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Abstract

Task trees are common notations used to describe the interaction between a user and
an interactive application. They contain valuable information about the expected
user behaviour as well on the expected software reactions and, thus, they can be used
to support model-based testing. In this paper, a method for automatically generating
test data from task trees is introduced. The task tree notation is extended to support
operational profile specification. The user behaviour is automatically extracted from
such extended trees as a probabilistic finite input-output state machine, thanks to
formal semantics defined for this purpose for the task tree operators. The resulting
probabilistic machine can then be used to generate test data simulating the user
behaviour. This simulation can be performed using Lutess, a testing environment
developed for synchronous software. The translation of the user interaction model
into a Lutess description is explained and experimental results are reported.

1 Introduction

Interactive applications ensure the access to various commercial services (mo-
bile phones, reservation systems or telecommunication services) and are in-
creasingly involved in several critical domains such as flight or industrial pro-

Email addresses: laya.madani@imag.fr (Laya Madani),
ioannis.parissis@esisar.grenoble-inp.fr (Ioannis Parissis).

Preprint submitted to Elsevier December 16, 2008



cess control. Therefore, their correctness becomes a very important issue and
their development requires thorough validation. Several automated methods
have been proposed for verifying and validating interactive systems based on
formal specifications such as the FSM (Formal System Modeling) analysis [9],
the LIM approach (Lotos Interactor Model) [10], the ICO (Interactive Coop-
erative Object) formalism based on Petri Nets [26, 23] or model-checking [6]
using the Lustre language [5]. In most of these approaches, the interactive
application is formally described as an abstract model and various properties
which must hold are verified on this model by means of traditional verification
techniques (e.g. model checking). Using the B method has also been suggested
[1] where proofs during the refinement process ensure that properties are pre-
served. Model-based testing methods focusing on the specification of the user
behaviour have also been studied. For instance, in [13], a simple task model
is used to exhaustively generate the interaction scenarios. The method pre-
sented in [27] relies on the specification of a finite state machine representing
the behaviour of the system while in [20] the interface is modeled by means
of hierarchical operators, preconditions and post-conditions.

A method to test interactive systems based on the synchronous approach
has been recently proposed in [19, 4]. The synchronous approach has been
successfully used to model and to implement reactive systems. Thanks to the
underlying synchronism hypothesis, the program specification and verification
becomes simpler and easier. The proposed testing approach suggests using the
Lutess testing environment [8], which requires a partial formal specification of
the software user behaviour, provided as a set of Lustre [5] expressions. This
specification can be enhanced with operational profiles. Several test generation
strategies can be applied to the resulting test model to automatically produce
input data. Test input generation is carried out "on the fly" (test inputs are
computed according to the previously produced inputs and outputs).

Although this approach seems promising, it requires a formal specification that
is not easy to provide for interactive application designers who are not familiar
with synchronous languages. This is a concern for all the verification methods
for interactive applications based on formal notations. For this reason, test
data generation methods based on task trees, more common in interactive
application development, have been studied [18]. Task trees are built at early
stages of the application design and describe the interactions between an ap-
plication and the user and, hence, provide a model of the user behaviour. In
this paper it is suggested to enhance task trees with occurrence probabilities
in order to support operational profile definitions. Then, it is shown how such
extended task trees can be transformed into a probabilistic input-output FSM
modeling the user behavior (similarly to approaches on probabilistic modeling
of reactive systems, e.g. [24, 14]). This model is used to automatically generate
test data using the Lutess environment. A similar model is adopted in [2] as
well as in [17, 16], to compute the probability (say p) that the user interacts



with an implementation under test (IUT) by means of a set of test sequences.
If this set is applied to the IUT and the latter reacts as expected in the spec-
ification, then one can conclude that the IUT is correct with a probability at
least equal to p (since non tested sequences can be also correct). Similarly,
the upper bound of the probability to find errors in the IUT is 1 − p. These
investigations also suggest a criterion to assess the suitability of a set of test
sequences, minimizing this upper bound and, hence, increasing the probability
to find an error in the IUT.

The paper is organized as follows. Section 2 introduces task trees and the
particular notation (CTT) used in this research work. Section 2.2 proposes
an extension of this model including operational profile definition. Section 3
formally defines the transformation of this extended task tree into a proba-
bilistic I/O machine and shows how this machine can be used to generate test
sequences. Section 4 focuses on test data generation, in particular when using
the Lutess environment.

2 Using Task Trees for Model-Based Testing

2.1 Task trees

Task models are often used in the design of interactive software applications
and are usually built by human factors specialists. In such models [7], tasks are
represented hierarchically: a task consists of subtasks combined by temporal
operators. Therefore, the model describes the subtasks that must be executed
to fulfill another, more complex, task.

A well known notation for task models is ConcurTaskTrees (CTT) [21]. CTT
includes four kinds of tasks: User tasks (no interaction with the system, just
an internal cognitive activity such as thinking about how to solve a problem),
application tasks (system performance, such as generating the results of a
query, no interaction with the user), interaction tasks (involving user actions
with immediate feedback from the system, such as editing a document) and
abstract tasks (tasks composed of other subtasks).

A CTT abstract task is composed of subtasks connected by means of temporal
operators [21] described in Table 1.



Choice T1[]T2 One task from T1 and T2 is chosen.

Independent Con-
currency

T1|||T2 Actions belonging to two tasks can be per-
formed in any order without any specific con-
straints.

Concurrency
with information
exchange

T1|[]|T2 In this case T1 and T2 exchange information
other than the concurrent execution.

Order Indepen-
dence

T1|=|T2 Both tasks have to be performed but when
one is started then it has to be finished before
starting the second one.

Deactivation T1[>T2 The first task is definitively deactivated once
the first action of the second task has been
performed.

Enabling T1>>T2 In this case one task enables a second one
when it terminates

Enabling with in-
formation passing

T1[]>>T2 In this case task T1 provides some informa-
tion to task T2 other than enabling it.

Suspend-resume T1|>T2 This operator gives T2 the possibility of inter-
rupting T1 and then when T2 is terminated,
T1 can be reactivated from the state reached
before the interruption.

Iteration T* This means that the task T is performed
repetitively until the task is deactivated by
another task.

Finite Iteration T1(n) It is used when designers know in advance
how many times a task will be performed.

Optional tasks [T] This indicates that the performance of a task
is optional.

