
Formal Testing of Multimodal Interactive Systems  

Jullien Bouchet, Laya Madani, Laurence Nigay, Catherine Oriat and Ioannis Parissis 

Laboratoire LIG – University of Grenoble 
BP 53 38041 Grenoble Cedex 9 - FRANCE, 

{Forename.Name}@imag.fr 

Abstract. This paper presents a method for automatically testing interactive 
multimodal systems. The method is based on the Lutess testing environment, 
originally dedicated to synchronous software specified using the Lustre 
language. The behaviour of synchronous systems, consisting of cycles initiating 
by reading an external input, and ending by issuing an output, is to a certain 
extent similar to that of interactive systems. Using this hypothesis, the paper 
presents our method for automatically testing interactive multimodal systems 
using the Lutess environment. In particular, we show that automatic test data 
generation based on different strategies can be carried out. Furthermore, we 
show how multimodality-related properties can be specified in Lustre, and 
integrated in test oracles. 

1 Introduction 

A multimodal system supports interaction with the user through different modalities 
such as voice and gesture. Multimodal systems have been developed for a wide scope 
of domains (medical, military, etc.) [3]. In such systems, modalities may be used 
sequentially or concurrently, and independently or combined synergistically. The 
seminal "Put that there" demonstrator [2] that combines speech and gesture illustrates 
a case of a synergistic usage of two modalities. The design space described in [20], 
based on the five Allen relationships, captures this variety of possible usages of 
several modalities. Moreover the versatility of multimodal systems is further 
augmented by the huge variety of innovative input modalities, such as the phicons 
(physical icons) [11]. This versatility results in an increased complexity of the design, 
development and verification of multimodal systems. Automated development and 
validation methods can help in dealing with this complexity. The particular point 
addressed in this paper is the automated testing of multimodal systems.  

We focus on testing based on formal specifications, for the evaluation of 
multimodal systems. Our goal is to provide a predictive (analytical) formal evaluation 
method that could precede the experimental evaluation phase of a multimodal system. 
Several formal approaches have been proposed for designing and verifying interactive 
systems such as the Formal System Modelling (FSM) analysis [8], the Lotos 
Interactor Model (LIM) [19], the Interactive Cooperative Objects (ICO) based on 
Petri Nets [17] as well as a Lustre-based approach for validation [6]. These 
approaches require formal description of the interactive application as an abstract 
model with which properties are checked. In contrast, the testing method we propose 
does not require the entire application to be formally specified and it does not aim at 
formally proving properties. Only a partial specification of the application 
environment and desired properties is needed.  



Our formal testing method is based on Lutess [7, 18], a testing environment 
handling specifications written in the Lustre language [10]. Lutess requires a non-
deterministic specification of the user behaviour as well as a description of the 
properties to be checked. Lutess then automatically builds a generator that will feed 
with inputs the software under test (i.e., the multimodal user interface). Multimodality 
is taken into account through the type of properties to be checked: we especially focus 
on the CARE (Complementarity, Assignment, Redundancy, Equivalence) ‎[5, 15] 
properties as well as on temporal properties related to the use over time, of multiple 
modalities.  

The structure of the paper is as follows: first, we present the CARE and temporal 
properties that are specific to multimodal interaction. We then explain our testing 
approach based on the Lutess testing environment and finally illustrate the application 
of the approach on a multimodal system that we developed [4] called Memo. 

2  Multimodal interaction 

Each modality can be used independently within a multimodal system, but the 
availability of several modalities naturally raises the issue of their combined usage. 
Combining modalities opens a vastly augmented world of possibilities in multimodal 
user interface design, studied in light of the four CARE properties in [5, 15]. These 
properties characterize input and output multimodal interaction. In this paper we 
focus on input multimodal interaction only. In addition to the combined usage of 
input modalities, a temporal relationship characterises the use over time of a set of 
input modalities. 

