
Towards Designing Cost-Optimal Policies to Utilize IaaS Clouds with Online
Learning

Xiaohu Wu
Aalto University
Espoo, Finland

xiaohu.wu@aalto.fi

Patrick Loiseau
EURECOM

Sophia-Antipolis, France
patrick.loiseau@eurecom.fr

Esa Hyytiä
University of Iceland

Reykjavı́k, Iceland
esa@hi.is

Abstract—Many businesses possess a small infrastructure
that they can use for their computing tasks, but also often
buy extra computing resources from clouds. Cloud vendors
such as Amazon EC2 offer two types of purchase options: on-
demand and spot instances. As tenants have limited budgets to
satisfy their computing needs, it is crucial for them to determine
how to purchase different options and utilize them (in addition
to possible self-owned instances) in a cost-effective manner
while respecting their response-time targets. In this paper, we
propose a framework to design policies to allocate self-owned,
on-demand and spot instances to arriving jobs. In particular,
we propose a near-optimal policy to determine the number of
self-owned instance and an optimal policy to determine the
number of on-demand instances to buy and the number of
spot instances to bid for at each time unit. Our policies rely on
a small number of parameters and we use an online learning
technique to infer their optimal values. Through numerical
simulations, we show the effectiveness of our proposed policies,
in particular that they achieve a cost reduction of up to 62.85%
when spot and on-demand instances are considered and of up
to 44.00% when self-owned instances are considered, compared
to previously proposed or intuitive policies.

I. INTRODUCTION

Infrastructure as a Service (IaaS) holds exciting potential
of elastically scaling users’ computation capacity up and
down to match their time-varying demand. This eliminates
the users’ need of purchasing servers to satisfy their peak
demand, without causing an unacceptable latency. IaaS is
seeing a fast growth and nowadays has become the second-
largest public cloud subsegment [1], [2], accounting for
almost half of all data center infrastructure shipments. Cost
management in IaaS clouds is therefore a premier concern
for users and has received significant attention.

Two common purchase options in the cloud are on-
demand and spot instances. On-demand instances are always
available with a fixed price and tenants1 pay only for the
period in which instances are consumed at an hourly rate.
Furthermore, users can also bid a price for spot instances
and can successfully get them only if their bid is above the
spot price. Spot instances will then run as long as the bid
is above the spot price but they will be terminated if the

1In this paper, we will use ”users” and ”tenants” interchangeably.

spot price becomes higher. Here, spot prices usually vary
unpredictably over time and users will be charged the spot
prices for their use [4]. Compared to on-demand instances,
spot instances can reduce the cost by up to 50-90% [3].

Users purchasing computing instances on the cloud could
have their own instances, referred to as self-owned instances,
which can be used to process jobs but are insufficient at
times (hence the need to purchase extra IaaS instances).
They may also not have any self-owned instances (e.g., in the
case of startups) and therefore need to buy from the cloud
all necessary computing resources. In both cases though,
the fundamental question for users is to determine how to
purchase and utilize different instances from IaaS clouds to
process their jobs in a way that minimizes their cost.

Tenants’ jobs often have constraints that must be satisfied
while trying to minimize cost. In particular, we consider here
the classical constraints of parallelism bounds and deadlines
[5], [6], [7], [8], [9]. The parallelism bound specifies the
maximum number of instances that could be utilized by
a job simultaneously and each job has to be completed
by some deadline to satisfy its response-time requirement.
Subject to the parallelism bound constraint, an arriving job
will be allocated instances of different types (self-owned,
on-demand and spot) and this allocation will be updated
every hour (since billing is done per hour) until the job is
completed. The problem is then to find the allocation that
minimizes cost while ensuring that the job will be completed
by its deadline.
Challenges. In this paper, we make the natural assumption
that self-owned instances are cheaper than spot instances,2

which are themselves cheaper than on-demand instances.
Hence, to be cost-optimal, an allocation policy should al-
locate as many self-owned instances as possible, then spot
instances, then on-demand instances. This is, however, a
difficult task. For instance, a naive policy to achieve a high
utilization of self-owned instances would be, when a job
arrives, to assign as many remaining self-owned instances
as possible to it. However, this policy turns out not to be

2Note that this assumes that the tenant has a sufficiently high load to
justify maintaining the self-owned infrastructure on.

good wrt cost. Indeed, it treats all jobs equally to assign
self-owned instances, whereas a good policy wrt cost needs
instead to assign more self-owned instances to jobs that
will be less able to use spot instances (and hence have
to use the more expensive on-demand instances) at times.
Finding a policy that maximizes the opportunity to utilize
spot instances while achieving a high utilization of self-
owned instances is a challenging problem. Similarly, when
allocating on-demand instances, one also needs to consider
the capability of jobs to utilize spot instances in the future,
in order to avoid that too many on-demand instances are
consumed.
Our Contributions. In this paper, we propose a framework
to design policies to allocate various instances. Based on
the two principles that (i) self-owned instances should be
allocated to maximize their utilization while maximizing
the opportunity to utilize spot instances and (ii) on-demand
instances should be allocated to maximize the opportunity to
utilize spot instances, we propose parametric policies for the
allocation of self-owned, on-demand and spot instances that
achieve near-minimal costs. To cope with the cloud market
dynamic, we use the online learning technique in [6], [7] to
infer the optimal parameters. More specifically:
• We propose a cost-effective policy for the allocation

of self-owned instances that is smarter than the naive
allocation mentioned above and hits a good trade-
off between utilization of self-owned instances and
opportunity of utilization of spot instances, controlled
by a parameter β0. We show in our numerical experi-
ments that this policy improves the cost by up to 44%
compared to the naive policy.

• We propose a cost-optimal policy for the utilization of
on-demand and spot instances, based on a formulation
of the original problem as an integer program to max-
imize the utilization of spot instances. This policy can
be used both when the tenant has self-owned resources
and when he does not. Our simulation results show that
it improves the cost of previous policies in [6], [7] by
up to 62.85%.

The rest of this paper is organized as follows. We intro-
duce the related works in Section II and describe the problem
formally in Section III. In Section IV, we propose scheduling
policies for self-owned, on-demand and spot instances, using
online learning. In Section V, simulations are done to show
the effectiveness of the solutions of this paper. Finally, we
conclude this paper in Section VI.

II. RELATED WORK

In this paper, we use online learning technique to learn the
most-effective parameters for utilizing various instances3.
Jain et al. were the first to consider the application of

3We refer readers to [19] to see how such self-adaptive systems run in
practice.

this approach to the scenario of cloud computing4 [6], [7].
However, they do not consider the problem of how to
optimally utilize the purchase options in IaaS clouds and
self-owned instances are also not taken into account. The
online learning approach is interesting because it does not
impose the restriction of a priori statistical knowledge of
workload, compared to other techniques such as stochastic
programming (see Section IV-D for an introduction of online
learning). However, it can achieve good performances only
if optimal scheduling policies are proposed in the set of
possible policies.

