
Formal Testing of Multimodal Interactive Systems

Jullien Bouchet, Laya Madani, Laurence Nigay, Catherine Oriat and Ioannis Parissis

Laboratoire LIG – University of Grenoble
BP 53 38041 Grenoble Cedex 9 - FRANCE,

{Forename.Name}@imag.fr

Abstract. This paper presents a method for automatically testing interactive
multimodal systems. The method is based on the Lutess testing environment,
originally dedicated to synchronous software specified using the Lustre
language. The behaviour of synchronous systems, consisting of cycles initiating
by reading an external input, and ending by issuing an output, is to a certain
extent similar to that of interactive systems. Using this hypothesis, the paper
presents our method for automatically testing interactive multimodal systems
using the Lutess environment. In particular, we show that automatic test data
generation based on different strategies can be carried out. Furthermore, we
show how multimodality-related properties can be specified in Lustre, and
integrated in test oracles.

1 Introduction

A multimodal system supports interaction with the user through different modalities
such as voice and gesture. Multimodal systems have been developed for a wide scope
of domains (medical, military, etc.) [3]. In such systems, modalities may be used
sequentially or concurrently, and independently or combined synergistically. The
seminal "Put that there" demonstrator [2] that combines speech and gesture illustrates
a case of a synergistic usage of two modalities. The design space described in [20],
based on the five Allen relationships, captures this variety of possible usages of
several modalities. Moreover the versatility of multimodal systems is further
augmented by the huge variety of innovative input modalities, such as the phicons
(physical icons) [11]. This versatility results in an increased complexity of the design,
development and verification of multimodal systems. Automated development and
validation methods can help in dealing with this complexity. The particular point
addressed in this paper is the automated testing of multimodal systems.

We focus on testing based on formal specifications, for the evaluation of
multimodal systems. Our goal is to provide a predictive (analytical) formal evaluation
method that could precede the experimental evaluation phase of a multimodal system.
Several formal approaches have been proposed for designing and verifying interactive
systems such as the Formal System Modelling (FSM) analysis [8], the Lotos
Interactor Model (LIM) [19], the Interactive Cooperative Objects (ICO) based on
Petri Nets [17] as well as a Lustre-based approach for validation [6]. These
approaches require formal description of the interactive application as an abstract
model with which properties are checked. In contrast, the testing method we propose
does not require the entire application to be formally specified and it does not aim at
formally proving properties. Only a partial specification of the application
environment and desired properties is needed.

Our formal testing method is based on Lutess [7, 18], a testing environment
handling specifications written in the Lustre language [10]. Lutess requires a non-
deterministic specification of the user behaviour as well as a description of the
properties to be checked. Lutess then automatically builds a generator that will feed
with inputs the software under test (i.e., the multimodal user interface). Multimodality
is taken into account through the type of properties to be checked: we especially focus
on the CARE (Complementarity, Assignment, Redundancy, Equivalence) ‎[5, 15]
properties as well as on temporal properties related to the use over time, of multiple
modalities.

The structure of the paper is as follows: first, we present the CARE and temporal
properties that are specific to multimodal interaction. We then explain our testing
approach based on the Lutess testing environment and finally illustrate the application
of the approach on a multimodal system that we developed [4] called Memo.

2 Multimodal interaction

Each modality can be used independently within a multimodal system, but the
availability of several modalities naturally raises the issue of their combined usage.
Combining modalities opens a vastly augmented world of possibilities in multimodal
user interface design, studied in light of the four CARE properties in [5, 15]. These
properties characterize input and output multimodal interaction. In this paper we
focus on input multimodal interaction only. In addition to the combined usage of
input modalities, a temporal relationship characterises the use over time of a set of
input modalities.

The CARE properties (Equivalence, Assignment, Redundancy, and
Complementarity of modalities) form an interesting set of relations relevant to
usability assessment and software design. As shown in Fig. 1, while Equivalence and
Assignment express the availability and respective absence of choice between
multiple modalities for a given task, Complementarity and Redundancy describe
relationships between modalities.
• Assignment implies that the user has no choice for performing a task. For example,

the user must click on a dedicated button using the mouse (modality = direct
manipulation) to close a window.