The CARE properties (Equivalence, Assignment, Redundancy, and 
Complementarity of modalities) form an interesting set of relations relevant to 
usability assessment and software design. As shown in Fig. 1, while Equivalence and 
Assignment express the availability and respective absence of choice between 
multiple modalities for a given task, Complementarity and Redundancy describe 
relationships between modalities. 
• Assignment implies that the user has no choice for performing a task. For example, 

the user must click on a dedicated button using the mouse (modality = direct 
manipulation) to close a window.  

• Equivalence of modalities implies that the user can perform a task using a modality 
chosen amongst a set of equivalent modalities. For example, to empty the desktop 
trash, the user can choose between direct manipulation (e.g. shift-click on the 
trash) and speech (e.g. the voice command "empty trash"). Equivalence augments 
flexibility and also enhances robustness. For example, in a noisy environment, a 
mobile user can switch from speech to direct manipulation using the stylus on a 
PDA. In critical systems, equivalence of modalities may also be required to 
overcome device breakdowns. 

• Complementarity denotes several modalities that convey complementary chunks of 
information. Deictic expressions, characterised by cross-modality references, are 
examples of complementarity. For example, the user issues the voice command 
"delete this file" while clicking on an icon. In order to specify the complete 
command (i.e. elementary task) the user must use the two modalities in a 



complementary way. Complementarity may increase the naturalness and efficiency 
of interaction but may also provoke cognitive overload and extra-articulatory 
synchronization problems. 

• Redundancy indicates that the same piece of information is conveyed by several 
modalities. For example, in order to reformat a disk (a critical task) the user must 
use two modalities in a redundant way such as speech and direct manipulation. 
Redundancy augments robustness, but as in complementary usage may involve 
cognitive overload and synchronization problems.  

 

 
Fig. 1: The CARE relationships between modalities and tasks. 

Orthogonal to the CARE relationships, a temporal relationship characterises the 
use over time of a set of modalities. The use of these modalities may occur 
simultaneously or in sequence within a temporal window Tw, that is, a time interval. 
Modalities of a set M are used simultaneously (or in parallel) if, within a temporal 
window, they happen to be used at the same time. Sequential events may have to 
occur within a temporal window to be interpreted as temporally related. If they occur 
outside this window, then they may be interpreted differently. Modalities M are used 
sequentially within a temporal window Tw if there is at most one modality active at a 
time, and if all of the modalities in the set are used within Tw. Temporal windows for 
parallelism and sequentiality do not need to have identical durations. The important 
point is that they both express a constraint on the pace of the interaction. Temporal 
relationships are often used by fusion software mechanisms to detect complementarity 
and redundancy cases by assuming that users' events that are close in time, are related. 
Nevertheless, distinct events produced within the same temporal window through 
different modalities are not necessarily complementary or redundant. This is the case 
for example when the user is performing several independent tasks in parallel, also 
called concurrent usage of modalities [15]. This is another source of complexity for 
the software. 

The CARE and temporal relationships characterise the use of a set of modalities. 
They highlight all the diversity of possible input event sequences specified by the user 
and therefore the complexity of the software responsible for defining the tasks from 
the captured users' actions. Facing this complexity, we propose a formal approach for 
testing the software of a multimodal system that handles the input event sequences. 



3 Formal approach for testing multimodal systems 

Our approach is based on the Lutess testing environment. In this section, we first 
present Lutess and then explain how it can be used for testing multimodal systems. 

3.1 Lutess: A testing environment for synchronous programs  

Lutess [7, 18] is a testing environment for functional testing of synchronous software. 
Lutess supports the automatic generation of input sequences for a program with 
respect to some environment constraints of the program under test. The environment 
constraints correspond to assumptions on the possible behaviours of the program 
environment. Input data are dynamically computed (i.e. while the software under test 
is executed) to take into account the inputs and outputs that have been produced. 
Lutess automatically builds a test data generator and a test harness. The latter: 
• links the generator, the software under test and the properties to be checked (i.e. 

the oracle), and 
• coordinates the test execution and records the sequences of input/output values and 

the associated oracle verdicts.  
 