Similar to our paper and [6], [7], executing deadline-
constrained jobs cost-effectively in IaaS clouds is also stud-
ied in [10], [11]. In particular, Zafer et al. characterize the
evolution of spot prices by a Markov model and propose
an optimal bidding strategy to utilize spot instances to
complete a serial or parallel job by some deadline [10].
Yao et al. study the problem of utilizing reserved and on-
demand instances to complete online batch jobs by their
deadlines and formulate it as integer programming problems;
then heuristic algorithms are proposed to give approximate
solutions [11].

There have been substantial works on cost-effective re-
source provisioning in IaaS clouds [12]; in the following,
we introduce some of the typical approaches used in this
problem. There are many works with the assumption of a
priori statistical knowledge of the workload or spot prices
[13], [14], [22] and then several techniques could be applied.
In [13], [14], the techniques of stochastic programming is
applied to achieve the cost-optimal acquisition of reserved
and on-demand instances. In [22], the optimal strategy for
the users to bid for the spot instances are derived, given
a predicted distribution over spot prices. However, when
implementing these techniques, there is a high computation
complexity although the statistical knowledge could be de-
rived by the techniques such as dynamic programming [17].

Wang et al. use the competitive analysis technique to
purchase reserved and on-demand instances without know-
ing the future workload [15], where the Bahncard problem
is applied to propose a deterministic and a randomized
algorithm. In [16], a genetic algorithm is proposed to quickly
approximate the pareto-set of makespan and cost for a bag of
tasks where on-demand and spot instances are considered. In
[17], the technique of Lyapunov optimization is applied and
it’s said to be the first effort on jointly leveraging all three
common IaaS cloud pricing options to comprehensively
reduce the cost of users. The less interesting aspect of
this technique is that a large delay will be caused when
processing jobs; in order to achieve an O(ε) close-to-optimal
performance, the queue size has to be Θ(1/ε) [18].

4The objective of this paper corresponds to a special case of [6], [7]
where the value of each job is larger than the cost of completing it.

III. PROBLEM DESCRIPTION AND MODEL

In this section, we introduce the cloud pricing models,
define the operational space of a user to utilize various
instances, and characterize the objective of this paper.

A. Pricing Models in the Cloud

We first introduce the pricing models in the cloud. The
price of an on-demand instance is charged on an hourly basis
and it is fixed and denoted by p. Even if on-demand instances
are consumed for part of an hour, the tenant will be charged
the fee of the entire hour. Tenants can also bid a price
for spot instances and spot prices are updated at regular
time intervals (e.g., every L = 5 minutes in Amazon) [22].
Spot instances are assigned to a job and continue running
if the spot price is lower than the bid. Since spot prices
usually change unpredictably over time [4], once the spot
price exceeds the bid price of a job, its spot instances will
get lost suddenly and terminated immediately by the cloud.
The tenant will be charged the spot prices for the maximum
integer hours of execution. A partial hour of execution is
not charged in the case where its instances are terminated
by the cloud; in contrast, if spot instances run until a job
is completed and then are terminated by the tenant, for the
partial hour of execution, the tenant will also be charged for
the full hour.

In addition, a user can have its own computing instances,
i.e., self-owned instances. The (averaged) hourly cost of
utilizing self-owned instances is assumed to be p1. We
assume that it is the cheapest to use self-owned instances
so that p1 is without loss of generality assumed to be 0. An
example of self-owned instances is academic private clouds,
which are provided to researchers free of charge.

B. Jobs

The job arrival of a tenant is monitored every time slot of
L minutes (i.e., at the time points when spot prices change)
and time slots are indexed by t = 1, 2, · · · . Each job j has
four characteristics: (i) an arrival slot aj : If job j arrives at
a certain continuous time point in [(t − 1)L, tL), then set
aj to t; (ii) a relative deadline dj ∈ Z+: every job must be
completed at or before time slot aj + dj − 1; (iii) a job size
zj (measured in CPU time slots that need to be utilized);
(iv) a parallelism bound δj : the upper bound on the number
of instances that could be simultaneously utilized by j. The
tenant plans to rent instances in IaaS clouds to process its
jobs and aims to minimize the cost of completing a set of
jobs J (that arrive over a time horizon T) by their deadlines.

C. General Rules for Allocating Resource to Jobs

The pricing models define the rules of allocating instances
to jobs and also the operational space of a user, i.e., (a)
when the resource allocation to jobs is done and updated,
and, (b) how various instances and especially spot instances
are utilized by jobs at every allocation update.

Figure 1. Illustration of the process of allocating resource to j where
δj = 4, dj equals 3 hours, L = 5 minutes and zj = 132: the area
between two red lines illustrates the workload processed after an allocation
update and the height of green (resp. blue) areas denote the number of spot
(resp. on-demand) instances acquired from the cloud.

We first consider the allocation of on-demand and spot
instances alone. Each job j is allocated instances to complete
zj workload by the deadline. To meet the deadline, we
assume that (i) whenever a job j arrives at aj , the allocation
of spot and on-demand instances to it is done immediately.

The following rules are proposed for the case where there
is the flexibility for j to utilize spot instances. Given the
fact that the tenant is charged on hourly boundaries, (ii) the
allocation of on-demand and spot instances to each job j
is updated simultaneously every hour. In the i-th allocation,
the number of on-demand instances allocated to j is denoted
by oij and they will be utilized for the entire hour.

At the i-th allocation of j, we assume that (iii) the tenant
will bid a price bij for a fixed number siij of spot instances.
At the i-th allocation of j, bij together with the spot prices
determines whether j can successfully obtain spot instances
and for how long it can utilize them.

In this paper, we will apply an online learning approach.
We do not assume exact statistical knowledge of spot prices
over time; we only know that spot instances are on average
cheaper than on-demand instances In such context, we
assume that (iv) at every allocation the tenant will bid for
the maximum number of spot instances under the parallelism
constraint, i.e., siij = δj − oij . The crucial question is
therefore how to determine the proportion of on-demand and
spot instances that are acquired from the cloud and allocated
to j.

Before the i-th allocation of j, we denote by zij the
remaining workload of j to be processed, i.e., zj minus the
workload of j that has been processed, where z1j = zj , and
we define the current slackness of j as

sij =
(dj − (i− 1) · Len) · δj

zij
, (1)

where Len = 60
L is the number of slots per hour. Let sj =

s1j . The slackness of a job can be used to measure the time
flexibility that j has to utilize spot instances and the process
of allocating on-demand and spot instances to j is in fact
divided into two phases considering the deadline constraint:

Definition 1. When spot instances are terminated by the
cloud at the end of some slot t′ and are not utilized for an

entire hour at the i-th allocation update of j, we say that:
• j has the flexibility to utilize spot instances at the next

allocation update, if si+1
j ≥ 1;

• j does not have such flexibility at the next allocation
update, otherwise.

We now illustrate Definition 1 by Fig. 1. As illustrated in
Fig. 1, z1j = 132 and, at the 1st allocation update, o1j =
si1j = 2; then z2j = 132−2·12−2·8 = 92. At the 2nd update,
o2j and si2j are still 2 and then z3j = 92− 2 · 12− 2 · 8 = 52.
Further, s3j =

Len·δj
z3j

< 1 and there is no flexibility for j to
utilize unstable spot instances at the third allocation update.
We use ij to index the last allocation update after which
there is no flexibility to utilize spot instances; in Fig. 1,
ij = 2.