• Equivalence of modalities implies that the user can perform a task using a modality
chosen amongst a set of equivalent modalities. For example, to empty the desktop
trash, the user can choose between direct manipulation (e.g. shift-click on the
trash) and speech (e.g. the voice command "empty trash"). Equivalence augments
flexibility and also enhances robustness. For example, in a noisy environment, a
mobile user can switch from speech to direct manipulation using the stylus on a
PDA. In critical systems, equivalence of modalities may also be required to
overcome device breakdowns.

• Complementarity denotes several modalities that convey complementary chunks of
information. Deictic expressions, characterised by cross-modality references, are
examples of complementarity. For example, the user issues the voice command
"delete this file" while clicking on an icon. In order to specify the complete
command (i.e. elementary task) the user must use the two modalities in a

complementary way. Complementarity may increase the naturalness and efficiency
of interaction but may also provoke cognitive overload and extra-articulatory
synchronization problems.

• Redundancy indicates that the same piece of information is conveyed by several
modalities. For example, in order to reformat a disk (a critical task) the user must
use two modalities in a redundant way such as speech and direct manipulation.
Redundancy augments robustness, but as in complementary usage may involve
cognitive overload and synchronization problems.

Fig. 1: The CARE relationships between modalities and tasks.

Orthogonal to the CARE relationships, a temporal relationship characterises the
use over time of a set of modalities. The use of these modalities may occur
simultaneously or in sequence within a temporal window Tw, that is, a time interval.
Modalities of a set M are used simultaneously (or in parallel) if, within a temporal
window, they happen to be used at the same time. Sequential events may have to
occur within a temporal window to be interpreted as temporally related. If they occur
outside this window, then they may be interpreted differently. Modalities M are used
sequentially within a temporal window Tw if there is at most one modality active at a
time, and if all of the modalities in the set are used within Tw. Temporal windows for
parallelism and sequentiality do not need to have identical durations. The important
point is that they both express a constraint on the pace of the interaction. Temporal
relationships are often used by fusion software mechanisms to detect complementarity
and redundancy cases by assuming that users' events that are close in time, are related.
Nevertheless, distinct events produced within the same temporal window through
different modalities are not necessarily complementary or redundant. This is the case
for example when the user is performing several independent tasks in parallel, also
called concurrent usage of modalities [15]. This is another source of complexity for
the software.

The CARE and temporal relationships characterise the use of a set of modalities.
They highlight all the diversity of possible input event sequences specified by the user
and therefore the complexity of the software responsible for defining the tasks from
the captured users' actions. Facing this complexity, we propose a formal approach for
testing the software of a multimodal system that handles the input event sequences.

3 Formal approach for testing multimodal systems

Our approach is based on the Lutess testing environment. In this section, we first
present Lutess and then explain how it can be used for testing multimodal systems.

3.1 Lutess: A testing environment for synchronous programs

Lutess [7, 18] is a testing environment for functional testing of synchronous software.
Lutess supports the automatic generation of input sequences for a program with
respect to some environment constraints of the program under test. The environment
constraints correspond to assumptions on the possible behaviours of the program
environment. Input data are dynamically computed (i.e. while the software under test
is executed) to take into account the inputs and outputs that have been produced.
Lutess automatically builds a test data generator and a test harness. The latter:
• links the generator, the software under test and the properties to be checked (i.e.

the oracle), and
• coordinates the test execution and records the sequences of input/output values and

the associated oracle verdicts.

Fig. 2: The Lutess environment.

Lutess therefore requires three elements: the software under test, its environment
description and a test oracle as shown in Fig. 2. The test is operated on a single
action-reaction cycle. The generator randomly selects an input vector and sends it to
the software under test. The latter reacts with an output vector and feeds back the
generator with it. The generator proceeds by producing a new input vector and the
cycle is repeated. Several strategies, explained in Section 3.2.3, are supported by
Lutess for guiding the generation of test data. The oracle observes the input and
output of the software being tested, and determines whether the software properties
are violated. Finally the collector stores the input, output and oracle values all of
which are boolean values.

The software being tested must be synchronous, and the environment constraints
must be written in Lustre ‎[10], a language designed for programming reactive
synchronous systems. A synchronous program, at instant t, reads inputs it, computes
and issues outputs ot, assuming the time is divided in discrete instants defined by a
global clock. The synchrony hypothesis states that the computation of ot is made
instantaneously at instant t.

