
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

A Supplementary for the Paper Titled ”Towards
Designing Cost-Optimal Policies to Utilize IaaS

Clouds with Online Learning”
Xiaohu Wu, Patrick Loiseau, and Esa Hyytiä

Abstract—This supplementary is used to help readers better understand the paper titled ”Towards Designing Cost-Optimal Policies to
Utilize IaaS Clouds with Online Learning”. In this supplementary, all numeric indexes in parentheses correspond to the equation,
inequality or other expressions in the supplemented paper.

F

A PROOFS OF PROPOSITIONS

This section contains the proofs of the propositions in the
Section 4 of the supplemented paper.

Proof of Proposition 4.1. Assume that a job j is allocated rj
self-owned instances in [aj , aj + dj − 1]. At each of the first κ0
allocations of j, the expected time of utilizing spot instances is
β · Len. If a job can be expected to be completed by the deadline
by totally utilizing spot instances after the allocation of self-owned
instances, we have that (i) it could be expected that the workload
processed by self-owned instances plus the workload processed by
spot instances at every allocation of j is no less than zj , and (ii)
after the allocation of self-owned instances, the allocation of spot
and on-demand instances is always in the first phase as described
in the Section 3.3 of the supplemented paper, i.e., the allocation is
updated every hour where only spot instances are bid for.

Now, we analyze two cases. The first one is dj − κ0 · Len >
β ·Len. In this case, in the (κ0+1)-th execution of j, the expected
time of utilizing spot instances is β ·Len; then, it is expected that

rj · dj + (κ0 + 1) · (δj − rj) · Len · β ≥ zj .

This leads to that rj ≥ r′j(β). The second case is dj−κ0 ·Len ≤
β ·Len. In this case, in the (κ0+1)-th execution of j, the expected
time of utilizing spot instances is min{β ·Len, dj −κ0 ·Len} =
dj − κ0 · Len; then, it is expected that

rj · dj + κ0 · (δj − rj) · Len · β
+ (dj − κ0 · Len) · (δj − rj) ≥ zj .

This leads to that rj ≥ r′′j (β). As a summary of our analysis of
both cases, the proposition holds. �

Proof of Proposition 4.2. When x ∈ [0,
dj
Len − κ0), gj(x) =

max{r′j(x), 0}; since dj · δj − zj ≥ 0 and (κ0 + 1) · Len >
0, r′j(x) is a non-increasing function and so is gj(x). Similarly,
when x ∈ [

dj
Len − κ0, 1), gj(x) = max{r′′j (x), 0} is also non-

increasing. In the rest of this proof, if suffices to show gj(x1) ≥
gj(x2) when 0 ≤ x1 < dj

Len −κ0 ≤ x2 < 1. Given a job j, if κ0
= 0, we have gj(x1) ≥ 0 = gj(x2). If κ0 ≥ 1 and dj · δj = zj ,
we have gj(x1) = δj = gj(x2). If κ0 ≥ 1 and dj · δj > zj ,
our analysis proceeds as follows. To prove gj(x1) ≥ gj(x2), it
suffices to show r′′j (x2) ≤ r′j(x1); the function r′′j (x) itself is

non-increasing when x ∈ [0, 1), and we have r′′j (x2) ≤ r′′j (x1).
Hence, to prove r′′j (x2) ≤ r′j(x1), it suffices to prove r′′j (x1) ≤
r′j(x1), which can be proved by showingA = (1−x1)·κ0·Len ≤
dj− (κ0+1) ·Len ·x1 = B. Since x1 ∈ [0,

dj
Len −κ0), we have

B −A = dj − (κ0 + x1) · Len > 0.