When self-owned instances are taken into account, we
assume that (v) the allocation of self-owned instances to a
job can be updated at most once at every allocation update
of that job. We denote by rij the number of self-owned
instances assigned to j at the i-th allocation. In this paper,
oij and siij denotes the numbers of on-demand and spot
instances acquired at the i-th update and will be used to track
the cost of completing j. As we will see in Section IV-B,
the acquired on-demand instances may not be fully utilized
for an entire hour at the ij-th allocation, and, we use oj(t),
sij(t) and rj(t) to denote the numbers of on-demand, spot
and self-owned instances that are actually utilized by j at
every slot t ∈ [aj , aj + dj − 1], where rj(t) = rij for all
t ∈ [aj + (i − 1) · Len, aj + i · Len − 1]. The parallelism
constraint further translates to oij + siij + rij = δj and
oj(t) + sij(t) + rj(t) = δj .

In this paper, we apply the online learning approach and
there is no exact statistical knowledge on the jobs and spot
prices. At every allocation update of j, only the current
characteristics of j (i.e., zij , δj , aj , and dj) and the amount
of available self-owned instances are definitely known for
us to design scheduling policies. As a result, the scheduling
policies can be the following function with a domain Yij×N ,
where Yij is a set of the current characteristics of j and N
is the amount of the current available self-owned instances.

Definition 2. At the i-th allocation of j, the policy is a
function F : Yij ×N → (rij , si

i
j , o

i
j), where oij + siij + rij =

δj; the job j will be allocated rij self-owned instances and
oij on-demand instances, and, bid some price for siij spot
instances.

Furthermore, the value of spot prices is jointly determined
by the arriving jobs of numerous users and the number
of idle servers at a moment, usually varying over time
unpredictably. In this paper, it is assumed that the change of
spot prices over time is independent of the job’s arrival of a
user [10], [22]. At the i-th allocation update of j, when a user
bids some price for siij spot instances, without considering
the case where the spot instances of j is terminated by a

user itself, the expected time for which j could utilize spot
instance is assumed to be β · Len where β ∈ [0, 1].

D. Scheduling Objectives

We refer to the ratio of the total cost of utilizing a certain
type of instances to the total workload processed by this
type of instances as the average unit cost of this type of
instances. As described in Section III-A, we assume that

Assumption 1. The average unit costs of self-owned in-
stances is lower than the average unit cost of spot instances,
which is lower than that of on-demand instances.

Accordingly, to be cost-optimal, we should consider al-
locating various instances to each arriving job in the order
of self-owned, spot and on-demand instances. Further, in
Principles 1 and 2, we give the objectives that should be
achieved when considering allocating each type of instances
to the arriving jobs.

Principle 1. The scheduler should make self-owned in-
stances (i) fully utilized, and (ii) utilized in a way so as to
maximize the opportunity that all jobs have to utilize spot
instances.

Principle 2. After self-owned instances are used, the sched-
uler should utilize on-demand instances in a way so as to
maximize the opportunity that all jobs have to utilize spot
instances.

Principles 1 and 2 are intuitive under Assumption 1. A
more formal analysis of them is relegated to our technical
report [23] due to space limits.

In the subsequent optimization process of this paper, we
consider how to propose policies for various instances so
as to maximize the utilization of self-owned instances and
further the utilization of spot instances. In other words, we
will specify the function F : Yij × N → (rij , si

i
j , o

i
j) in

Definition 2 in a way such that Principles 1 and 2 are well
realized, where only Yij and N are known. Finally, Table I
summarizes the main notation of this paper.

IV. THE DESIGN OF NEAR-OPTIMAL POLICIES

In this section, we propose a theoretical framework to de-
sign (near-)optimal parametric policies to realize Principles 1
and 2.

Facing diverse users, these policies have good adaptability
against the uncertainties of spot prices, jobs’ characteristics,
and the amount of self-owned instances, that is, by applying
the techniques such as online learning, the best configuration
parameters could be inferred for each individual user to
minimize its cost of processing jobs.

A. Self-owned Instances

Upon arrival of a job j, the scheduler first considers the
allocation of self-owned instances to it with the aim to
realize the two goals in Principle 1.

Table I
MAIN NOTATION

Symbol Explanation
L length of a time slot (e.g., 5 minutes)
Len the number of time slots in an hour, i.e., 60

L
J a set of jobs that arrive over time

j and aj a job of J and its arrival time

dj
the relative deadline: j must be completed by a

deadline aj + dj − 1
zj the job size of j, measured in CPU × time slots

δj
the parallelism bound, i.e., the maximum number
of instances that can be simultaneously used by j

sj
the slackness, i.e., dj

zj/δj
where zj/δj denotes the

minimum execution time of j
T the number of time slots, i.e., maxj∈J {aj}

siij , bij , and oij
the number of spot instances bid for, the bid price,
and the number of on-demand instances acquired at

the i-th allocation update of j
rj(t), sij(t)

and oj(t)
the number of self-owned, spot and on-demand

instances utilized by j at a slot t
pij the spot price charged at the i-th allocation of j

zij
the remaining workload of j to be processed at the

i-th allocation update to j

sij
the slackness at the i-th allocation update, i.e.,

(dj − (i− 1) · Len) · δj/zij
p and p1

the price of respectively using an on-demand and
self-owned instance for an hour

R the number of self-owned instances

{β, β0, b}
a tuple of parameters that defines a policy and

determines the allocation of various instances to j
at every allocation

P a set of parameterized policies, each indexed by π
and defined by {β, β0, b}

rj
the number of self-owned instances allocated to a

job j at every t ∈ [aj , aj + dj − 1]

Figure 2. The Challenge in Cost-Effectively Utilizing Self-owned In-
stances.

Challenges. We first show the challenges in cost-effectively
utilizing self-owned instances by an example. Let N(t)
denote the number of self-owned instances that are currently
idle at a slot t; let mt1(t2) = min {N(t1), · · · , N(t2)},
where t1 ≤ t2, and mt1(t2) represents the maximum number
of self-owned instances idle at every slot in [t1, t2]. An
intuitive policy would be, whenever a job j arrives, to
allocate as many self-owned instances to j to make self-
owned instances fully utilized, i.e.,

rj = min{maj (aj + dj − 1), zj/dj}. (2)

However, this intuitive policy may not maximize the oppor-
tunity that all jobs have to utilize spot instances as illustrated

in the following example.
Consider the statitc case illustrated in Fig. 2 where there

are two jobs and a self-owned instance available. These
two jobs have the same arrival time, relative deadline of 2
hours and parallelism bound of 4. The first and second jobs
respectively have a size of 6×Len and 4×Len. Assume that
it is expected that a job can utilize β hour (β ·Len slots) of
spot instances at every allocation update where β = 1

2 . As
illustrated in Fig. 2, the green, blue and yellow areas denote
the workload respectively processed by spot, self-owned and
on-demand instances. In the first allocation, the user has to
purchase two on-demand instances for one hour while it is
not necessary to purchase the more expensive on-demand
instances, as illustrated by the second allocation. One can
observe that the second allocation is also cost-optimal.