Table 1
The CTT operators

2.2 Adding Operational Profiles to Task Trees

Operational profiles [22] provide information about the effective usage of an
application. In particular, they can be used to guide the test process. For the
particular case of interactive applications, it would be convenient to define such
operational profiles on task trees. Indeed, assuming the latter to be models of
the user behaviour and to exhaustively represent the interactions between the
user and the application, operational profiles can be easily defined by assigning



occurrence probabilities to some of the described behaviours. It is suggested to
extend the CTT notation to make possible to assign occurrence probabilities
to the user actions involved in the tree operators, according to the following
syntax:

T ::= t | T [ ]pr1,pr2T | T |||pr1,pr2T | T [>pr T | T ∗

| T |>pr T | [T ]pr | T >> T | T [ ]>> T | T (n)

| T |[ ]|pr1,pr2T | T |=|T

where t is an elementary task (that is, an application task or a user task).
We assume that if t is an application task, then it is always followed by an
"enabling” operator. In other words, application tasks are preconditions for
other, interactive or abstract, tasks. This hypothesis simply means that the
task tree provides a model of the user behaviour and not a specification of the
application.

Occurrence probabilities are assigned to operators as follows:

Choice operator: T = A[]prA,prBB where prA + prB = 1. An execution
probability is specified for every subtask (A, B ).

Concurrency operators: T = A|||prActA,prActBB (or T = A|[ ]|prActA,prActBB)
where prActA + prActB = 1. To execute the task T , all the subtasks must be
executed. However, only one action from these subtasks is executed at the
same time. Occurrence probabilities can then be assigned to the actions of
these sub-tasks. This means that for every state in the execution of T , the
probability to execute an action from task A is prActA and the probability
to execute an action from task B is prActB. This distribution of probabilities
holds when it is possible to execute actions from A and B. If actions from A
are no longer available, then the probability to execute an action from B is 1.

Deactivation operator: T = A[>prdeac B where prdeac ≤ 1. In any state
of A, the probability for A to be interrupted by B is prdeac.

Suspend-resume operator: T = A| >prsus B where prsus ≤ 1. In any
state of A, the probability for A to be suspended by B is prsus.



Optional task: [A]prA where prA ≤ 1. The probability to execute the task
A is prA.

Enabling operators, Iteration and Finite iteration: The tasks in-
volved in these operators are executed sequentially with no possible user
choice. So, there are no probability assignments.

Remark 1 The operator Order Independence between two tasks (A|=|B) means
that both tasks must be executed and they can be executed in any order. So, we
consider that (A |=| B) = ((A>>B) []0.5, 0.5 (B>>A)).

Example: The interactive application "Memo" [3] makes possible to anno-
tate physical locations with digital stickers ("post it"-like notes). Once a digital
sticker has been set to a physical location, it can be read/carried/removed by
other users. A Memo user is equipped with a GPS and a magnetometer en-
abling the system to compute his/her location and orientation. S/he is also
wearing a head mounted semi-transparent display (HMD) enabling the fusion
of computer data (the digital notes) with the real environment.

Memo provides three main tasks: (1) orientation and localization of the mobile
user, so that the system is able to display the visible notes according to the
current position and orientation of the mobile user (2) manipulation of a note
(get, set and remove a note) and (3) exiting the system. So, the mobile user
can get a note and carry it while moving. S/he can set a carried note to a
specific place or delete a visible or carried note.

Consider the following operational profile of the user: The user doesn’t have
a preference between exploring the ground and handling notes; s/he prefers
handing a displayed note than a carried one; if a note is displayed, s/he prefers
getting it than removing it; if s/he carries a note, s/he prefers removing it than
setting it.

Figure 1 shows an extended CTT for the Memo system including this profile.
This tree states that the user can use the application repetitively (iteration
operator *), activity that can be interrupted (deactivation operator [>) with
a probability of 0.1 by the "exit" task. A memo application task is a choice
(operator []) between two tasks: exploring the ground (probability 0.5) and
handling notes (probability 0.5). Handling notes requires choosing between
handling a displayed note (probability 0.6) or handling a carried note (proba-
bility 0.4). If the system displays a note (memoDisplayed task), the user can
(enabling operator >>) get or remove this note. If the user is carrying a note
(memoCarried task), s/he can (enabling operator >>) set or remove this note.



[]0.8, 0.2

[]0.6, 0.4

[>0.1

[]0.3, 0.7

0.5, 0.5[]

removeget

memoCarried   >>   set or removememoDisplayed   >>  get or remove

handle a carried notehandle a displayed note

use memo system* exit

Memo

set remove

handle notesexplore the ground
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Figure 1. Example of extended CTT

The task "get or remove" chooses between two interactive tasks ("get", "re-
move"), with a probability of 0.8 for "get" and 0.2 for "remove". Similarly, "set
or remove" chooses between "set" (probability 0.3) and "remove" (probability
0.7).

On the other hand, the task ”handle notes” specifies a choice between "handle
a displayed note" (probability 0.6) and "handle a carried note" (probability
0.4). Each of these two abstract tasks is composed of an application task which
enables an abstract task. So, "handle a displayed note" cannot be executed
if the application task "memoDisplayed" is not performed (similarly, for the
task "handle a carried note"). As a result, four scenarios are possible for the
task "handle notes":

• If both the application tasks ”memoDisplayed” and ”memoCarried” are avail-
able, then the user chooses between "handle a displayed note" and "handle
a carried note" (with a probability of 0.6 and 0.4 respectively).
• If only the application task "memoDisplayed" is available, then the user

must choose "handle a displayed note" and execute the task "get or remove".
• Similarly, if only the application task "memoCarried" is available, then the

user must choose "handle a carried note" and execute the task "set or
remove".
• If none of the two tasks ”memoDisplayed” and ”memoCarried” is available,

then the user cannot perform the task "handle notes".



3 Extracting a formal model of the user behaviour

To make possible the automatic test data generation from task trees with
operational profiles, formal semantics must be associated with the extended
CTT syntax. This can be done in several ways, in particular using probabilis-
tic extensions of Lotos [24, 14]. In this research work, the target model is a
probabilistic input-output FSM, which is also a common model for reactive or
interactive systems (see for example [2, 17, 16]). Such a model is exploitable
in the Lutess testing environment as it is explained in section 4.

3.1 Preliminary definitions

For any task T , a probabilistic I/O machine

MT = (QT , qiT , qfT , IT , OT , transT , PT )

is defined, where:

• QT is a set of states
• qiT is the initial state, the state where the task T starts. It is a source state

(there is no transition from any state of the task T to its initial state).
• qfT is the final state, the state where the task T ends. It is a sink state

(there is no transition from the final state of a task to any state of this
task).
• IT is a set of application inputs for the task T .
• OT is a set of application outputs for the task T .
• transT ⊆ QT×(IT∪{µ})×OT×QT is the set of transitions corresponding to

the task T . The input µ is an empty input (no user action). If (qT , a, b, sT ) ∈
transT , we write qT

a/b−→ sT . Sometimes, the input and the output of the
transition are omitted: qT

c−→ sT (stands for c = a/b).
• PT is the probability function: PT : transT → [0..1] where the following

property holds:

Property: For every state, the sum of the probabilities of the transitions
leaving this state is equal to 1: ∀q ∈ QT \ {qfT} :

∑
c,q′ PT (q

c−→ q′) = 1

As it has been mentioned in section 2, a task in the CTT notation can be a user
task, an abstract task, an application task or an interactive task. User tasks
are of no interest for test data generation, since they correspond to cognitive
activities with no input sent to the system.