 
Fig. 2: The Lutess environment. 

Lutess therefore requires three elements: the software under test, its environment 
description and a test oracle as shown in Fig. 2. The test is operated on a single 
action-reaction cycle. The generator randomly selects an input vector and sends it to 
the software under test. The latter reacts with an output vector and feeds back the 
generator with it. The generator proceeds by producing a new input vector and the 
cycle is repeated. Several strategies, explained in Section 3.2.3, are supported by 
Lutess for guiding the generation of test data. The oracle observes the input and 
output of the software being tested, and determines whether the software properties 
are violated. Finally the collector stores the input, output and oracle values all of 
which are boolean values.  

The software being tested must be synchronous, and the environment constraints 
must be written in Lustre ‎[10], a language designed for programming reactive 
synchronous systems. A synchronous program, at instant t, reads inputs it, computes 
and issues outputs ot, assuming the time is divided in discrete instants defined by a 
global clock. The synchrony hypothesis states that the computation of ot is made 
instantaneously at instant t.   



A Lustre program is structured into nodes. A Lustre node consists of a set of 
equations defining outputs as functions of inputs and local variables. A Lustre 
expression is made up of constants, variables as well as logical, arithmetic and Lustre-
specific operators. There are two Lustre-specific temporal operators: "pre" and "->". 
"pre" makes it possible to use the last value an expression has taken (at the last tick of 
the clock). "->", also called "followed by", is used to assign initial values (at t = 0) to 
expressions. In Section 4, we will use the temporal operator “pre”: If E is an 
expression denoting the sequence (e0, e1, ..., en, ...), pre E denotes the sequence (nil, 
e0, e1, ..., en-1, ...) where nil is an undefined value. In other words, pre E returns, at a 
moment t, the value of the expression E at the moment t-1. 

In addition, the Lustre language can be used as a temporal logic of the past. Indeed, 
basic logical and/or temporal operators expressing invariants or properties can be 
implemented in Lustre. For example, OnceFromTo(A, B, C) specifies that property A 
must hold at least once between the instants where events B and C occur. 

3.2 Using Lutess for testing input multimodal systems 

Although Lutess is dedicated to synchronous software, it can be used for testing 
interactive systems. Indeed, based on the theoretical foundations of the transformation 
of asynchronous to synchronous programs [1], a multimodal interactive system can be 
viewed as a synchronous program. As explained above, the synchrony hypothesis 
states that outputs are computed instantaneously but, in practice, this hypothesis holds 
when the software is able to take into account any evolution of its external 
environment. Hence, a multimodal interactive system can be viewed as a synchronous 
program as long as all the users' actions and external stimuli are captured. In another 
domain than Human-Computer Interaction, Lutess has been already used under the 
same assumption for successfully testing telephony services specifications [9]. 

Based on Lutess, we define a method for testing multimodal input interaction. We 
therefore focus on the part of the interactive system that handles input events along 
multiple modalities. Considering the multimodal system as the software under test, 
the aim of the test is to check that a sequence of events along multiple modalities is 
correctly processed to obtain appropriate outputs such as a complete task. To do so 
with Lutess, one must provide: 
1. The interactive system as an executable program: no hypothesis is made on the 

software implementation. Nevertheless, in order to identify levels of abstraction for 
connecting Lutess with the interactive system, we will assume that the software 
architecture of the interactive system is along the PAC-Amodeus software 
architecture [15]. Communication between Lutess and the interactive system also 
requires an event translator, translating input and output events to boolean vectors 
that Lutess can handle. To simplify this fastidious step, we have developed a semi-
automatic method for generating the code that connects Lutess to a multimodal 
system developed using the ICARE platform. ICARE is a component-based 
platform for developing multimodal interaction [3, 4]. The ICARE platform 
enables the designer/developer to graphically manipulate and assemble ICARE 
software components in order to specify the multimodal interaction dedicated to a 
given task of the interactive system under development. From this specification, 
the code is automatically generated. The generated code corresponds to the three 



components “Physical Interaction”, “Logical Interaction” and “Fusion mechanism” 
within the PAC-Amodeus software architecture model [15]. Indeed ICARE 
components include modality components (device and language components) as 
well as composition components for combining modalities such as a 
Complementary or Redundancy component. Extending the ICARE components in 
order to be connected to Lutess leads us to define an integrated platform for 
developing and testing multimodal systems. The extension of the ICARE platform 
is fully described in [12] and a complete example of development and test of a 
multimodal system is presented.  