To sum up, we want the policy for self-owned instances
to have the following adaptability to realize Principle 1. In
the case where there are limited instances, a cost-effective
policy should have the ability (i) to choose the subset of all
jobs (that are expected to be completed by totally utilizing
spot instances without on-demand instances) such that they
will not be allocated any self-owned instances, and (ii) not
to allocate too many self-owned instances to the rest of jobs
such that it is expected that the job’s remaining workload
either could not be completed or is exactly completed (e.g.,
the right allocation to the first task in Fig. 2) by the deadline
by totally utilizing spot instances. In the case where there
are adequate instances, the policy should have the ability to
ensure that after the allocation of self-owned instances to
each job, it could be completed by the deadline by totally
utilizing spot instances. At the same time, in both cases,
the policy should ensure that self-owned instances are fully
utilized.
Policy Design. In the following, we propose a policy that
has the abilities described above. In the subsequent analysis,
the issue of rounding the allocations of a job to integers
is ignored temporarily for simplicity; in reality, we could
round the allocations up to integers, which does not affect
the related conclusions much as shown by the analysis.

Let κ0 = d djLene − 1,

r′j(β) = δj −
dj · δj − zj

dj − (κ0 + 1) · Len · β
, (3)

and,

r′′j (β) = δj −
dj · δj − zj

(1− β) · κ0 · Len
. (4)

Let rj(β) equal r′j(β) in the case where dj − κ0 · Len ≥
β ·Len and equal r′′j (β) in the case where dj − κ0 ·Len <
β · Len.

Proposition 1. A job can be expected to be completed by
utilizing only spot instances after the allocation of self-
owned instances if and only if rij is set to max {rj(β), 0}.

Proof: We analyze the two cases. The first one is
dj − κ0 · Len ≥ β · Len. In this case, if a job can be
expected to be completed by the deadline by totally utilizing
spot instances after the allocation of self-owned instances,
it could be expected that

rj · dj + (κ0 + 1) · (δj − rj) · Len · β ≥ zj .

This makes us derive that rj ≥ r′j(β). The second case is
dj − κ0 · Len < β · Len. In this case, it is expected that

rj · dj + κ0 · (δj − rj) · Len · β
+ (dj − κ0 · Len) · (δj − rj) ≥ zj .

This makes us derive that rj ≥ r′′j (β). As a summary of our
analysis of both cases, the proposition holds.

As a corollary of Proposition 1, we also clarify that

Proposition 2. Given a job j, if rj ≤ 0, it can be expected
that, without allocation of self-owned instances, j can be
completed by the deadline by utilizing only spot instances.

Based on Proposition 1, upon arrival of a job j, we
propose the following policy for allocating self-owned in-
stances:

rj(β0) = min {max {rj(β0), 0} ,mt(aj + dj − 1)} , (5)

where β0 ∈ [0, 1) is a parameter and rij is a non-increasing
function of β0 since zj/dj − δj ≤ 0.

This policy achieves the more cost-effective resource
allocation as illustrated in the second allocation in Fig. 2
by setting β0 = β. What’s more, the policy defined in (5) is
also adaptive. When a user owns more self-owned instances
(e.g., 4 instances), β0 can be set to be smaller than β (e.g., 0);
then, both jobs will be allocated two self-owned instances.
As a result, self-owned instances are fully utilized and there
is no need purchasing spot or on-demand instances.

Now, we further explain the reason why the policy defined
by (5) could well realize Principle 1, which is also validated
by the simulations.

Given a set of jobs T that arrive over time, let T ′β denote
all jobs j with rj(β) ≤ 0, and T ′′β = T − T ′β . The jobs of
T ′β could be expected to be completed by the deadline by
totally utilizing spot instances even without being allocated
any self-owned instances. In contrast, all jobs of j ∈ T ′′β
are expected to have to utilize some of more expensive on-
demand instances to be completed by the deadlines when
allocated less than rj(β) self-owned instances.

The online learning technique used subsequently in Sec-
tion IV-D has the capacity to learn the most cost-effective
β0. In terms of T , when there are less self-owned instances,
we can set β0 to a value that satisfies the following two
conditions to realize Principle 1: (i) set β0 to a value no
less than β, which leads to that

1) no self-owned instances will be allocated to any job
in T ′β , and,

2) all jobs of T ′′β are allocated less than max{rj(β), 0}
self-owned instances,

and, in the meantime, (ii) control the value of β0 not to be
too large, which can ensure that
• every job of T ′′β is allocated an properly large number

of self-owned instances to make self-owned instances
fully utilized, which realizes one goal of Principle 1.

In the following, we show that the allocation of self-
owned instances to T ′β and T ′′β does not affect the capacity
that each job j ∈ T has to utilize spot instances much.

Even if no self-owned instances is allocated to a job j ∈
T ′β , all its workload could be completed by totally utilizing
spot instances; in this case, if some instances were allocated
to j, less self-owned instances would be available by T ′′β
whose jobs have to utilize some amount of self-owned or
on-demand instances to be completed by the deadlines, so
that, they have to utilize more on-demand instances.

Once a job j ∈ T ′′β is allocated rj self-owned instances,
its remaining workload to be processed could be viewed
as a new job j′ that will processed by utilizing spot and
on-demand instances alone with the same arrival time and
deadline as j but a reduced size zj − rj · dj and parallelism
bound δj − rj . As we will see in Proposition 5, with the
expected optimal strategy to utilize spot and on-demand
instances, the maximum workload of a job that could be
processed by spot instances mainly depends on the product
of its relative deadline and parallelism bound minus its total
workload to be processed. Hence, after the allocation of
self-owned instances to j ∈ T ′′β , its capacity to utilize spot
instances is almost not harmed.

When there are adequate self-owned instances, setting β0
to a value no less than β will lead to a low utilization of
self-owned instances and a waste of them, and, we could set
β0 to a properly small value that is less than β. Then, each
job will consume enough self-owned instances to achieve a
high utilization of self-owned instances, and, the amount of
self-owned instances allocated to each job is also no less
than max{rj(β), 0}, which leads to that it is expected that
the remaining workload of each job is completed by totally
utilizing spot instances. Hence, Principle 2 is also realized.

B. Spot and On-demand Instances

Once a job j is allocated rj self-owned instances at all
t ∈ [aj , aj+dj−1], it can be viewed as a new job where spot
and on-demand instances alone are utilized. So, without loss
of generality, we are to consider the case with on-demand
and spot instances alone to simplify the analysis.

