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Appendix A. Causal model inference

Appendix A.1. PC algorithm

We have described the PC algorithm in Section 2.1. In Figure A.7 we now illustrate the

different steps. In this example we try to infer the causal model of the system corresponding to

four parameters, W, X, Y, Z. We could detect two independences: I1 = (X � Y |W) and I2 = (W �

Z|{X, Y}). In Figure A.7b and Figure A.7c the edge between X and Y and the edge between W and

Z are removed for the independences detected with a conditioning set size of 1 and 2 respectively.

Because of detected X � Y but X �� Y |Z but we can orient X – Z – Y. However, the orientation of

the second V-structure, X – W – Y, cannot be deduced from the set of detected independences. The

three orientations presented in Figure A.7e, Figure A.7f and Figure A.7g verify the independences

I1 and I2.

(a) Complete

graph

(b) X � Y |W (c)

W � Z|{X, Y}

(d) Orientation

V-structure

(e) Orientation

V-structure

choice 1

(f) Orientation

V-structure

choice 2

(g) Orientation

V-structure

choice 3

Figure A.7: Different steps of the inference of causal model corresponding to a system of four

parameters, {W, X, Y, Z} with the detected independences I1 = (X � Y |W) and I2 = (W � Z|{X, Y})

Appendix A.2. Independence test

The accuracy of the PC algorithm comes from the accuracy of the test used to test parameter

independences. Compared to our previous works [Hours et al., 2015], one difference comes from

the presence of a categorical variables, like the DNS service used by the clients observed in our

study or the destination IP address. The test we use in our study is the KCI test [Zhang et al., 2012]

combined with a bootstrap approach to solve numerical issues in its use of Cholesky factorization

and to parallelize computations and decrease the algorithm completion time [Hours et al., 2015].
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To validate the use of the KCI test in the presence of categorical variable, we generate two

artificial datasets as follows:

• Dataset 1:

– X1 is a categorical variable with 4 levels: X1 ∼ U{c1, c2, c3, c4}.
– X2 is a deterministic mapping of X1, adding 20% of Gaussian noise: X2 = f2(X1)+ε.

– X3 is a deterministic mapping of X1, adding 20% of Gaussian noise, X3 = f3(X1)+ε.

– X4 is a function of X2 and X3, adding 20% of Gaussian noise: X4 = f4(X2, X3) + ε.

– with

∗ f2 and f3 defined as fi(c j) = ci, j for j ∈ {1, 2, 3, 4}, with ci j � ci′ j′ if i � i′ or

j � j′

∗ f4(x, y) =
√

x + y.

∗ ε an error terms following normal distribution with a mean equals to 0 and a

variance equals to 0.2 × σ fi(Xi).

• Dataset 2:

– X1 is a categorical variable with 4 levels: X1 ∼ U{c′
1
, c′

2
, c′

3
, c′

4
}.

– X2 is a deterministic mapping of X1, adding 20% of Gaussian noise: X2 = f ′
2
(X1)+ε.

– X3 is a categorical variable with 4 levels, the probability of each level depends on

X1: X3 = f ′
3
(X1) + ε.

– X4 is a function of X2 and X3, adding 20% of Gaussian noise: X4 = f ′
4
(X2, X3) + ε.

– with

∗ f ′
2

defined by, f ′
2
(c′

j
) = c2, j for j ∈ {1, 2, 3, 4},

∗ f ′
3
(c′

j
) ∈ {c′′

1
, c′′

2
, c′′

3
, c′′

4
}, each value c′′

k
drawn from 4 different distributions,

chosen base on the value of c′
j

∗ f ′
4
(x, y) = c(x)+

√
y, with c(x) defined as a deterministic mapping of x, similarly

to f ′
2
.

∗ ε an error terms following normal distribution with a mean equals to 0 and a

variance equals to 0.2 × σ fi(Xi).

The graphical causal model corresponding to these dependencies is presented in Figure A.8.

The definition of the two datasets leads to two independences I1 = (X2 � X3|X1) and I2 = (X1 �

X4|{X2, X3}).
We test different independences for 20 artificial datasets of size 1000, generated according the

definitions given above. The average p-values of the different tests for the two classes of artificial

datasets are presented in Table A.3. We can see that the KCI performs correctly even in the

presence of complex dependencies including the presence of categorical variables. The conclusion

of this study is that the KCI performs as expected in the presence of categorical variable and can

be used in our study.
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Figure A.8: Graphical causal model illustrating the dependencies of the artificial dataset parame-

ters

Table A.3: Results of the KCI test when testing independences with the presence of categorical

parameters

Independence p-value dataset 1 p-value dataset 2

X1 � X2 0 0

X1 � X3 0 0

X1 � X4 0 0

X2 � X3 0 0

X2 � X4 0 0

X3 � X4 0 0

X1 � X2|X3 0 0

X1 � X2|X4 0 0

X2 � X3|X1 0.4 0.6

X2 � X3|X4 0 0

X3 � X4|X1 0 0

X3 � X4|X2 0 0

X1 � X4|X2 2e-14 2e-2

X1 � X4|X3 0 3e-4

X1 � X4|{X2, X3} 0.7 0.5

Appendix A.3. Markov Equivalence class

In our study of the impact of the DNS service choice on the Akamai CDN performance,

we obtain the Bayesian network represented in Figure A.9. Using our understanding of CDN

and the parameters present in our model, we orient the undirected edges and obtain the Bayesian

network representing the causal model of our system represented in Figure A.10. Using the Tetrad

software [Spirtes et al., 2001], it is easy to represent all the members of what is called the Markov

