
Extending Structural Test Coverage Criteria for

Lustre Programs with Multi-clock Operators

Virginia Papailiopoulou, Laya Madani, Lydie du Bousquet, Ioannis Parissis

University of Grenoble - Laboratoire d'Informatique de Grenoble
BP72, 38402 Saint Martin d'Hères Cedex - France

{Virginia.Papailiopoulou, Laya.Madani, Lydie.du-Bousquet, Ioannis.Parissis}@imag.fr

Abstract. Lustre is a formal synchronous declarative language widely
used for modeling and specifying safety-critical applications in the �elds
of avionics, transportation or energy production. Testing this kind of ap-
plications is an important and demanding task during the development
process. It mainly consists in generating test data and measuring the
achieved coverage. A hierarchy of structural coverage criteria for Lus-
tre programs has been recently de�ned to assess the thoroughness of
a given test set. They are based on the operator network, which is the
graphical representation of a Lustre program and depicts the way that
input �ows are transformed into output �ows through their propagation
along the program paths. The above criteria de�nition aimed at demon-
strating the opportunity of such a coverage assessment approach but
doesn't deal with all the language constructions. In particular, the use
of multiple clocks has not been taken into account. In this paper, we ex-
tend the criteria to programs that use multiple clocks. Such an extension
allows for the application of the existing coverage metrics to industrial
software components, which usually operate on multiple clocks, without
negatively a�ecting the complexity of the criteria.

1 Introduction

Synchronous software is normally part of safety-critical applications in such do-
mains as avionics, transportation and energy. Formal speci�cation is usually
required to model the system behavior along the di�erent levels of the develop-
ment process. Such a speci�cation not only describes the correct function of the
system but also it de�nes the conditions under which that correct function is
reached. That speci�cation can be further used to automatically generate test
data.

Several programming languages have been proposed to specify and imple-
ment synchronous applications, such as Esterel [2], Signal [8] or Lustre [5,1].
Lustre is a declarative, data-�ow language, which is devoted to the speci�ca-
tion of real-time applications. It provides formal speci�cation and veri�cation
facilities and ensures e�cient C code generation. It is based on the synchronous
approach which demands that the software reacts to its inputs instantaneously.
In practice, that means that the software reaction is su�ciently fast so that ev-
ery change in the external environment is taken into account. As soon as the



order of all the events occurring both inside and outside the program is speci�ed,
time constraints describing the behavior of a synchronous program can be ex-
pressed [6]. These characteristics make it possible to e�ciently design and model
synchronous systems.

A graphical tool dedicated to the development of critical embedded systems
and often used by industries and professionals is SCADE (Safety Critical Ap-
plication Development Environment). SCADE is a graphical environment used
in the development of safety-critical embedded software. It is based on the Lus-
tre language and it allows the hierarchical de�nition of the system components
and the automatic code generation. From the SCADE functional speci�cations,
C code is automatically generated, though this transformation (SCADE to C)
is not standardized. This graphical modeling environment is used mainly in the
aerospace �eld (Airbus, DO-178B); however its capabilities serve also transporta-
tion, automotive and energy.

In major industrial applications, the testing process usually consists in pro-
ducing test cases based on the functional requirements of the system under
test. Test objectives and test data are constructed with regard to the system
requirements and the coverage evaluation is applied on the generated C code.
For programs written in sequential languages, several adequacy criteria have
been presented in the past, such as path/branch coverage criteria, LCSAJ (Lin-
ear Code Sequence And Jump) [10] and MC/DC (Modi�ed Decision Condition
Coverage).

These criteria are not conformed with the synchronous paradigm and cannot
be applied on Lustre programs to assess how thoroughly the produced test
data have tested the corresponding speci�cation. Furthermore, it is di�cult to
formally relate the coverage measurement results with the system speci�cation
and the test objective. To deal with this problem, especially designed structural
coverage criteria for LUSTRE programs have been proposed [7]. Although these
criteria are comparable to the existing data-�ow based criteria [9,3], they are not
the same. They aim at de�ning intermediate coverage objectives and estimating
the required test e�ort towards the �nal one. These criteria are based on the
notion of the activation condition of a path, which informally represents the
propagation of the e�ect of the input edge through the output edge.

