
R

(0)
⌘

is independent of the mechanism j (see (26)
and (25)), and so is J✏.

Starting from the point
⇣
G

(eq)
R

(0), G(resp)
j,✏

⇣
G

(eq)
R

(0)
⌘⌘

, at

the first order, G(resp)
j,✏

(G) decreases linearly when G increases.
Therefore it can be seen geometrically that it will cross again
the first bisector at the new equilibrium point

G
(eq)
j

(✏) = G
(eq)
j

(1) +
J✏

1 + ↵j,✏

+ o (✏) , (34)

where �↵j,✏ is the slope of the curve G
(resp)
j,✏

(G) at G =

G
(eq)
R

(0), i.e.,

↵j,✏ = �
dG(resp)

j,✏

dG

⇣
G

(eq)
R

(0)
⌘
. (35)

From (34), it is easy to see that since J✏ is first-order in ✏,
the first-order term in the Taylor series of ↵j,✏ will give a
second-order term in the Taylor series of G(eq)

j
(✏). Therefore,

we can restrict the series of ↵j,✏ (35) at the order zero: ↵i,✏ =
↵j + o (1), which directly gives the desired result (32).

B. Reduction of (C1-2) to (C10-20)
We have

dG(resp)
j

dG
(G) =

d
dG

Z

⇥
x

(resp)
j,✓

(G)dµ(✓)
�
,

=

Z

⇥

d
dG

h
x

(resp)
j,✓

(G)
i

dµ(✓),

= Aj(G) ·
�
r
0
j
(G)� h

0(G)
�
,

where
Aj(G) =

Z

⇥2,j(G)

⇣
(c0

✓
)
�1

⌘0
(rj(G)� h(G))dµ(✓), (36)

and ⇥2,j(G) is the subset of ✓’s for which x
(resp)
j,✓

(G) 2 (0, dp).
At G = G

(eq)
R

(0), ⇥2,j(G) is independent of the mechanism
j, so that (31) shows that Aj(G

(eq)
R

(0)) is independent of the
mechanism j. Denoting by A = Aj(G

(eq)
R

(0)) the common
value, we have for all j 2 {R, T, SO}

↵j = A ·
⇣
r
0
j

⇣
G

(eq)
R

(0)
⌘
� h

0
⇣
G

(eq)
R

(0)
⌘⌘

.

If we assume that for j1 6= j2, |↵j1 � ↵j2 | is small, then����
1

1 + ↵j1

� 1

1 + ↵j2

���� =
����
↵j2 � ↵j1

1 + ↵j1

����+ o(|↵j1 � ↵j2 |),

=
A

1 + ↵j1

��r0
j2
� r

0
j1

��+ o(
��r0

j2
� r

0
j1

��).

With this, conditions (C10-20) are easily deduced from (C1-2).

APPENDIX H
PROOF OF THEOREM 3

We consider the aggregate welfare (5) as a function of G:
W (G) = W (x(resp)(G)). We have dW

dG (G⇤(✏)) = 0. The result
of Theorem 3 is then deduced from Proposition 5 using a
taylor expansion around G

⇤(✏): for j 2 {R, T},

W (G(eq)
j

(✏)) = W (G⇤(✏)) +O

⇣
(G(eq)

j
(✏)�G

⇤(✏))2
⌘
.