A Lustre program is structured into nodes. A Lustre node consists of a set of
equations defining outputs as functions of inputs and local variables. A Lustre
expression is made up of constants, variables as well as logical, arithmetic and Lustre-
specific operators. There are two Lustre-specific temporal operators: "pre" and "->".
"pre" makes it possible to use the last value an expression has taken (at the last tick of
the clock). "->", also called "followed by", is used to assign initial values (at t = 0) to
expressions. In Section 4, we will use the temporal operator “pre”: If E is an
expression denoting the sequence (e0, e1, ..., en, ...), pre E denotes the sequence (nil,
e0, e1, ..., en-1, ...) where nil is an undefined value. In other words, pre E returns, at a
moment t, the value of the expression E at the moment t-1.

In addition, the Lustre language can be used as a temporal logic of the past. Indeed,
basic logical and/or temporal operators expressing invariants or properties can be
implemented in Lustre. For example, OnceFromTo(A, B, C) specifies that property A
must hold at least once between the instants where events B and C occur.

3.2 Using Lutess for testing input multimodal systems

Although Lutess is dedicated to synchronous software, it can be used for testing
interactive systems. Indeed, based on the theoretical foundations of the transformation
of asynchronous to synchronous programs [1], a multimodal interactive system can be
viewed as a synchronous program. As explained above, the synchrony hypothesis
states that outputs are computed instantaneously but, in practice, this hypothesis holds
when the software is able to take into account any evolution of its external
environment. Hence, a multimodal interactive system can be viewed as a synchronous
program as long as all the users' actions and external stimuli are captured. In another
domain than Human-Computer Interaction, Lutess has been already used under the
same assumption for successfully testing telephony services specifications [9].

Based on Lutess, we define a method for testing multimodal input interaction. We
therefore focus on the part of the interactive system that handles input events along
multiple modalities. Considering the multimodal system as the software under test,
the aim of the test is to check that a sequence of events along multiple modalities is
correctly processed to obtain appropriate outputs such as a complete task. To do so
with Lutess, one must provide:
1. The interactive system as an executable program: no hypothesis is made on the

software implementation. Nevertheless, in order to identify levels of abstraction for
connecting Lutess with the interactive system, we will assume that the software
architecture of the interactive system is along the PAC-Amodeus software
architecture [15]. Communication between Lutess and the interactive system also
requires an event translator, translating input and output events to boolean vectors
that Lutess can handle. To simplify this fastidious step, we have developed a semi-
automatic method for generating the code that connects Lutess to a multimodal
system developed using the ICARE platform. ICARE is a component-based
platform for developing multimodal interaction [3, 4]. The ICARE platform
enables the designer/developer to graphically manipulate and assemble ICARE
software components in order to specify the multimodal interaction dedicated to a
given task of the interactive system under development. From this specification,
the code is automatically generated. The generated code corresponds to the three

components “Physical Interaction”, “Logical Interaction” and “Fusion mechanism”
within the PAC-Amodeus software architecture model [15]. Indeed ICARE
components include modality components (device and language components) as
well as composition components for combining modalities such as a
Complementary or Redundancy component. Extending the ICARE components in
order to be connected to Lutess leads us to define an integrated platform for
developing and testing multimodal systems. The extension of the ICARE platform
is fully described in [12] and a complete example of development and test of a
multimodal system is presented.

2. The Lustre specification of the test oracle: this specification describes the
properties to be checked. Properties may be related to functional or multimodal
interaction requirements. Functional requirements are expressed as properties
independent of the modalities. Multimodal interaction requirements are expressed
as properties on event sequences considering various modalities. We focus on the
CARE and temporal properties described in Section 2. For instance, a major issue
is the fusion mechanism [15], which combines input events along various
modalities to determine the associated elementary task or command. This
mechanism strongly depends on the temporal window (see Section 2) within which
the users' events occur. For example, when two modalities are used in a
complementary or redundant way, the resulting events are combined if they occur
in the same temporal window.

3. The Lustre specification of the behaviour of the external environment of the system:
from this specification, test data as sequence of users' events are generated thanks
to different strategies. In the case of context-aware systems, in addition to a non-
deterministic specification of the users' behaviour, elements specifying the variable
physical context can be included.

 In the following three sections, we further detail each of these three points,
respectively, the connection, the oracle and the test data generation based on the
specification of the environment.