However, the above coverage criteria can be applied only on speci�cations
that are de�ned under a unique global clock. The global clock is a boolean
�ow that always values true and de�nes the frequency of the program execu-
tion cycles. Other, slower clocks can be de�ned through boolean-valued �ows.
They are mainly used to prevent useless operations of the program and to save
computational resources by forcing some program expressions to be evaluated
strictly on speci�c execution cycles. Thus, nested clocks may be used to restrict
the operation of certain �ows when this is necessary, without a�ecting at the
same time the rest of the program variables. In Lustre, using multiple clocks is
possible through two speci�c operators, when and current. In this paper, we pro-
pose the extension of the existing coverage criteria taking into account the when

and current operators. In fact, we de�ne the activation conditions for the paths



containing these operators in order that the coverage criteria are applicable on
such paths. The complexity of the criteria, in terms of the cost of computing the
paths and their activation conditions, is not increased.

The paper is structured in three main sections. Section 2 provides a brief
overview of the essential concepts on Lustre language. Section 3 presents the
existing coverage criteria for Lustre programs while in section 4 we thoroughly
demonstrate their extension to the use of multiple clocks. Section 5 concludes
and shows some perspectives for future work.

2 Overview of Lustre

Lustre [5] is a data-�ow language. Contrary to imperative languages which
describe the control �ow of a program, Lustre describes the way that the inputs
are turned into the outputs. Any variable or expression is represented by an
in�nite sequence of values and take the n-th value at the n-th cycle of the
program execution, as it is shown in Figure 1. At each tick of a global clock,
all inputs are read and processed simultaneously and all outputs are emitted,
according to the synchrony hypothesis.

o2
External Environment System Under Test

Time

one cycle

i0 i1 i2

o0 o1

Fig. 1. Synchronous software operation

A Lustre program is structured into nodes. A node is a set of equations
which de�ne the node outputs as a function of its inputs. Each variable can
be de�ned only once within a node and the order of equations is of no mat-
ter. Speci�cally, when an expression E is assigned to a variable X, X=E, that
indicates that the respective sequences of values are identical throughout the
program execution; at any cycle, X and E have the same value. Once a node is
de�ned, it can be used inside other nodes like any other operator.

The operators supported by Lustre are the common arithmetic and logical
operators (+, -, *, /, and, or, not) as well as two speci�c temporal operators:
the precedence (pre) and the initialization (->). The pre operator introduces to
the �ow a delay of one time unit, while the -> operator -also called followed
by (fby)- allows the �ow initialization. Let X = (x0, x1, x2, x3, . . .) and E =



(e0, e1, e2, e3, . . .) be two Lustre expressions. Then pre(X) denotes the sequence
(nil, x0, x1, x2, x3, . . .), where nil is an unde�ned value, while X ->E denotes the
sequence (x0, e1, e2, e3, . . .).

Lustre does not support loops (operators such as for and while) nor re-
cursive calls. Consequently, the execution time of a Lustre program can be
statically computed and the satisfaction of the synchrony hypothesis can be
checked.

A simple Lustre program is given in Figure 2, followed by an instance of its
execution. This program has a single input boolean variable and a single boolean
output. The output is true if and only if the input has never been true since the
beginning of the program execution.

node Never(A: bool) returns (never_A: bool);

let

never_A = not(A) -> not(A) and pre(never_A);

tel;

c1 c2 c3 c4 ...

A false false true false ...

never_A true true false false ...

Fig. 2. Example of a Lustre node.

2.1 Operator Network

The transformation of the inputs into the outputs in a Lustre program is done
via a set of operators. Therefore, it can be represented by a directed graph, the so
called operator network. An operator network is a graph with a set of N operators
which are connected to each other by a set of E ⊆ N ×N directed edges. Each
operator represents a logical or a numerical computation. With regard to the
corresponding Lustre program, an operator network has as many input edges
(respectively, output edges) as the program input variables (respectively, output
variables).

L3
pre

A

never_A

L1

L2

Fig. 3. The operator network for the node Never.



Figure 3 shows the corresponding operator network for the node of Figure 2.

An operator represents a data transfer from an input edge into an output
edge. There are two kinds of operators:

a) the basic operators which correspond to a basic computation and

b) the compound operators which correspond to the case where in a program,
a node calls another node1.