An application task o is supposed to be modeled by the machine Mo =



M removeMsetMgetMexplore the ground

Mexit

exit/−
1.0

MmemoCarriedMmemoDisplayed

µ
/memoDisplayed
1.0

µ
/memoCarried
1.0

move/−
1.0

get/
memoTaken
1.0

set/
memoSet
1.0

remove/
memoRemoved
1.0

Figure 2. PFSM of tasks: "explore the ground", "get", "set", "remove", "memoDis-
played", "memoCarried", "exit”

(Qo, qio, qfo, Io, Oo, transo, Po) where: Qo = {qio, qfo}, Io = {µ}, Oo = {o},
transo = {qio

µ/o−→ qfo }, Po(qio
µ/o−→ qfo) = 1. In other words, an applica-

tion task is considered as an elementary machine with two states, the unique
transition of which consists in issuing an output.

Interactive tasks involve user actions and immediate feedback from the system.
Test data generation is mainly concerned with those tasks. Interactive tasks
are assumed to be modeled as I/O machines that must be provided at the
beginning of the validation process.

The CTT of Figure 1 contains five interactive tasks: "get", "set", "remove",
"explore the ground", "exit" and two application tasks: "memoDisplayed",
"memoCarried". These tasks are modeled by probabilistic I/O machines, il-
lustrated in Figure 2, where the interactive tasks are elementary interactions
modeled by single transitions, the probability of which is 1.0. For the inter-
active task "get", when the user gets a displayed note, the system displays
the message "memo is taken" and the note disappears from the ground. Simi-
larly, when the user removes a (carried or displayed) note, the system displays
"memo is removed". When the user carries a note and issues the "set" com-
mand, the system displays "memo is set" and the carried note is dropped to
the ground. Finally, when the user moves in order to explore the ground, there
is no particular expected reaction of the system.

Remark 2 The symbol "-" means ”any reaction of the system”.

Finally, an abstract task is composed of other tasks combined by the various
CTT operators. Probabilistic I/O machines (PFSM) can be associated with
abstract tasks, resulting from the composition of their subtask PFSM, as it is
explained in section 3.2.



3.2 Transforming an abstract task into a probabilistic I/O machine

The following notation is used:

• (q
c−→T q

′)pT for (q
c−→ q′) ∈ transT and PT (q

c−→ q′) = pT
• Q−finT = QT \ {qfT}, Q−initT = QT \ {qiT}, Q−init−finT = QT \ {qiT , qfT}

Enabling operators ">>" and "[ ]>>" Consider three tasks A, B and T,
such as : T = A >> B. Keeping in mind that the operator >> denotes that
task A enables task B, while the operator [ ] >> means that task A provides
some information to task B while it enables it, the same semantics are defined
for the two operators >> , [ ]>>: indeed, the information passing from A to B,
when the operator [ ]>> is used, is of no interest from the test data generation
point of view, since this communication is internal to the application.

Since B starts when A terminates, the final state of A, qfA, will be merged
with the initial state of B, qiB to a new state (qfA, qiB). The formal
definition of the composition is:

MT (QT , qiT , qfT , IT , OT , transT , PT ) =

M(QA, qiA, qfA, IA, OA, transA, PA) >> M(QB, qiB, qfB, IB, OB, transB, PB)

QT = Q−finA ∪Q−initB ∪ {(qfA, qiB)}, qiT = qiA, qfT = qfB, IT = IA ∪ IB,

OT = OA ∪OB

The transition relation transT and the probability function pT are defined as
follows:

(q
c−→T s)pT if and only if one of the following holds:

• (q
c−→A s)pA , q, s ∈ Q

−fin
A , pT = pA

• (q
c−→A qfA)pA , q ∈ Q

−fin
A , s = (qfA, qiB), pT = pA

• (qiB
c−→B s)pB , q = (qfA, qiB), s ∈ Q−initB , pT = pB

• (q
c−→B s)pB , q, s ∈ Q−initB , pT = pB

Example: Consider the PFSM of the task : "get or remove" (or "set or
remove") illustrated in Figure 3. Applying the previous definition, this ma-
chine is composed with the machine of the task "memoDisplayed" ("memo-
Carried") (c.f. Figure 2) to get the PFSM of task handle a displayed note =



memoTaken
get/ remove/

memoRemoved memoSet
set/ remove/

memoRemoved

Mset or remove 

set  []0.3, 0.7 Mremove M
=Mget or remove =

[]0.8, 0.2 Mremoveget M

0.8 0.2 0.3 0.7

Figure 3. PFSM of "get or remove", "set or remove"

µ /memoDisplayed

memoTaken
get/ remove/

memoRemoved

µ /memoCarried

memoSet
set/ remove/

memoRemoved

  MmemoCarried set or remove >>  M
M =handle a carried note

  M memoDisplayed get or remove >>  M
Mhandle a displayed note =

1.0

0.8 0.2

1.0

0.3 0.7

Figure 4. PFSM of tasks: "handle a displayed note", "handle a carried note"

memoDisplayed >> get or remove (handle a carried note = memoCarried >>

set or remove), provided in Figure 4.

Choice operator "[ ]" Consider three tasks A, B and T, such as: T =
A[ ]prA,prBB , where prA+ prB = 1. Since the operator [ ] denotes that task T is
performed by choosing one task among A and B, T starts when either A or B
begins, and it ends when the chosen task ends. So, the initial state of T , qiT will
be the combination of the two initial states qiA and qiB (qiT = (qiA, qiB)). The
final state of T , qfT , will be also the combination of the two final states (qfT =
(qfA, qfB)). The transition probabilities of the resulting machine are computed
as follows: for every state of the automaton resulting from the composition, if
this state is not the initial state qiT , then the probability value of the origin
transition is preserved. Else, this probability is multiplied with the probability
of the task automaton to which the transition belongs. The formal definition
of the composition is:

MT (QT , qiT , qfT , IT , OT , transT , PT )

= MA(QA, qiA, qfA, IA, OA, transA, PA) [ ]prA,prB

MB(QB, qiB, qfB, IB, OB, transB, PB)