Now, we analyze the expected cost-optimal policy when
there is the flexibility for j to utilize unstable spot instances.
Let κ1 = d t

′−aj+1
Len e, representing the total number of allo-

cation updates at which it has the opportunity to utilize spot
instances. Here, recall that t′ is first given in Definition 1.
After the i-th allocation update of j where 1 ≤ i ≤ κ1,

it is expected that the workloads processed by spot and
on-demand instances are respectively (δj − oij) · Len · β
and oij · Len. As indicated by Definition 1, j has the last
opportunity to utilize unstable spot instances at the κ1-th
allocation update, i.e.,

sκ1
j =

zj −
∑κ1−1
i=1 oij · Len−

∑κ1−1
i=1 (δj − oij) · Len · β

δj(dj − (κ1 − 1) · Len)

≥ 1,

and has no opportunity to utilize spot instances at the (κ1 +
1)-th allocation update, i.e.,

sκ1+1
j =

zj −
∑κ1

i=1 o
i
j · Len−

∑κ1

i=1 (δj − oij) · Len · β
δj · (dj − κ1 · Len)

< 1.

This corresponds to the following relations:
κ1−1∑
i=1

(δj − oij) · Len · (1− β) ≤ dj · δj − zj (6)

κ1∑
i=1

(δj − oij) · Len · (1− β) > dj · δj − zj (7)

In this subsection, our objective is to maximize the total
workload processed by spot instances at the first κ1 alloca-
tions, i.e.,

maximize
κ1∑
i=1

(δj − oij) · Len · β, (8)

subject to the constraints (6) and (7).
Now, we give the optimal solution to (8). Given any

feasible solution of (8), we can increase the value of oκ1
j

to the maximum value δj and this increases our objective
function (8) without leading to the violation of constraints
(6) and (7). Hence, in the optimal solution, the value of
the term δj − oκ1

j is δj . Further, the optimal solution of (8)
is obtained when the term

∑κ1−1
i=1 (δj − oij), i.e., the total

number of spot instances bid for at the first κ1−1 allocation
updates, equals

ν(zj , dj) =

⌊
dj · δj − zj
Len · (1− β)

⌋
. (9)

Let κ2(zj , dj) = bν(zj ,dj)δj
c. We also illustrate the above

optimal solution to (8) by Fig. 3 where the orange and green
areas denote the workload processed respectively by spot
and on-demand instances; in the grey areas, no workload
of j is processed. We assume that β = 1

2 and L = 5;
as a result L = 12. The job j has dj = 42 (3.5 hours),
zj = 122 and δj = 4. From the left to the right, the first
four subfigures illustrate the expected optimal allocation of
spot and on-demand instances. Here, we have ν(zj , dj) = 7
and κ2(zj , dj) = 1. Hence, an optimal allocation of spot and
on-demand instances is as follows. At the first κ2(zj , dj)

allocation updates of j, δj = 4 spot instances are bid
for and the expected execution time of spot instances is
β · Len = 6. At the (κ2(zj , dj) + 1)-th allocation update,
(ν(zj , dj) − δj · κ2(zj , dj)) spot instances are bid for and
one on-demand instance is purchased for an hour. So far,
ν(zj , dj) = 7 spot instances have been bid for. At the
(κ2(zj , dj) + 2)-th allocation update, δj spot instances are
bid for and after the execution of spot instances, j has no
opportunity to utilize spot instances and it turns to totally
utilize on-demand instances as illustrated by the fourth
subfigure.

To better understand the optimality of the above alloca-
tion, in contrast, we also use the last three subfigures to
illustrate an intuitive way to bid for spot instances where δj
spot instances are bid for at every allocation update when j
has the flexibility to utilize spot instances. We should notice
that at the second allocation update, if δj spot instances are
bid for, the expected remaining workload of j after utilizing
spot instances of the second allocation update could not
be completed if j is not allocated any on-demand instance
until at the third allocation update. It is worth noting that
in the optimal allocation, the expected maximum workload
processed by spot instances is (ν(zj , dj)+δj)·Len·β; given
the value of β, it only depends on the job’s characteristics
of δj and δj · dj − zj .

Finally, once we obtain the optimal solution to (8), as
illustrated by Fig. 3, we can conclude that

Proposition 3. To maximize the total workload processed by
spot instances, an expected optimal strategy is to (i) bid for
δj spot instances at the first κ2(zj , dj) allocation updates,
and, (ii.a) in the case where κ2(zj , dj) · δj = ν(zj , dj),
• bid for δj spot instances at the (κ2(zj , dj) + 1)-th

allocation update where κ1 = κ2(zj , dj) + 1,
(ii.b) in the case where κ2(zj , dj) · δj < ν(zj , dj),
• bid for ν(zj , dj)− κ2(zj , dj) · δj spot instances at the

(κ2(zj , dj)+1)-th allocation update and bid for δj spot
instances at the (κ2(zj , dj) + 2)-th allocation update
where κ1 = κ2(zj , dj) + 2.

Based on Proposition 3, we propose Algorithm 1 to
dynamically determine how many on-demand and spot in-
stances are allocated to j at each of its allocation updates in
the case where j has the flexibility to utilize spot instances.

In the following, we analyze the optimal utilization of on-
demand instances in the case where a job j has no flexibility
to utilize spot instances. Let κ = baj+dj−1−t

′

Len c, denoting the
maximum integer multiple of an hour (containing Len slots)
in [t′ + 1, aj + dj − 1], and t′′ = aj + dj − κ · Len where
0 < t′′ − 1 − t′ < Len. Given the fact that on-demand
instances are charged on an hourly basis, we conclude that

Proposition 4. Once spot instances are terminated by the
cloud at the ij-th allocation, in the case where j has no flex-
ibility to utilize spot instances at the next allocation update,

Figure 3. From the left to the right, the first four figures (top) denote the optimal allocation of spot instances; in comparison, the last three figures (bottom)
denote the allocation of spot instances where δj spot instances are bid for at every allocation update when j has the flexibility to utilize spot instances.

Algorithm 1: Proportion(j, β, b)

/* At the current allocation update of j, the

remaining workload of j to be processed

could be viewed as a new job with the

arrival time t, workload z′j, parallelism

bound δj, and relative deadline aj + dj − t */

1 if κ2(z′j , aj + dj − t) ≥ 1 then
2 siij ← δj , oij ← 0;

3 if κ2(z′j , aj + dj − t) = 0 ∧ ν(zj , aj + dj − t) > 0 then
4 siij ← ν(zj , aj + dj − t), oij ← δj − siij ;
5 if ν(zj , aj + dj − t) = 0 then
6 siij ← δj , oij ← 0;

7 bij ← b;
8 at the i-th allocation update, bid a price bij for siij spot

instances;

the cost-optimal strategy to utilize on-demand instances is
to

• acquire δj on-demand instances to be utilized at every
slot t ∈ [t′′, aj + dj − 1];

• acquire o more on-demand instances to be utilized at
every t ∈ [t′ + 1, t′′ − 1], where o = (z

ij+1
j − κ · δj ·

Len)/(t′′ − t′).

Proof: Due to the limitation of pages, we refer readers
to [23] for the detailed proof.

To sum up, in Propositions 3 and 4, we have given the
expected optimal strategy for numerous jobs to utilize spot
and on-demand instances. Finally, we give the maximum
workload processed by spot instances using the expected
optimal policy in Proposition 3, which is also given by the
optimal solution to (8):

Proposition 5. Given a job j, the expected maximum
workload processed by spot instances is

(ν(zj , dj) + δj) · Len · β.

