
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Towards Designing Cost-Optimal Policies to
Utilize IaaS Clouds with Online Learning

Xiaohu Wu, Patrick Loiseau, and Esa Hyytiä

Abstract—Many businesses possess a small infrastructure that they can use for their computing tasks, but also often buy extra
computing resources from clouds. Cloud vendors such as Amazon EC2 offer two types of purchase options: on-demand and spot
instances. As tenants have limited budgets to satisfy their computing needs, it is crucial for them to determine how to purchase different
options and utilize them (in addition to possible self-owned instances) in a cost-effective manner while respecting their response-time
targets. In this paper, we propose a framework to design policies to allocate self-owned, on-demand and spot instances to arriving jobs.
In particular, we propose a near-optimal policy to determine the number of self-owned instances and an optimal policy to determine the
number of on-demand instances to buy and the number of spot instances to bid for at each time unit. Our policies rely on a small
number of parameters and we use an online learning technique to infer their optimal values. Through numerical simulations, we show
the effectiveness of our proposed policies, in particular that they achieve a cost reduction of up to 64.51% when spot and on-demand
instances are considered and of up to 43.74% when self-owned instances are considered, compared to previously proposed or intuitive
policies.

Index Terms—On-demand instances, spot instances, cost efficiency, online learning.

F

1 INTRODUCTION

Infrastructure as a Service (IaaS) holds exciting potential
of elastically scaling users’ computation capacity up and down
to match their time-varying demand. This eliminates the users’
need of purchasing servers to satisfy their peak demand, without
causing an unacceptable latency. The global cloud IaaS market
grew to $34.6 billion in 2017, and is projected to increase to
$71.6 billion in 2020 [1]. Main IaaS service providers include
Amazon, Microsoft, Google, etc. Amazon is the most popular one
and represents 51.8% of the global market share in 2017; here, two
typical purchase options are on-demand and spot instances (i.e.,
virtual machines). Recently, the issue of cost-effectively utilizing
spot and on-demand instances has received significant attention
[2].

On-demand instances are always available at a fixed price and
tenants1 pay only for the period in which instances are consumed
at an hourly rate. Users can also bid a price for spot instances
and successfully get them only if their bid is above the spot price.
However, spot instances will get lost once the spot price becomes
higher than their bid. Here, spot prices usually vary unpredictably
over time and users will be charged the spot prices for their use.
Compared to on-demand instances, spot instances can reduce the
cost by up to 50-90% [3]. Users that purchase cloud instances may
also have their own instances, referred to as self-owned instances,
which can be used to process jobs but are insufficient at times
(hence the need to purchase extra IaaS instances). They may also

• Xiaohu Wu is with Fondazione Bruno Kessler, Trento, Italy. E-mail:
xiaohuwu@fbk.eu

• Patrick Loiseau is with Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,
LIG, France and MPI-SWS, Germany. E-mail: patrick.loiseau@inria.fr

• Esa Hyytiä is with University of Iceland, Reykjavı́k, Iceland. E-mail:
esa@hi.is

Manuscript received April 19, 2005; revised August 26, 2015.
1. In this paper, we use ”users” and ”tenants” interchangeably.

not have any self-owned instances (e.g., in the case of startups)
and therefore need to buy from the cloud all necessary computing
resources.

Tenants’ jobs arrive over time. We focus on processing a type
of embarrassingly parallel workloads/jobs [5], [6]. Each job can be
separated into a large number of small tasks. These tasks are inde-
pendent and can be executed on multiple machines simultaneously.
Completing a job means completing all its tasks and the maximum
completion time of all tasks is the job’s completion time. This
type of jobs accounts for a significant proportion in cloud market;
examples include 3D video rendering, BLAST searches, data
cleaning and pre-processing. Such job is also called malleable
job [9], [10], [11] and it has a parallelism bound specifying the
maximum number of instances that it can utilize simultaneously.
Each job also has constraint on timing, i.e., a deadline by which to
complete all tasks of a job. Subject to the parallelism constraint,
an arriving job will be allocated instances of different types (self-
owned, on-demand and spot) and the allocation can be updated at
most once every hour (since billing is done per hour). Our problem
is then to find an allocation that minimizes cost while satisfying
the deadline constraint.
Challenges. In this paper, we make a natural assumption that
the costs of utilizing self-owned, spot and on-demand instances
are increasing. To be cost-optimal, an allocation policy should
sequentially maximize the utilization of self-owned and then spot
instances. This is, however, a difficult task. For instance, a naive
policy would be, whenever a job arrives, to assign as many
remaining self-owned instances as possible to it. However, this
policy turns out not to be good wrt cost. Indeed, it ignores the
difference of jobs and treats all jobs equally when assigning
instances, whereas we find that a good policy wrt cost needs
instead to determine the allocations of self-owned instances to
jobs according to their capabilities of utilizing spot instances. In
particular, subject to the parallelism constraint of a job j, the
availability of spot instances varies in the period between its arrival



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

and deadline and determines the maximum workload of j that
could be processed by spot instances. If the workload of j is large,
j has to utilize some stable self-owned or on-demand instances
in order to finish itself by the deadline; such job is said to have
poor capability of utilizing spot instances alone to finish itself by
its deadline (also called poor jobs). If the workload of j is small,
finishing j by its deadline only needs to utilize spot instance alone,
with no need of self-owned or on-demand instances; such job is
said to have strong such capability (called rich job).

When self-owned instances are inadequate, actively assign
self-owned instances to poor jobs and assign nothing to rich jobs;
otherwise, such poor jobs will have to consume costly on-demand
instances, and it also causes a waste of other rich jobs’ capabilities
to utilize spot instances. When self-owned instances are adequate,
assign a proper amount of self-owned instances to every job with
either poor or strong capability such that after the allocations all
jobs are expected to be completed by utilizing spot instances alone,
eliminating the need of consuming costly on-demand instances.
After allocating self-owned instances, the remaining question is to
identify a job’s capacity to utilize spot instances for processing its
workload, and propose an expected optimal policy to achieve the
capacities of jobs, further escaping unnecessary consumption of
on-demand instances.
Our Contributions. In this paper, we propose a framework to
design policies to allocate various instances. Based on the two
principles that (i) self-owned instances should be allocated to
maximize their utilization while maximizing the opportunity of all
jobs utilizing spot instances and (ii) on-demand instances should
be allocated to maximize the opportunity to utilize spot instances,
we propose parametric policies for the allocation of self-owned,
on-demand and spot instances that achieve near-minimal costs. To
cope with the cloud market dynamic and the uncertainty of job’s
characteristics, we use the online learning technique in [8] to infer
the optimal parameters. More specifically:

• We propose a cost-effective policy for allocating self-
owned instances that is smarter than the naive allocation
mentioned above and hits a good trade-off between the
utilization of self-owned instances and the opportunity
of utilizing spot instances. We show in our numerical
experiments that this policy improves the cost by up to
43.74% compared to the naive policy.

• We propose a cost-optimal policy for the utilization of on-
demand and spot instances, based on a formulation of the
original problem as an integer program to maximize the
utilization of spot instances. This policy can be used both
when the tenant has self-owned resources and when he
does not. Our simulation results show that it improves the
cost of previous policies in [8] by up to 64.51%.

We note that the paper [8] also appears in [7] as a U.S. Patent.
The rest of this paper is organized as follows. We introduce

the related works in Section 2 and describe the problem formally
in Section 3. In Section 4, we propose scheduling policies for self-
owned, on-demand and spot instances. In Section 5, simulations
are done to show the effectiveness of the solutions of this paper.
Finally, we conclude this paper in Section 6. The proofs of some
propositions are omitted and can be found in the supplementary
material, available online with this paper and in the item ”Media”
at IEEE Xplore Digital Library. We note that a part of results of
this paper also appeared at the 2017 IEEE International Confer-
ence on Cloud and Autonomic Computing [25].

2 RELATED WORK

In this paper, we use the online learning technique to learn the
most effective parametric policy for utilizing various instances.
Jain et al. were the first to consider the application of this
approach to the scenario of cloud computing2 [8]. However, they
do not consider the problem of how to optimally utilize the
purchase options in IaaS clouds and self-owned instances are also
not taken into account. This approach is interesting because it
does not impose the restriction of a priori statistical knowledge
of workload, compared to other techniques such as stochastic
programming. However, it can achieve good performances only
if the potentially optimal scheduling policies are identified among
all possible policies. Similar to our paper and [8], cost-effectively
executing deadline-constrained jobs in IaaS clouds is also studied
in [13], [14]. In particular, Zafer et al. characterize the evolution
of spot prices by a Markov model and propose an optimal bidding
strategy for utilizing spot instances to complete a serial or parallel
job by some deadline [13]. Yao et al. study the problem of utilizing
reserved and on-demand instances to complete online batch jobs
by their deadlines and formulate it as integer programming prob-
lems; then heuristic algorithms are proposed to give approximate
solutions [14].