Finally, the proposition holds. �

Proof of Proposition 4.4. Firstly, we prove by contradiction that
the optimal value of oκ1

j is 0. Assume that ô1j , · · · , ô
κ1
j are an

optimal solution to (8) where ôκj ≥ 1. The constraint (6) has
no effect on the value of oκ1

j . We can reduce the value of ôκ1
j

to 0; such reduction can still guarantee that (7) is satisfied, and
ô1j , · · · , ô

κ1−1
j , oκ1

j = 0 are a feasible solution to (8) under which
(8) achieves a higher value, which contradicts that ô1j , · · · , ô

κ1
j are

an optimal solution to (8). Secondly, when oκ1
j = 0, the objective

function (8) equals (
∑κ1−1
i=1 (δj − oij)+ δj) ·Len ·β. Under con-

straint (6),
∑κ1−1
i=1 (δj − oij) ≤

dj ·δj−zj
Len·(1−β) . Since o1j , · · · , o

κ1−1
j

are integers, the maximum possible value of
∑κ1−1
i=1 (δj − oij)

is ν(zj , dj). On the other hand, since δj − oij ≤ δj , the
constraint (5) indicates that

∑κ1−1
i=1 (δj − oij) ≤ (κ0 − 1) · δj .

Hence, the maximum possible value of
∑κ1−1
i=1 (δj − oij) is

min{ν(zj , dj), (κ0−1) ·δj}. Now, we further show it is feasible.
If (κ0 − 1) · δj ≤ ν(zj , dj),

∑κ1−1
i=1 (δj − oij) = (κ0 − 1) · δj

which leads to κ0− 1 ≤ κ1− 1; to satisfy (5), we have κ1 = κ0.
Then, constraint (7) holds trivially and constraint (6) is also satis-
fied. If (κ0 − 1) · δj > ν(zj , dj),

∑κ1−1
i=1 (δj − oij) = ν(zj , dj);

in this case, we have κ1 − 1 ≤ κ0 − 1. Furthermore, we also
have ν(zj , dj) + δj >

dj ·δj−zj
Len·(1−β) and (7) is satisfied. Finally, the

proposition holds. �

Proof of Proposition 4.6. We can check that when the strategy of
utilizing spot instances is as above, o1j , · · · , o

κ1
j are of the form in

Proposition 4.4; hence, it is optimal. �

Proof of Proposition 4.7. Let us consider an arbitrary allocation
of on-demand instances to process the remaining zij+1

j workload,
denoted by A, also illustrated in Fig. 1 (left). These workload will
be processed on δj instances, and let xh denote the total workload
processed at the h-th instance where∑δj

h=1
xh ≥ z

ij+1
j , (A)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

Fig. 1. Illustration for Proposition 4.7: the area of diagonal stripes denotes the allocation of on-demand instances to j.

x1, · · · , xm1
∈ [0, d′j − t′1 + 1],

xm1+1, · · · , xδj ∈ [0, d′j − t′2 + 1].
(B)

The allocation A can be transformed into an allocation A′ with
the following form without increasing the total cost of utilizing
instances: the xh workload of the h-th instance is processed from
the deadline d′j towards earlier slots, i.e., in [d′j − xh + 1, d′j],
which is illustrated in Fig. 1 (middle). Hence, in the following, we
only need to show the cost-optimal strategy of utilizing instances
when the allocation is of the form A′.

As illustrated in the Fig. 8 of the supplemented paper, let Î1 =
[t′1, d

′
j] and Î2 = [t′2, d

′
j]. From d′j towards earlier slots in Î1

(resp. in Î2), let every Len slots constitute a time interval, i.e.,
Ii = [d′j+1−i·Len, d′j−(i−1)·Len]; for Î1 the last interval is
Iκ̂1+1 = [t′1, t

′′
1−1] (resp. for Î2 the last is Iκ̂2+1 = [t′2, t

′′
2−1]).