QT = Q−init−finA ∪Q−init−finB ∪ {(qiA, qiB), (qfA, qfB)},

qiT = (qiA, qiB), qfT = (qfA, qfB), IT = IA ∪ IB, OT = OA ∪OB
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Figure 5. PFSM of "handle notes", "use memo system"

The transition relation transT and the probability function PT are defined as
follows:

(q
c−→T s)pT if and only if one of the following holds:

• (qiA
c−→A s)pA , q = (qiA, qiB), s ∈ Q−init−finA , pT = prA.pA

• (q
c−→A s)pA , q, s ∈ Q

−init−fin
A , pT = pA

• (q
c−→A qfA)pA , q ∈ Q

−init−fin
A , s = (qfA, qfB), pT = pA

• (qiA
c−→A qfA)pA , q = (qiA, qiB), s = (qfA, qfB), pT = prA.pA

• (qiB
c−→B s)pB , q = (qiA, qiB), s ∈ Q−init−finB , pT = prB.pB

• (q
c−→B s)pB , q, s ∈ Q

−init−fin
B , pT = pB

• (q
c−→B qfB)pB , q ∈ Q

−init−fin
B , s = (qfA, qfB), pT = pB

• (qiB
c−→B qfB)pB , q = (qiA, qiB), s = (qfA, qfB), pT = prB.pB

Examples: In the Memo example, applying the previous definition of the
composition results in the PFSMs of get []0.8 ,0.2 remove, set []0.3 ,0.7 remove (see
Figure 3) from the PFSMs of the tasks "get", "set", "remove" illustrated in
Figure 2.

Consider the PFSMs of tasks: handle a displayed note, handle a carried note in
Figure 4. From these machines, applying the previous definition, the PFSM
of the task handle notes = handle a displayed note []0.6, 0.4handle a carried note is
built (see Figure 5-left). This machine is composed with the machine of the
task explore the ground (c.f. Figure 2) (useMemo system = explore the ground

[]0.5, 0.5handle notes) to get the PFSM illustrated in Figure 5 (right).

Iteration operator "∗" Consider two tasks A and T, such as : T = A∗.
In the probabilistic I/O machine corresponding to the repetitive task T , there
are two types of transitions:

• transA′ : transitions of MA where the final state has been replaced by the
initial state (iteration).



• transT ′ : transitions from the initial state qiT , added to preserve the initial
state of a task as a source state. In fact, because of the iteration, there are
transitions to the state qiA. The added state qiT is a source state and the
same actions, that can be executed from the state qiA, can be also executed
from the state qiT .

The probability of a transition in the resulting machine is the same than in
the original machine. The formal definition of the composition is:

MT (QT , qiT , qfT , IT , OT , transT , PT )

= MA(QA, qiA, qfA, IA, OB, transA, PA)∗

QT = Q−finA ∪ {qiT , qfT}, IT = IA, OT = OA, transT = transA′ ∪ transT ′

where transA′ ⊆ Q−finA × IµA × OA × Q−finA and the values of the associated
probabilities are defined as follows:

(qA
a−→A′ sA)pT if and only if one of the following holds:

• (qA
a−→A sA)pA , pT = pA

• (qA
a−→A qfA)pA , sA = qiA, pT = pA

And transT ′ ⊆ {qiT} × IµA × OA × Q−finA and the values of the associated
probabilities are defined as follows:

(qiT
a−→T ′ sA)pT iff (qiA

a−→A′ sA)pT

Note that the final state qfT of the repetitive task is not reachable because
the iteration continues until the task is deactivated by another task.

Example: Figure 6 provides the PFSM of task useMemo system∗.

Deactivation operator "[>" Consider three tasks A, B and T, such as:
T = A[>prdeac B where prdeac ≤ 1 which means that in every state of A, the
probability for A to be interrupted by B is prdeac. The operator [> denotes that
B can deactivate A when the first action of B occurs. So, in the machine of T,
MT , from each state of MA (excepted the final state qfA) there is a transition
labeled by the first action of task B towards the corresponding state in the
machineMB (when task B can start by one action among several actions, there
will be a transition for every action). Since T ends when A has finished without
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Figure 6. PFSM of task "use Memo system *"

interruption or when B has interrupted A and has finished, the final state of
T, qfT , will be the combination of the two final states (qfT = (qfA, qfB)).

In the machine MT , there are three sets of transitions:

• The set transA′ containing the transitions of MA.
• The set transAB containing the transitions corresponding to first actions of

the machine MB which can interrupt A.
• The set transB′ containing the transitions corresponding to the continuation

of B after A interruption.

The transition probabilities of the resulting machine and the formal definition
of the composition are computed as follows:

MT (QT , qiT , qfT , IT , OT , transT , PT )

= MA(QA, qiA, qfA, IA, OA, transA, PA)[>prdeac

MB(QB, qiB, qfB, IB, OB, transB, PB)

QT = Q−finA ∪Q−init−finB ∪ {(qfA, qfB)}, qiT = qiA, qfT = (qfA, qfB),

IT = IA ∪ IB, OT = OA ∪OB, transT = transA′ ∪ transAB ∪ transB′

where transA′ ⊆ Q−finA × IµA × OA × (Q−finA ∪ (qfA, qfB)) and the associated
values of PT are defined as follows:

(qA
a−→A′ q)pT if and only if one of the following holds:

• (qA
a−→A q)pA , q ∈ Q

−fin
A , pT = (1− prdeac).pA

• (qA
a−→A qfA)pA , q = (qfA, qfB), pT = (1− prdeac).pA

transAB ⊆ Q−finA × IµB × OB × (Q−init−finB ∪ (qfA, qfB)) and the associated
values of PT are defined as follows:
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Figure 7. PFSM of task "memo"

(qA
b−→AB q)pT if and only if one of the following holds:

• (qiB
b−→B q)pB , q ∈ Q

−init−fin
B , pT = prdeac.pB

• (qiB
b−→B qfB)pB , q = (qfA, qfB), pT = prdeac.pB

transB′ ⊆ Q−init−finB × IµB ×OB × (Q−init−finB ∪ (qfA, qfB)) and the associated
values of PT are defined as follows:

(qB
b−→B′ q)pT if and only if one of the following holds:

• (qB
b−→B q)pB , q ∈ Q

−init−fin
B , pT = pB

• (qB
b−→B qfB)pB , q = (qfA, qfB), pT = pB

Example: Figure 7 provides the PFSM of taskMemo = useMemo system∗
[>0.1 exit. In this machine, from every state of the PFSM of task useMemo system∗
there is a transition labeled by "exit/−" (the first and the only action of task
exit) to the final state with an interruption probability equal to 0.1. The
probabilities of the transitions of task useMemo system∗ are multiplied by
0.9 (= 1− 0.1).