Proposition 5 shows that, the expected maximum work-
load of a job processed by spot instances mainly depends
on the product of its relative deadline and parallelism bound

Algorithm 2: Dynalloc
Input : at a slot t, a job j to be processed with the

characteristics {aj , dj , z′j , δj} and a
parameterized policy {β0, β, b}

1 if aj = t then
// upon arrival of j, allocate self-owned

instances to it

2 set the value of rj using Equation (5);
3 for t← aj to aj + dj − 1 do
4 rj(t)← rj ;

5 i←
⌊
t−aj
Len

⌋
+ 1;

6 if t−aj
Len = i− 1 then
// at the i-th allocation update of j, j has

the flexibility for spot instances

7 call Algorithm 1;

8 if the spot instances of j are terminated at t− 1 then
9 if (δj−rj)·(dj−Len·i)

z′j
< 1 then

// j has no flexibility to utilize spot

instances at the next allocation

update

10 apply the strategy in Proposition 4 here;
// otherwise, j still has the flexibility at

the next allocation update where z′j = zi+1
j

minus its total workload to be processed (i.e., ν(zj , dj)
defined in (9)), given the value of β. This also helps us
understand that, after the allocation of self-owned instances,
our policy in Section IV-A will not much harm the capacity
that the remaining workload of a job has to utilize spot
instances, in order to be completed by the deadline.

C. Scheduling Framework

As described above, a general policy is defined by a tuple
{β0, β, b} and determines the amounts of self-owned, spot,
and, on-demand instances allocated to a job, and, the bid
price, also specifying the function F in Definition 2.

The complete framework used to determine the allocation
of self-owned, spot and on-demand instances to every such
j at t is presented as Algorithm 2 where z′j denotes the

remaining workload of j to be processed after deducting
its current allocation from the total workload of j. At
the beginning of every slot t, for every job j that is not
completed at this moment, it may arrive at or before the
slot t, and, the algorithm will check the state of j to decide
how to allocate computing instances to it.

D. The Application of Online Learning

In this subsection, we show how online learning is applied
to learn the most cost-effective parameters {β0, β, b}. The
online learning algorithm that we adopt is the one in [6], [7],
presented as Algorithm 3, and is also a form of the classic
weighted majority algorithm.

It runs as follows. There are a set of jobs J that arrive
over time and a set of scheduling policies P each specified
by {β0, β, b} in Section IV-C. Let d = maxj∈J {dj}, i.e., the
maximum relative deadline of all jobs. Let Jt ⊆ J denote
all jobs, each of which j arrives at the time slot t, i.e., aj = t.
There is also an initial distribution over n policies, e.g., a
discrete uniform distribution {1/n, · · · , 1/n}.

Whenever a job j ∈ Jt arrives, the algorithm randomly
picks a policy from P according to the distribution and bases
the allocation of various instances to j on that policy. In the
meantime, when t > d, if Jt−d 6= ∅, since the history of spot
prices in the time interval [aj − d, aj − 1] has been known,
we are enabled to compute the cost of each policy on a
job in Jt−d. Subsequently, the weight of each policy (i.e.,
its probability) are updated so that the lower-cost (higher-
cost) polices of this job are re-assigned the enlarged (resp.
reduced) weights. As more and more jobs are processed and
the above process repeats, the most cost-effective policies
of P will be identified gradually, i.e., the ones with the
highest weights, well realizing Principles 1 and 2 and finally
minimizing the total cost of completing all jobs.

As modeled in Section III, the cost of completing a job is
from the use of spot and on-demand instances alone and is
defined as their cost. For each job j ∈ J , let πj denote the
policy selected by Algorithm 2 under which j is completed.
Denote by cj(π) the cost of completing a job j under some
policy π ∈ P . Let N ′ = | ∪Tt=d+1 Jt|, i.e., the number of
all jobs that arrive in [d + 1, T], and, as proved in [7], we
have that

Proposition 6. For all δ ∈ (0, 1), it holds with a probability
at least 1− δ over the random of online learning that

maxπ∈P

{∑
t∈∪Tt=d+1Jt

cj(πj)−cj(π)
N ′

}
≤ 9
√

2d log (n/δ)
N ′ .

Proposition 6 says that, as an online learning algorithm
runs, the actual total cost of completing all jobs is close to
the cost of completing all jobs under a policy π∗ ∈ P that
generates the lowest total cost. Recall that a policy is defined
by a tuple of parameters from P .

Algorithm 3: OptiLearning
Input : a set P of n policies, each π being

parameterized so that π ∈ {1, 2, · · · , n}; the
set Jt of jobs that arrive at t;

1 initialize the weight vector of policies of dimension n:
w1 = {w1,1, · · · , w1,n} = {1/n, · · · , 1/n};

2 for t← 1 to T do
3 if Jt 6= ∅ then
4 for each j ∈ Jt, pick a policy π with a

probability wj,π , being applied to j;

5 if t ≤ d then
6 wj+1 ← wj ;

7 else
8 while Jt−d 6= ∅ do
9 ηt ←

√
2 logn
d(t−d) ;

10 get a job j from Jt−d;
11 for π ← 1 to n do
12 w′j+1,π ← wj,π exp−ηjcj(π);

13 for π ← 1 to n do
14 wj+1,π ←

w′
j+1,π∑n

i=1 w
′
j+1,i

;

15 Jt−d ← Jt−d − {j};

V. EVALUATION

The main aim of our evaluations is to show the effective-
ness of the proposed policies of this paper.

A. Simulation Setups

The on-demand price is p = 0.25 per hour. We set L
to 5 (minutes) and all the jobs in the experiments have a
parallelism bound of 20. Following [20], [21], we generate
the jobs as follows. The job’s arrival is generated according
to a poisson distribution with a mean of 1. The size zj of
every job j is set to 12×20×x where x follows a bounded
Pareto distribution with a shape parameter ε = 1

1.01 , a scale
parameter σ = 1

6.06 and a location parameter µ = 1
6 ; the

maximum and minimum value of x is set to 0.5 and 10. The
job’s relative deadline is generated as x · zj/δj , where x is
uniformly distributed over [1, x0]. x represents the slackness
of a job and, as shown by our analysis and especially by
Propositions 1 and 5, is a main factor that determines the
performance. Spot prices are updated every time slot and
their values can follow an exponential distribution where its
mean is set to 1.1 [22].

As shown in Section IV, the policies are defined by the
parameters β, β0 and b. Both β and β1 are chosen from
{ i12 |0 ≤ i ≤ 11} ∪ {0.9999}. The bid price b is chosen
in {bi = 0.1 + 0.03 · (i − 1)|1 ≤ i ≤ 7}. In addition,
in [6], [7], the algorithm will randomly select a parameter

θ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for ev-
ery job j; θ · δj spot instances and (1 − θ) · δj on-demand
instances are acquired from the cloud for processing j. The
main performance metric used to evaluate the policies of
this paper is:
• the average unit cost of each policy, i.e., the total cost

of utilizing instances to the total workload processed
by them when this policy is applied to processed jobs,
denoted by α.