3.2.1 Connection between Lutess and the interactive multimodal system
Testing a multimodal system requires connecting it to Lutess, as shown in Fig. 3. To
do so, the level of abstraction of the events exchanged between Lutess and the
multimodal system must be defined. This level will depend on the application
properties that have to be checked and will determine which components of the
multimodal system will be connected to Lutess. In order to identify the levels of
abstraction of the events sent by Lutess to the multimodal system, we consider that
the multimodal system under test is organized along the PAC-Amodeus software
architectural model. The PAC-Amodeus model has been applied to the software
design of multimodal systems [15]: the PAC-Amodeus structure of a multimodal
system of Fig. 3 is made of five main components and a fusion mechanism for
performing the fusion of events from multiple modalities. The Functional Core
implements domain specific concepts. The Functional Core Adapter serves as a
mediator between the Dialog Controller and the domain-specific concepts
implemented in the Functional Core. The Dialog Controller, the keystone of the

model, has the responsibility for task-level sequencing. At the other end of the
spectrum, the Logical Interaction Component acts as a mediator between the fusion
mechanism and the Physical Interaction Component. The latter supports the physical
interaction with the user and is then dependent on the physical devices. Since our
method focuses on testing multimodal input interaction, three PAC-Amodeus
components are involved: the Physical and Logical Interaction Components as well as
the fusion mechanism.

Fig. 3: Connection between Lutess and a multimodal system organized

along the PAC-Amodeus model: three solutions.

. By considering the PAC-Amodeus component candidates to receive input events
from Lutess, we identify three levels of abstraction of the generated events:
1. Simulating the Physical Interaction Component: generated events should be sent to

the Logical Interaction Component. In this case, Lutess should send low-level
device dependent event sequences to the multimodal system such as selections of
buttons using the mouse or character strings for recognized spoken utterances.

2. Simulating the Physical and Logical Interaction Components: generated events
sent to the fusion mechanism should be modality dependent. Examples include
<mouse, empty trash> or <speech, empty trash>.

3. Simulating the fusion mechanism: generated events should correspond to complete
commands, independent of the modalities used to specify them, for instance
<empty trash>.

Since we aim at checking the CARE and temporal properties of multimodal

interaction, as explained in Section 2, in all experiments performed so far, the second
solution has been chosen: the test data generated by the Lutess environment are
modality dependent event sequences.

3.2.2 Specification of the test oracles
The test oracles consist of properties that must be checked. Properties may be related
to functional and multimodal interaction requirements. Examples of properties related
to functional requirements are provided in Section 4. In this section we focus on
multimodality-related requirements and consider the CARE and temporal properties
defined in Section 2: we show that they can be expressed as Lustre expressions and
then can be included in an automatic test oracle.

Equivalence:
Two modalities M1 and M2 are equivalent w.r.t. a set T of tasks, if every task t ∈ T

can be activated by an expression along M1 or M2. Let EAM1 be an expression along
modality M1 and let EAM2 be an expression along M2. EAM1 or EAM2 can activate the
task ti ∈ T. Therefore, equivalence can be expressed as follows:

OnceFromTo (EAM1 or EAM2, not ti, ti)

We recall (see Section 3.1) that OnceFromTo(A, B, C) specifies that property A

must hold at least once between the instants where events B and C occur.

Redundancy and Complementarity:
In order to define the two properties Redundancy and Complementarity that

describe combined usages of modalities, we need to consider the use over time of a
set of modalities. For both Redundancy and Complementary, the use of the modalities
may occur simultaneously or in sequence within a temporal window Tw, that is, a
time interval. To specify the temporal window in Lustre, we consider C to be the
duration of an execution cycle (time between reading an input and writing an output).
The temporal window is then specified as the number of discrete execution cycles:
N = Tw div C.

Two modalities M1 and M2 are redundant w.r.t. a set T of tasks, if every task t ∈ T

is activated by an expression EAM1 along M1 and an expression EAM2 along M2. The
two expressions must occur in the same temporal window Tw: abs(time(EAM1) -
time(EAM2) < Tw. Considering N = Tw div C, and the task ti ∈ T, the Lustre
expression of the redundancy property is the following one.