Independent concurrency operator "|||"

MT (QT , qiT , qfT , IT , OT , transT , PT )

= MA(QA, qiA, qfA, IA, OA, transA, PA)|||prActA,prActB
MB(QB, qiB, qfB, IB, OB, transB, PB)



QT = QA ×QB, qiT = (qiA, qiB), qfT = (qfA, qfB),

IT = IA ∪ IB, OT = OA ∪OB

The relation transT and the probabilities of the transitions are defined as
follows:

((qA, qB)
c−→T (sA, sB))pT if and only if one of the following holds:

• (qA
c−→A sA)pA , qB = sB 6= qfB, pT = prActA.pA

• (qA
c−→A sA)pA , qB = sB = qfB, pT = pA

• (qB
c−→B sB)pB , qA = sA 6= qfA, pT = prActB.pB

• (qB
c−→B sB)pB , qA = sA = qfA, pT = pB

Remark 3 For the operator Concurrency with information exchange (|[]|),
the information exchanged between the two tasks is of no interest from the test
data generation point of view, so the same formal definition is adopted for the
two operators ||| and |[]|.

Finite iteration operator "(n)"

MT (QT , qiT , qfT , I, O, transT ) = MA(QA, qiA, qfA, I, O, transA)(n)

QT = {(qA, i) | qA ∈ Q−finA , i ∈ [1..n]} ∪ {qfT}

qiT = (qiA, 1)

where the relation transT and the transition probabilities are defined as fol-
lows:

((qA, i)
a−→T (sA, j))pT if and only if one of the following holds:

• (qA
a−→A sA)pA , i = j, pT = pA

• (qA
a−→A qfA)pA , j = i+ 1, sA = qiA, pT = pA

((qA, i)
a−→T qfT )pT if and only if (qA

a−→A qfA)pA , i = n , pT = pA

Suspend-resume operator "| >"
A| >prsus B, means that, in every state of A, the probability for B to suspend



A is prsus. We assume that A can be suspended several times by B. For
example, the task "editing a text" can be suspended several times by the task
"printing".

MT (QT , qiT , qfT , IT , OT , transT , PT )

= MA(QA, qiA, qfA, IA, OA, transA, PA)| >prsus

MB(QB, qiB, qfB, IB, OB, transB, PB)

QT = {qiT} ∪QA ∪ (Q−finA ×Q−init−finB ),

qfT = qfA, IT = IA ∪ IB, OT = OA ∪OB

transT = transA′ ∪ transAB ∪ transB′ ∪ transT ′

where transA′ = transA and if t ∈ transA′ then PT (t) = (1− prsus).PA(t).

The transition relation transAB ⊆ Q−finA × IµB × OB × (Q−finA ∪ (Q−finA ×
Q−init−finB )) and the associated values of PT are defined as follows (the transi-
tions of this set correspond to the first actions of B that can suspend A):

(qA
b−→AB (sA, sB))pT if and only if

(qiB
b−→B sB)pB , qA = sA , pT = prsus.pB

(qA
b−→AB sA)pT if and only if

(qiB
b−→B qfB)pB , qA = sA , pT = prsus.pB

The transition relation transB′ ⊆ (Q−finA ×Q−init−finB )× IµB ×OB × (Q−finA ∪
(Q−finA × Q−init−finB )) and the associated values of PT are defined as follows
(the transitions of this set correspond to the continuation of B after A has
been suspended):

((qA, qB)
b−→B′ (sA, sB))pT if and only if

(qB
b−→B sB)pB , qA = sA , pT = pB

((qA, qB)
b−→B′ sA)pT if and only if

(qB
b−→B qfB)pB , qA = sA , pT = pB

The transition relation transT ′ ⊆ {qiT}×IµT × (QA∪ ({qiA}×Q−init−finB )) and
the associated values of PT are defined as follows (the transitions of this set
start from the new initial state qiT , which is added because the initial state of
a task must be a source state. In fact, because of the suspend-resume operator,



there are transitions to the state qiA. The added state qiT is a source state
and the same actions, that can be executed from the state qiA, can be also
executed from the state qiT ):

(qiT
c−→T ′ sA)pT if and only if one of the following holds:

• (qiA
c−→A′ sA)pT

• (qiA
c−→AB qiA)pT , sA = qiA

(qiT
b−→T ′ (qiA, sB))pT iff (qiA

b−→AB (qiA, sB))pT

Optional task The optional tasks must be used with the activation or the
independent concurrency operators [15]:

Activation operator:

[A]prA >> B = (A >> B)[]prA,(1−prA)B

Independent concurrency operator:

[A]prA|||prAct[A],prActBB

= (A|||prAct[A],prActBB)[]prA,(1−prA)B

4 Model-based test generation

The PFSM obtained from the extended task tree is a model of the user be-
haviour. It expresses what are the possible user actions and how probable
these actions are. Simulating this model results in generating test data for the
interactive application. The main idea is to use this model to produce inputs
”on the fly”, while the interactive application is executed.

In section 4.1 it is shown how the PFSM should be simulated in theory for
such an on-the-fly test generation dealing with the specified operational pro-
files while in section 4.2 it is shown that this model can be translated in an
equivalent representation exploited by the Lutess testing environment, which
has been used for a preliminary experimental evaluation of the approach.

The PFSM obtained in section 3, which is actually the test model, describes
the interacting user behaviour (i.e. it is not a model of the application). We
suppose that this model verifies the following properties:

• ∀q such that q i1/o′−→ q′, q i2/o”−→ q”, i1 6= µ, i2 6= µ this implies that i1 6= i2.



• ∀q such that q µ/o1−→ q′, q µ/o2−→ q”, this implies that o1 6= o2.

4.1 Generating tests from the test model

It is assumed that the PFSM is simulated while the interactive application un-
der test is executed and that inputs and outputs are exchanged between them
on-the-fly. During the simulation, assuming the PFSM to be in a given state,
an input is chosen according to the probabilities of the outgoing transitions
of this state. The chosen input is then sent to the interactive application, the
resulting application outputs are read and the set of possible following states
is computed (the current state may have several succesor states in only one
case: The input is empty (µ) and the outputs of the application enable more
than one transition). The next state is randomly chosen in this set according
to the specified probabilities, and so on.

Formally, the simulation of the PFSM associated with an extended task tree
is carried out by means of the following functions:

Definition: behT : QT −→ 2I
µ
T where

behT (q) = {i ∈ IµT | ∃o, p, q
i/o−→T p} is the set of all valid inputs of the appli-

cation in the state q.

Definition: pTransT : QT × IµT × 2OT −→ 2QT where
pTransT (q, i, os) = {p | q i/o−→T p , o ∈ os} is the set of arrival states of
transitions leaving the state q having an input i and of which the output is in
os.