Equivalence Class. There can be several graphs that represent the set of independences that were

detected from the tests performed on a given series of observations. The set of all these graphs

can be represented by a partially oriented graph, Figure A.9. In Figure A.11 we represent the eight

members of the Markov Equivalence Class corresponding to the set of independences that were
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Figure A.9: Output of the PC algorithm when no domain knowledge is used
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Figure A.10: Bayesian network representing the causal model of Web performance using two

different DNS: the public Google DNS and the DNS of the local ISP

detected from the series of tests performed on the observations of the parameters of our system.

Appendix B. Predicting interventions

Appendix B.1. Theory

Appendix B.1.1. Atomic interventions
The description of atomic intervention was presented in Section 2.2.1. In this section, we only

repeat the rules of Do-calculus that will be used in the following sections to present the details of

our method.

If we use G to denote the Bayesian graph that represents the causal relationships between the

parameters of our system, we use GX to denote the sub-graph of G where all the edges entering

X are removed and GX the sub-graph of G where all the edges exiting X are removed. We can

use the rules of do-calculus from [Pearl, 2009] to estimate the distributions of the parameters of
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our system after an intervention based on their distributions prior to this intervention. Note that

these rules do not rely on any assumption regarding the distributions or functional dependencies

of the parameters. In particular, P represents the (possibly multivariate) probability distribution

specified by the probability mass function or probability density function depending on the nature

of the parameters.

Theorem 2 (3.4.1 from [Pearl, 2009]). (Rules of do calculus) Let G be the directed acyclic graph

associated with a causal model [...] and let P(·) stand for the probability distribution induced by

that model. For any disjoint subsets of variables X, Y and Z we have the following rules.

Rule 1(Insertion/deletion of observation):

P(y|do(x), z,w) = P(y|do(x),w) if (Y � Z | X,W)GX
(B.1)

Rule 2(Action/observation exchange):

P(y|do(x), do(z),w) = P(y|do(x), z,w) if (Y � Z | X,W)GXZ
(B.2)

Rule 3(Insertion/deletion of intervention):

P(y|do(x), do(z),w) = P(y|do(x),w) if (Y � Z | X,W)G
XZ(W)
, (B.3)

where Z(W) is the set of Z-nodes that are not ancestor of any W-nodes in GX.

Appendix B.1.2. Enforcing intervention with a given probability
In our study of the impact of the DNS service on CDN performance (throughput), we are

interested in estimating the effect of interventions on parameters influenced by the DNS service

and influencing the throughput. In such case, we do not limit ourselves to atomic interventions but

we are interested in intervening on a given parameter to change its distribution.

From [Pearl, 2009, Section 4.2], if we want to predict how an intervention on X affects Y,

where the intervention on X is enforced with the conditional probability distribution f ∗(X|Z), we

obtain:

f (y)| f ∗(x|z) =

�

DX

�

DZ

fY |do(X),Z(y, x, z) f ∗(x|z) f (z)dxdz. (B.4)

From Equation (B.4), one should notice that we need to integrate on the intervention param-

eter, X. For performance reasons, the estimations of fY |do(X),Z) are made in parallel on different

machines. Therefore, the estimation of fY |do(X),Z(y, x, z) is done on a different machine for each x.

As the data used in our study is not publicly available, we do not present the different parameteri-

zations of the density estimation used for predicting f (y)| f ∗(x|z).

Appendix B.2. Adapting the theory to our problem

Appendix B.2.1. Intervening on the DNS service
To understand how choosing one DNS service instead of another impacts CDN performance,

we want to predict the throughput of a client who used a DNS service s1 if the same client would

have used a different DNS service, s2, instead. To do so, we are interested in the impact of the DNS

service on a given parameter, X, that in turn influences the throughput. We use the Theorem 2 and
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Equation (B.4) to estimate the distribution of the throughput of a client using a given DNS service,

s1, if we intervene on the distribution of a parameter X, forcing its distribution to follow the one of

X if the DNS service s2 would have been used instead. This study is equivalent to study the impact

of the parameter X for clients using the DNS service s1 when intervening on the parameter X

enforcing this intervention with the distribution fX|DNS=s2
. If we denote Y the parameter capturing

the performance of CDN users5, we want to estimate:

f (Y |DNS = s1, do(X ∼ f (X|DNS = s2))). (B.5)