Now, we describe the cost structure when the allocation of j is of
the form A′. We use xh,i to denote the workload processed by the
h-th instance in Ii where for all h ∈ [1,m1],

xh,1, · · · , xh,κ̂1
∈ [0, Len], xh,κ̂1+1 ∈ [0, φ1], (C)

and for all h ∈ [m1 + 1, δj],

xh,1, · · · , xh,κ̂2
∈ [0, Len], xh,κ̂2+1 ∈ [0, φ2]. (D)

Let ψh =
⌈
xh
Len

⌉
; under the allocation form of A′, we have for all

h ∈ [1, δj] that

xh,1 = · · · = xh,ψh−1 = Len,

xh,ψh = xh − (ψh − 1) · Len,
the other xh,i = 0,

(E)

and

xh =
∑κ̂1+1

i=1
xh,i, if h ∈ [1,m1]

xh =
∑κ̂2+1

i=1
xh,i, if h ∈ [m1 + 1, δj]

(F)

where 0 ≤ xh,ψh < Len. We define the sign function sgn(x): it
equals 1 if x > 0 and 0 if x = 0. Let

yh,i = sgn(xh,i) ∈ {0, 1}, (G)

and the price of utilizing the h-th instance is p times the sum of
all yh,i; here, by (E), the sum of all yh,i is ψh.

The cost minimization problem under the allocation form of
A′ is as follows, referred to as Q-I:

min
m1∑
h=1

κ̂1+1∑
i=1

p · yh,i +
δj∑

h=m1+1

κ̂2+1∑
i=1

p · yh,i (H)

subject to the constraints (A)-(G). Q-I corresponds to another
optimization problem: its objective function is also (H), subject
to (A), (B), (F), (G), and for all h ∈ [1,m1]

xh,1, · · · , xh,κ̂1 ∈ {0, Len}, xh,κ̂1+1 ∈ {0, φ1}, (I)

and for all h ∈ [m1 + 1, δj],

xh,1, · · · , xh,κ̂2 ∈ {0, Len}, xh,κ̂2+1 ∈ {0, φ2}. (J)

The above mathematical problem is referred to as Q-II. In the
following, we prove that (i) any solution to Q-I corresponds to a
solution to Q-II and their objective function (H) under these two
solutions achieves the same value; then, (ii) an optimal solution to
Q-II corresponds to a solution to Q-I, and their objective function
under these two solutions also achieves the same value. The first
point shows that the optimal value of Q-II is a lower bound of
the optimal value of Q-I. The second point shows that there is a
solution to Q-I under which the value of (H) equals the optimal
value of Q-II; hence, this solution to Q-I is optimal and we will
give such an optimal solution while proving the two points above.

The decision variables of both Q-I and Q-II are the same, i.e.,
{yh,i|h ∈ [1,m1], i ∈ [1, κ̂1 +1]} ∪ {yh,i|h ∈ [m1 +1, δj], i ∈
[1, κ̂2 + 1]}. Given a solution to Q-I denoted by Y , we set the
decision variables of Q-II to the same values. Now, we show Y is
a feasible solution to Q-II. Both in Q-II and Q-I, the same xh,i
is set to non-zero and the others are set to zero by (G), and the
non-zero’s xh,i in Q-II is ≥ the xh,i in Q-I by (C), (D), (I), and
(J). Since (A) holds inQ-I where the value of xh is defined in (F),
we have (A) also holds inQ-II. Hence, Y is feasible. Furthermore,
Q-I and Q-II have the same objective function (H) that achieves
the same value under the same Y . This finishes proving the first
point above.