There have been substantial works on cost-effective resource
provisioning in IaaS clouds [15], and we introduce some typical
approaches. Built on the assumption of a priori statistical knowl-
edge of the workload or spot prices, several techniques could be
applied. For example, in [16], [17], the techniques of stochastic
programming is applied to achieve the cost-optimal acquisition of
reserved and on-demand instances; in [24], the optimal strategy for
the users to bid for the spot instances are derived, given a predicted
distribution over spot prices. However, a high computational
complexity arises when implementing these techniques, though
the statistical knowledge could be derived by the techniques such
as dynamic programming [20]. Wang et al. use the competitive
analysis technique to purchase reserved and on-demand instances
without knowing the future workload [18], where the Bahncard
problem is applied to propose a deterministic and a randomized
algorithm. In [19], a genetic algorithm is proposed to quickly
approximate the pareto-set of makespan and cost for a bag of
tasks where on-demand and spot instances are considered. In [20],
the technique of Lyapunov optimization is applied and it’s said
to be the first effort on jointly leveraging all three common IaaS
cloud pricing options to comprehensively reduce the cost of users;
however, a large delay will be caused when processing jobs; in
order to achieve an O(ε) close-to-optimal performance, the queue
size has to be Θ(1/ε) [21].

3 PROBLEM DESCRIPTION AND MODEL

In this section, we introduce the cloud pricing models, define
the operational space of a user to utilize various instances, and
characterize the objective of this paper.

3.1 Pricing Models in the Cloud
We first introduce the pricing models in the cloud. The price of

an on-demand instance is charged on an hourly basis and it is fixed
and denoted by p. Even if on-demand instances are consumed for
part of an hour, the tenant will be charged the fee of the entire
hour, as illustrated in Fig. 1.

2. The objective of this paper corresponds to a special case of [8] where the
value of each job is larger than the cost of completing it.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. On-demand price: users are charged on an hourly basis at a fixed
price p.

Furthermore, tenants can bid a price for spot instances and
spot prices are updated at regular time slots (e.g., every L = 5
minutes in Amazon) [24]. Spot instances are assigned to a job and
continue running if the spot price is lower than the bid price. Spot
prices usually change unpredictably over time [4]. Once the spot
price exceeds the bid price of a job, its spot instances will get
terminated immediately by the cloud, as illustrated in Fig. 2; here,
the termination occurs at the very beginning of a time slot. The
tenant will be charged the spot prices for the maximum integer
hours of execution. A partial hour of execution is not charged
in the case where its instances are terminated by the cloud; in
contrast, if spot instances run until a job is completed and then
are terminated by the tenant, for the partial hour of execution, the
tenant will also be charged for the full hour.

Fig. 2. Spot price: a user bids a price b for an instance at time 0 and can
use it until time t.

Finally, a user might have its own instances, i.e., self-owned
instances. The (averaged) hourly cost of utilizing self-owned
instances is assumed to be p1. It is the cheapest to use self-
owned instances so that p1 is without loss of generality assumed
to be 0, which implies that a user always prefers to first utilize
its own instances before purchasing instances from the cloud. An
example of self-owned instances is academic private clouds, which
are provided to researchers free of charge.

3.2 Jobs

Our paper focuses on processing a type of embarrassingly
parallel computations, also called map-only jobs; see [6] for the
classification of big-data applications on clouds. Each job can be
separated into a large number of small tasks. These tasks are
independent and can be executed on multiple machines simul-
taneously; completing a job means completing all its tasks, and
the maximum completion time of all tasks is the job’s completion
time. Examples of such computations include parallel rendering in
computer graphics, BLAST searches and CAP3 in bioinformatics,
large scale facial recognition systems that compare thousands of
faces, grid and random search for hyperparameter optimization in
machine learning, data cleaning and pre-processing and so on.
A task is the minimum running unit and should be processed
continuously without preemption until its completion.

For example, in CAP3, the data are divided into many files and
each task finishes reading a file; if each file has 458 reads, it may

take about 7 seconds to process a task when two high CPU extra
large instances are used with 8 workers per instance [5]. For each
job j, its size/workload is defined as the time when finishing it
on one instance, denoted by zj , and can be estimated by the input
data size or the number of small tasks. While executing a job,
the remaining workload can also be estimated by the remaining
input data to be processed. Such jobs can be formally modeled as
malleable jobs in literature [9], [11]. Each job j has a parallelism
bound δj that limits the maximum number of instances that it
could utilize simultaneously. While executing a job, the number
of instances assigned to a job could change over time.

The job arrival of a tenant is monitored every time slot of L
minutes (i.e., at the time points when spot prices change) and
time slots are indexed by t = 1, 2, · · · . Each job j has four
characteristics: (i) an arrival slot aj : If job j arrives at a certain
continuous time point in [(t− 1) ·L, t ·L), then set aj to t; (ii) a
relative deadline dj ∈ Z+: it is a time constraint on completing
a job, that is, every job must be completed at or before time slot
aj +dj−1; (iii) a job size zj (measured in the instance time slots
(CPU time) that need to be utilized): the workload to complete j;
(iv) a parallelism bound δj : the upper bound on the number of
instances that could be simultaneously utilized by j. The tenant
plans to rent instances in IaaS clouds to process its jobs and aims
to minimize the cost of completing a set of jobs J (that arrive
over a time horizon T ) by their deadlines.

3.3 Rules for Allocating Instances to Jobs

The pricing models define the rules of allocating instances to
jobs and also the operational space of a user, i.e., (i) the moment
that allocation is done and updated, and (ii) how different instances
are utilized at every allocation.

3.3.1 On-demand and spot instances
We first consider the allocation of on-demand and spot in-

stances alone, ignoring self-owned instances temporarily.
To meet deadlines, we assume that (i) whenever a job j arrives

at aj , the allocation of spot and on-demand instances to it is
done immediately. The following rules apply to the case where
j has flexibility to utilize spot instances. Given the fact that the
tenant is charged on hourly boundaries, (ii) the allocation of on-
demand and spot instances to each job j is updated simultaneously
every hour. At the i-th allocation to j, the number of on-demand
instances allocated to j is denoted by oij and they can be utilized
for the entire hour; we assume that (iii) the tenant will bid a price
bij for a fixed number siij of spot instances. At the i-th allocation
of j, bij together with the spot prices determines whether j can
successfully obtain spot instances and how long it can utilize them.
Usually, spot instances are on average cheaper than on-demand
instances, and we assume that (iv) at every allocation the tenant
will bid for the maximum number of spot instances under the
parallelism constraint, i.e., siij = δj − oij . The crucial question
is thus how to determine the proportion of on-demand and spot
instances, i.e., oij and siij , that are acquired from the cloud.

Before the i-th allocation to j, we use zij to denote the
remaining workload of j to be processed, i.e., zj minus the
workload of j that has been processed, where z1j = zj . We define
the current slackness of j as

sij =
(dj − (i− 1) · Len) · δj

zij
, (1)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

where Len = 60/L is the number of slots per hour. Let sj =
s1j = (dj · δj)/zj . The slackness can be used to measure the
time flexibility that j has to utilize spot instances; the process of
allocating on-demand and spot instances to j is in fact divided into
two phases by the value of sij :

Definition 3.1. When spot instances get lost at the very beginning
of slot t′ and are not utilized for the entire hour at the i-th
allocation of j, we say that, at the next allocation,

1) j has flexibility to utilize spot instances, if si+1
j ≥ 1;

2) j does not have such flexibility, otherwise.

The intuition of Definition 3.1 is as follows. After the i-th
allocation, when spot instances are interrupted, we could know
the job slackness si+1

j at the (i + 1)-th allocation update; here,
zi+1
j is known since we know zij and the total workload processed

by spot and on-demand instances at the i-th allocation. After the
i-th allocation, when spot instances are interrupted, if si+1

j < 1,
this means that j has to give up utilizing spot instances at the
next allocation update; otherwise, since the availability of spot
instances is uncertain, j cannot be completed by its deadline even
if j totally utilizes stable on-demand instances from the (i + 1)-
th allocation update until its completion. In this case, once the
spot instances of j is interrupted at a moment after the i-th
allocation, j can immediately turn to totally utilize stable on-
demand instances. In contrast, if si+1

j ≥ 1, j is still able to
utilize unstable spot instances at the next allocation update. We
also illustrate Definition 3.1 by Fig. 3. As illustrated in Fig. 3,
zj = z1j = 132 and, at the 1st allocation, o1j = si1j = 2; then
z2j = 132 − 2 · 12 − 2 · 8 = 92. At the 2nd update, o2j and si2j
are still 2 and then z3j = 92 − 2 · 12 − 2 · 8 = 52. Further,
s3j =

Len·δj
z3j

< 1 and there is no flexibility for j to utilize
spot instances at the 3rd allocation. We use ij to index the last
allocation of j after which there is no such flexibility; in Fig. 3,
ij = 2. As a result, the decision on how to determine the (ij + 1)-
th allocation of instances to j has to be done earlier, since there
exists an on-demand instance that has to be utilized for 4

3 hours to
satisfy the deadline constraint.

Fig. 3. Illustration of the process of allocating resource to j where aj =
1, dj equals 3 hours, L = 5 minutes, zj = 132, and δj = 4: the light
gray (resp. heavy gray) area in every period of [12 · (i − 1) + 1, 12 · i]
illustrates the workload processed by spot (resp. on-demand) instances
at the i-th allocation where i = 1, 2, 3.

As illustrated above, the instance allocation is divided into two
phases. In the first phase,

• the instance allocation is updated every hour (i.e., every
Len slots).