A basic operator is denoted as 〈ei, s〉, where ei, i = 1, 2, 3, . . ., stands for its
inputs edges and s stands for the output edge.

2.2 Clocks in Lustre

In Lustre, any variable and expression denotes a �ow, i.e. each in�nite sequence
of values is de�ned on a clock, which represents a sequence of time. Thus, a �ow
is the pair of a sequence of values and a clock.

The clock serves to indicate when a value is assigned to the �ow. That means
that a �ow takes the n-th value of its sequence of values at the n-th time of its
clock. Any program has a cyclic behavior and that cycle de�nes a sequence of
times, i.e. a clock, which is the basic clock of a program. A �ow on the basic
clock takes its n-th value at the n-th execution cycle of the program. Slower
clocks can be de�ned through �ows of boolean values. The clock de�ned by a
boolean �ow is the sequence of times at which the �ow takes the value true.

Two operators a�ect the clock of a �ow: when and current.

when is used to sample an expression on a slower clock. Let E be an expres-
sion and B a boolean expression with the same clock. Then X=E when B is an
expression whose clock is de�ned by B and its values are the same as those of
E 's only when B is true. That means that the resulting �ow X has not the same
clock with E or, alternatively, when B is false, X is not de�ned at all.

current operates on expressions with di�erent clocks and is used to project
an expression on the immediately faster clock. Let E be an expression with
the clock de�ned by the boolean �ow B which is not the basic clock. Then
Y=current(E) has the same clock as B and its value is the value of E at the last
time that B was true. Note that until B is true for the �rst time, the value of Y
will be nil.

The sampling and the projection are two complementary operations: a pro-
jection changes the clock of a �ow to the clock that the �ow had before its last
sampling operation. Trying to project a �ow that was not sampled produces an
error. Table 1 provides the use of the two temporal Lustre operators in more
details.

1 For the time being, we only consider basic operators.



E e0 e1 e2 e3 e4 e5 e6 e7 e8 . . .

B false false true false true false false true true . . .

X=E when B x0 = e2 x1 = e4 x2 = e7 x3 = e8 . . .

Y=current(E) y0 = nil y1 = nil y2 = e2 y3 = e2 y4 = e4 y5 = e4 y6 = e4 y7 = e7 y8 = e8 . . .
Table 1. The use of the operators when and current.

An example [4] of the use of clocks in Lustre is given in Figure 4.

node mux(m:int) returns (c:bool; y:int);

var (x:int) when c;

let

y = if c then current(x) else pre(y)-1;

c = true -> (pre(y)=0);

x = m when c;

tel;

− ITE

=

pre

when current
x

M1

M51

y
M2

M3

0

true
M4 c

m

Fig. 4. The mux example and the corresponding operator network.

The Lustre node mux receives as input the signal m. Starting from this input
value when the clock c is true, the program counts backwards until zero; from
this moment, it restarts from the current input value and so on.

3 Coverage Criteria for Lustre programs

3.1 Activation Conditions

Given an operator network N, paths can be de�ned in the program. That is, the
possible directions of �ows from the input through the output. More formally, a



path is a �nite sequence of edges 〈e0, e1, . . . , en〉, such that for ∀iε [0, n− 1], ei+1

is a successor of ei in N. A unit path is a path with two successive edges. For
instance, in the operator network of Figure 3, there can be found the following
paths.

p1 = 〈A,L1, never_A〉
p2 = 〈A,L1, L3, never_A〉
p3 = 〈A,L1, never_A,L2, L3, never_A〉
p4 = 〈A,L1, L3, never_A,L2, L3, never_A〉

Obviously, one could discover in�nitely many paths in an operator network
depending on the number of cycles repeated in the path (i.e. the number of pre
operators in the path). However, we only consider paths of �nite length by limit-
ing the number of cycles. That is, a path of length n is obtained by concatenating
a path of length n-1 with a unit path (of length 2). Thus, beginning from unit
paths, longer paths could be built; a path is �nite if it contains no cycles or if
the number of cycles is limited.