Now, we give an optimal solution to Q-II. The physical
meaning of Q-II can be explained as follows. There are 3 types of
items each with a weight p: (i) κ̂1 ·m1+ κ̂2 ·m2 items each with a
size Len, (ii) m1 items each with a size φ1 (< Len), and (iii) m2

items each with a size φ2 (< Len); the objective is to select some
items such that the total size of chosen items is≥ zij+1

j (satisfying
(A)) while their total weight (i.e., (H)) is minimized. Since items
have the same weight, an optimal solution is just to select the
minimum number of items, e.g., the items with the largest sizes,
to exactly satisfy the size requirement; correspondingly, an optimal
solution to Q-II is such that the value of yh,i ∈ {0, 1} satisfies

y0 =
m1∑
h=1

κ̂1∑
i=1

yh,i +

δj∑
h=m1+1

κ̂2∑
i=1

yh,i,

y1 =
m1∑
h=1

yh,κ̂1+1, y2 =

δj∑
h=m1+1

yh,κ̂2+1,

(K)

where y0, y1, y2 are described in Proposition 4.7. We denote such
a solution by OPT2. Here, we set xh,i to non-zero if yh,i = 1
and zero otherwise by (G); the particular value of xh,i depends
on (I) and (J), and it determines the value of xh by (F) that can
satisfy (B); by (K), xh can satisfy (A).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Next, we show OPT2 corresponds to a solution OPT1 to
Q1-I, and their objective function (H) under OPT1 and OPT2
achieves the same value. InQ-I, we set the value of xh to the same
value when the solution toQ-II isOPT2 where the constraints (A)
and (B) in Q-I are naturally satisfied; then, we use (E) to obtain
feasible xh,i that will also satisfy (C) and (D); by (G), the value
of yh,i in Q-I can be set, deriving a feasible solution OPT1 to
Q-I. In both Q-I and Q-II, we have the number of non-zero’s yh,i
is dxh/Lene; hence, Q-I under OPT1 and Q-II under OPT2
achieve the same value. Finally, OPT is an optimal solution to
Q-I by the two points above.

In the proof of Proposition 4.7, we have given an optimal
solution OPT1 to Q-I; it is a particular cost-optimal allocation of
on-demand instances, which is also illustrated in Fig. 1 (right). �

B THE ONLINE LEARNING ALGORITHM

In this section, we formally describe the online learning
algorithm (TOLA) used in the supplemented paper to learn the
most cost-effective parameters β0, β, b.

The online learning algorithm that we adopt is the one in
[1], presented as Algorithm 1, and is also a form of the classic
weighted majority algorithm. There are a set of jobs J that arrive
sequentially over time, indexed by j = 1, 2, · · · , and a set of n
parametric policies P each specified by {β0, β, b} and indexed
by π = 1, 2, · · · . Let d = maxj∈J {dj}, i.e., the maximum
relative deadline of all jobs. Let Jt ⊆ J denote all jobs j that
arrive at time slot t, i.e., aj = t. There is a weight distribution
w over n policies; initially, it is a discrete uniform distribution
{1/n, · · · , 1/n} (lines 1-2 of Algorithm 1). The distribution w
will be updated as time goes by (lines 3, 9-20) and it is used to
choose a policy in P for each job (lines 4-8).

Time t goes from slot 1 to later slots (line 3). When a job
j ∈ Jt arrives where t = aj , the algorithm randomly picks
a policy πj from P according to the current w and bases the
allocation of various instances to j on that policy (lines 4-8). Let
the policy πj be defined by {β(j)

0 , β(j), b(j)} and let the array N
denote the number of self-owned instances unreserved/available
at every slot after allocating self-owned instances to the previous
jobs 1, · · · , j − 1 via the policy (4) with β

(1)
0 , · · · , β(j−1)

0 as
the control parameters respectively; initially, if j = 1, we have
N(t) = R for all t ∈ [1, T] where R is the total number
of self-owned instances. As time t goes from slot aj towards
aj + dj − 1, the allocation of instances to j is taken by executing
Algorithm 2, i.e., Dynalloc

(
aj , dj , z

′
j , δj , β

(j)
0 , β(j), b(j), N, t

)
,

at every slot t ∈ [aj , aj + dj − 1] until j is allocated enough
instances to complete zj workload. As modeled in the Section 3
of the supplemented paper, the cost of completing a job j is from
the use of spot and on-demand instances alone, and denoted by
cj(πj).