If we denote W the set of parameters blocking the spurious associations between X and Y,

according to Theorem 2, we have

f (Y | DNS = s1|do(X ∼ f (X|DNS = s2))) =

�

X

f (Y |DNS=s1 ,do(X=x))
����������������������������������������������������������������������������������������
�

W

f (Y | X = x,DNS = s1,W) f (W)

f (X = x | DNS = s2)P(DNS = s2) (B.6)

We can see from Equation (B.6) that the distribution of Y for users of the DNS s1, if we

intervene on X and fix its distribution to follow the distribution of X seen by the users of DNS

s2, is a weighted sum of the distribution of Y for DNS = s1 after an atomic intervention on X

(do(X=x)) with weights being the probability of observing X = x under DNS = d2.

Such approach allows to (i) Capture the effect of the DNS on a given mechanism influencing

the performance of CDN users; (ii) Divide our prediction in a set of predictions of atomic inter-

ventions that can be estimated from the results of Theorem 2. Finally, we can use Equation (B.4)

to estimate the final distribution of Y for the intervention on X that modifies its distribution.

Appendix B.2.2. Interventions and conditional multivariate distributions
It should be noticed that, as X is a continuous variable, the probability of observing a given

value is 0. Therefore, instead of selecting samples for which X = x is observed, we define an

interval Ix corresponding to [x−δX; x+δX] and assume that the samples for which the X parameter

falls into this interval can be approximated to take the value x.

From the samples where X ∈ Ix and DNS = s1, we estimate the cumulative distribution

function (CDF) of Y and W conditionally to DNS = s1. We then estimate f (Y |X = x,W =

w,DNS = s1) using the Sklar theorem.

The Sklar theorem stipulates that, if F is a multivariate cumulative distribution function with

marginals (F1, . . . , Fi, . . . , Fn), there exists a copula C such that

F(x1, . . . , xi, . . . , xn) = C(F1(x1), . . . , Fi(xi), . . . , Fn(xn)). (B.7)

If we take the example of the bivariate distribution of two parameters X1 and X2, which

marginals are denote F1 and F2 and f1 and f2 for the CDFs and PDFs respectively, we obtain,

taking the derivative of Equation (B.7) with respect to X1 and X2:

f (x1, x2) = c(F1(x1), F2(x2)) f1(x1) f (x2), (B.8)

5In our study, we use the throughput to measure user performance
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with f the bivariate PDF of X1 and X2.

As we have:

fX1 |X2
(x1, x2) =

f (x1, x2)

f2(x2)
, (B.9)

for values of X2 for which f2(x2) � 0, we can deduce that:

fX1 |X2
(x1, x2) = c(F1(x1), F2(x2)) f1(x1). (B.10)

We can then estimate the conditional CDFs, F(Y |X = x,DNS = s1) and F(W |X = x,DNS =

s1), using kernels and the samples where X ∈ Ix and DNS = s1, and use the previous formula to

estimate f (Y |X = x,W = w,DNS = s1):

f (Y |X = x,W = w,DNS = s1) =c(F(Y |X = x,DNS = s1), F(W |X = x,DNS = s1))

f (Y |X = x,DNS = s1), (B.11)

Finally, by integrating Equation (B.6) on W we obtain the distribution f (Y |do(X = x),DNS = s1).

We then select the samples for which DNS = s2 and use normal kernels to estimate f (X|DNS =

s2) and frequencies to estimate P(DNS = s2).

After these steps, we have all the factors present in Equation (B.6) and we can integrate over

X to obtain the distribution of Y post intervention.

Appendix B.2.3. Estimation of marginals
Some practical issues are silenced in the sequence of steps described in Appendix B.2.2:

1. How to define the intervals IX ?

2. As we are working with continuous variables, the two distributions conditionally to dif-

ferent DNS values might not have the same support. How do we define the conditional

probability so that we have common values to integrate on ?

The last point is solved by always defining the PDFs domains as equally spaced points be-

tween the minimum and maximum observed value of the corresponding parameter in the whole

dataset (DNS = s1 or DNS = s2). We use normal kernels to estimate the different distributions.

The first point, however, is more complicate as many possibilities exist and there is the con-

straint of finding enough samples in each interval to estimate the CDFs from which the copula

parameters will be estimated and the conditional distributions derived.

Several solutions have been tested

• Variable bin width histogram,

• Fixed bin width and interpolation,

• Fixed bin width, filtering, rescaling.
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Variable bin width histograms. The first method consists in fixing an objective number of sam-

ples and, starting from a fixed width bin histogram, merging adjacent bins until obtaining bins of

different size but with a minimum number of samples:

Pros This method ensures the maximum number of atomic predictions being successful.

Cons As many of the parameters we observe have a long tail distribution, and as it is often in

the tail of the parameter distributions that we find the values for interesting predictions,

we obtain very large bins for the extreme values of the intervention parameter. The ap-

proximation stating that this bin represents a single value is then too strong. Additionally,

when multiplying the atomic intervention fixing X parameter to the value x by the value of

the PDF conditionally to the other DNS for X = x (Equation (B.6)) we need to take into

account the actual range of X that the atomic intervention represents to have a consistent

approximation.