A boolean Lustre expression is associated with each pair 〈e, s〉, denoting
the condition on which the data �ows from the input edge e through the output
s. This condition is called activation condition. The evaluation of the activation
condition depends on what kind of operators the paths is composed of. Infor-
mally, the notion of the activation of a path is strongly related to the propagation
of the e�ect of the input edge through the output edge. More precisely, a path ac-
tivation condition shows the dependencies between the path inputs and outputs.
Therefore, the selection of a test set satisfying the paths activation conditions in
an operator network leads to a notion for the program coverage. Since covering
all the paths in an operator network could be impossible, because of their po-
tentially in�nite number and length, in our approach, coverage is de�ned with
regard to a given path length.

Table 2 summarizes the formal expressions of the activation conditions for all
Lustre operators (except for when and current for the moment). In this table,
each operator op, with the input e and the output s, is paired with the respective
activation condition AC (e, s) for the unit path 〈e, s〉. Noted that some operators
may de�ne several paths through their output, so the activation conditions are
listed according to the path inputs.

Let us consider the path p2 = 〈A,L1, L3, never_A〉 in the corresponding
operator network for the node Never (Figure 3). The condition under which that
path is activated is represented by a boolean expression showing the propagation
of the input A through the output never_A. To calculate its activation condition,
we progressively apply the rules for the activation conditions of the corresponding
operators according to Table 22. Starting from the end of the path, we reach

2 In the general case (path of length n), the path p containing the pre operator
is activated if its pre�x p' is activated at the previous cycle of execution, that is
AC (p) = false -> pre (AC (p′)). Similarly in the case of the initialization opera-
tor fby, the given activation conditions are respectively generalized in the forms:
AC (p) = AC (p′) -> false (i.e. the path p is activated if its pre�x p' is activated



Operator Activation condition

s = NOT (e) AC (e, s) = true

s = AND (a, b) AC (a, s) = not (a) or b
AC (b, s) = not (b) or a

s = OR (a, b) AC (a, s) = a or not (b)
AC (b, s) = b or not (a)

s = ITE (c, a, b) AC (c, s) = true
AC (a, s) = c

AC (b, s) = not (c)

relational operator AC (e, s) = true

s = FBY (a, b) AC (a, s) = true -> false
AC (b, s) = false -> true

s = PRE (e) AC (e, s) = false -> pre (true)
Table 2. Activation conditions for all Lustre operators.

the beginning, moving one step at a time along the unit paths. Therefore, the
necessary steps would be the following:

AC (p2) = false -> AC (p′), where p′ = 〈A,L1, L3〉
AC (p′) = not (L1) or L2 and AC (p′′) = A or pre (never_A) and AC (p′′),

where p′′ = 〈A,L1〉
AC (p′′) = true

After backward substitutions, the boolean expression for the activation con-
dition of the selected path is:

AC (p4) = false -> A or pre (never_A).

In practice, in order for the path output to be dependent on the input, either
the input has to be true at the current execution cycle or the output at the
previous cycle has to be true; for the �rst cycle of the execution, the input needs
to be false.

3.2 Coverage Criteria

A Lustre/SCADE program is compiled into an equivalent C program. Provided
that the format of the generated C code depends on the compiler, it is hard to
�x a formal relation between the original Lustre program and the �nal C one.
In addition, major industrial standards, such as DO-178B in the avionics �eld,
demand coverage to be measured on the generated C code. Therefore, three
coverage criteria speci�cally de�ned for Lustre programs have been proposed
[7]. They are speci�ed on the operator network according to the length of the
paths and the input variable values.

at the initial cycle of execution) and AC (p) = false -> AC (p′) (i.e. the path p is
activated if its pre�x p' is always activated except for the initial cycle of execution).



Let T be the set of test sets (input vectors) and Pn = {p|length(p) ≤ n} the
set of all paths in the operator network whose length is inferior or equal to n.
Hence, the following families of criteria are de�ned for a given and �nite order
n ≥ 2. The input of a path p is denoted as in (p) whereas a path edge is denoted
as e.

1. Basic Coverage Criterion (BC). This criterion is satis�ed if there is a set
of test input sequences, T , that activates at least once the set Pn. Formally,
∀p ∈ Pn, ∃t ∈ T : AC (p) = true. The aim of this criterion is basically
to ensure that all the dependencies between inputs and outputs have been
exercised at least once. In case that a path is not activated, certain errors
such as a missing or misplaced operator could not be detected.