On the other hand, when time goes to the beginning of slot
d + 1, the update of the weight distribution of policies begins
(line 9). In particular, if Jt−d 6= ∅, we sequentially consider
every job j′ in Jt−d (lines 10-12, 20). Let a virtual array Nβ0

denote the number of self-owned instances unreserved/available at
every slot if the allocation of self-owned instances to the previous
jobs 1, · · · , j′ − 1 follows the policy (4) with the same control
parameter β0; initially, if j′ = 1, we have Nβ0

(t) = R for all
t ∈ [1, T]. For every policy π ∈ P , it is defined by {β0, β, b};
since the spot prices in [t−d, t−1] have been revealed, we are able
to compute the cost of completing the job j′ in [aj , aj + dj − 1]

Algorithm 1: OptiLearning
Input : a set P of n policies, each π parameterized for

indexing so that π ∈ {1, 2, · · · , n}; the set Jt of
jobs that arrive at t;

1 i← 1; // i is used to track the number of times

updating the weight distribution

2 initialize the weight vector of policies:
wi = {wi,1, · · · , wi,n} = {1/n, · · · , 1/n};

3 for t← 1 to T do
// time goes from slot 1 towards later slots

4 J ′t ← Jt;
5 while J ′t 6= ∅ do
6 get a job j from J ′t such that j is the smallest;
7 pick a policy πj = π with a probability wi,π ,

applied to j; // When time t goes from aj to

aj + dj − 1, the allocation of instances to

j is completed via the Algorithm 2 in

the supplemented paper

8 J ′t ← J ′t − {j};
9 if t > d then

10 J ′′t−d ← Jt−d;
11 while J ′′t−d 6= ∅ do
12 get a job j′ from J ′′t−d such that j is the

smallest;
13 compute the cost of completing j′ in the period

of [aj′ , aj′ + dj′ − 1] under every policy
π ∈ P , denoted by cj′(π); // When t′

ranges from aj′ to aj′ + dj′ − 1, the

allocation to j′ is completed via

Dynalloc
(
aj′ , dj′ , z

′
j′ , δj′ , β0, β, b,Nβ0 , t

′
)
;

the cost is recorded accordingly

14 ηt ←
√

2 logn
d(t−d) ;

15 for π ← 1 to n do
16 w′i+1,π ← wi,π exp

−ηtcj′ (π);

17 for π ← 1 to n do
18 wi+1,π ←

w′
i+1,π∑n

i=1 w
′
i+1,i

;

19 i← i+ 1;
20 J ′′t−d ← J ′′t−d − {j′};

under the policy π with Nβ0 recording the available self-owned
instances, denoted by cj′(π) (line 13). Subsequently, the weight of
each policy (i.e., its probability) is updated so that the lower-cost
(higher-cost) polices of this job are re-assigned the enlarged (resp.
reduced) weights (lines 14-18).

Let N ′ = | ∪Tt=d+1 Jt|, i.e., the number of all jobs that arrive
in [d+ 1, T], and, as proved in [1], we have that

Proposition B.1. For all δ ∈ (0, 1), it holds with a probability at
least 1− δ over the random of online learning that

maxπ∈P
{∑

t∈∪Tt=d+1Jt
cj(πj)−cj(π)

N ′

}
≤ 9

√
2d log (n/δ)

N ′ .

Proposition B.1 says that, as TOLA runs, the actual total cost
of completing all jobs is close to the cost of completing all jobs
under a policy π∗ ∈ P that generates the lowest total cost. Recall
that a policy is defined by a tuple of parameters from P .

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

REFERENCES

[1] Ishai Menache, Ohad Shamir, Navendu Jain. ”On-demand, Spot, or Both:
Dynamic Resource Allocation for Executing Batch Jobs in the Cloud.”
In 11th International Conference on Autonomic Computing (ICAC’14).
USENIX Association, 2014.