Fixed bin width. The second method is going in the opposite direction. We use histograms with

fixed bins and then try to make predictions of f (Y |do(x)) with the number of samples we found

in a given bin corresponding to a X value. If the estimation of the prediction fails, then we use

interpolation of the f (Y |do(x) for the X values where the post intervention PDF of Y could be

estimated.

Pros This method solves the issues of approximation inconsistency of the variable bin width

method. We fix the bin width and decide on the approximation of assimilating an interval

to a given value.

Cons It can often happen that we manage to predict f (Y |do(x) even when there are few sample

in the interval Ix corresponding to the x value. However, with very few samples, it is very

likely that this estimation is not accurate. This lack of accuracy impacts in a very negative

way the overall post intervention PDF accuracy, as the PDF of Y post intervention that

could be computed with few values will be used in the interpolation to recover the PDF Y

for x values where the estimation of the post intervention PDF failed.

Fixed bin width and high pass filter. The last method, the one eventually adopted, is based on the

fact that, if there are very few samples in a given area of the distribution of X|DNS = s1 then this

value is very unlikely to be observed and, as the previous method will impact negatively the overall

results by including these samples, we consider that the PDF of X|DNS = s1 in the domains with

few samples is null.

This method uses a fixed bin histogram and selects only the bins where a minimum number

of samples is observed to predict atomic interventions. After predicting the distribution of Y after

intervention we rescale it based on the following observation:

�

Y

f (Y |do(X = x),DNS = s1)dY = 1 (B.12)

In practice, instead of varying the bin width and threshold we do the following: We select an

objective number of samples, ΔS , under which the atomic intervention f (Y |X2 = 0, do(X = x)) is

considered as null, and search for the optimal quantization leading to the maximum bins with a

number of samples ≥ ΔS . To do so we use this very simple algorithm:
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Data: Vector X

Result: Set of bins (X f inal) with fixed width (δ) defining the intervals around the values on

which atomic interventions will be predicted:

nB = 10;

nVold = 0;

nVcur = 1;

Xold =[];

Xcur = [];

Hold = [];

Hprev = [];

while nVcur > nVold do
Ht, Et = hist(X, nB);

nVold = nVcur;

nVcur = nvalues(Ht > ΔS );

Xold = Xcur;

Xcur = Et;

Hold = Hcur;

Hcur = Ht;

nB = 2 ∗ nB;
end

nV f inal = nVold;

X f inal = Xold;

H f inal = Hold ;

δ = X f inal(2) − X f inal(1);

Algorithm 1: Dynamic quantization
This method solves the previous issues. There is a risk of not having any prediction for

values in the tail of the distribution of X|DNS = s1, that can represent the zone of overlap of

the two distributions X|DNS = s1 and X|DNS = s2. However, limitations due to the lack of

samples cannot be overcome by simple approximations as seen in the second method. The only

way to solve this issue is to use parametric distributions (for example a mix of normal, gamma,

beta, log-normal distributions). The studies made so far have shown that the approximation of

the distributions of the parameters of our systems for values that are actually observed offers an

acceptable accuracy. However, these models become inaccurate as soon as we try to use them to

estimate the distribution of a parameter for values that have not been observed.

Appendix C. Parameterization of the method

In this section, we present a study that aims to answer the following questions:

1. How to choose the copula family that will model the dependencies between the different

marginals ?

2. In which proportion the absence of values observed for both conditional distributions im-

pacts the prediction accuracy and how to improve the accuracy in this case ?

3. As discussed previously, we estimate a complex intervention as the weighted average of

atomic (simpler) interventions. Each atomic intervention is estimated on a sub domain
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corresponding to an (small) interval around the value corresponding to our atomic inter-

vention. On one hand, the bigger the interval is the more data we have to calibrate our

model and the better prediction for the corresponding atomic intervention will be. On the

other hand, if we manage to estimate many atomic interventions, we will have more inputs

for estimating the global intervention we are interested in. The question boils down to find-

ing the trade-off between the number of atomic interventions we estimate and the quality

of each of these estimates.

To study these aspects we need a ground truth to estimate the accuracy of our prediction for

different strategies and parameterization. Therefore, we generate a set of artificial datasets where

the intersection between the two conditional distribution (DNS = s1 and DNS = s2) domains is

modified and its impact on the accuracy of our method is studied.

Appendix C.1. Simulated dependencies

To simulate the same situation as the one met in the study of DNS service impact on the CDN

performance, we randomly generate 4 parameters, X1, X2, X, Y, with dependencies illustrated by

the graph presented in Figure C.13. To be closer to the situation observed in our study of the

impact of DNS on CDN performance, we generate X1 by randomly re-sampling the throughput

observed in this study and we generate X2 by randomly re-sampling the observed DNS from the

same study. We eventually convert X2 to binary value (0 or 1). The presence of a categorical data

(the DNS in the corresponding study) is an important aspect that we want to keep in this study.