Remark 4 When applying this function on the test model described in section
3, if the input i is not empty, there is at most one possible transition.

Definition: A distribution of probabilities on a set A of elements, denoted
by ProbDistA is a set of pairs < el, pr > such that el ∈ A, pr is a real ∈ [0..1],
such as: ∑

<el,pr>∈ProbDistA
pr = 1

If A is empty, then ProbDistA is also empty.



Algorithm 1
1.var
2. preq, q ∈ QT , pFollowingq ∈ 2QT ,
3. i ∈ (IT ∪ {µ}), oset ∈ 2OT
4. begin
5. q ← qiT
6. while ( behT (q) 6= ∅)
7. oset← ∅
8. i← draw(ProbDistIn(q))
9. if ( i 6= µ) then write(i)
10. wait(C)
11. read(oset)
12. preq ← q

13. pFollowingq ←pTransT (preq, i, oset)
14. if ( pFollowingq 6= ∅)
15. then
16. q ←draw(ProbDistTrans(preq, i, oset))
17. else q ← preq
18. end while
19. end

Definition: If E is a set of elements and 2E is the set of all the sub-sets
of E, ProbDistSet2E is the set of all possible distributions of probabilities
on all the sub-sets of E. In other words, an element of ProbDistSet2E is a
distribution of probabilities ProbDistA on a set A ∈ 2E.

Definition: ProbDistIn : QT −→ ProbDistSet
2
I
µ
T
where:

ProbDistIn(q) = ProbDistbehT (q) ={< i, pr > |i ∈ behT (q), pr =
∑
o,r PT (q

i/o−→
r)} is a distribution of probabilities of valid inputs in the state q.

Definition: ProbDistTrans : QT × IµT × 2OT −→ ProbDistSet2QT where:
ProbDistTrans(q, i, oset)= ProbDistpTransT (q,i,oset) =

{< q′, pr > |q′ ∈ pTransT (q, i, oset), pr =
∑

o∈oset PT (q
i/o
−→q′)∑

r∈pTransT (q,i,oset),o∈oset PT (q
i/o
−→r)
}

is the distribution of probabilities of possible following states for the state q,
the input i and the set of outputs oset.

Definition: draw : ProbDistSet2E −→ E where:
draw(ProbDistA) returns an element of A with respect to the distribution of
probabilities ProbDistA.



The algorithm 1 performs the test data generation. In line 8, an input is chosen
according to the probabilities of the transitions leaving the current state (set
to the initial state in line 5). This input (if it is not empty) is sent to the
interactive application (line 9). Then, the generator waits for the reaction
of the application (line10) and the outputs are read (line 11). The set of
possible following states is computed (line 13) and a state is chosen according
to the distribution of the associated transition probabilities (line 16). Indeed,
assume that from the current state s the empty input µ is chosen (the only
case where we can have more than one following states) and the transitions
t1 = (s

µ/o1−→ s1)pr1, t2 = (s
µ/o2−→ s2)pr2, .... can be fired : If the application issues

o1 only (or o2 only) then the transition to s1 (to s2) is chosen. But, if the
application sends o1 and o2 in the same execution cycle, then the new state
is chosen according to the probabilities of the transitions prob(s1) = pr1

pr1+pr2
,

prob(s2) = pr2
pr1+pr2

.

Consider the PFSM of Figure 6 and suppose that the current state is q1 and the
chosen input is µ, four test scenarios are possible according to the application
behaviour:

• If the application displays a note (memoDisplayed) and the user carries a
note (memoCarried). In this case, two transitions can be fired, to states
q2 and q3. The probability of the transition to q2 is 0.3

0.3+0.2
= 0.6 and the

probability of the transition to q3 is 0.2
0.3+0.2

= 0.4.
• If the application displays a note (memoDisplayed) and the user does not

carry a note, only one transition can be fired, to state q2.
• Similarly, if the application does not display a note and if the user carries

a note (memoCarried), only one transition can be fired, to state q3.
• If the application does not display a note and the user does not carry a not,

no transition can be fired.

4.2 Experimental evaluation with Lutess

4.2.1 Lutess overview

Lutess [8] is an environment initially designed for testing synchronous software.
Lutess requires a test model, including a specification of the software external
environment (i.e. input variables behaviour) as a set of invariant properties
and operational profiles [25]. From this non deterministic specification, Lutess
builds a generator of test data: at each step, the generator draws a valid vector
of inputs conforming the environment specification and sends it to the system
under test which reacts with an output vector and feeds back the generator
with it. The cycle is repeated while an automatic oracle observes the program
inputs and outputs. Valid inputs are selected randomly or in conformance to



the specified operational profiles.

The specification language of Lutess is an extension of Lustre, a synchronous
declarative data-flow language [11]. Within Lustre, any variable or expression
represents an infinite sequence of values and takes its n-th value at the n-th
cycle of the program execution. Lustre offers usual arithmetic, boolean and
conditional operators and two specific operators: The (pre) operator which
refers to the "previous" value of an expression, and the "followed-by" (->)
operator which is used to set the initial value of a flow. Let E and F be two
expressions of the same type denoting the sequences of values (e0, e1, ..., en, ...)
and (f0, f1, ..., fn, ...); fi is the value of F at instant i. Then pre(E) denotes
the sequence (nil, e0, e1, ..., en, ...) where nil is an undefined value; while E->F
denotes the sequence (e0, f1, ..., fn, ...). A Lustre program is structured into
nodes. A node is a set of equations which define the node’s outputs as a
function of its inputs. Once a node is defined, it can be used inside other nodes
like any other operator. Lustre is an executable specification language, which
also provides the main characteristics of a linear temporal logic of the past
[12]. Therefore, temporal logic formulas can be easily implemented as Lustre
programs. The user can define her/his own logical or temporal operators to
express invariants or properties.

Within Lutess, the test model is specified in a special Lustre node called
testnode. A testnode has as inputs (resp. outputs) the outputs (resp. inputs)
of the software under test. The general form of a testnode is given in Figure
8. There are four operators specifically introduced for testing purposes:

• The environment operator makes it possible to specify invariant properties
of the program environment.
• The prob operator is used to create operational profiles where the selection

of the program inputs is performed with respect to probabilities specified
by the tester. prob(C,E,P) means:
· C is a condition relating to the past values of the input/ output parameters,
· E is an expression returning a boolean value,
· P is a real constant in the interval [0.0..1.0],
· if the condition C holds, then the probability for E to hold is equal to P.
• The safeprop operator is used for safety property guided testing (which

leads the test generation towards situations that could violate the program
properties). In addition, the hypothesis operator is used for specifying
hypotheses on the program under test in order to ease the computation of
test data for safety property guided testing.



testnode Env(<SUT outputs>) returns (<SUT inputs>);
var <local variables>;
let

environment(Ec1,Ec2, ....,Ecn);
prob(C1,E1, P1);
...
prob(Cm,Em, Pm);
safeprop(Sp1, Sp2, ...., Spk);
hypothesis(H1,H2, ....,Hl);
<definition of local variables>;

tel;

Figure 8. Testnode syntax

4.2.2 Automatic generation of the Lutess test model

In this section it is shown how the Lutess test model (testnode) associated with
a task tree can be automatically built. For sake of clarity, this construction
is presented in two steps. In the first step it is shown how the FSM associ-
ated with the task tree is represented without any probability considerations.
Probability assignments are introduced in the second step.