At every i-th allocation of j, the remaining workload to be
processed by spot and on-demand instances is zij ; on-demand
instances are charged on an hourly basis and the workload that
could be processed by on-demand instances is Len · oij . At every

i-th allocation, as time goes by, there are two possible states for
spot instances:

(i) if zij −Len · oij workload of j has been processed by spot
instances, they will be terminated by the user itself;

(ii) if the bid price is below the spot price, the user will lose
its spot instances immediately; otherwise, they will be
utilized for an hour.

The first state occurs because j will be finally completed after the
on-demand instances acquired at this allocation are consumed. If
the second state occurs, we need to check whether or not job j
still has flexibility to utilize spot instances using Definition 3.1: if
there is such flexibility, the next allocation update of j is still in
the first phase; otherwise,

• the next allocation of j (i.e., the (ij + 1)-th allocation)
needs to be done immediately after the spot instances of
the ij-th allocation get lost,

which is referred to as the second phase of instance allocation. In
the second phase, only stable on-demand instances will be used to
meet the deadline.

3.3.2 Self-owned instances
When self-owned instances are also taken into account, we

assume that (v) the allocation of self-owned instances to a job
can be updated at most once at every allocation of j. We denote
by rij the number of self-owned instances assigned to j at the i-
th allocation; the parallelism constraint further translates to oij +
siij + rij = δj . In this paper, oij and siij denotes the numbers
of on-demand and spot instances acquired at the i-th allocation
and will be used to track the cost of completing j. As we will
see in Section 4.2, the acquired on-demand instances may not
be fully utilized for an entire hour in the (ij + 1)-th execution,
and, we use oj(t), sij(t) and rj(t) to denote the numbers of on-
demand, spot and self-owned instances that are actually utilized
by j at every slot t ∈ [aj , aj + dj − 1], where rj(t) = rij for all
t ∈ [aj + (i − 1) · Len, aj + i · Len − 1]; then the parallelism
constraint translates to oj(t) + sij(t) + rj(t) = δj .

As shown later, allocating properly self-owned instances en-
ables escaping unnecessary consumption of on-demand instances
that are more expensive than the others, which can be achieved by
simply allocating j the same number of self-owned instances at
every time slot, i.e., rj(t) = rj . So, the allocation of self-owned
instances is done only once upon arrival of j; after the allocation,
the job can could be viewed as a new job with a parallelism bound
δj − rj , a size zj − rj ·dj , and the same arrival time and deadline
as j , and it will be completed by utilizing spot and on-demand
instances alone.

3.4 Scheduling Objective
We refer to the ratio of the total cost of utilizing a certain

type of instances to the total workload processed by this type of
instances as the average unit cost of this type of instances. As
described in Section 3.1, we assume that

Assumption 1. The average unit costs of self-owned instances is
lower than the average unit cost of spot instances, which is lower
than that of on-demand instances.

Accordingly, to be cost-optimal, we should consider allocating
various instances to each arriving job in the order of self-owned,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

spot and on-demand instances. Further, in Principles 3.1 and 3.2,
we give the objectives that should be achieved when considering
allocating each type of instances to the arriving jobs.

Principle 3.1. The scheduler should make self-owned instances
(i) fully utilized, and (ii) utilized in a way so as to maximize the
opportunity that all jobs have to utilize spot instances.

Principle 3.2. After self-owned instances are used, the scheduler
should utilize on-demand instances in a way so as to maximize the
opportunity that all jobs have to utilize spot instances.

3.4.1 Decision variables

Our main objective of this paper is to propose scheduling
policies that can realize Principles 3.1 and 3.2. To do so, we will
first determine the allocation of self-owned instances and then the
allocation of on-demand and spot instances for every arriving job
j. For every arriving job j, it will be first allocated rj self-owned
instances in [aj , aj + dj − 1]. Then, as described in Section 3.3,
the allocation of spot and on-demand instances will be updated per
hour in the first phase and we need to determine the number of spot
instances to be bid for and the number of on-demand instances to
be purchased (i.e., siij and oij); once there is no flexibility for j
to utilize spot instances, we need to determine the allocation of
on-demand instances alone in order to complete j by deadline.
Hence, the main decision variables of this paper are rj , siij , and
oij where oij + siij + rj = δj .

In this paper, we apply the online learning approach and it does
not require the exact statistical knowledge on jobs and spot prices.
At every allocation update of j in the first phase, only the current
characteristics of j (i.e., zij , δj , aj , and dj) and the amount of
available self-owned instances are definitely known for a user to
determine oij and siij . The value of spot price is jointly determined
by the arriving jobs of numerous users and the number of idle
servers at a moment, usually varying over time unpredictably. In
this paper, it is assumed that the change of spot prices over time is
independent of the job’s arrival of an individual user [13], [24]. In
the i-th execution of j, when a user bids some price for siij spot
instances, without considering the case where the spot instances
of j is terminated by a user itself, the period in which j can
utilize spot instances is a random variable and we assume that the
expected time for which j could utilize spot instances is β · Len
where β ∈ [0, 1]. Finally, Table 1 summarizes the main notation
of this paper.

4 THE DESIGN OF NEAR-OPTIMAL POLICIES

In this section, we propose a theoretical framework to design
(near-)optimal parametric policies, aiming at realizing Princi-
ples 3.1 and 3.2. Facing diverse users, the proposed policies
should have good adaptability against the unknown statistics of
the spot prices and each individual user’s job characteristics; then,
by applying the online learning technique, the best configuration
parameter that corresponds to each user could be inferred to
minimize its cost of processing jobs.

Upon arrival of a job j, the scheduler first considers the
allocation of self-owned instances to it, aiming to realize the
two goals in Principle 3.1. Next, as described in Section 3.3.1,
the allocation of spot and on-demand instances is updated on an
hourly basis.

TABLE 1
Main Notation

Symbol Explanation
L length of a time slot (e.g., 5 minutes)
Len the number of time slots in an hour, i.e., 60

L
J a set of jobs that arrive over time

j and aj a job of J and its arrival time

dj
the relative deadline: j must be completed by a

deadline aj + dj − 1
zj the job size of j, measured in CPU × time slots

δj
the parallelism bound, i.e., the maximum number of

instances that can be simultaneously used by j

sj
the slackness, i.e., dj

zj/δj
where zj/δj denotes the

minimum execution time of j
T the number of time slots, i.e., maxj∈J {aj}

p and p1
the price of respectively using an on-demand and

self-owned instance for an hour

siij , bij , and
oij

the number of spot instances bid for, the bid price,
and the number of on-demand instances acquired at

the i-th allocation of j
rj(t), sij(t)

and oj(t)
the number of self-owned, spot and on-demand

instances utilized by j at a slot t
pij the spot price charged in the i-th execution of j

zij
the remaining workload of j to be processed at the

i-th allocation of j

sij
the slackness at the i-th allocation, i.e.,

(dj − (i− 1) · Len) · δj/zij
ij

the last allocation of j at which j has flexibility to
utilize spot instances

rj
the number of self-owned instances allocated to a job

j at every t ∈ [aj , aj + dj − 1]

β

the availability of spot instances varies over time; at
every allocation, the expected time for which a job

could utilize spot instances is β · Len where
β ∈ [0, 1]

R the number of self-owned instances

N(t)
the number of currently idle self-owned instances at a

slot t

mt1 (t2)
the maximum number of self-owned instances idle at
every slot in [t1, t2], i.e., min {N(t1), · · · , N(t2)}

b the bid price

β0
a parameter that control the allocation of self-owned

instances via Equation (4)

{β, β0, b}
a parameterized policy for allocating various instances
to a job at every allocation, as stated in the Section 4.3

P a set of parameterized policies
π the index of a policy in P: π = 1, 2, · · ·

4.1 Self-owned Instances
In this subsection, we study the allocation of self-owned

instances.

4.1.1 Challenge
We first show the challenges in cost-effectively utilizing self-

owned instances by an example. Initially, there is a fixed number
R of self-owned instances. Upon arrival of a job j, it is allocated a
fixed number of self-owned instances, and these instances will be
reserved for this job in the period [aj , aj+dj−1] and released by
j after the slot aj + dj − 1. As time goes by, when time is at the
beginning of any slot t, we have the information on the allocation
of self-owned instances to the previous jobs (i.e., the number of
self-owned instances allocated to each previous job and the period
in which these instances are reserved for this job) and we can
get the number of self-owned instances that are not reserved for
the previous jobs in the period of each slot t′, denoted by N(t′).
Let mt1(t2) = min {N(t1), · · · , N(t2)}, where t1 ≤ t2, and it
represents the maximum number of self-owned instances idle/non-
reserved at every slot in [t1, t2]. An intuitive policy would be,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

whenever a job j arrives, to allocate as many self-owned instances
to j to make self-owned instances fully utilized, i.e.,

rj = min{maj (aj + dj − 1), zj/dj}. (2)

However, this intuitive policy may not maximize the opportunity
that all jobs have to utilize spot instances as illustrated in the
following example.