Appendix C.2. Intervention prediction

First, from the causal model, G, represented by the Bayesian network of Figure C.13, we can

use the d-separation criterion to deduce the following independences:

• (X � Y |X1, X2)GX

• (X2 � X)GX2

From the do-calculus rules from [Pearl, 2009] we can deduce that the distribution of Y under

the condition X2 = 0 intervening on X to fix its distribution to X ∼ X|do(X2 = 1) is given by

f (Y |X2 = 0, do(X ∼ X|do(X2 = 1))) =

�

X

�

X1

fY |X,X1 ,X2
(x, x1, 0) fX1

(x1) fX|X2
(x, 1)Pr(X2 = 1)dx1dx

(C.1)

Appendix C.3. Ideal situation

In this case we generate our first artificial dataset as follows:

X1 = random re-sampling(Throughput)

X2 = random re-sampling(DNS)

X ∼





Γ(k1, θ1) +
√

X1 ∗ µ1

2
+ ε : X2 = 0

Γ(k2, θ2) +
√

X1 ∗ µ2

2
+ ε : X2 � 0
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Y ∼





10.
√

5.X + 10.X1 + ε : X2 = 0

25.
√

3.X + 6.X1 + ε : X2 � 0

with ε representing an error term.

In this first case we chose the following values {k1 = 5, θ1 = 1.0, k2 = 2.0, θ2 = 2.0, µ1 =

5, µ2 = 8}. The resulting distributions are presented in the Figure C.14. To make sure that the

parameters are correctly generated, we infer the corresponding causal model using the PC algo-

rithm [Spirtes and Glymour, 1991] with the independence test from [Zhang et al., 2012].

Notice that, for testing our method under the same main constraint we limit our sample size

to 10000 (against 7500 in the real case scenario) and we keep the ratio between the number of

samples where X2 = 0 is observed and the number of samples where X2 = 1 is observed equal to

the ratio between the number of connections where the ISP DNS service was observed (80%) and

the number of connections where the Google DNS service was observed (20%) in the real case

scenario.

Appendix C.3.1. Prediction of Y given X2 = 0 after intervention on X giving it the

distribution of X given X2 = 1
Using the Equation (C.1) we are able to compute the PDF f (Y |X2 = 0, do(X ∼ X|X2 = 1)) and

obtain the expected value E[Y |X2 = 0, do(X ∼ X|X2 = 1)].

As mentioned in Appendix B.2.3, the choice of the number of bins and the threshold to decide

or not to estimate the post atomic intervention PDF, should have an impact on the prediction

accuracy. Consequently, in this ideal scenario where the two distributions of X|X2 = 0 and X|X2 =

1 have very similar domains, we vary these two parameters and study their impact on the prediction

accuracy.

To obtain the distribution of fY |X2=0,do(X∼X|X2=1) we generate X and Y as following:

X ∼ Γ(k2, θ2) +
�

X1 ∗
µ2

2
+ ε : X2 = 0

Y ∼ 10.
�

5.X + 10.X1 + ε (C.2)

We obtain an expected value of E[Y|X2 = 0, do(X ∼ X|X2 = 1)] of 101.5.

We summarize the different results we obtained in Table C.4.

We can see that the use of a T-copula (T-cop) in the modeling of the multi dimensional PDF

gives slightly better results, in terms of accuracy, than the modeling of multidimensional PDF

with a Gaussian copula (G-cop). An interesting advantage of the T-copula comes from its ability

to capture tail dependencies between the different components of the multivariate distribution.

If X is a d-dimensional random vector following a multivariate t -distribution with ν degrees

of freedom, mean vector µ and a positive-definite dispersion Σ, denoted X ∼ td(ν, µ,Σ), [Demarta

and McNeil, 2005] showed that the tail dependency coefficient is given by:

λ = 2tν+1(
√
ν + 1

�

1ρ/
�

1 + ρ) (C.3)

where ρ is the off-diagonal element of the correlation matrix implied by the normalization of the

scatter matrix Σ.

This result shows that, by tuning the different parameters of the T-copula we can better capture

the tail dependencies between the different components of the multi-variate distribution we want to
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Table C.4: Effect of varying ΔS on the prediction accuracy for the first artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

ΔS Ê[Y|X2 = 0, do(X ∼ X|X2 = 1)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 93.80 96.22 7.8% 5.5% 195 0 (0%) 5 (2.6%)

30 93.28 95.90 8.6% 6.0% 118 0 (0%) 3 (2.5%)

50 95.40 96.79 6.5% 5.2% 76 0 (0%) 2 (2.6%)

70 94.41 96.94 7.5% 5.0% 54 0 (0%) 1 (1.9%))

100 94.24 96.74 7.6% 5.2% 39 0 (0%) 0 (0 %)

model. This property is really interesting when modeling communication networks performance,

namely the throughput, as it is often the case that we find dependencies in the tail of parameter

distributions, such as the one of delay or loss, with the throughput. As stated previously, the

counter part of the T-copulae in practice comes from the higher sensitivity to data shortage.