2. The Lustre specification of the test oracle: this specification describes the 
properties to be checked. Properties may be related to functional or multimodal 
interaction requirements. Functional requirements are expressed as properties 
independent of the modalities. Multimodal interaction requirements are expressed 
as properties on event sequences considering various modalities. We focus on the 
CARE and temporal properties described in Section 2. For instance, a major issue 
is the fusion mechanism [15], which combines input events along various 
modalities to determine the associated elementary task or command. This 
mechanism strongly depends on the temporal window (see Section 2) within which 
the users' events occur. For example, when two modalities are used in a 
complementary or redundant way, the resulting events are combined if they occur 
in the same temporal window. 

3. The Lustre specification of the behaviour of the external environment of the system: 
from this specification, test data as sequence of users' events are generated thanks 
to different strategies. In the case of context-aware systems, in addition to a non-
deterministic specification of the users' behaviour, elements specifying the variable 
physical context can be included.  
 

 In the following three sections, we further detail each of these three points, 
respectively, the connection, the oracle and the test data generation based on the 
specification of the environment. 

3.2.1 Connection between Lutess and the interactive multimodal system 
Testing a multimodal system requires connecting it to Lutess, as shown in Fig. 3. To 
do so, the level of abstraction of the events exchanged between Lutess and the 
multimodal system must be defined. This level will depend on the application 
properties that have to be checked and will determine which components of the 
multimodal system will be connected to Lutess. In order to identify the levels of 
abstraction of the events sent by Lutess to the multimodal system, we consider that 
the multimodal system under test is organized along the PAC-Amodeus software 
architectural model. The PAC-Amodeus model has been applied to the software 
design of multimodal systems [15]: the PAC-Amodeus structure of a multimodal 
system of Fig. 3 is made of five main components and a fusion mechanism for 
performing the fusion of events from multiple modalities. The Functional Core 
implements domain specific concepts. The Functional Core Adapter serves as a 
mediator between the Dialog Controller and the domain-specific concepts 
implemented in the Functional Core. The Dialog Controller, the keystone of the 



model, has the responsibility for task-level sequencing. At the other end of the 
spectrum, the Logical Interaction Component acts as a mediator between the fusion 
mechanism and the Physical Interaction Component. The latter supports the physical 
interaction with the user and is then dependent on the physical devices. Since our 
method focuses on testing multimodal input interaction, three PAC-Amodeus 
components are involved: the Physical and Logical Interaction Components as well as 
the fusion mechanism. 

 

 
Fig. 3: Connection between Lutess and a multimodal system organized  

along the PAC-Amodeus model: three solutions. 

. By considering the PAC-Amodeus component candidates to receive input events 
from Lutess, we identify three levels of abstraction of the generated events: 
1. Simulating the Physical Interaction Component: generated events should be sent to 

the Logical Interaction Component. In this case, Lutess should send low-level 
device dependent event sequences to the multimodal system such as selections of 
buttons using the mouse or character strings for recognized spoken utterances. 

2. Simulating the Physical and Logical Interaction Components: generated events 
sent to the fusion mechanism should be modality dependent. Examples include 
<mouse, empty trash> or <speech, empty trash>.  

3. Simulating the fusion mechanism: generated events should correspond to complete 
commands, independent of the modalities used to specify them, for instance 
<empty trash>. 