2. Elementary Conditions Criterion (ECC). In order that an input se-
quence satis�es this criterion, it is required that the path p is activated for
both input values, true and false (taking into account that only boolean
variables are considered). Formally, ∀p ∈ Pn, ∃t ∈ T : in (p) ∧AC (p) = true
and not (in (p)) ∧ AC (p) = true. This criterion is stronger than the previous
one in the sense that it also takes into account the impact that the input
value variations have on the path output.

3. Multiple Conditions Criterion (MCC). In this criterion, the path out-
put depends on all the combinations of the path edges, also including the
internal ones. A test input sequence is satis�ed if and only if the path ac-
tivation condition is satis�ed for each edge value along the path. Formally,
∀p ∈ Pn, ∀e ∈ p, ∃t ∈ T : e ∧ AC (p) = true and not (e) ∧ AC (p) = true.

The above criteria form a hierarchical relation: MCC satis�es all the conditions
that ECC does, which also subsumes BC.

4 Extension of coverage criteria to when and current

operators

The aim of this paper is to extend the above criteria in order to support the two
temporal Lustre operators when and current, which handle the use of multiple
clocks since this is the case for many industrial applications.

The use of multiple clocks implies the �ltering of some program expressions.
It consists in changing their execution cycle, activating it only at certain cycles
of the basic clock. Consequently, the associated paths are activated only if the
respective clock is true. As a result, the tester must adjust this rare�ed path
activation rate according to the global timing.

In this section, we present the de�nition for the path activation conditions for
when and current, followed by their formal veri�cation. Then, we demonstrate
the application of the extended criteria as well as the coverage evaluation, using
the simple example of the inverse counter of Section 2.2.



4.1 Activation Conditions for when and current

Informally, the activation conditions associated with the when and current oper-
ators are based on their intrinsic de�nition. Since the output values are de�ned
according to a condition (i.e. the true value of the clock), these operators can
be represented by means of the conditional operator if-then-else. For the ex-
pression E and the boolean expression B with the same clock,

� X=E when B could be seen as X=if B then E else NON_DEFINED and similarly,
� Y=current(X) could be seen as Y=if B then X else pre(X).

Hence, the formal de�nitions of the activation conditions result as follows:

De�nition 1. Let e and s be the input and output edges respectively of a when

operator and let b be its clock. The activation conditions for the paths p1 = 〈e, s〉
and p2 = 〈b, s〉 are:
AC(p1) = b
AC(p2) = true

De�nition 2. Let e and s be the input and output edges respectively of a current

operator and let b be the clock on which it operates. The activation condition for
the path p = 〈e, s〉 is:
AC(p) = b

(b)

current
X Y

~~

ITE
X Y

B

pre

~~

ITE

BE X

NON_DEF

when

B
E X

(a)

Fig. 5. Modeling the when and current operators using the ITE.

As a result, to compute the paths and the associated activation conditions
of a Lustre node involving several clocks, one has just to replace the when and
current operators by the corresponding conditional operator (see Figure 5). At
this point, two basic issues need to be farther clari�ed. The �rst one concerns the



when case. Actually, there is no way of de�ning the value of the expression X when
the clock B is not true (branch NON_DEF in Figure 5(a)). By default, at these
instants, X does not occur and such paths (beginning with a non de�ned value)
are infeasible3. In the current case, the operator implicitly refers to the clock
parameter B, without using a separate input variable (see Figure 5(b)). This
hints at the fact that current always operates on an already sampled expression,
so the clock that determines its output activation should be the one on which
the input is sampled.

Let us assume the path p = 〈m,x,M1,M2,M3,M4, c〉 in the example of
Section 2.2, displayed in bold in Figure 4. Following the same procedure for
the activation condition computation and starting from the last path edge, the
activation conditions for the intermediate unit paths are:

AC (p) = false -> AC (p1), where p1 = 〈m,x,M1,M2,M3,M4〉
AC (p1) = true and AC (p2), where p2 = 〈m,x,M1,M2,M3〉
AC (p2) = false -> pre (AC (p3)), where p3 = 〈m,x,M1,M2〉
AC (p3) = c and AC (p4), where p4 = 〈m,x,M1〉
AC (p4) = c and AC (p5), where p5 = 〈m,x〉
AC (p5) = c

After backward substitutions, the activation condition of the selected path
is:

AC (p) = false -> pre (c) .