There are two self-owned instance available, and two jobs
whose have the same arrival time, relative deadline of 2 hours
and parallelism bound of 4. Jobs 1 and 2 have a size of 4 × Len
and 6×Len, respectively. It is expected that a job can utilize spot
instances for β = 1

2 hour (β ·Len slots) at every allocation update.
In Fig. 4, the area of diagonal stripes, the area of vertical stripes,
and the dotted area denote the workload respectively processed by
spot, self-owned and on-demand instances. Using the policy (2),
the whole process of allocating instances is illustrated in Fig. 4
(left), where the user has to utilize two on-demand instances for
0.5 hour; however, it is not necessary to purchase more expensive
on-demand instances if the allocation process is like Fig. 4 (right).
In Fig. 4 (left), the cost of completing jobs 1 and 2 is 2 · p while
it is zero in Fig. 4; here, on-demand instances are charged on an
hourly basis, and the fee of utilizing spot instances is zero when
they are terminated by the cloud.

Fig. 4. The Challenge in Cost-Effectively Utilizing Self-owned Instances.

The above example reveals some challenges in designing cost-
effective policies for allocating self-owned instances. For example,
the policy should have the ability of (i) identifying the subset
of jobs that can be expected to be completed by utilizing spot
instances alone even if they are not allocated any self-owned
instance, e.g., the job 1 in Fig. 4 (right), and (ii) properly allocating
self-owned instances to the rest of jobs, when self-owned instances
are inadequate. All in all, our aim is to realize Principle 3.1.

4.1.2 Policy Design
In the following, we propose a policy that has the abilities

described above. In the subsequent analysis, the issue of rounding
the allocations of a job to integers is ignored temporarily for
simplicity; in reality, we could round the allocations up to integers,
which does not affect the related conclusions much as shown by
the analysis.

Recall the meaning of β in Section 3.4. For every job j, we will
go to find a function gj(x) ∈ [0,

zj
dj

] that satisfies the following
properties where zj

dj
≤ δj :

Property 4.1. gj(x) is non-increasing as x increases in [0, 1).

Property 4.2. gj(β) is the minimum number such that when a job
j is assigned rj self-owned instances in [aj , aj + dj − 1] where
rj ≥ gj(β), it could be expected that

• job j could be completed by its deadline by utilizing spot
instances alone if δj−rj spot instances are bid for at every

allocation update of j, where no on-demand instances is
acquired.

The value of gj(β) is an indicator of the capability that j has
such that it can be completed by utilizing spot instances alone. By
Property 4.2, if gj(β) ≤ 0, it is expected that no self-owned or
on-demand instances is needed in order to complete j and such
jobs have strong capability to feed themselves with spot instances.
Otherwise, gj(β) self-owned instances are needed, or j has to
consume some amount of expensive on-demand instances in order
to be completed by its deadline; for a job j, the larger the value of
gj(β), the weaker its capability to feed itself with spot instances.

Let κ0 = d djLene − 1, and we set

rj(x) =

{
r′j(x) if dj − κ0 · Len > x · Len,
r′′j (x) if dj − κ0 · Len ≤ x · Len,

where

r′j(x) = δj −
dj · δj − zj

dj − (κ0 + 1) · Len · x
,

and

r′′j (x) =

{
0 if κ0 = 0,

δj − dj ·δj−zj
(1−x)·κ0·Len if κ0 ≥ 1.

We further set

gj(x) = max {rj(x), 0} . (3)

When x = 0, gj(x) = max{r′j(x), 0} =
zj
dj

. When x → 1,
gj(x) = max{r′′j (x), 0} and we have that (i) if κ0 = 0, gj(x) =
0, (ii) if κ0 ≥ 1 and dj · δj = zj , gj(x) =

zj
dj

, and (iii) if
κ0 ≥ 1 and dj · δj > zj , gj(x) = 0 since r′′j (x) → −∞.
Now, we proceed to show that the particular gj(x) in (3) satisfies
Properties 4.2 and 4.1.

Proposition 4.1. The function gj(x) in (3) satisfies Property 4.2.

Proposition 4.2. The function gj(x) in (3) satisfies Property 4.1.

In this paper, we consider a set of jobs T that arrive over time
and can have diverse characteristics. When x ranges in [0, 1), we
illustrate the function gj(x) in Fig. 5 where zj = 240, L = 5,
δj = 20, and Len = 12. The job’s minimum execution time
is zj

δj
= Len where j is assigned δj instances throughout its

execution. The job’s deadline reflects its ability to utilize spot
instances and in Fig. 5 the solid curves from left to right represent
gj(x) where dj is respectively 5, 3, 2.1, 1.47, 1.25, 1.11, and
1.02 times Len: under the same x, the larger the deadline, the
smaller the value of gj(x). Given zj , δj and dj , we can see in
Fig. 5 that the function gj(x) is non-increasing as x ranges in
[0, 1).
Proposed Policy. Based on Propositions 4.1 and 4.2, we propose
the following policy for allocating self-owned instances. Upon
arrival of every job j, it is allocated rj(β0) self-owned instances
where

rj(β0) = min {gj(β0),mt(aj + dj − 1)} , (4)

where β0 ∈ [0, 1) is a parameter to be learned.
This policy achieves more cost-effective resource allocation as

illustrated in Fig. 4 (right) where β0 is set to β = 1
2 . Furthermore,

this policy is also adaptive. For example, given another user who
owns more instances (e.g., 5 instances), β0 can be set to a value
< β (e.g., 0); then, both jobs are allocated more self-owned



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 5. As x ranges in [0, 1), the function gj(x) for jobs respectively with
different flexibility to utilize spot instances.

instances: r1 = 2, and r2 = 3. As a result, self-owned instances
are fully utilized and there is no need purchasing spot or on-
demand instances.

4.1.3 Explanation
Now, we further explain that the policy (4) has desired prop-

erties to realize Principle 3.1, which will also be validated by the
simulations.

Fig. 6. As the (relative) deadline dj increases from 12 to 48, the function
gj(β0) decreases respectively under β0 = 31

64
, 5
16

, 1
16

, where zj = 240,
δj = 20, and Len = 12.

The allocations of self-owned instances to all jobs are based on
the same function (4) whose value depends on a single parameter
β0. Together with Properties 4.2 and 4.1, the power of the
proposed policy can be achieved by setting β0 to a value properly
small in [0, 1). Now, we explain this.
High Utilization. As illustrated in Fig. 5, the function gj(x) is
non-increasing; no matter how many self-owned instances a user
possesses, a high utilization of them is achieved after

• we set β0 to a small enough value in [0, 1).

This is because every arriving job will be assigned a large number
of self-owned instances when β0 is small, as illustrated in Fig. 6.
Fair Allocation. Fair allocation means that the allocations of self-
owned instances among jobs need to be balanced according to
their capabilities of utilizing spot instances. Fair allocation avoids
ignoring the difference among jobs and treating them equally
where a policy like (2) is used; together with Property 4.2, the
latter can lead to that ”rich” jobs (i.e., jobs with strong capabilities
where gj(β) is small) are consuming unnecessary self-owned
instances, i.e.,

• rj > gj(β), where rj denotes the number of self-owned
instances allocated to a job; the job’s remaining zj−rj ·dj

workload is expected to be processed by spot instances
alone;

whereas the others (with large gj(β)) are allocated poorly and still
starving for more self-owned instances, i.e.,

• rj < gj(β); here, on-demand instances are expected to be
consumed.

Indiscriminate allocations of instances to jobs do harm to the
process of achieving the capacity that jobs have for utilizing spot
instances, causing unnecessary consumption of more on-demand
instances and a higher cost of completing all jobs. In particular,
for every rich job, only gj(β) self-owned instances are needed
to complete its remaining workload without on-demand instances;
the saved rj − gj(β) self-owned instances can be used for those
poorly allocated jobs so as to reduce their consumption of on-
demand instances, which improves the cost-efficiency of instance
utilization.

Now, we explain that the proposed policy achieves fair allo-
cation by properly setting the value of β0. The cost-optimal β0,
denoted by β∗0 , depends on the statistics of jobs and the amount of
self-owned instances available; the online learning technique will
be used subsequently in Section 4.4 to infer β∗0 . When β∗0 = 0,
self-owned instances themselves are enough to complete all jobs
by their deadlines where gj(β0) =

zj
dj

.
When there are adequate self-owned instances such that β∗0 ∈

(0, β], every arriving job j will be allocated ≥ gj(β) self-owned
instances whenever the amount of idle self-owned is large (i.e.,
maj (aj + dj − 1) ≥ gj(β0)), according to the policy (4); this is
illustrated in Fig. 6 where β = 5

16 and β∗0 = 1
16 . Afterwards, the

job j is expected to be completed by utilizing spot instances alone.
No job will be allocated < gj(β) self-owned instances whenever
possible, and fair allocation is achieved. Furthermore, the arriving
jobs are allocated on a first come first served basis and we note
that β0 should be properly small but cannot be set to a value too
small. If β0 is too small, jobs that arrive earlier might consume too
many self-owned instances and then the jobs that arrive late have
less opportunity to get≥ gj(β) self-owned instances subject to the
availability of these instances (i.e., the value ofmaj (aj+dj−1)).

When self-owned instances are deficient such that β∗0 ∈
(β, 1), every arriving job will be allocated < gj(β) self-owned
instances; this is illustrated in Fig. 6 where β = 5

16 and β∗0 = 31
64 .