 
Since we aim at checking the CARE and temporal properties of multimodal 

interaction, as explained in Section 2, in all experiments performed so far, the second 
solution has been chosen: the test data generated by the Lutess environment are 
modality dependent event sequences.  



3.2.2 Specification of the test oracles 
The test oracles consist of properties that must be checked. Properties may be related 
to functional and multimodal interaction requirements. Examples of properties related 
to functional requirements are provided in Section 4. In this section we focus on 
multimodality-related requirements and consider the CARE and temporal properties 
defined in Section 2: we show that they can be expressed as Lustre expressions and 
then can be included in an automatic test oracle.  

 
Equivalence: 
Two modalities M1 and M2 are equivalent w.r.t. a set T of tasks, if every task t ∈ T 

can be activated by an expression along M1 or M2. Let EAM1 be an expression along 
modality M1 and let EAM2 be an expression along M2. EAM1 or EAM2 can activate the 
task ti ∈ T.  Therefore, equivalence can be expressed as follows:  

 
OnceFromTo (EAM1 or EAM2, not ti, ti) 

 
We recall (see Section 3.1) that OnceFromTo(A, B, C) specifies that property A 

must hold at least once between the instants where events B and C occur. 
 
Redundancy and Complementarity: 
In order to define the two properties Redundancy and Complementarity that 

describe combined usages of modalities, we need to consider the use over time of a 
set of modalities. For both Redundancy and Complementary, the use of the modalities 
may occur simultaneously or in sequence within a temporal window Tw, that is, a 
time interval. To specify the temporal window in Lustre, we consider C to be the 
duration of an execution cycle (time between reading an input and writing an output). 
The temporal window is then specified as the number of discrete execution cycles:  
N = Tw div C.  

 
Two modalities M1 and M2 are redundant w.r.t. a set T of tasks, if every task t ∈ T 

is activated by an expression EAM1 along M1 and an expression EAM2 along M2. The 
two expressions must occur in the same temporal window Tw: abs(time(EAM1) - 
time(EAM2) < Tw. Considering N = Tw div C, and the task ti ∈ T, the Lustre 
expression of the redundancy property is the following one.  

 
Implies (ti, 

abs(lastOccurrence(EAM1)- lastOccurrence(EAM2))<= N 
and atMostOneSince(ti, EAM1) and atMostOneSince(ti, EAM2)) 

 
• Implies(A, B) is the usual logic implication (not A or B). 
• lastOccurrence(A) returns the latest instant that A occurred. 
• atMostOneSince(A, B) is true when at most one occurrence of A has been 

observed since the last time that B has been true. 
 
Two modalities are used in a complementary way w.r.t. a set T of tasks, if every 

task t ∈ T is activated by an expression EAM1 along M1 and an expression EAM2 along 
M2. The two expressions must occur in the same temporal window Tw. We therefore 
obtain the same Lustre expression as for redundancy. Indeed Complementarity and 



Redundancy correspond to the same use over time of modalities and the difference 
relies on the semantic of the expressions along the modalities. While complementarity 
implies expressions with complementary meaning for the task considered (e.g. speech 
command "open this file" while clicking on an icon using the mouse), redundancy 
involves expressions conveying the same meaning (e.g., speech command "open the 
file named paper.doc" while double-clicking on the icon of the file named paper.doc 
using the mouse). The meaning of the conveyed expressions is defined by the Lutess 
user (i.e. tester). Consequently, the same oracle is defined for redundancy and 
complementarity.  

3.2.3 Strategies for generating test data 
The automatic test input generation is a key issue in software testing. For the 
particular case of interactive systems, such a generation relies on the ability to model 
various users' behaviours and to automatically derive test data compliant with the 
models. Lutess provides several generation facilities and underlying models that we 
illustrate in Section 4. 

 
Constrained Random Generation: 
The simulation of users’ actions is based on a set of invariants specifying all the 

possible users’ behaviours. The latter are randomly generated on an equal probability 
basis. 