This condition corresponds to the expected result and is compliant with the
above de�nitions, according to which the clock must be true to activate the paths
with when and current operators.

In order to evaluate the impact of these temporal operators on the coverage
assessment, we consider the operator network of Figure 4 and the paths:

p1 = 〈m,x,M1, y〉
p2 = 〈m,x,M1,M2,M3,M4, c〉
p3 = 〈m,x,M1,M2,M3,M5, y〉

Intuitively, if the clock c holds true, any change of the path input is prop-
agated through the output, hence the above paths are activated. Formally, the
associated activation conditions to be satis�ed by a test set are:

AC (p1) = c

AC (p2) = false -> pre (c)

AC (p3) = not (c) and false -> pre (c).

3 An infeasible path is a path which is never executed by any test cases, hence it can
never be covered.



Eventually, the input test sequences satisfy the basic criterion. Indeed, as
soon as the input m causes the clock c to take the suitable values, the activation
conditions are satis�ed, since the latter depend only on the clock. In particular,
in case that the value of m at the �rst cycle is an integer di�erent to zero (for
sake of simplicity, let us consider m = 2), the BC is satis�ed in two steps since
the corresponding values for c are c=true, c=false. On the contrary, if at the �rst
execution cycle m equals to zero, the basic criterion is satis�ed after three steps
with the corresponding values for c: c=true, c=true, c=false. These two samples
of input test sequences and the corresponding outputs are shown in Table 3.

c1 c2 c3 c4 ...

m i1 (6= 0) i2 i3 i4 ...

c true false false true ...

y i1 i1 − 1 0 i4 ...

c1 c2 c3 c4

m i1 (= 0) i2 i3 ...

c true true false ...

y 0 i2 i2 − 1 ...
Table 3. Test cases samples for the input m.

4.2 An illustrative example

Let us consider a Lustre node that receives at the input a boolean signal set
and returns at the output a boolean signal level. The latter must be true during
delay cycles after each reception of set. Now, suppose that we want the level
to be high during delay seconds, instead of delay cycles. Taking advantage of
the use of the when and current operators, we could call the above node on a
suitable clock by �ltering its inputs. The second must be provided as a boolean
input second, which would be true whenever a second elapses. The node must be
activated only when either a set signal or a second signal occurs and in addition
at the initial cycle, for initialization purposes. The Lustre code is quite simple
and it is shown in Figure 6, followed by the associated operator network4.

Similarly to the previous example, the paths to be covered are:
p1 = 〈set, T2, T3, T9, level〉
p2 = 〈delay, T8, T3, T9, level〉
p3 = 〈set, T1, ck, T2, T3, T9, level〉
p4 = 〈second, T1, ck, T2, T3, T9, level〉
p5 = 〈set, T1, ck, T8, T3, T9, level〉
p6 = 〈second, T1, ck, T8, T3, T9, level〉

4 The nested node STABLE is used unfolded, since with this criteria de�nition, the
dependencies between a called node inputs and outputs cannot be determined.



node TIME_STABLE(set, second: bool; delay: int) returns

(level: bool);

var ck: bool;

let

level = current(STABLE((set, delay) when ck));

ck = true -> set or second;

tel;

node STABLE(set: bool; delay: int) returns (level: bool);

var count: int;

let

level = (count>0);

count = if set then delay

else if false->pre(level) then pre(count)-1

else 0;

tel;

Fig. 6. The node TIME_STABLE: a simple example with the when and current operators.

STABLEwhen

when

ITE >

pre − ITE

pre

current

second
set

delay

true

0

1 0

false

level

T1

T2

T3

T4
T5 T6

T7

T9

ck

T8

Fig. 7. The operator network for the node TIME_STABLE.