Very likely due to the functions used for generating the artificial dataset and the use of a

Gamma distribution, the T-copula is not always able to model the PDFs fY |X,X1 ,X2
(y, x, x1, 0) that

are necessary to compute the post intervention PDF of Y in Equation (C.1).

It is also important to notice that the choice of using a Gaussian copula was motivated by

the prediction of an intervention in the opposite case ( fY |do(X X|X2=0),X2=1(y)), see next section. In

addition, we generated the artificial dataset in order to have the same domains for X|X2 = 0 and

X|X2 = 1 and do not observe the same tail dependence as we would have for the throughput in

the real case. From this perspective, the usage of T-copula is not fully justified and the usage of a

Gaussian copula, for this particular dataset, should still be preferred.

Appendix C.3.2. Prediction of Y given X2 = 1 after an intervention on X giving it

the distribution of X given X2 = 0
Without repeating the explanations given in the previous section, we use Equation (C.1) to

predict the expected value of E[Y |X2 = 1, do(X ∼ X|X2 = 0)].

The results are presented in Table C.5 in which we compared the expected value obtained

using Equation (C.1) and G-copulae or T-copulae with the value obtained from the definitions

of the parameters, Equation (C.2). We also study the impact of the number of samples used for

estimating the atomic post-intervention distribution, ΔS . Note that by increasing the minimum

number of samples required to estimate a given atomic intervention we decrease the number of

atomic interventions used for predicting the distribution of f (Y |X2 = B, do(X ∼ X|X2 = ¬B) (with

B ∈ 0, 1), represented by the parameter #AI.

Several important remarks can be made from the results we obtain:

• The usage of a T-copula for modeling the PDF of fY |X,X1,X2
(y, x, x1, 0) for different values

of X fails more than 50% of the times.

• The utilization of wider bins, gathering more data to approximate X = x, does not improve

the the success rate of the predictions of the PDFs post-intervention.
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Table C.5: Effect of varying ΔS on the prediction accuracy for the first artificial dataset for two

different multi dimensional PDF models, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

ΔS Ê[Y|X2 = 1, do(X ∼ X|X2 = 0)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 173.9 N.A. 2.5% N.A. 43 0 (0%) 23 (53%)

30 173.9 N.A. 2.5% N.A. 32 0 (0%) 20 (63%)

50 175.7 N.A. 1.4% N.A. 17 0 (0%) 13 (76%)

70 175.7 N.A. 1.6% N.A. 13 0 (0%) 10 (77%)

100 174.0 N.A. 2.3% N.A. 9 0 (0%) 8 (89%)

• The usage of a G-copula gives better results (in terms of prediction accuracy) than the

previous predictions of interventions.

Remarks. It should be noticed that, despite the apparent symmetry between the prediction of Y

conditionally to X2 = 1 if we perform an intervention on X where we fix its distribution to the one

of X|X2 = 0 and the one of the prediction of the value of Y conditionally to X2 = 0 if we perform an

intervention on X where we fix its distribution to the one of X|X2 = 1, the problematic is different.

From an external point of view, looking at the completion time and success rate, Gaussian copulae

are less data demanding. We generated X2 by randomly re sampling the DNS parameters from our

real dataset. Doing so, we have 80% of the samples where X2 = 0 is observed against 20% where

X2 = 1 is observed.

This second scenario shows the sensitivity of our approach to resource limitation. Even in this

“optimal scenario” where both conditional PDF of X|X2 = 0 and X|X2 = 1 have the same domains,

the shortage of data for the second conditional PDF prevents us from using a model which could be

more accurate (T-copula). This can be seen when comparing the predictions made in this section

with the ones made when we had more data ( Appendix C.3.1) where the T-copula model gave

more accurate predictions.

Appendix C.3.3. Concluding remarks
In this section we presented the optimal case where we have both conditional PDFs having

almost perfectly overlapping domains. We tried to predict interventions where we condition on

one value of the categorical parameter, X2, and intervene on another parameter, X, and fix its

distribution to follow the conditional distribution corresponding to the complementary value of

the categorical parameter. The results of this study represent two important findings:

• Our method works and makes an accurate prediction (error < 3%) when enough data is

present

• The use of T-copulae better captures the multi dimensional PDFs dependences but fails as

soon as the data becomes scarcer, while G-copulae still give an accurate prediction.