Implies (ti,

abs(lastOccurrence(EAM1)- lastOccurrence(EAM2))<= N
and atMostOneSince(ti, EAM1) and atMostOneSince(ti, EAM2))

• Implies(A, B) is the usual logic implication (not A or B).
• lastOccurrence(A) returns the latest instant that A occurred.
• atMostOneSince(A, B) is true when at most one occurrence of A has been

observed since the last time that B has been true.

Two modalities are used in a complementary way w.r.t. a set T of tasks, if every

task t ∈ T is activated by an expression EAM1 along M1 and an expression EAM2 along
M2. The two expressions must occur in the same temporal window Tw. We therefore
obtain the same Lustre expression as for redundancy. Indeed Complementarity and

Redundancy correspond to the same use over time of modalities and the difference
relies on the semantic of the expressions along the modalities. While complementarity
implies expressions with complementary meaning for the task considered (e.g. speech
command "open this file" while clicking on an icon using the mouse), redundancy
involves expressions conveying the same meaning (e.g., speech command "open the
file named paper.doc" while double-clicking on the icon of the file named paper.doc
using the mouse). The meaning of the conveyed expressions is defined by the Lutess
user (i.e. tester). Consequently, the same oracle is defined for redundancy and
complementarity.

3.2.3 Strategies for generating test data
The automatic test input generation is a key issue in software testing. For the
particular case of interactive systems, such a generation relies on the ability to model
various users' behaviours and to automatically derive test data compliant with the
models. Lutess provides several generation facilities and underlying models that we
illustrate in Section 4.

Constrained Random Generation:
The simulation of users’ actions is based on a set of invariants specifying all the

possible users’ behaviours. The latter are randomly generated on an equal probability
basis.

Operational profiles:
Occurrence probabilities are associated with users’ actions to build more realistic

behaviours [16]. Probabilities can be conditional (that is, they will be taken into
account during the test data generation only when a user-specified condition holds) or
unconditional. Random generation is performed w.r.t. these probabilities. An
interesting feature of this generation mode is that it makes it possible to issue events
in the same temporal window and, hence, to check the fusion capabilities of a
multimodal system. As we have shown in [13], one has to associate with the input
events a probability computed from the temporal window duration to ensure that
events will occur in the same temporal window. Let N be the number of discrete
execution cycles corresponding to the full duration of the temporal window
(computed as in Section 3.2.2). For an input event to occur within the temporal
window, its occurrence probability must be greater or equal to 1/N. For example, to
specify that A and B will both be issued in that order in the same temporal window,
we can write:

proba(A, 1/N, after(B) and pre always_since(not A, B));

Indeed, this formula means that if at least a B event has occurred in the past and if
no A event occurred since the last B occurrence, then the A occurrence probability is
equal to 1/N. Since the temporal window starts at the last occurrence of B and lasts N
ticks, A will very probably occur at least once before the end of the window.

Behavioural patterns:
Behavioural patterns make it possible to partially specify a sequence of users’

actions. The random test input generation will take into account this partial
specification. An example of a behavioural pattern for the Memo application is
provided in the following section.

4 Illustration: the Memo multimodal system

Memo [4] is an input multimodal system aiming at annotating physical locations with
digital post it-like notes. Users can drop a note to a physical location. The note can
then be read/carried/removed by other mobile users.

Fig. 4: A sketched view through the HMD: The Memo mobile user is in front of the

computer science teaching building at the University of Grenoble and can see two digital notes.

A Memo user is equipped with a GPS and a magnetometer enabling the system to
compute her/his location and orientation. The Memo user is also wearing a head
mounted display (HMD). Its semi-transparency enables the fusion of computer data
(the digital notes) with the real environment as shown in Fig. 4.

In [13], we fully illustrate our testing method by considering the test of Memo
using an operational profile-based approach for generating the test data. In order to
illustrate all the strategies for generating test data (Section 3.2.3), we consider here
two tasks, namely "get a post-it" and "set a post-it" with Memo. For the manipulation
of Memo notes, the mobile user can get a note that will then be carried by her/him
while moving and be no longer visible in the physical environment. The user can
carry one note at a time. As a consequence if s/he tries to get a note while already
carrying one note, the action will have no effect. S/he can set a carried note to appear
at a specific place. Issuing the set command without carrying a note has no effect. To
perform the two tasks "get" and "set", the user has the choice between three
equivalent modalities: issuing voice commands, pressing keys on the keyboard (for
example a wearable keyboard) or clicking on mouse buttons (for example the mouse
is attached to the belt of the mobile user). A command "get" specified using speech,
keyboard and mouse is applied to the notes that the user is looking at (i.e., the notes