To cover all these paths, one has to select a test set satisfying the following
activation conditions, calculated as it is described above:

AC (p1) = ck, where ck = true -> set or second

AC (p2) = ck and set

AC (p3) = ck and second or not (set)
AC (p4) = ck and false -> second or not (set)
AC (p5) = ck and set and false -> set or not (second)
AC (p6) = ck and set and false -> second or not (set)

Since the code ensures the correct initialization of the clock, hence its activa-
tion at the �rst cycle, the above paths are always activated at the �rst execution
cycle. For the rest of the execution, the basic criterion is satis�ed with the fol-
lowing test sequence for the inputs (set, second): (1, 0),(0, 1), (1, 1). This test set,
which contains almost every possible combination of the inputs, satis�es also the
elementary conditions criterion (ECC), since the activation of the paths depends
on both boolean inputs.

Admittedly, the di�culty to meet the criteria is strongly related to the com-
plexity of the system under test as well as to the test case generation e�ort.
Moreover, activation conditions covered with short input sequences are easy to
be satis�ed, as opposed to long test sets that correspond to complex instance
executions of the system under test. Experimental evaluation on more complex
case studies, including industrial software components, is necessary and part of
our future work in order to address these problems. Nonetheless, the enhanced
de�nitions of the structural criteria presented in this paper complete the cov-
erage assessment issue for Lustre programs, as all the language operators are
supported. In addition, the complexity of the criteria is not further a�ected,
because, in substance, we use nothing but if-then-else operators.

5 Conclusion

We presented the extension of the Lustre structural coverage criteria to support
the use of multiple clocks. We de�ned the activation conditions for the temporal
operators when and current, which are used to a�ect the clock of a Lustre

expression. We applied the results on suitable examples and we described how
the criteria could be employed. Yet, the research work presented in this paper
needs to be implemented and incorporated in Lustructu, a tool which measures
the structural coverage of Lustre programs.

In SCADE, coverage is measured through the Model Test Coverage (MTC)
module, in which the user can de�ne his own criteria by de�ning the conditions to
be activated during testing. Thus, our work could be easily integrated in SCADE
in the sense that activation conditions corresponding to the de�ned criteria (BC,
ECC, MCC) could be assessed once they are transformed into suitable MTC



expressions. These issues are currently investigated within the framework of a
collaborative research project5.

Future work includes the evaluation of the proposed criteria involving in-
dustrial case studies. Furthermore, it is necessary to analyze the test sets to
determine their ability to satisfy the criteria and observe what happens with the
paths that the tests cannot cover.

Integration testing issues are also under study. In case of long paths to be
covered, the total path number highly increases causing the coverage measures
to be non applicable. As a result, integration testing requires extending the
de�nition of the activation conditions to internal nodes, that is to the operators
that the user can de�ne. Such an extension should make it possible to apply
the code coverage criteria on Lustre nodes that call other nodes (compound
operators) without having to unfold the latter ones and reducing the overall
complexity.

References

1. Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The synchronous languages 12 years later. Pro-
ceedings of the IEEE, 91(1):64�83, 2003.

2. F. Boussinot and R. De Simone. The Esterel language. Proceedings of the IEEE,
79(9):1293�1304, 1991.

3. Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A
formal evaluation of data �ow path selection criteria. IEEE Trans. Software Eng.,
15(11):1318�1332, 1989.

4. Alain Girault and Xavier Nicollin. Clock-driven automatic distribution of lustre
programs. In 3rd International Conference on Embedded Software, EMSOFT'03,
volume 2855 of LNCS, pages 206�222, Philadelphia, USA, October 2003. Springer-
Verlag.

5. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data �ow
programming language lustre. Proceedings of the IEEE, 79(9):1305�1320, 1991.

6. N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time
systems by means of the synchronous data-�ow language lustre. IEEE Trans.
Software Eng., 18(9):785�793, 1992.

7. A. Lakehal and I. Parissis. Structural test coverage criteria for lustre programs. In
the 10th International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS), a joint event of ESEC/FSE'05, pages 35�43, Lisbon, Portugal,
September 2005.

8. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming Real-
Time Applications with SIGNAL. Proceedings of the IEEE, 79(9):1321�1336, 1991.

9. Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data �ow
information. IEEE Trans. Software Eng., 11(4):367�375, 1985.

10. M. R. Woodward, D. Hedley, and M. A. Hennell. Experience with path analysis
and testing of programs. IEEE Trans. Softw. Eng., 6(3):278�286, 1980.

5 SIESTA project (www.siesta-project.com), funded by the French National Research
Agency.