 
Operational profiles: 
Occurrence probabilities are associated with users’ actions to build more realistic 

behaviours [16].  Probabilities can be conditional (that is, they will be taken into 
account during the test data generation only when a user-specified condition holds) or 
unconditional. Random generation is performed w.r.t. these probabilities. An 
interesting feature of this generation mode is that it makes it possible to issue events 
in the same temporal window and, hence, to check the fusion capabilities of a 
multimodal system. As we have shown in [13], one has to associate with the input 
events a probability computed from the temporal window duration to ensure that 
events will occur in the same temporal window. Let N be the number of discrete 
execution cycles corresponding to the full duration of the temporal window 
(computed as in Section 3.2.2). For an input event to occur within the temporal 
window, its occurrence probability must be greater or equal to 1/N.  For example, to 
specify that A and B will both be issued in that order in the same temporal window, 
we can write: 

 
proba(A, 1/N, after(B) and pre always_since(not A, B)); 
 

Indeed, this formula means that if at least a B event has occurred in the past and if 
no A event occurred since the last B occurrence, then the A occurrence probability is 
equal to 1/N. Since the temporal window starts at the last occurrence of B and lasts N 
ticks, A will very probably occur at least once before the end of the window. 

 
 
 



Behavioural patterns: 
Behavioural patterns make it possible to partially specify a sequence of users’ 

actions. The random test input generation will take into account this partial 
specification. An example of a behavioural pattern for the Memo application is 
provided in the following section. 

4 Illustration: the Memo multimodal system 

Memo [4] is an input multimodal system aiming at annotating physical locations with 
digital post it-like notes. Users can drop a note to a physical location. The note can 
then be read/carried/removed by other mobile users.  
 

 
Fig. 4: A sketched view through the HMD: The Memo mobile user is in front of the 

computer science teaching building at the University of Grenoble and can see two digital notes. 

A Memo user is equipped with a GPS and a magnetometer enabling the system to 
compute her/his location and orientation. The Memo user is also wearing a head 
mounted display (HMD). Its semi-transparency enables the fusion of computer data 
(the digital notes) with the real environment as shown in Fig. 4. 

In [13], we fully illustrate our testing method by considering the test of Memo 
using an operational profile-based approach for generating the test data. In order to 
illustrate all the strategies for generating test data (Section 3.2.3), we consider here 
two tasks, namely "get a post-it" and "set a post-it" with Memo. For the manipulation 
of Memo notes, the mobile user can get a note that will then be carried by her/him 
while moving and be no longer visible in the physical environment. The user can 
carry one note at a time. As a consequence if s/he tries to get a note while already 
carrying one note, the action will have no effect. S/he can set a carried note to appear 
at a specific place. Issuing the set command without carrying a note has no effect. To 
perform the two tasks "get" and "set", the user has the choice between three 
equivalent modalities: issuing voice commands, pressing keys on the keyboard (for 
example a wearable keyboard) or clicking on mouse buttons (for example the mouse 
is attached to the belt of the mobile user). A command "get" specified using speech, 
keyboard and mouse is applied to the notes that the user is looking at (i.e., the notes 



close to her/him). Memo can also be set to support redundant usage of modalities. 
Using Memo, speech, keyboard and mouse commands can be issued in a redundant 
way. For example, the user can use two redundant modalities, voice and mouse 
commands, for getting a note: the user issues the voice command "get" while pressing 
the mouse button. Because the corresponding expressions are redundant and the two 
actions (speaking and pressing) produced nearly in parallel or close in time, the 
command will be executed and as a result the user carries the corresponding note. If 
the two "get" actions were not produced close in time, there is no redundancy detected 
and the get command will therefore not be executed.  

 
In the following sections and considering the two tasks "get" and "set", we 

illustrate our method by first explaining the connection between Lutess and Memo. 
We then define the test oracle for Memo and finally explain how we automatically 
generate test data using different strategies.  