close to her/him). Memo can also be set to support redundant usage of modalities.
Using Memo, speech, keyboard and mouse commands can be issued in a redundant
way. For example, the user can use two redundant modalities, voice and mouse
commands, for getting a note: the user issues the voice command "get" while pressing
the mouse button. Because the corresponding expressions are redundant and the two
actions (speaking and pressing) produced nearly in parallel or close in time, the
command will be executed and as a result the user carries the corresponding note. If
the two "get" actions were not produced close in time, there is no redundancy detected
and the get command will therefore not be executed.

In the following sections and considering the two tasks "get" and "set", we

illustrate our method by first explaining the connection between Lutess and Memo.
We then define the test oracle for Memo and finally explain how we automatically
generate test data using different strategies.

4.1 Connection between Lutess and Memo

The connection between Memo and Lutess is made by a Java class in charge of
translating Lutess outputs into Memo inputs and vice-versa. As explained in Section
3.2, we developed a method for semi-automatically generating these translators that
we describe in [12] as an extension of the ICARE platform. For Memo, the code has
been written manually. We set the level of abstraction of the generated events to
modality one (Section 3.2.1). Generated events are hence received by the fusion
component of Memo.

For the "get" and "set" tasks, the following events are involved in the interaction:
• Localization is a boolean vector which indicates the user's movements along the x,

y and z axes. For instance, Localization[xplus]=true means that the user's x-
coordinate increases. Similarly Orientation is a boolean vector, which indicates the
changes in the user's orientation. For instance, Orientation[pitchplus] indicates that
the user is bending one's head.

• Mouse, Keyboard and Speech are boolean vectors corresponding to a "get" or "set"
command specified using speech, keyboard or mouse. For instance, Mouse[get]
indicates that the user has pressed the mouse button corresponding to a "get"
command.

The state of the Memo system is observed through four boolean outputs:

• memoSeen, which is true when at least one note is visible and close enough to the
user to be manipulated,

• memoCarried, which is true when the user is carrying a note,
• memoTaken, which is true if the user has taken (get) a note during the previous

action-reaction cycle,
• memoSet, which is true if the user has set a carried note to appear at a specific

place during the previous cycle.

4.2 Memo test oracle

The test oracle consists of the required Memo properties. First we consider functional
properties. For example the state of Memo cannot change except by means of suitable
input events: between the instant the user is seeing a note and the instant there is no
note in her/his visual field, the user has moved or specified a "get" command.

once_from_to((move or cmdget) and pre memoSeen, memoSeen, not memoSeen)

Moreover we specify that notes are taken or set only with appropriate commands.

For example, after a note has been seen and before it has been taken, a "get"
command has to occur at an instant when the note is seen.

once_from_to(cmdget and pre memoSeen, memoSeen, memoTaken)

Furthermore if a note is carried, then a "get" command has previously occurred.

once_from_to(cmdget and pre memoSeen, not memoCarried, memoCarried)

In addition to functional properties, multimodality-related properties are specified

in the test oracle, as explained in Section 3.2.2. For instance, to check that the task
memoTaken takes place only after the occurrence of the redundant expressions
Mouse[get] and Speech[get], we should write the following test oracle:

node MemoOracle(-- application inputs and outputs

)
returns(propertyOK:bool);

let
propertyOK =

Implies (memoTaken,
 abs(lastOccurrence(Mouse[get])-
 lastOccurrence(Speech[get]))<= N
 and
 atMostOneSince(ti, Mouse[get]) and
 atMostOneSince(memoTaken, Speech[get]));

tel

4.3 Memo test input generation

4.3.1 Modelling the environment and the users' behaviour
Input data are generated by Lutess according to formulas defining assumptions about
the external environment of Memo, i.e. the users' behaviour. We describe here actions
that the user cannot perform. For example the user cannot move along an axis in both
directions at the same time. The corresponding formulas are:

 not (Localization[xminus] and Localization[xplus])
 not (Localization[yminus] and Localization[yplus])
 not (Localization[zminus] and Localization[zplus])

Similarly, we also specify by three formulas that the user cannot turn around an
axis in both directions at the same time.