Again, these conclusion are made using an artificial dataset (see definition in Appendix C.3)

where we could not faithfully mimic the tail dependencies of the parents of the throughput that
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Table C.6: Effect of varying ΔS on the prediction accuracy for the second artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

ΔS Ê[Y|X2 = 0, do(X ∼ X|X2 = 1)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 96.73 97.12 4.7% 4.3% 195 0 (0%) 5 (2.6%)

40 95.97 96.13 5.5% 5.3% 97 0 (0%) 2 (2.1%)

60 96.39 96.69 5.1% 4.8% 60 0 (0%) 1 (1.7%)

80 95.16 95.87 6.3% 5.6% 48 0 (0%) 1 (2.1%)

100 94.24 95.05 7.2% 6.4% 39 0 (0%) 0 (0.0%)

we observed in our real case scenario nor the variability of the observed values. These choices are

inherent to the design of an artificial dataset and should not be seen as a limitation of the presented

method.

Appendix C.4. Removing samples for X | X2 = 1 outside of the zone of the con-

centration of the distribution fX|X2=0

To estimate the impact of the absence of some values in both domains of the conditional PDFs

of X|X2, we remove some samples from the dataset where X2 = 1. For this second artificial dataset,

we do not remove samples in the domain where the distribution fX|X2=0 takes its biggest values.

Figure C.16 represents the original distributions of X|X2 (our first artificial dataset) and Figure C.17

presents the resulting distributions of X|X2 after removing samples from the distribution of X|X2 =

1 (we remove the samples for X2 = 1 where X ∈ [0, 5] ∪ [15, 20]).

As in Appendix C.3.1 and Appendix C.3.2, we estimate the expected value of Y conditionally

to X2 = 0 when we intervene on X and we fix its distribution to the one of X ∼ X|X2 = 1. We also

estimate the expected value of Y conditionally to X2 = 1 when we intervene on X and we fix its

distribution to the one X ∼ X|X2 = 0

We first estimate the effect of intervening on X to fix its distribution to the one of X ∼ X|X2 =

1. We can see from Table C.6 that the conclusions drawn previously are still valid when we remove

samples from the distribution of X|X2 = 1. We can make the following remarks:

• The precision decreases with the increase of ΔS and the decrease of the number of atomic

interventions,

• The number of failures of the multidimensional PDF modeling using a T-copula is sensibly

similar to the number of failures that were observed for the first dataset.

When looking at the opposite case (conditioning on X2 = 1 and giving to X the distribution of

X ∼ X|X2 = 0) we can observe that the modeling of the conditional PDFs using a T-copula fails

often and prevents the estimation of the post-intervention PDF, see Table C.7. The estimation of

conditional PDF when we use G-copulae gives very good results.
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Table C.7: Effect of varying ΔS on the prediction accuracy for the second artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

ΔS Ê[Y|X2 = 1, do(X ∼ X|X2 = 0)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 176.63 N.A. 0.6% N.A. 40 0 (0%) 23 (57.5%)

40 176.95 N.A. 0.4% N.A. 22 0 (0%) 14 (63.6%)

60 178.21 N.A. 0.3% N.A. 12 0 (0%) 10 (83.3%)

80 179.73 N.A. 1.2% N.A. 10 0 (0%) 9 (90.0%)

100 177.43 N.A. 0.1% N.A. 9 0 (0%) 8 (88.9%)

Appendix C.4.1. Concluding remarks
In this scenario we removed samples from our initial dataset to study the impact of data short-

age on our method precision. In this case, we removed samples from the conditional distribution

X2 = 1 corresponding to x values where the conditional probability distribution fX|X2=0 takes small

values. We predicted the effect on Y |X2 = b when intervening on X|X2 = b and enforcing this

intervention with probability fX|X2=b̄, where b can take the value 0 or 1 and b̄ is b complementary.

The prediction of this intervention consists in i) Predicting the effect, on Y, of the atomic

intervention fY |do(X=x),X2=b ii) Assign to each atomic intervention a probability being fX|X2=b̄.

f (Y |do(X ∼ X|do(X2 = b̄), X2 = b) =

�

X

f (Y |do(X = x), X2 = b) f (X = x|X2 = b̄)dx (C.4)

Therefore, the prediction is more complex in the case where we give to fY |do(X=x),X2=b(y, x) a prob-

ability fX|X2=b̄(x) > 0 but no value is actually observed for X = x|X2 = b.

This appears in the second case where we want to predict the distribution fY |X2=1,do(X∼X|X2=0).

As there are x values for which X|X2 = 1 is not observed, we cannot enforce the conditional

distribution fY |do(X=x)|X2=1(y, x) with the distribution fX|X2=0(x).

Nevertheless, because we removed observation corresponding to x values where fX|X2=0(x)

takes small values, the impossibility to compute the result of Equation (C.4) for some x values

has a relatively small impact on the estimation of the overall post-intervention distribution and our

method keeps performing well.

The next section presents a more complex scenario where we remove samples in intervals

where the PDF of X|X2 = 0 takes important values (values of x where X|X2 = 0 has a high

probability).

Appendix C.5. Removing samples X | X2 = 1 at the zone of the concentration of

the distribution fX|X2=0

We generate a third artificial dataset with a distribution X|X2 as represented in Figure C.18.