B. Results for the Optimal Cases

In this subsection, we evaluate two types of jobs respec-
tively with a small x0 = 3 and a large x0 = 13. This leads
to two types of jobs with an expected slackness of 2 and 7
respectively.

When a user possesses x1 self-owned instances, under the
x2-th type of jobs, we use αx1,x2

(resp. α′x1,x2
) to denote

the minimum of the average unit costs of our policies (resp.
the policies in [6], [7] and defined by (2)), where x2 = 1
or 2. In this subsection, we mainly compute ρx1,x2 = 1 −
αx1,x2

/α′x1,x2
, that represents how much the performance

of the policies defined in [6], [7] or by (2) is improved by
when replaced by our policies.

In addition, we also show how the parameters such as
bid prices and the number of self-owned instances are
determining the best β and β0 that lead to the minimum cost
of completing all jobs, coherent with our related analysis in
Section IV.
Experiment 1. This experiment aims to evaluate the proposed
policies in Algorithm 1 and Proposition 4 for spot and on-
demand instances without considering self-owned instances.

The simulation results are illustrated in Fig. 4. The green
(resp. magenta) stars and circles respectively represent the
average unit costs of our policies and the policies in [6], [7]
under the first (resp. second) type of jobs. In terms of the
best performance of policies, Table II shows a noticeable
cost reduction when replacing the policies in [6], [7] with
our policies, up to 62.85%.

As far as the policies proposed in this paper are concerned,
starting from the first policy in Fig. 4, every 13 policies are
divided into the same group where the i-th group uses the bid
price bi and bi < bi+1 for all 1 ≤ i ≤ 6. In the same group,
the parameter β in the 1st, 2nd, · · · , and 13th policies are
successively set to 0

12 , 1
12 , · · · , 11

12 , 0.9999. Theoretically,
as analyzed in Proposition 3, the expected time β · Len,
for which a job could utilize spot instances at each of its
allocation updates, determines the cost-optimal policy and,
in turn, is determined by the bid price. Each group of policies
uses the same bid price and the minimum average unit cost
is achieved when β is set to the right value.

As a result, under different types of jobs, in each group,
the policies that achieve the minimum average unit cost
has the same value of β. Furthermore, in a group that
uses a higher bid price, a larger β is expected when the

ρ0,1 ρ0,3
52.70% 62.85%

Table II
PERFORMANCE IMPROVEMENTS

minimum average unit cost is achieved. In the simulation
results illustrated in Fig. 4, for each group of policies, we use
the red circle to mark the policy that generates the minimum
average unit cost. The simulation results are coherent with
our theoretical analysis.

0 7 13 21 26 35 39 48 52 6265 7578 91
Policy No.

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

 U
ni

t C
os

t

Figure 4. The average unit cost of each policy.

Experiment 2. This experiment aims to evaluate the proposed
policy for self-owned instances.

For each group of 13 policies, the minimum average unit
cost is also achieved by the same policy. Since the right value
for β is determined by the bid price as shown in our analysis
in Section IV-B and simulation results, we can compute the
optimal β∗ in advance and there is finally a total of 7 policies
with different bid prices.

As a result, with different bid prices and β0, 91 of our
policies defined by (5) and 7 policies defined by (2) are to
be evaluated for comparison. We take the simulations under
the first and second type of jobs respectively with 200, 400,
600 and 800 self-owned instances and Table III also shows a
noticeable cost reduction when replacing the policies defined
by (2) with our policies, up to 44.00%.

We also illustrate the average unit costs of policies under
the first type of jobs in Fig. 5 (left) and the correspond-
ing utilizations of self-owned instances in Fig. 5 (right)
where the magenta, blue, red and green stars represent the
simulation results for the cases respectively with 200, 400,
600, and 800 self-owned instances. As far as the policies
proposed in this paper are concerned, starting from the first
policy in Fig. 5 (left), every 13 policies are divided into the
same group where the i-th group uses the bid price bi and
bi < bi+1 for all 1 ≤ i ≤ 6. In the same group, the parameter
β0 in the 1st, 2nd, · · · , and 13th policies are successively
set to 0

12 , 1
12 , · · · , 11

12 , 0.9999, which is also the case of the
simulation results in Fig. 5 (right).

From Fig. 5 (left), we can observe that, under the same
bid price, the minimum average unit cost is achieved with

0 13 26 39 52 65 78 91
Policy No.

0.02

0.06

0.1

0.14

0.18
Av

er
ag

e
Un

it
Co

st

1 3 5 7
Policy No.

0.79

0.84

0.89

0.94

0.99

U
til

iz
at

io
n

Figure 5. The average unit cost of each policy and the utilization of self-owned instances under different β0.

ρ200,x2 ρ400,x2 ρ600,x2 ρ800,x2
x2 = 1 18.65% 28.01% 34.87% 31.68%
x2 = 3 36.22% 44.00% 38.22% 20.28%

Table III
PERFORMANCE IMPROVEMENT TO SELF-OWNED INSTANCES

a smaller β0 if there are more self-owned instances. This is
due to that more self-owned instances need to be consumed
by the arriving jobs. A larger bid price will lead to a larger
time for which a job could utilize spot instances at each
of its allocation updates. Given the number of self-owned
instances, with a larger bid price, the minimum average unit
cost is achieved when β0 is set to a larger value. This is
coherent with our analysis in Section IV-A when we explain
the reason why the policy defined by (5) could better realize
Principle 1, compared with the intuitive policy defined by
(2).

From Fig. 5 (right), the utilization of self-owned instances
under the policy defined by (2) is a little higher than
the utilization of the best policy of ours under which the
minimum average unit cost is achieved. Even so, our best
policy can achieve a markedly reduction in the cost of
completing all jobs compared with the policy of (2), as
shown in Table III. Given a set of jobs that arrive over time,
a higher utilization of self-owned instances means more
workload of jobs processed by them and less workload that
remains to be processed by spot and on-demand instances.
Even if more workload of jobs is processed by self-owned
instances under the policy of (2), our policy can reduce the
average unit cost of completing all jobs by up to 44.00%,
as shown by Table III. Such cost reduction shows that our
policy could greatly maximize the capacity that all jobs
have to utilizing cheaper spot instances, realizing Principle 1
much better.

C. Results for the Online Learning Case

In this subsection, we show the cost of completing all jobs
when online learning is applied.

We generate the third types of jobs in the same way as the

ρ0 ρ200 ρ400 ρ600 ρ800
59.56% 62.34% 56.04% 61.60% 61.66%

Table IV
PERFORMANCE IMPROVEMENT TO SELF-OWNED INSTANCES

first and second types except that x0 is set to 5. When only
on-demand and spot instances are considered, the average
unit costs of our policies (resp. the policies of [6], [7]) under
the third type of jobs are also illustrated in Fig. 4 with blue
stars (circles). Here, like the case in Experiment 1 where the
first and second types of jobs are considered, in each group
of 13 policies that use the same bid price, the minimum
average unit cost under the third type of jobs is achieved by
the same policy.