Afterwards, the job j is expected to have to utilizing some amount
of on-demand instances to meet its deadline. No job will be
allocated > gj(β) self-owned instances, achieving fair allocation
among jobs: if there exists such allocation, a waste of self-owned
instances is caused since we can reduce this allocation to gj(β)
and allocate these saved instances to other jobs to reduce the
consumption of on-demand instances.

4.2 Spot and On-demand Instances
As described in Section 3.3.1, the instance allocation process

is divided into two phases. Now, we analyze the expected optimal
strategy to utilize spot instances.

4.2.1 First phase
In the first phase, the allocation of j is updated per hour and

there is flexibility for j to utilize spot instances. Now, we analyze
the expected optimal policy in the first phase. One of the following
two cases will happen: (i) the job j is completed in the first
phase, and (ii) in the ij-th execution of j, after spot instances



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 7. Illustration of Proposition 4.6 in the case that ν(zj , dj) < (κ0 − 1) · δj and κ2(zj , dj) < κ3.

are terminated by the cloud, there is no flexibility for j to utilize
spot instances.

In this paper, the value of β is inferred by the online learning
technique. If the previous allocation of self-owned instances rj is
≥ gj(β), it is expected that the first case will happen; then, by
Property 4.2, we conclude that

Proposition 4.3. An expected optimal strategy is to bid for δj−rj
spot instances at every allocation of j.

Next, we analyze the optimal strategy when the second case
happens. Job j is allocated rj self-owned instances at every t ∈
[aj , aj +dj −1]; afterwards, it can be viewed as a new job with a
workload zj−δj ·dj and a parallelism bound δj−rj , as described
in Section 3.3.2. So, without loss of generality, we just analyze the
optimal strategy in the case where a job j is completed by utilizing
on-demand and spot instances alone.

Our decision variables are oij and siij where oij+siij = δj . Let
κ1 denote the total number of allocation updates in the first phase
where j has flexibility for spot instances; let κ0 = ddj/Lene
denoting the maximum possible number of allocation updates of
j and we have

κ1 ≤ κ0. (5)

In the i-th execution of j where i ∈ [1, κ1], it is expected that
the workloads processed by spot and on-demand instances are
respectively (δj−oij)·Len·β and oij ·Len. By Definition 3.1, j has
flexibility to utilize unstable spot instances at the κ1-th allocation,
i.e.,

sκ1
j =

δj ·(dj−(κ1−1)·Len)
zj−

∑κ1−1
i=1 (oij ·Len+(δj−oij)·Len·β)

≥ 1,

and has no flexibility to utilize spot instances at the (κ1 + 1)-th
allocation, i.e.,

sκ1+1
j =

δj ·(dj−κ1·Len)
zj−

∑κ1
i=1 (oij ·Len+(δj−oij)·Len·β)

< 1.

They are respectively equivalent to the following relations:∑κ1−1

i=1
(δj − oij) · Len · (1− β) ≤ dj · δj − zj , (6)∑κ1

i=1
(δj − oij) · Len · (1− β) > dj · δj − zj . (7)

For the condition that sκ1+1
j < 1, a special case is κ1 = κ0

where this condition holds trivially since dj−κ1 ·Len ≤ 0; since
sκ1
j ≥ 1, the κ1-th allocation of j is still in the first phase. In

this subsection, our objective is to maximize the total workload
processed by spot instances at the first κ1 allocations, i.e.,

maximize
∑κ1

i=1
(δj − oij) · Len · β, (8)

subject to the constraints (5), (6), (7), and the constraint that oij is
an integer in [0, δj ]. Our decision variables are o1j , · · · , o

κ1
j .

Now, we give an optimal solution to (8).

Proposition 4.4. An solution to (8) is optimal if it is of the follow-
ing form: (i)

∑κ1−1
i=1 (δj − oij) = min{ν(zj , dj), (κ0 − 1) · δj},

and (ii) oκ1
j = 0, where

ν(zj , dj) =
⌊
dj ·δj−zj
Len·(1−β)

⌋
.

Proposition 4.4 indicates the maximum number of spot in-
stances that can be bid for in the first phase, i.e., the maximum
value of

∑κ1

i=1 (δj − oij). As a corollary of Proposition 4.4, we
conclude that

Proposition 4.5. Given a job j, the expected maximum workload
that can be processed by spot instances is

(min {ν(zj , dj), (κ0 − 1) · δj}+ δj) · Len · β.

Proposition 4.4 also implies an expected optimal strategy for
spot instances.

Proposition 4.6. Let κ2(zj , dj) = bν(zj ,dj)δj
c and κ3 =

ν(zj ,dj)
δj

.
To maximize the total workload processed by spot instances, if
(κ0 − 1) · δj ≤ ν(zj , dj), we can set κ1 = κ0 and an expected
optimal strategy is to

• bid for δj spot instances at each allocation update of j.

If ν(zj , dj) < (κ0− 1) · δj , in the case that κ2(zj , dj) = κ3, we
can set κ1 = κ2(zj , dj) + 1 and an expected optimal strategy is
to

• bid for δj spot instances at each of the first κ1 allocations
of j, i.e., o1j = · · · = oκ1

j = δj;

in the case that κ2(zj , dj) < κ3, we can set κ1 = κ2(zj , dj) + 2
and an expected optimal strategy is to

• bid for δj spot instances at the 1st, · · · , (κ1− 2)-th, κ1-th
allocations of j, i.e., o1j = · · · = oκ1−2

j = oκ1
j = δj ,

• bid for ν(zj , dj) − κ2(zj , dj) · δj spot instances at the
(κ1 − 1)-th allocation of j, i.e., oκ1−1

j = ν(zj , dj) −
κ2(zj , dj) · δj .

We illustrate Proposition 4.6 in Fig. 7 where the area of
diagonal stripes and the dotted area denote the workload processed
respectively by spot and on-demand instances; in the blank area,
no workload of j is processed. We assume that β = 1

2 and L = 5
where Len = 12; job j has dj = 42 (3.5 hours), zj = 122
and δj = 4. Here, we have ν(zj , dj) = 7 and κ2(zj , dj) = 1.
From the left to the right, the first four subfigures illustrate the
expected optimal allocation. At the first allocation of j, δj = 4
spot instances are bid for and the expected execution time of
spot instances is β · Len = 6. At the second allocation of j,
(ν(zj , dj) − δj · κ2(zj , dj)) = 3 spot instances are bid for and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

one on-demand instance is purchased. So far, ν(zj , dj) = 7 spot
instances have been bid for. At the third allocation of j, δj spot
instances are bid for and after the execution of spot instances, j
has no flexibility to utilize spot instances and it turns to totally
utilize on-demand instances as illustrated by the fourth subfigure.
In contrast, we also use the last three subfigures to illustrate an
intuitive way to utilize spot instances where δj instances are bid
for at every allocation of j when there is flexibility for spot
instances. After the execution of spot instances at the second
allocation of j, it has no flexibility and turns to utilize on-demand
instances since s3j < 1. As illustrated in Fig. 7, the strategy in
Proposition 4.6 can be explained as follows. Whenever possible,
bid for the maximum number of spot instances (i.e., δj instances).
An exception happens only at the second allocation of j where
little flexibility is remaining, and we need to properly manage the
instance allocation to ensure that there still exists flexibility to
utilize spot instances at the third allocation of j: then, if δj spot
instances are bid for at the second allocation, it is expected that
there will be no flexibility for j to utilize spot instances at the
third allocation; by bidding for less, it could be expected that the
allocation will not get into the second phase and there will still be
the last flexibility/opportunity at the third allocation of j.

Based on Proposition 4.6, we propose Algorithm 1 to dynam-
ically determine the numbers of on-demand and spot instances
allocated to j at every i-th allocation update when there is
flexibility to utilize spot instances. At every allocation of j that
occurs at slot t, the remaining workload of j to be processed
could be viewed as a new job with the arrival time t, workload
z′j , parallelism bound δj , and relative deadline aj + dj − t; we
always use Proposition 4.6 to determine the first allocation of this
new job whose arrival time is t.

Algorithm 1: Proportion(j, β, b)

/* At the i-th allocation of j, its remaining

workload is viewed as a new job with an

arrival time t, and a relative deadline

aj + dj − t */

1 κ0(t)←
⌈
aj+dj−t
Len

⌉
/* the case (κ0 − 1) · δj ≤ ν(zj , dj) in

Proposition 4.6 */

2 if (κ0(t)− 1) · δj ≤ ν(zj , aj + dj − t) then
3 siij ← δj , oij ← 0;

4 else
/* both cases κ2(zj , dj) = κ3 and κ2(zj , dj) < κ3

where κ2(zj , dj) ≥ 1 */

5 if κ2(z′j , aj + dj − t) ≥ 1 then
6 siij ← δj , oij ← 0;

/* the case κ2(zj , dj) < κ3 where κ2(zj , dj) = 0 */

7 if κ2(z′j , aj + dj − t) = 0 ∧ ν(zj , aj + dj − t) > 0
then

8 siij ← ν(zj , aj + dj − t), oij ← δj − siij ;
/* the case κ2(zj , dj) = κ3 = 0 */

9 if ν(zj , aj + dj − t) = 0 then
10 siij ← δj , oij ← 0;

11 bij ← b;
12 at the i-th allocation, bid a price bij for siij spot instances;

4.2.2 Second phase

As described in Section 3.3.1, once spot instances get lost at
every allocation of j, the scheduler uses Definition 3.1 to check
the flexibility to utilize spot instances. In the ij-th execution,
when spot instances get lost at the beginning of some slot t′1,
there is no such flexibility; then, the instance allocation enters the
second phase where only on-demand instances are utilized. Now,
we analyze their optimal utilization.