For this new dataset, we remove samples from the domain where the distribution fX|X2=0 takes its

biggest values. The results for the two interventions are presented in Tables C.8- C.9 with:

• The prediction of expected value of Y after intervention corresponding to PDF of Y:

fY |X2=0,do(X∼X|X2=1)(y) in Table C.8
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Table C.8: Effect of varying ΔS on the prediction accuracy for the third artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

ΔS Ê[Y|X2 = 0, do(X ∼ X|X2 = 1)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 66.79 80.81 34.2% 20.4% 195 0 (0%) 5 (2.6%)

40 76.15 85.80 25.0% 15.5% 97 0 (0%) 2 (2.1%)

60 67.07 82.14 33.9% 19.1% 60 0 (0%) 1 (1.7%)

80 69.55 83.08 31.5% 18.2% 48 0 (0%) 1 (2.1%)

100 N.A. N.A. N.A. N.A. 39 0 (0%) 0 (0.0%)

Table C.9: Effect of varying ΔS on the prediction accuracy for the third artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

ΔS Ê[Y|X2 = 1, do(X ∼ X|X2 = 0)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 153.68 N.A. 13.5% N.A. 12 0 (0%) 7 (58.3%)

40 154.50 140.18. 13.0% 21.1% 6 0 (0%) 3 (50.0%)

60 157.90 N.A. 11.1% N.A. 5 0 (0%) 3 (60.0%)

80 163.52 N.A. 8.0% N.A. 3 0 (0%) 2 (66.7%)

100 157.25 N.A. 11.5% N.A. 2 0 (0%) 1 (50%)

• Prediction of expected value of Y after intervention corresponding to PDF of Y: fY |X2=1,do(X∼X|X2=0)(y)

in Table C.9

Appendix C.5.1. Concluding remarks
We can observe the accuracy of the prediction of the expected value of Y conditionally to X2

when setting X distribution to the one of X|X2 = 1 is highly impacted by the absence of samples

in the zone where the PDF fX|X2=0 takes important values. The usage of a T-copula for conditional

PDF gives slightly better results than the predictions based on the usage of a Gaussian copula.

However with 20% error rate, we cannot use our method any more.

For the prediction of the expected value of Y conditionally to X2 = 1 when intervening on

X and fixing its distribution to fX|X2=0(x), we penalize the usage of T-copula for modeling con-

ditional PDFs more than the G-copula. Gaussian copulae seem to require less data to estimate a

parameterization offering an acceptable modeling of the dependencies between the marginals of

the multivariate distribution we need to estimate our model.

Appendix C.6. Conclusion

The questions we wanted to answer were:
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• How to choose the copula family that will model the dependencies between the different

marginals ?

• In which proportion the absence of values observed for both conditional distributions im-

pacts the prediction accuracy and how to improve the accuracy in this case ?

• Should we favor the number of atomic predictions from which the final distribution is

estimated or the quality of the atomic intervention predictions by increasing the number of

samples from which these atomic predictions are computed ?

The first question can be answered by “data dictates the choice”. In our case, as we are

working with a limited amount of data, Gaussian copulae are used to capture the dependencies

between the marginals of the multivariate distributions we need to estimate to predict the effect of

interventions on parameters impacted by the DNS parameter.

The absence of values observed for both conditional distributions can be overcome using

Gaussian copulae if we observe enough values in the zones corresponding to high probabilities for

the conditional distributions. T-copulae suffer more from data shortage than G-copula but if the

observations of the conditional distributions are too sparse then both models become inaccurate

and cannot be used.

The number of atomic interventions should be preferred to the number of samples used for

estimating a given intervention but a minimum number of samples should be present (≥ 30).

Given these conclusions, we have defined and parameterized the methods that can be used to

study the impact of DNS on CDN performance.
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(a) First member (b) Second member

(c) Third member (d) Fourth member

(e) Fifth member (f) Sixth member

(g) Seventh member (h) Eighth member

Figure A.11: The eight members of the Markov Equivalence Class corresponding to the set of

independences that were detected from our observations. These graphs were obtained using the

Tetrad software [Spirtes et al., 2001] 18



(a) G (b) GX (c) GX

Figure B.12: Illustration of the different subgraphs GX and GX for a Bayesian network representing

the causal model of a four parameter system {W,X,Y,Z}

X1 X2

X

Y

Figure C.13: Artificial dataset dependencies

Figure C.14: Distribution of the different parameters for both values of X2
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Figure C.15: Causal Model of the first dataset
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Figure C.16: Conditional probability density function of X conditional on X2 in the original dataset
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Figure C.17: Conditional probability density function of X conditional on X2 after removing sam-

ples from X2 = 1 in the domain of X|X2 = 0 where the distribution fX|X2=0 is not taking high values,

second artificial dataset
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Figure C.18: Conditional probability density function of X conditional on X2 after removing sam-

ples from X2 = 1 in the domain of X|X2 = 0 where the distribution fX|X2=0 is concentrated, third

artificial dataset
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