Building the basic test model

Consider the FSM (QT , q0, IT , OT , T ransT ) (QT = {q0, q1, ..., qn} is the state
set, q0 is the initial state, IT = {i0, i1, ..., in} is the input set,OT = {o0, o1, ..., on}
is the output set, TransT is the transition set) corresponding to a task tree
T . It is assumed that the root task of this tree is an iterative task, then the
final state is not reachable (this means that the interactive system is executed
until the user performs an exit action).

The inputs I of the interactive application are the outputs of the testn-
ode and, conversely, its outputs O will be the inputs of the testnode. These
inputs/outputs are defined as boolean parameters: A true value for an in-
put/output means that this input/output occurs.

testnode CTT_T(o0, o1,..., on: bool)returns (i0, i1,..., in: bool);

Boolean local variables (q0, q1, ..., qn) represent the effective state of the
testnode, in addition to other variables (pq0, pq1, ..., pqn) that abstract
the possible next states at a given instant. A local variable mu is used to define
the empty input µ (false valuation for all the input variables).

var
-- effective state
q0, q1, ..., qn: bool;
-- possible next states



pq0, pq1, ..., pqn: bool;
-- variable defining the empty input µ
mu: bool;

let
-- modeling the empty input µ
mu = not (i0 or i1 or ... or in);

For every state qk, a boolean variable pqk is defined, true when a transition to
the state qk is possible from the current state.

-- modeling that qk can be the next state:

-- qh
ih/oh−→ qk, qj

ij/oj−→ qk, ...,

-- qk
il/ol−→ ql, qk

im/om−→ qm, ...
pqk = false->
pre (qh and ih and oh)
or pre (qj and ij and oj)
or ...
or (pre (qk
and not (il and ol)
and not (im and om)
and not ... ));

The initial state q0 is a source state:

-- q0
ih/oh−→ qh, q0

ij/oj−→ qj, ...
pq0 = true->
pre (q0
and not (ih and oh)
and not (ij and oj)
and not ... );

The current state is randomly set by assigning values to the variables (q0, q1,
..., qn). At a given instant, q0 can be active (q0 = true) only if there is a
possible transition to this state (pq0 = true):

environment (implies (q0, pq0)
and ...
and implies (qn, pqn));

There is exactly one active state at the same time:

environment (#(q0, ..., qn) 1

1 The (#) operator means that at most one of the parameters is true at a given step



and (q0 or ... or qn));

As every transition of the FSM issued from the task tree is labeled by one
input, at most one input is active, at every step:

environment (# (i0, i1, ...,in));

The inputs are produced in conformance to the current state.

-- qk
il/ol−→ ql,..., qk

im/om−→ qm, ...
environment(if qk then (il or ... or im) else if qh then ...);

For the example of Memo, considering the FSM of the Figure 6, the resulting
testnode is illustrated in Figure 9.

Adding operational profiles

Consider the PFSM (QT , q0, IT , OT , T ransT , PT ) corresponding to a prob-
abilistic task tree T . Assuming the current state to be qk, the valid inputs
are those labeling the transitions leaving this state. By using the function
probDistIn defined in the section 4.1, the probability of each input to be gen-
erated can be computed. If in the state qk, the valid inputs are: il, im, ... and
probDistIn(qk) = {< il, prl >, < im, prm >, ...} then the following statements
are added in the testnode:

prob (pqk, il, prl);

prob (pqk, im, prm);
(1)

Indeed, a state can have more than one possible successor states (more than
one pqi is set to true) when the empty input (µ) is chosen. For instance, in
the Memo example of paragraph 4.1, there are two possible transitions from
q1 with the empty input µ: one to q2 and another to q3 when memoDisplayed
and memoCarried occur in the same time. In this case, the operational profile
information is taken into account to choose the next state.

For every state qh with transitions labelled with the empty input (µ), the
successor states are computed as follows:

suc(qh, i) = {qk|∃o, qh
i/o−→ qk} (2)

of computation.



testnode CTT_Memo
(memoDisplayed, memoCarried, memoTaken, memoSet, memoRemoved :bool)
returns (move, get,set, remove :bool);
var

pq0, pq1, pq2, pq3 : bool;
q0, q1, q2, q3 : bool;
mu: bool;

let
mu = not (move or get or set or remove);
pq0 =true ->pre (q0 and not (move)

and not (memoDisplayed and mu)
and not (memoCarried and mu));

pq1 = false ->pre (q0 and move)
or pre (q1 and move)
or pre (q2 and get and memoTaken)
or pre (q2 and remove and memoRemoved)
or pre (q3 and set and memoSet)
or pre (q3 and remove and memoRemoved)
or pre (q1 and not move

and not (mu and memoDisplayed)
and not (mu and memoCarried));

pq2 = false ->
pre (q1 and mu and memoDisplayed)

or pre (q0 and mu and memoDisplayed)
or pre (q2

and not (get and memoTaken)
and not(remove and memoRemoved));

pq3 = false ->
pre (q1 and mu and memoCarried)

or pre (q0 and mu and memoCarried)
or pre (q3

and not (set and memoSet)
and not(remove and memoRemoved));

environment ( implies(q0, pq0) and
implies(q1, pq1) and implies(q2, pq2)
and implies(q3, pq3));

environment (#(q0, q1, q2, q3)
and (q0 or q1 or q2 or q3));

environment (#(move, get,set, remove));
environment (if q0 then (move or mu)

else if q1 then (move or mu)
else if q2 then (get or remove)
else (set or remove)); -- state q3

tel

Figure 9. The testnode for Memo



For the example of Memo, the successors are:

suc(q0,move) = {q1}, suc(q0, µ) = {q2, q3}
suc(q1,move) = {q1}, suc(q1, µ) = {q2, q3}
suc(q2, get) = {q1} , suc(q2, remove) = {q1}
suc(q3, set) = {q1}, suc(q3, remove) = {q1}

This function makes possible to compute the states which can be simultane-
ously active: {q2, q3}). States q1 and q0 can only be active alone.