Fig. 8. The second phase of allocation where i = ij : the area of waves
denotes the available space in the second phase; the area of diagonal
stripes and the dotted area respectively denote the workload processed
in the ij -th execution by spot instances and on-demand instances that
are utilized for an hour.

As shown in Algorithm 2, at every allocation of j in the first
phase (including the ij-th allocation), the number of on-demand
instances allocated to j is either 0 (see lines 3, 6, 10) or > 0 (see
line 8). Let t′2 = aj + ij ·Len, d′j = aj + dj − 1, and we define
two parameters that represent the maximum multiple of an hour
(containing Len slots) respectively in time intervals [t′1, d

′
j ] and

[t′2, d
′
j ]:

κ̂1 =
⌊
d′j−(t

′
1−1)

Len

⌋
, and κ̂2 =

⌊
d′j−t

′
2+1

Len

⌋
;

Let t′′i = d′j − κ̂i · Len+ 1 (i ∈ {1, 2}), and after deducting κ̂1
and κ̂2 hours respectively from the two intervals, the numbers of
remaining slots in [t′1, t

′′
1 − 1] and [t′2, t

′′
2 − 1] are denoted by φ1

and φ2:

φ1 = t′′1 − t′1, and φ2 = t′′2 − t′2,

where 0 ≤ φ1, φ2 < Len. The related notation is also illustrated
in Fig. 8. Let

m0 = siij · κ̂1 + oij · κ̂2, m1 = siij , and m2 = oij ,

where i = ij . In Fig. 8, the available space in the second phase
is the area of waves and m0 represents the maximum integer of
instance hour that can be utilized by j.

Since every on-demand instance is charged on an hourly basis,
a cost-optimal strategy in the second phase is to minimize the
integer instance hours (i.e., the number of on-demand instances ×
the time for which they are utilized). The following conclusion
possibly is intuitive although a formal proof is also provided:
whenever an instance is purchased for an hour, it should be utilized
as long as possible with the space constraint.

Proposition 4.7. Let y = y0 + y1 + y2 be the minimum such
that y0 · Len + y1 · φ1 + y2 · φ2 ≥ z

ij+1
j subject to y0, y1,

y2 are non-negative integers and y0 ∈ [0,m0], y1 ∈ [0,m1],
y2 ∈ [0,m2]. In the second phase, a cost-optimal strategy is to
purchase on-demand instances for y instance hours3.

3. The specific value of y is given while proving this proposition, which can
be found in the supplementary.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

4.3 Scheduling Framework
As described above, a general policy is defined by a tuple

{β0, β, b} and determines the amounts of self-owned, spot, and
on-demand instances allocated to a job, and the bid price. The
instance allocation process has been described in Section 3.3.
Based on this, at every slot t, if a job j just arrives or it
has arrived before but not been completed yet, we propose a
framework, presented in Algorithm 2, to determine the action of
allocating instances to j after checking the state of j. Actions are
needed in the following three states: (i) t is the arrival time of j,
determining the allocation of self-owned instances, (ii), t equals
aj +(i−1) ·Len where the i-th allocation update of spot and on-
demand instances needs to be done, (iii) the spot instances of j get
lost at t where we need to check whether j still has flexibility for
spot instances. In Algorithm 2, z′j denotes the remaining workload
of j to be processed after deducting its current allocations from
zj ; upon arrival of j, z′j = zj .

4.4 The Application of Online Learning
Upon arrival of a job j, the allocation process in Algorithm 2 is

determined by parameters β0, β, b. To learn the most cost-effective
parameters, we apply the online learning algorithm (TOLA) in [8].
We present here its main idea; a formal description can be found
in the supplementary.

There are a set of jobs J that arrive over time, indexed
by j = 1, 2, · · · , and a set of n parametric policies P each
specified by {β0, β, b} and indexed by π = 1, 2, · · · . Let
d = maxj∈J {dj}, i.e., the maximum relative deadline of all
jobs, and Jt ⊆ J denote all jobs j arriving at slot t, i.e., aj = t.
There is a weight distribution w over n policies whose initial
value is {1/n, · · · , 1/n}. Time goes from slot 1 towards later
slots. At every slot t, TOLA randomly picks for a job j ∈ Jt
a policy πj from P according to the current w and bases the
allocation of instances to j on that policy. In the meantime, the
distribution w will also be updated at every t > d. At such
t, we have the knowledge of spot prices in [t − d, t − 1] and
can derive the cost of completing a job j′ ∈ Jt−d under every
policy π ∈ P ; the distribution is updated such that the lower-
cost (higher-cost) polices of this job are re-assigned the enlarged
(resp. reduced) weights. Thus, as time goes by and more and more
jobs are processed, the most cost-effective policies of P will be
identified gradually, i.e., the ones with the highest weights. When
t is large, TOLA will choose the most cost-effective policy for
every arriving job and the actual cost of completing all jobs is
close to the cost of completing all jobs under a specific policy
π∗ ∈ P that generates the lowest total cost.

4.5 Extension to Microsoft Azure Cloud
Above, we are essentially studying the following question.

On-demand instances are always available and charged a fixed
unit price. The availability of spot instances is uncertain over
time; intuitively, it is the probability that a user successfully gets
spot instances and we denote by β its average value. There is a
fixed number of self-owned instances. The costs of utilizing self-
owned, spot and on-demand instances are increasing. Our question
is about the cost-effective strategy to utilize these instances. Our
intuition is to maximize the utilization of self-owned instances;
when they are not adequate for completing a job, we aim to
minimize the utilization of costly on-demand while maximizing
the utilization of spot instances. The availability β and the job

Algorithm 2: Dynalloc(aj , dj , z′j , δj , β0, β, b,N, t)

Input : the job’s current characteristics {aj , dj , z′j , δj}
where z′j is still > 0, and a parameterized policy
{β0, β, b}

/* allocate instances at the very beginning of

slot t */

1 if aj = t then
// upon arrival of j, allocate self-owned

instances to it

2 set the value of rj using Equation (4);
3 for t← aj to aj + dj − 1 do
4 rj(t)← rj ;

5 i←
⌊
t−aj
Len

⌋
+ 1// used to number the allocation

update

6 if t−ajLen = i− 1 then
// at the i-th allocation of j where it has

flexibility for spot instances

7 if rj ≥ gj(β) then
// it is expected that j will be

completed by utilizing spot instances

alone after allocating self-owned

instances

8 apply the strategy in Proposition 4.3 here;

9 else
10 call Algorithm 1;

11 if the spot instances of j get lost at the beginning of slot t
then

12 if (δj−rj)·(dj−Len·i)
z′j

< 1 then
// j has no flexibility to utilize spot

instances at the next allocation

update by Definition 3.1

13 apply the strategy in Proposition 4.7 here;
// otherwise, j still has the flexibility at

the next allocation update where z′j = zi+1
j

characteristics (deadline, workload, parallelism bound) determine
the unique capability of each job j to utilize spot instances, i.e.,
the maximum workload that could be processed by spot instances.
We also give the minimum amount rminj of self-owned instances
that each job j needs to complete itself without utilizing any costly
on-demand instances. Based on this, related policies are proposed
to allocate instances to jobs.

So far, this question has been addressed in the context of
Amazon EC2 pricing. On-demand instances are charged on an
hourly basis. The price of spot instances (i.e., spot price) fluctuates
over time and is updated every 5 minutes. Every user bids a price
for spot instances and only if its bid price is not below the current
spot price, it could utilize the spot instances for at least 5 minutes.
Spot users are charged according to the spot prices. Under such
context, the availability of spot instances depends on the bid price
of users and the spot prices.

Beyond Amazon EC2, Microsoft Azure began to offer low-
priority VMs (virtual machines) since May 2017, as well as high-
priority VMs [26]; it is the second largest IaaS service provider
and accounts for 13.3% of the global market share in 2017
[1]. High- and low-priority VMs respectively correspond to on-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

demand and spot instances only with some difference in pricing.
In Microsoft Azure, high-priority VMs are always available and
charged a fixed price; also, low-priority VMs have a lower price
but their availability varies over time. However, its pricing model
simplifies the Amazon EC2 pricing in that (i) high-priority VMs
are charged per second instead of on an hourly basis, and (ii)
the price of low-priority VMs is fixed but their availability is a
system-level random variable, without depending on the bid price
of users. So, we can roughly say that users will be billed for the
exact period when VMs are utilized, without rounding up partial
instance hour to full hour.

Now, we explain how to apply the framework of this paper
to the Microsoft Azure scenario. Upon arrival of a job j, we can
still use the policy (4) proposed in Section 3.3.2 for the allocation
of self-owned instances: in the case that they are not adequate,
the number of allocated instances is no larger than rminj ; in the
opposite case, the number is no smaller than rminj . After allocating
self-owned instances, the job j can be viewed as a new job with
a reduced parallelism bound δj − rj . Unlike the case in Amazon
EC2, it is not necessary to update the allocation of on-demand
instances and bid a price for spot instances every hour. From its
arrival on, job j continuously attempts to utilize δj − rj low-
priority VMs; once there is no flexibility for j to utilize such VMs
at some moment, j turns to utilize δj − rj high-priority VMs
until it is completed. In the allocation process above, only one
parameter β0 is needed to control the allocation of self-owned
instances; in contrast, there are three parameters {β0, β, b} in the
case of Amazon EC2. So, when the approach of online learning is
applied here, only β0 is needed to be learned.