4.1 Connection between Lutess and Memo 

The connection between Memo and Lutess is made by a Java class in charge of 
translating Lutess outputs into Memo inputs and vice-versa. As explained in Section 
3.2, we developed a method for semi-automatically generating these translators that 
we describe in [12] as an extension of the ICARE platform. For Memo, the code has 
been written manually. We set the level of abstraction of the generated events to 
modality one (Section 3.2.1). Generated events are hence received by the fusion 
component of Memo.  
 

For the "get" and "set" tasks, the following events are involved in the interaction: 
•  Localization is a boolean vector which indicates the user's movements along the x, 

y and z axes. For instance, Localization[xplus]=true means that the user's x-
coordinate increases. Similarly Orientation is a boolean vector, which indicates the 
changes in the user's orientation. For instance, Orientation[pitchplus] indicates that 
the user is bending one's head.  

• Mouse, Keyboard and Speech are boolean vectors corresponding to a "get" or "set" 
command specified using speech, keyboard or mouse. For instance, Mouse[get] 
indicates that the user has pressed the mouse button corresponding to a "get" 
command. 

 
The state of the Memo system is observed through four boolean outputs:  

• memoSeen, which is true when at least one note is visible and close enough to the 
user to be manipulated,  

• memoCarried, which is true when the user is carrying a note,  
• memoTaken, which is true if the user has taken (get) a note during the previous 

action-reaction cycle,  
• memoSet, which is true if the user has set a carried note to appear at a specific 

place during the previous cycle. 



4.2 Memo test oracle 

The test oracle consists of the required Memo properties. First we consider functional 
properties. For example the state of Memo cannot change except by means of suitable 
input events: between the instant the user is seeing a note and the instant there is no 
note in her/his visual field, the user has moved or specified a "get" command.  
 
once_from_to((move or cmdget) and pre memoSeen, memoSeen, not memoSeen) 

 
Moreover we specify that notes are taken or set only with appropriate commands. 

For example, after a note has been seen and before it has been taken, a "get" 
command has to occur at an instant when the note is seen. 
 
once_from_to(cmdget and pre memoSeen, memoSeen, memoTaken) 
 

Furthermore if a note is carried, then a "get" command has previously occurred.  
 
once_from_to(cmdget and pre memoSeen, not memoCarried, memoCarried)   

 
In addition to functional properties, multimodality-related properties are specified 

in the test oracle, as explained in Section 3.2.2. For instance, to check that the task 
memoTaken takes place only after the occurrence of the redundant expressions 
Mouse[get] and Speech[get], we should write the following test oracle: 
 
node MemoOracle(-- application inputs and outputs 

)  
returns(propertyOK:bool); 

let 
propertyOK =  

Implies (memoTaken,  
           abs(lastOccurrence(Mouse[get])- 
           lastOccurrence(Speech[get]))<= N 
           and  
           atMostOneSince(ti, Mouse[get]) and 
           atMostOneSince(memoTaken, Speech[get])); 

tel 

4.3 Memo test input generation 

4.3.1 Modelling the environment and the users' behaviour 
Input data are generated by Lutess according to formulas defining assumptions about 
the external environment of Memo, i.e. the users' behaviour. We describe here actions 
that the user cannot perform. For example the user cannot move along an axis in both 
directions at the same time. The corresponding formulas are:  
 
 not (Localization[xminus] and Localization[xplus])  
 not (Localization[yminus] and Localization[yplus]) 
 not (Localization[zminus] and Localization[zplus])  
 

Similarly, we also specify by three formulas that the user cannot turn around an 
axis in both directions at the same time.  