The probabilities of the inputs leaving q0 and q1 are specified in Lutess as
explained above (c.f. formula 1):

prob (pq0, move , 0.5);
prob (pq0, mu, 0.5);
prob (pq1, move , 0.5);
prob (pq1, mu, 0.5);

In the case of more than one successor states, the Lutess generator has to
choose one state according to the operational profile specification. To do so, the
function suc is used (c.f. equation 2). Assuming the cardinality of suc(qh, ih)
is more than one, several cases are possible during the execution according to
the reaction of the interactive application under test:

• one transition from qh to a state qk ∈ suc(qh, ih).
• more than one transitions from qh to some states in suc(qh, ih).

So, the set of all the subsets of suc(qh, ih) is considered and for every not
empty subset (∀Q ∈ (2suc(qh,ih) \ {∅})) the following condition can hold during
the execution:

CQ = false -> pre qh and (∀qk ∈ Q : pqk) and (∀qj ∈ Q′ : not pqj)

where Q′ = suc(qh, ih) \Q is the complement of Q.

For Memo, suc(q1, µ) = {q2, q3} and 2{q2,q3} = {{q2}, {q3}, {q2, q3}, ∅}, so the
following conditions can hold during the execution:

• C{q2} = false -> pre q1 and pq2 and not pq3
• C{q3} = false -> pre q1 and pq3 and not pq2
• C{q2,q3} = false -> pre q1 and pq2 and pq3

For a given condition CQ, since one state has to be chosen in Q, a probability
is specified as follows:

For all qk ∈ Q the probability to reach qk is:



prqk = Pr(qh,ih,qk)
Pr(qh,ih,Q)

where:

• Pr(qh, ih, qk) =
∑
o PT (qh

ih/o−→ qk) is the probability of the transitions from
qh to qk.
• Pr(qh, ih, Q) =

∑
q∈Q Pr(qh, ih, q) is the sum of the probabilities of the tran-

sitions from qh to all states in Q.

For every qk ∈ Q, given the function probDistIn(qk) = {< il, prl >,<
im, prm >, ...} (which specifies the probabilities of valid inputs in qk), proba-
bilities for Lutess can be specified as follows:

prob (CQ, qk and il, prqk ∗ prl);

prob (CQ, qk and im, prqk ∗ prm);

...

(3)

In the Memo example, when the condition C{q2,q3} holds, the probabilities to
choose the states q2, q3 are respectively:

• prq2 = pr(q1,µ,q2)
pr(q1,µ,q2)+pr(q1,µ,q3)

= 0.3
0.3+0.2

= 0.6

• prq3 = pr(q1,µ,q3)
pr(q1,µ,q2)+pr(q1,µ,q3)

= 0.2
0.3+0.2

= 0.4

The corresponding Lutess specification is the following:

prob (false -> pre q1 and pq2 and pq3, q2 and get, 0.6 * 0.8);
prob (false -> pre q1 and pq2 and pq3, q2 and remove, 0.6 * 0.2 );

prob (false -> pre q1 and pq2 and pq3, q3 and set, 0.4 * 0.3 );
prob (false -> pre q1 and pq2 and pq3, q3 and remove, 0.4 * 0.7);

The whole probability specification for Memo is given in Figure 10.

Table 2 shows an extract of the execution trace resulting from a test opera-
tion. It can be observed that when a note is displayed the user prefers doing
"get" than "remove", and when a note is carried the user prefers doing "re-
move" than "set". When there is a note displayed and a note carried the user
prefers handling the displayed note by taking this note. The user has no pref-
erence between moving and handling notes. This behaviour conforms to the
operational profile of Memo user of Figure 1.



prob (pq0, move , 0.5);
prob (pq0, mu, 0.5);
prob (pq1, move , 0.5);
prob (pq1, mu, 0.5);
-- Choosing current state and input according to operational profile
information when in-determinism can occur:
– suc(q1,mu), C{q2}
prob (false -> pre q1 and pq2 and not pq3, get, 0.8);
prob (false -> pre q1 and pq2 and not pq3 , remove, 0.2);
– suc(q1,mu), C{q3}
prob (false -> pre q1 and pq3 and not pq2, set, 0.3);
prob (false -> pre q1 and pq3 and not pq2, remove, 0.7);
– suc(q1,mu), C{q2,q3}
prob (false -> pre q1 and pq2 and pq3, q2 and get, 0.48);
prob (false -> pre q1 and pq2 and pq3, q2 and remove, 0.12);
prob (false -> pre q1 and pq2 and pq3, q3 and set, 0.12);
prob (false -> pre q1 and pq2 and pq3, q3 and remove,0.28);
– suc(q0,mu), C{q2}
prob (false -> pre q0 and pq2 and not pq3, get, 0.8);
prob (false -> pre q0 and pq2 and not pq3 , remove, 0.2);
– suc(q0,mu), C{q3}
prob (false -> pre q0 and pq3 and not pq2, set, 0.3);
prob (false -> pre q0 and pq3 and not pq2, remove, 0.7);
– suc(q0,mu), C{q2,q3}
prob (false -> pre q0 and pq2 and pq3, q2 and get, 0.48);
prob (false -> pre q0 and pq2 and pq3, q2 and remove, 0.12);
prob (false -> pre q0 and pq2 and pq3, q3 and set, 0.12);
prob (false -> pre q0 and pq2 and pq3, q3 and remove,0.28);

Figure 10. the probability specification of Memo for Lutess

5 Conclusion and future work

Model-based testing of interactive applications has been studied for several
years. Naturally, adapting models used in reactive system verification seems
a suitable approach, as it has been shown, for instance, in [17, 16, 4, 27, 6].
But the corresponding notations are not common in the human-computer
interaction domain. In this article, it is proposed to use an extended version of
a well-known notation in interactive application design, task trees (and more
precisely, CTT). Task trees are enhanced with operational profiles to make
possible the definition of various interaction scenarios. Then, adequate formal
semantics are defined for the CTT operators making possible to translate a
task tree into a probabilistic input-output FSM modeling the user behaviours.
Such a model can be used for automatic test data generation either by means
of an ad hoc generator, either using already existing tools, such as the Lutess
testing environment, as illustrated in section 4.2.



Table 2
An extract of the execution trace of Memo where
mDis: memoDisplayed, mCar: memoCarried, mTak: memoTaken, mSet:
memoSet, mRem: memoRemoved

There are several perspectives for future work. In terms of test modeling, user-
defined operational profiles could be improved to optimize the probability to
find errors, as it is suggested in [17]. Moreover, properties that the interactive
application should verify could be specified and, then, used for property-guided
testing (for instance using the Lutess features).
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