Moreover, Lutess sends data to Memo at the modality level. Since there is one
abstraction process per modality, only one data along a given modality can therefore
be sent at a given time. Two commands "get" "set" can be performed using speech,
keyboard or mouse: we therefore have the following formulas:

AtMostOne(2,Mouse); AtMostOne(2,Keyboard); AtMostOne(2,Speech)

4.3.2 Guiding the test data generation

Random generation and operational profiles:
A random simulation of the users' actions results in sequences in which every

input event has the same probability to occur. This means, for instance, that
Localization[xminus] will occur as many times as Localization[xplus]. As a result, the
users' position will hardly change. To test Memo in a more realistic way, the data
generation can be guided by means of operational profiles (set of conditional or
unconditional probabilities definition). Unconditional probabilities are used to force
the simulation to correspond to a particular case, for example that the user is turning
one's head to the right:

proba((Orientation[yawminus], 0.80), (Orientation[yawplus], 0.01),

(Orientation[pitchminus], 0.01), (Orientation[pitchplus], 0.01),
 (Orientation[rollminus], 0.01), (Orientation[rollplus, 0.01))

Conditional probabilities are used, for instance, to specify that a "get" command
has a high probability to occur when the user has a note in her/his visual field (close
enough to be manipulated):

proba((Mouse[get], 0.8, pre memoSeen),
 (Keyboard[get], 0.8, pre memoSeen), (Speech[get], 0.8, pre memoSeen))

The following expression states that, when there is no note visible, the user will
very probably move:

proba((Localisation[xminus], 0.9, not pre MemoSeen),

 (Localisation[zminus], 0.9, not pre memoSeen),
(…), (…))

Behavioural patterns:
Lutess also supports the definition of behavioural patterns for guiding the

generation of test data. A pattern is a sequence of actions as well as conditions that
should hold between two successive actions. During the random test data generation,
inputs matching the scenario have a higher occurrence probability. Let us consider the
scenario corresponding to the sequence of tasks or commands presented in Fig. 5: the
user performs twice the "get" command, then a "set" command. The scenario also
specifies that in between the first two "get" commands, the user does not perform a
"set" command and similarly between the two "get" and "set" commands, no "get"
command.

Fig. 5: An example of a scenario for guiding the generation of test data.

This scenario can be described in Lutess as follows:

cond((Mouse[get] or Keyboard[get] or Speech[get]),
 (Mouse[get] or Keyboard[get] or Speech[get]),
 (Mouse[set] or Keyboard[set] or Speech[set]));
 intercond(true,
 not(Mouse[set] or Keyboard[set] or Speech[set]),
 not(Mouse[get] or Keyboard[get] or Speech[get]),
 true);

5 Conclusion and future work

In this article, we have presented our method for automatically testing multimodal
systems. The testing method is based on Lutess, a testing environment originally
designed for synchronous software. Multimodality is addressed through the software
properties that are checked: the CARE and temporal properties. Testing the
satisfaction of the CARE and temporal properties with Lutess requires (1) expressing
the properties in Lustre to build a test oracle and (2) generating adequate test input
data. We have shown that the expression of the CARE and temporal properties in
Lustre is possible, since the language is a temporal logic of the past and makes it
possible to specify constraints on event sequences. The test data generation relies on a
model including invariants and guiding directives (i.e. operational profiles,
behavioural patterns). We have shown that by specifying operational profiles it is
possible to generate test data corresponding to the combined usage of modalities and
that scenarios are also useful for the expression of functional properties.

In future work, we will further explore the guidelines for generating the test data,

and in particular the behavioural patterns that correspond to usability scenarios. To do
so, we plan to use information from the task analysis in order to define the
behavioural patterns. This work will be done in the context of our platform ICARE-
Lutess that supports a semi-automatic generation of the translators between Lutess
and the multimodal system developed using ICARE. Since an ICARE diagram is
defined for a given task, we will first link our ICARE platform with a task analysis
tool such as CTTE [14]. We will then exploit the task tree for defining behavioural
patterns used for guiding the test. Extending our ICARE-Lutess platform in order to
be connected to a task analysis tool will lead us to define an integrated platform from
task to concrete multimodal interaction for designing, developing and testing
multimodal systems.