5 EVALUATION

The main aim of our evaluations is to show the effectiveness
of the proposed policies of this paper.

5.1 Simulation Setups

The on-demand price is p = 0.25 per hour. We set L to 5
(minutes) and all jobs have a parallelism bound of 20. Following
[22], [23], we generate the jobs as follows. The job’s arrival is
generated according to a poisson distribution with a mean of
2. The size zj of every job j is set to 12 × 20 × x where
x follows a bounded Pareto distribution with a shape parameter
ε = 1

1.01 , a scale parameter σ = 1
6.06 and a location parameter

µ = 1
6 ; the maximum and minimum value of x is set to 1 and

10. The job’s relative deadline is generated as x · zj/δj , where
x is uniformly distributed over [1, x0]. x represents the slackness
of a job; it affects the jobs’ capability to utilize spot instances as
shown by Proposition 4.5, and is a main factor that determines
the performance. In this paper, we consider three types of jobs
respectively with a small, medium, and large slackness: the 1st,
2nd, 3rd types of jobs respectively with x0 = 3, 7, 13. Spot
prices are updated every time slot and their values can follow
an exponential distribution where its mean is set to 0.11 [24].
Proposed Policies. The policies of this paper are parameterized: β
and b are used for determine the allocation of spot and on-demand
instances (see lines 5-13 of Algorithm 2), and β0 is for self-owned
instances (see lines 1-4 of Algorithm 2). The parameter β0 is
chosen in C1 = { i10 | 0 ≤ i ≤ 6}. As illustrated in Fig. 5, for
jobs with x0 > 1.25, the amount of self-owned instances allocated
to jobs can be effectively controlled by selecting a value ≤ 0.6;

for the others with little flexibility to utilize spot instances, they
will be a large number of self-owned instances whenever possible
to reduce the consumption of on-demand instances. The parameter
β is chosen from C2 = { i10 | 0 ≤ i ≤ 9} ∪ {0.9999}. The bid
price b is chosen in B = {bi = 0.13 + 0.03 · (i − 1) | 1 ≤ i ≤
6}. When only spot and on-demand instances are considered, let
P = {(β, b) | β ∈ C2, b ∈ B}, representing all policies of this
paper to be evaluated; when self-owned instances are also taken
into account, let P = {(β, b, β0) | β0 ∈ C1, β ∈ C2, b ∈ B}.
Compared Policies. The policies of this paper are compared
with (i) the naive policy (2) for self-owned instances and (ii) the
policy proposed in [8] only for spot and on-demand instances
(see Algorithm 1 in [8]). The latter randomly selects a parameter
θ ∈ Θ = { i10 | 0 ≤ i ≤ 10} for every job j: (i) the user will
bid a price b for θ · δj spot instances and acquire (1− θ) · δj on-
demand instances at every allocation update of j; (ii) it monitors
at every slot t whether there is a risk of not completing the job
by its deadline if only (1 − θ) · δj on-demand instances are
utilized in the remaining slots; (iii) if such risk exists, there is
no flexibility for utilizing spot instances and it turns to utilize
min

{
δj ,

⌈
z
ij+1
j /Len

⌉}
on-demand instances alone until j is

completed4. Let P ′ = {(θ, b) | θ ∈ Θ, b ∈ B}, representing
all the policies of [8].
Performance Metric. Let π denote a policy in P or P ′. Given a
set of jobs J that arrive over time, our aim is to minimize the cost
of completing all jobs in J ; and a main performance metric is the
average unit cost of processing jobs when the x2-th type of jobs
are processed with x1 self-owned instances available, i.e.,

• the ratio of the total cost of utilizing various instances to
the processed workload of jobs, denoted by αx1,x2

, where
αx1,x2

=
∑
j∈J cj(π)/

∑
j∈J zj .

When a policy in P or P ′ is applied to process all jobs, we
denote by αx1,x2(π) the corresponding average unit cost of
processing jobs. Against the unknown statistics of spot prices and
job’s characteristics, there are some policies in P or P ′ that are
the most cost-effective. We use αx1,x2 (resp. α′x1,x2

) to denote
the minimum of the average unit costs of our policies (resp.
the policies in [8] and defined by (2)), where x2 = 1, 2, e.g.,
αx1,x2 = minπ∈P{αx1,x2(π)}.

The performance of the intuitive policy (2) (for self-owned
instances) and the existing policy in [8] (for spot and on-demand
instances) are used as the baseline to measure the performance
of the proposed policies; so, one performance indicator can be as
follows:

ρx1,x2
= 1− αx1,x2

α′x1,x2
;

it represents the performance improvement of the proposed poli-
cies P over the baseline, that is, the ratio in cost reduction.
Moreover, in this paper, the online learning algorithm TOLA
is run to actually select a policy for each arriving job. The
selection is random according to a distribution that will be updated
according to the cost of completing that job; after numerous
jobs are processed, the policies that generate the lowest cost
will be associated with the highest probability. In this case, we
use αx1,x2

(P) or αx1,x2
(P ′) to denote the average unit cost of

processing jobs when P or P ′ is applied to TOLA. When online
learning is applied, the performance indicator can be as follows:

4. In [8], the workload of j is measured in instance hours.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

ρx1,x2
= 1− αx1,x2 (P)

αx1,x2 (P′)
;

it represents the ratio in cost reduction when online learning is
applied.

5.2 Results

In the following, we give the results of simulations that are
taken over about 60000 jobs, mainly listed in Tables 2, 4, 7, and 8.
In our simulations, all fractional solutions will be rounded up to
the nearest integers.
Experiment 1. We aim to evaluate the effectiveness of the
proposed policies P for spot and on-demand instances alone by
means of comparisons with the policies P ′ in [8], where x1 = 0.
The simulation results are listed in Table 2 and show a noticeable
cost reduction by up to 64.51%.

TABLE 2
Performance Improvements for Spot and On-Demand Instances

ρ0,1 ρ0,2 ρ0,3
58.87% 60.84% 64.51%

There are a total of 66 policies in P . In our simulations, every
11 policies are grouped together and they use the same bid price.
We have in the same group of policies that the cost-optimal value
of β (denoted by β∗) is the same even under different types of
jobs; the particular results are illustrated in Table 3. So, in the
rest of our simulations, the effective range of β will be defined in
{0.5, 0.6, 0.7, 0.8, 0.9, 0.999999}, to which we reset the value of
C2.

TABLE 3
The Optimal β under a Bid Price b

b 0.13 0.16 0.19 0.22 0.25 0.28
β 0.7 0.8 0.9 0.9 0.999999 0.999999

Experiment 2. We aim to evaluate the proposed policy for self-
owned instances, compared with the naive policy in (2); here,
the allocation of spot and on-demand instances will use the same
policy P proposed in this paper. The simulation results are listed
in Table 4, showing a noticeable cost reduction by up to 43.74%.

TABLE 4
Performance Improvement for Self-Owned Instances

ρ200,x2 ρ400,x2 ρ600,x2 ρ800,x2
x2 = 1 15.73% 21.41% 27.07% 22.83%
x2 = 2 27.25% 39.59% 34.04% 17.85%
x2 = 3 33.05% 34.41% 43.74% 31.88%

The utilizations of self-owned instances under different poli-
cies are illustrated in Fig. 9, where the dotted lines from top to
down respectively represents the case where x1 = 200, 400, 600
and 800; the particular results are given by the stars on the same
dotted line. The allocation of self-owned instances are determined
by the policy (4) or (2). Given a set of jobs, the utilization of
self-owned instances under the policy (4) only depends on the
parameter β0 since their allocation is before and independent
of the allocation of spot and on-demand instances. The intuitive
policy (2) is a special form of the policy (4) when β0 = 0. In the
case that x2 = 2, when x1 = 200, 400, 600, 800, the minimum

average unit cost is generated when β = 0.3, 0.2, 0.2, 0.1
respectively; the corresponding utilizations are given in Table 5;
the utilization of the intuitive policy (2) is illustrated in Table 6.
We can see that, given a case of x1 and x2, the proposed policy
achieves a lower utilization than the intuitive policy; even so, it
still achieves a lower average unit cost as shown in Table 4 where
x2 = 2. This is because the proposed policy could effectively
reduce the unnecessary consumption of on-demand instances as
explained in Section 4.1.3.

TABLE 5
The Instance Utilization of the Proposed Policy under

Cost-Optimal β0

(β0, x1) (0.3, 200) (0.2, 400) (0.2, 600) (0.1, 800)
Utilization 89.89% 92.41% 72.70% 96.39%

TABLE 6
The Instance Utilization of the Intuitive Policy

x1 200 400 600 800
Utilization 99.73% 99.57% 99.31% 98.89%

Fig. 9. The utilization of self-owned instances under different values of
β0.