As discussed in Experiments 1 and 2, in terms of the
policies proposed in this paper, there are a total of 7
policies to be evaluated when only on-demand and spot
instances are considered and a total of 91 policies when self-
owned instances are also taken into account. Then, we run
Algorithm 3 over about 30000 jobs respectively in the case
where a user possesses 0, 200, 400, 600 and 800 computing
instances.

When there are x1 self-owned instances, under the third
type of jobs, we use αx1 (resp. α′x1

) to denote the cost of
completing all jobs with our policies (resp. the policies in
[6], [7] and defined by (2)). We define ρx1

= 1− αx1
/α′x1

,
and, ρx1

represents how much the performance of the
policies in [6], [7] and defined by (2) is improved by when
replaced by our policies. The simulation results are given in
Table IV and show that the proposed policies could reduce
the cost noticeably, compared with the ones defined by [6],
[7] and (2).

VI. CONCLUDING REMARK

Utilizing IaaS clouds cost-effectively is an important
concern for all users. In this paper, we consider the problem
of how to utilize different purchase options including spot
and on-demand instances, in addition to possibly existing
self-owned instances, to minimize the cost of processing all

incoming jobs while respecting their response-time targets.
Driven by the goal of maximizing the utilization of self-
owned instances while optimizing the possibility of utilizing
spot instances, we propose policies for the allocation of
these three types of instances that achieve small costs. These
policies use online learning to infer the optimal values of
their parameters. Through numerical simulations, we show
the effectiveness of our proposed policies, in particular that
they achieve a cost reduction of up to 62.85% when spot and
on-demand instances are considered and of up to 44.00%
when self-owned instances are considered.

Note that, in our paper, we have not considered the
possibility that if a job allocated to a spot instance finishes
before the end of the hour, the spot instance could be re-
allocated to another job for the rest of the hour rather than
being terminated by the tenant. That could possibly reduce
the cost further although it would significantly complicate
the allocation.

ACKNOWLEDGMENT

Part of the author Xiaohu Wu’s work was done when he
was with Eurecom, France. Esa Hyytia’s work and a part of
Xiaohu’s work were supported by the Academy of Finland
in the FQ4BD project (grant no. 296206). Patrick Loiseau
acknowledges support from the Alexander von Humboldt
Foundation.

REFERENCES

[1] ”Cisco Maintains Lead in Public Cloud Infrastructure while HP
Leads in Private.” https://www.srgresearch.com/articles/cisco-
maintains-lead-public-cloud-infrastructure-while-hp-leads-priv
ate.

[2] ”Sizing the Public Cloud Computing Market.” http://software
strategiesblog.com/2011/06/01/sizing-the-public-cloud/.

[3] Featured AWS case study. https://aws.amazon.com/ec2/purcha
sing-options/.

[4] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster,
Dan Tsafrir. ”Deconstructing Amazon EC2 Spot Instance Pric-
ing.” ACM Transactions on Economics and Computation, 2013.

[5] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric
Boutin, and Rodrigo Fonseca. ”Jockey: Guaranteed Job La-
tency in Data Parallel Clusters.” In ACM EuroSys, 2012.

[6] Navendu Jain, Ishai Menache, Ohad Shamir. ”Allocation of
Computational Resources with Policy Selection.” U.S. Patent
20,130,246,208, Issued September 19, 2013.

[7] Ishai Menache, Ohad Shamir, Navendu Jain. On-demand, Spot,
or Both: Dynamic Resource Allocation for Executing Batch
Jobs in the Cloud. In USENIX ICAC, 2014.

[8] Navendu Jain, Ishai Menache, Joseph Naor, and Jonathan
Yaniv. ”Near-Optimal Scheduling Mechanisms for Deadline-
Sensitive Jobs in Large Computing Clusters.” ACM Transac-
tions on Parallel Computing, 2015.

[9] Xiaohu Wu, and Patrick Loiseau. ”Algorithms for Scheduling
Deadline-Sensitive Malleable Tasks.” In IEEE Allerton, 2015.

[10] Murtaza Zafer, Yang Song, and Kang-Won Lee. ”Optimal
Bids for Spot VMs in a Cloud for Deadline Constrained Jobs.”
In IEEE CLOUD, 2012.

[11] Min Yao, Peng Zhang, Yin Li, Jie Hu, Chuang Lin, and
Xiang-Yang Li. ”Cutting Your Cloud Computing Cost for
Deadline-Constrained Batch Jobs.” In IEEE ICWS, 2014.

[12] Sunilkumar S. Manvi and Gopal Krishna Shyam. ”Resource
Management for Infrastructure as a Service (IaaS) in Cloud
Computing: A Survey.” Journal of Network and Computer
Applications (Elsevier), 2014.

[13] Yu-Ju Hong, Jiachen Xue, and Mithuna Thottethodi. ”Dy-
namic Server Provisioning to Minimize Cost in an IaaS Cloud.”
In ACM SIGMETRICS, 2011.

[14] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. ”Opti-
mization of Resource Provisioning Cost in Cloud Computing.”
IEEE Transactions on Services Computing, 2012.

[15] Wei Wang, Baochun Li, and Ben Liang. ”Optimal Online
Multi-Instance Acquisition in IaaS Clouds.” IEEE Transactions
on Parallel and Distributed Systems, 2015.

[16] Alexandra Vintila, Ana-Maria Oprescu, and Thilo Kielmann.
”Fast (Re-) Configuration of Mixed On-demand and Spot
Instance Pools for High-Throughput Computing.” In ACM
Workshop on Optimization Techniques for Resources Manage-
ment in Clouds, 2013.

[17] Shengkai Shi, Chuan Wu, and Zongpeng Li. ”Cost-
Minimizing Online VM Purchasing for Application Service
Providers with Arbitrary Demands.” In IEEE CLOUD, 2015.

[18] Longbo Huang, Xin Liu, and Xiaohong Hao. ”The Power of
Online Learning in Stochastic Network Optimization.” In ACM
SIGMETRICS, 2014.

[19] Nikolaus Huber, Jurgen Walter, Manuel Bahr, and Samuel
Kounev. ”Model-Based Autonomic and Performance-Aware
System Adaptation in Heterogeneous Resource Environments:
A Case Study.” In IEEE ICCAC, 2015.

[20] Junliang Chen, Chen Wang, Bing Bing Zhou, Lei Sun, Young
Choon Lee, and Albert Y. Zomaya. ”Tradeoffs Between Profit
and Customer Satisfaction for Service Provisioning in the
Cloud.” In ACM HPDC, 2011.

[21] Liang Zheng, Carlee Joe-Wong, Christopher G. Brinton, Chee
Wei Tan, Sangtae Ha, and Mung Chiang. ”On the Viability of a
Cloud Virtual Service Provider.” In ACM SIGMETRICS, 2016.

[22] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang,
and Xinyu Wang. ”How to Bid the Cloud.” In ACM SIG-
COMM, 2015.

[23] Xiaohu Wu, Patrick Loiseau, and Esa Hyytiä. ”Towards
Designing Cost-Optimal Policies to Utilize IaaS Clouds under
Online Learning.” arXiv:1607.05178v5 (Preprint), 2017.