Moreover, Lutess sends data to Memo at the modality level. Since there is one 
abstraction process per modality, only one data along a given modality can therefore 
be sent at a given time. Two commands "get" "set" can be performed using speech, 
keyboard or mouse: we therefore have the following formulas:  
 

AtMostOne(2,Mouse); AtMostOne(2,Keyboard); AtMostOne(2,Speech) 

4.3.2 Guiding the test data generation 
 
Random generation and operational profiles: 
A random simulation of the users' actions results in sequences in which every 

input event has the same probability to occur. This means, for instance, that 
Localization[xminus] will occur as many times as Localization[xplus]. As a result, the 
users' position will hardly change. To test Memo in a more realistic way, the data 
generation can be guided by means of operational profiles (set of conditional or 
unconditional probabilities definition). Unconditional probabilities are used to force 
the simulation to correspond to a particular case, for example that the user is turning 
one's head to the right:  
 
proba( (Orientation[yawminus], 0.80), (Orientation[yawplus], 0.01),  

(Orientation[pitchminus], 0.01), (Orientation[pitchplus], 0.01),  
 (Orientation[rollminus], 0.01), (Orientation[rollplus, 0.01))  
 

Conditional probabilities are used, for instance, to specify that a "get" command 
has a high probability to occur when the user has a note in her/his visual field (close 
enough to be manipulated): 
 
proba( (Mouse[get], 0.8, pre memoSeen),  
   (Keyboard[get], 0.8, pre memoSeen), (Speech[get], 0.8, pre memoSeen)) 
 

The following expression states that, when there is no note visible, the user will 
very probably move:  
 
proba( (Localisation[xminus], 0.9, not pre MemoSeen), 

  (Localisation[zminus], 0.9, not pre memoSeen), 
(…), (…)                                      ) 

 
Behavioural patterns: 
Lutess also supports the definition of behavioural patterns for guiding the 

generation of test data. A pattern is a sequence of actions as well as conditions that 
should hold between two successive actions. During the random test data generation, 
inputs matching the scenario have a higher occurrence probability. Let us consider the 
scenario corresponding to the sequence of tasks or commands presented in Fig. 5: the 
user performs twice the "get" command, then a "set" command. The scenario also 
specifies that in between the first two "get" commands, the user does not perform a 
"set" command and similarly between the two "get" and "set" commands, no "get" 
command. 



 
Fig. 5: An example of a scenario for guiding the generation of test data. 

 
This scenario can be described in Lutess as follows: 
 

cond(  (Mouse[get] or Keyboard[get] or Speech[get]), 
   (Mouse[get] or Keyboard[get] or Speech[get]), 
   (Mouse[set] or Keyboard[set] or Speech[set])); 
 intercond( true, 
   not(Mouse[set] or Keyboard[set] or Speech[set]),  
   not(Mouse[get] or Keyboard[get] or Speech[get]), 
   true); 

5 Conclusion and future work 

In this article, we have presented our method for automatically testing multimodal 
systems. The testing method is based on Lutess, a testing environment originally 
designed for synchronous software. Multimodality is addressed through the software 
properties that are checked: the CARE and temporal properties. Testing the 
satisfaction of the CARE and temporal properties with Lutess requires (1) expressing 
the properties in Lustre to build a test oracle and (2) generating adequate test input 
data. We have shown that the expression of the CARE and temporal properties in 
Lustre is possible, since the language is a temporal logic of the past and makes it 
possible to specify constraints on event sequences. The test data generation relies on a 
model including invariants and guiding directives (i.e. operational profiles, 
behavioural patterns). We have shown that by specifying operational profiles it is 
possible to generate test data corresponding to the combined usage of modalities and 
that scenarios are also useful for the expression of functional properties.  

 
In future work, we will further explore the guidelines for generating the test data, 

and in particular the behavioural patterns that correspond to usability scenarios. To do 
so, we plan to use information from the task analysis in order to define the 
behavioural patterns. This work will be done in the context of our platform ICARE-
Lutess that supports a semi-automatic generation of the translators between Lutess 
and the multimodal system developed using ICARE. Since an ICARE diagram is 
defined for a given task, we will first link our ICARE platform with a task analysis 
tool such as CTTE [14]. We will then exploit the task tree for defining behavioural 
patterns used for guiding the test. Extending our ICARE-Lutess platform in order to 
be connected to a task analysis tool will lead us to define an integrated platform from 
task to concrete multimodal interaction for designing, developing and testing 
multimodal systems.  
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