6 Acknowledgments

Many thanks to G. Serghiou for reviewing the paper. This work is partly funded by
the French National Research Agency project VERBATIM (RNRT), by the
SIMILAR European FP6 network of excellence dedicated to multimodality (FP6-
507609) and by the OpenInterface European FP6 STREP focusing on an open source
platform for multimodality (FP6-035182).

7 References

1. Benveniste, A., Caillaud, B., & Le Guernic, P. From synchrony to asynchrony. Proc. of
CONCUR'99, Concurrency Theory, Springer Verlag (1999) 162-177.

2. Bolt, R. Put That There: Voice and Gesture at the Graphics Interface. Proc. of
SIGGRAPH'80, ACM Press (1980) 262-270.

3. Bouchet, J., Nigay, L., & Ganille, T. ICARE Software Components for Rapidly Developing
Multimodal Interfaces. Proc. of ICMI'04, ACM Press (2004) 251-258.

4. Bouchet, J., & Nigay, L. ICARE: A Component-Based Approach for the Design and
Development of Multimodal Interfaces. Proc. of CHI'04 extended abstract, ACM Press
(2004) 1325-1328.

5. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., & Young, R. Four Easy Pieces for
Assessing the Usability of Multimodal Interaction: The CARE properties. Proc. Of
INTERACT'95, Chapman et Hall (1995) 115-120.

6. d'Ausbourg, B. Using Model Checking for the Automatic Validation of User Interfaces
Systems. Proc. of DSVIS'98, Springer Verlag (1998) 242-260.

7. du Bousquet, L., Ouabdesselam, F., Richier, J.-L., & Zuanon, N. Lutess: a Specification
Driven Testing Environment for Synchronous Software. Proc. of ICSE'99, ACM Press
(1999) 267-276.

8. Duke, D., & Harrison, M. Abstract Interaction Objects. Proc. of Eurographics'93, North
Holland (1993) 25-36.

9. Griffeth, N., Blumenthal, R., Gregoire, J.-C., & Ohta, T. Feature Interaction Detection
Contest. Proc of Feature Interactions in Telecommunications Systems V, IOS Press (1998)
327-359.

10. Halbwachs, N. Synchronous programming of reactive systems, a tutorial and commented
bibliography. Proc. of CAV'98, Springer Verlag (1998) 1-16.

11. Ishii, H., & Ullmer, B. Tangible Bits: Towards Seamless Interfaces between People, Bits
and Atoms. Proc. of CHI'97, ACM Press (1997) 234-241.

12. Jourde, F. Nigay, L. & Parissis, I. Formal test of multimodal systems: ICARE-Lutess
platform. Proc. of 19th International Conference on Software & Systems Engineering and
their Applications: Service & System globalization (ICSSEA'2006), to appear.

13. Madani, L. Oriat, C., Parissis, I., Bouchet, J., & Nigay, L. Synchronous Testing of
Multimodal Systems: An Operational Profile-Based Approach. Proc. of Int'l Symposium on
Software Reliability Engineering (ISSRE'05), IEEE Computer Society (2005) 325-334.

14. Mori, G., Paterno, F. & Santoro, C. CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE Transactions on Software Engineering
(August 2002) 797-813.

15. Nigay, L., & Coutaz, J. A Generic Platform for Addressing the Multimodal Challenge.
Proc. of CHI'95, ACM Press (1995) 98-105.

16. Ouabdesselam, F., & Parissis I. Constructing Operational Profiles for Synchronous Critical
Software. Proc. of Int'l Symposium on Software Reliability Engineering (ISSRE'95), IEEE
Computer Society (1995) 286 - 293.

17. Palanque, P., & Bastide, R. Verification of Interactive Software by Analysis of its Formal
Specification. Proc. of INTERACT'95, Chapman et Hall (1995) 191-197.

18. Parissis, I., & Ouabdesselam, F. Specification-based Testing of Synchronous Software.
Proc. of ACM SIGSOFT, ACM Press (1996) 127-134.

19. Paterno, F., & Faconti, G. On the Use of LOTOS to Describe Graphical Interaction. Proc.
of HCI'92, Cambridge University Press (1992) 155-173.

20. Vernier, F., & Nigay. L. A Framework for the Combination and Characterization of Output
Modalities. Proc. of DSVIS'2000, Springer Verlag (2000) 32-48.