Experiment 3. Assume that there are some amount of self-owned
instances, and we show the performance improvement of the
proposed policies P , compared with the policies that use P ′ for
spot and on-demand instances and (2) for self-owned instances.
The simulation is done under the 2nd type of jobs that have a
medium slackness, and the results are listed in Table 7, showing
the improvement of performance by up to 75.68%.

TABLE 7
Performance Improvement for Three Types of Instances

ρ200,2 ρ400,2 ρ600,2 ρ800,2
71.30% 75.68% 72.83% 66.65%

Experiment 4. Now, we show the performance of the proposed
policies when online learning is applied. The simulation setting
is the same as Experiment 3. The related results are illustrated in
Table 8, showing a cost reduction by up to 66.71%.

TABLE 8
Performance Improvement under Online Learning

ρ0,2 ρ200,2 ρ400,2 ρ600,2 ρ800,2
60.89% 63.28% 66.71% 63.60% 51.11%

6 CONCLUDING REMARK

Utilizing IaaS clouds cost-effectively is an important concern
for all users. In this paper, we consider the problem of how to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

utilize different purchase options including spot and on-demand
instances, in addition to possibly existing self-owned instances, to
minimize the cost of processing all incoming jobs while respecting
their response-time targets. Driven by the goal of maximizing the
utilization of self-owned instances while optimizing the possibility
of utilizing spot instances, we answer two underlying questions
in the instance allocation process: to be cost-effective, what
properties should be kept in the policy for allocating self-owned
instances and what policy can maximize the utilization of spot
instances, escaping unnecessary consumption of costly on-demand
instances.

As a result, we propose parametric policies for the allocation
of these three types of instances that achieve small costs. The
proposed policies are adaptive and, facing the dynamic of cloud
market, these policies use online learning to infer the optimal
values of their parameters. Through numerical simulations, we
show the effectiveness of our proposed policies, in particular that
they achieve a cost reduction of up to 64.51% when spot and
on-demand instances are considered and of up to 43.74% when
self-owned instances are considered. In future, we will extend the
framework of this paper to process precedence-constrained jobs.

Note that, in our paper, we have not considered the possibility
that if a job allocated to a spot instance finishes before the end
of the hour, the spot instance could be re-allocated to another
job for the rest of the hour rather than being terminated by the
tenant. That could possibly reduce the cost further although it
would significantly complicate the allocation.

ACKNOWLEDGMENTS

The work of Patrick Loiseau was supported by the French
National Research Agency (ANR) through the Investissements
davenir program (ANR-15-IDEX- 02), and by the Alexander von
Humboldt Foundation. Part of Xiaohu Wu’s work was done when
he was with Eurecom, Sophia-Antipolis, France; in addition, his
work was also supported by the European Union’s Horizon 2020
research and innovation programme in the ROMA project (grant
no. 754514). The work of Esa Hyytiä was supported by the
Academy of Finland in the FQ4BD project (grant no. 296206).

REFERENCES

[1] ”Gartner Says Worldwide IaaS Public Cloud Services Market Grew
29.5 Percent in 2017.” https://www.gartner.com/en/newsroom/ press-
releases/2018-08-01-gartner-says-worldwide-iaas-public-cloud-services-
market-grew-30-percent-in-2017 (accessed on February 26, 2019).

[2] Dinesh Kumar, Gaurav Baranwal, Zahid Raza, Deo Prakash Vidyarthi. ”A
Survey on Spot Pricing in Cloud Computing.” Journal of Network and
Systems Management 26, no. 4 (2018): 809-856.

[3] ”Amazon EC2 pricing.” https://aws.amazon.com/ec2/pricing/ (accessed on
February 26, 2019).

[4] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, Dan Tsafrir.
”Deconstructing Amazon EC2 Spot Instance Pricing.” ACM Transactions
on Economics and Computation, 2013.

[5] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox. ”Cloud
computing paradigms for pleasingly parallel biomedical applications.” In
Proceedings of the 19th ACM International Symposium on High Perfor-
mance Distributed Computing (HPDC’10), pp. 460-469. ACM, 2010.

[6] Geoffrey C. Fox. ”Data intensive applications on clouds.” In Proceedings
of the second international workshop on Data intensive computing in the
clouds, pp. 1-2. ACM, 2011.

[7] Navendu Jain, Ishai Menache, Ohad Shamir. ”Allocation of Computational
Resources with Policy Selection.” U.S. Patent 9,652,288, issued May 16,
2017.

[8] Ishai Menache, Ohad Shamir, Navendu Jain. ”On-demand, Spot, or Both:
Dynamic Resource Allocation for Executing Batch Jobs in the Cloud.”
In 11th International Conference on Autonomic Computing (ICAC’14).
USENIX Association, 2014.

[9] Navendu Jain, Ishai Menache, Joseph Naor, Jonathan Yaniv. ”Near-
Optimal Scheduling Mechanisms for Deadline-Sensitive Jobs in Large
Computing Clusters.” ACM Transactions on Parallel Computing, 2015.

[10] Xiaohu Wu, Patrick Loiseau. ”Algorithms for scheduling deadline-
sensitive malleable tasks.” In Proceedings of 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton’15).
IEEE, 2015.

[11] Viswanath Nagarajan, Joel Wolf, Andrey Balmin, Kirsten Hildrum.
”Flowflex: Malleable scheduling for flows of mapreduce jobs.” In Proceed-
ings of the ACM/IFIP/USENIX International Conference on Distributed
Systems Platforms and Open Distributed Processing (MiddleWare’13), pp.
103-122. Springer, 2013.

[12] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin,
Rodrigo Fonseca. ”Jockey: Guaranteed Job Latency in Data Parallel Clus-
ters.” In Proceedings of the 7th ACM European Conference on Computer
Systems (EuroSys’12). ACM, 2012.

[13] Murtaza Zafer, Yang Song, Kang-Won Lee. ”Optimal Bids for Spot VMs
in a Cloud for Deadline Constrained Jobs.” In Proceedings of the IEEE
8th International Conference on Cloud Computing (CLOUD’12). IEEE,
2012.

[14] Min Yao, Peng Zhang, Yin Li, Jie Hu, Chuang Lin, Xiang Yang Li.
”Cutting Your Cloud Computing Cost for Deadline-Constrained Batch
Jobs.” In Proceedings of the IEEE International Conference on Web
Services (ICWS’14). IEEE, 2014.

[15] Sunilkumar S. Manvi and Gopal Krishna Shyam. ”Resource Management
for Infrastructure as a Service (IaaS) in Cloud Computing: A Survey.”
Journal of Network and Computer Applications (Elsevier), 2014.

[16] Yu-Ju Hong, Jiachen Xue, Mithuna Thottethodi. ”Dynamic Server Provi-
sioning to Minimize Cost in an IaaS Cloud.” In Proceedings of the ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’11). ACM, 2011.

[17] Sivadon Chaisiri, Bu-Sung Lee, Dusit Niyato. ”Optimization of Resource
Provisioning Cost in Cloud Computing.” IEEE Transactions on Services
Computing, 2012.

[18] Wei Wang, Baochun Li, Ben Liang. ”Optimal Online Multi-Instance Ac-
quisition in IaaS Clouds.” IEEE Transactions on Parallel and Distributed
Systems, 2015.

[19] Alexandra Vintila, Ana-Maria Oprescu, Thilo Kielmann. ”Fast (Re-)
Configuration of Mixed On-demand and Spot Instance Pools for High-
Throughput Computing.” In ACM Workshop on Optimization Techniques
for Resources Management in Clouds, 2013.

[20] Shengkai Shi, Chuan Wu, Zongpeng Li. ”Cost-Minimizing Online VM
Purchasing for Application Service Providers with Arbitrary Demands.”
In Proceedings of the IEEE 8th International Conference on Cloud
Computing (CLOUD’15). IEEE, 2015.

[21] Longbo Huang, Xin Liu, Xiaohong Hao. ”The Power of Online Learning
in Stochastic Network Optimization.” In Proceedings of the ACM Inter-
national Conference on Measurement and Modeling of Computer Systems
(Sigmetrics’14). ACM, 2014.

[22] Junliang Chen, Chen Wang, Bing Bing Zhou, Lei Sun, Young Choon
Lee, and Albert Y. Zomaya. ”Tradeoffs Between Profit and Customer
Satisfaction for Service Provisioning in the Cloud.” In Proceedings of
the 20th ACM Symposium on High performance Distributed Computing
(HPDC’11). ACM, 2011.

[23] Liang Zheng, Carlee Joe-Wong, Christopher G. Brinton, Chee Wei
Tan, Sangtae Ha, Mung Chiang. ”On the Viability of a Cloud Virtual
Service Provider.” In Proceedings of the ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’16). ACM, 2016.

[24] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, Xinyu
Wang. ”How to Bid the Cloud.” In the Proceedings of the ACM Conference
on Special Interest Group on Data Communication (SIGCOMM’15).
ACM, 2015.

[25] Xiaohu Wu, Patrick Loiseau, and Esa Hyytiä. ”Towards designing
cost-optimal policies to utilize IaaS clouds with online learning.” In
Proceedings of 2017 International Conference on Cloud and Autonomic
Computing (ICCAC’17), pp. 160-171. IEEE, 2017.

[26] ”Low-priority VMs in Batch.” https://azure.microsoft.com/en-
us/pricing/details/batch/ (accessed on February 28, 2019).


