
Synchronous Testing of Multimodal Systems:
an Operational Profile-Based Approach

Laya Madani, Catherine Oriat, Ioannis Parissis
Laboratoire LSR-IMAG

BP 53 - 38041 Grenoble Cedex 9
Forename.Name@imag.fr

Jullien Bouchet, Laurence Nigay
Laboratoire CLIPS-IMAG

BP 53 - 38041 Grenoble Cedex 9
Forename.Name@imag.fr

Abstract
In this paper we present a method for automatically testing
interactive multimodal systems1. The proposed approach
was originally dedicated to synchronous programming
which is mainly used for real-time systems. Nevertheless,
the behaviour of real-time systems, consisting of cycles
starting by reading an external input and ending by issuing
an output, is to a certain extent similar to the one of
interactive systems. So considered, this paper investigates
the use of the Lutess testing environment dedicated to
synchronous software for automatically testing multimodal
interactive (not necessarily real-time) systems. More
precisely, we focus on test data generation based on
operational profiles. The main benefit of this approach is
that it increases the ability to automatically test an
interactive system over long input sequences, according to
various use profiles.

1. Introduction

The area of multimodal interaction has expanded
rapidly and since the seminal "Put that there" demonstrator
[1] that combines speech, gesture and eye tracking,
significant achievements have been made in terms of both
modalities and real multimodal systems in various domains
including medical and military ones [2]. Moreover,
multimodal interfaces are now playing a crucial role for
mobile systems since multimodality offers the required
flexibility for variable usage contexts, as shown in our
empirical study of multimodality on PDA [11]. Although
several real multimodal systems have been built, their
development still remains a difficult task. On the one hand,
the power and versatility of multimodal interfaces result in
an increased complexity of the software to be developed.
On the other hand, tools dedicated to multimodal
interaction are currently few and limited in scope. As a
consequence, the software is complex and mainly
developed manually.

In this article, we address the problem of testing
multimodal systems. As any interactive system, the latter

1 This work is part of the VERBATIM research project, supported by the

French National Network for Research on Telecommunications (Réseau
National de Recherche en Télécommunications).

require several interaction scenarios to be executed
corresponding to several user behaviours. But with
multimodality, the number of such scenarios is huge since a
multimodal system allows the combined usage of multiple
modalities. Many formal proof-based approaches have
been proposed in the past, such as the Formal System
Modelling (FSM) analysis [7], the Lotos Interactor Model
(LIM) [16], the Interactive Cooperative Object (ICO)
formalism based on Petri Nets [13] as well as a Lustre-
based approach for validation [5]. These approaches imply
a formal description of the interactive system as an abstract
model on which properties are checked.

In this paper we investigate a testing approach for
multimodal interactive systems originally developed for
synchronous software. The synchronous programming
paradigm is widely used in safety critical applications and
makes specification, simulation and proof of such software
easier and more reliable [8]. We expect that applying
synchronous software verification methods to interactive
multimodal software will result in usable and powerful
tools. We are particularly interested in the Lutess testing
environment [6], [14]. Lutess handles a partial specification
of the interactive system to test written in Lustre [8], a
synchronous dataflow language. In contrast to the above
mentioned proof-based approaches, Lutess does not require
the entire system to be formally specified nor does it intend
to formally prove properties. Lutess requires a non-
deterministic specification of the user behaviour as well as
a description of the software properties. Lutess then
automatically builds a simulator that will feed with inputs
the software under test (i.e., the multimodal user interface).
Test oracles can also be written in Lustre to encapsulate the
properties to check and to detect software failures. The test
data generation can be a purely random simulation of the
user behaviour, but this seldom results in realistic
interaction scenarios. Operational profiles are supported by
Lutess [12] and can be used to improve the relevance of the
produced test data, as well as their ability to detect failures,
making them correspond to various realistic user
behaviours.

The structure of the paper is as follows: first, we define
the different forms of multimodal usage and in particular
the combined usage of several modalities. We then briefly
present the Lutess environment and show how it can be
used for testing multimodal systems. We finally present an

example that illustrates the test of a multimodal system
using Lutess and operational profiles. This example is
based on Memo, a mobile multimodal system, whose main
features are presented in the next section.

2. An illustrative example: Memo

Memo [3] is an input multimodal system allowing users
to annotate physical locations with digital post it-like notes,
which have a physical location and are then
read/carried/removed by other mobile users. The Memo
user of Figure 1 (left) is equipped with a head mounted
display (HMD). Its semi-transparency enables the fusion of
computer data (the digital notes) with the real environment
as shown in Figure 1 (right). In addition a GPS and a
magnetometer are worn by the user, enabling the system to
compute the location and orientation of the user.

We consider three tasks in Memo which are possible
using different modalities: (1) orientation and localization
of the mobile user so that the system is able to display on
the HMD the visible notes according to the current position
and orientation of the mobile user (2) manipulation of a
note (get, set and remove a note) and (3) exit the system.
For the manipulation of notes using Memo, the mobile user
can get a note that will then be carried by her/him while
moving and be no longer visible in the physical
environment. The user can carry one note at a time. S/he
can set a carried note to appear at a specific place. Issuing
the set command without carrying a note has no effect. The
user can finally remove a note that is carried by her/him or
a note visible in her/his physical environment. If the user is
carrying a note and is also next to a note, a command
remove will delete the note in the physical world: Indeed
priority is given to the manipulation of notes attached to the
physical world. If the user is carrying a note and has no
note around her/him in the physical environment, then the
carried note is deleted.

To perform the tasks, Memo supports five input active
and passive modalities. For inputs, active modalities are
used by the user to issue a command to the computer (e.g.,
a voice command). Based on our definition of a modality
[11] as the coupling of a physical device with an
interaction language, the three active modalities in Memo
are: (Mouse, Button Commands), (Microphone, Speech
Commands) and (Keyboard, Key Commands). Such active
modalities are used by the user for manipulating a note and
for quitting the system. Passive modalities are used to
capture relevant information for enhancing the realization
of the task, information that is not explicitly expressed by
the user to the computer such as eye tracking in the "Put
that there" demonstrator [1] or location tracking for the
Memo mobile user. The two passive modalities in Memo
are: <Magnetometer, Three orientation angles in radians>
and <Localization sensor GPS, 3D location>. Such passive

modalities are used to display the notes on the HMD, as
well as to select a note.

Figure 1 : Left: A Memo user, equipped with the

HMD and holding a mouse. Right: A View through the
HMD: The user is in front of a building and can see two

digital notes

3. Multimodality

Although each modality can be used independently
within a multimodal system, the availability of several
modalities in a system naturally leads to the issue of their
combined usage. The combined usage of multiple
modalities opens a vastly augmented world of possibilities
in multimodal user interface design that we studied in light
of the four CARE properties in [4],[11]. While Equivalence
and Assignment express the availability and respective
absence of choice between multiple modalities for
performing a given task, Complementarity and
Redundancy describe relationships between modalities for
performing a given task. We illustrate the CARE properties
with the Memo system:

Localization and orientation of the user are two passive
modalities used in a complementary way for computing the
position of the mobile user.

Speech, keyboard and mouse commands are equivalent
active modalities for manipulating notes. The user has
therefore the choice amongst the three modalities for the
commands get/set/remove a note. A command specified
using speech, keyboard or mouse is applied to the note that
the user is looking at. As a consequence, the two passive
modalities, localization and orientation, that enable the
system to determine the note that the user is looking at, are
complementary to one of the three equivalent modalities
(speech, keyboard or mouse commands).

Memo also supports redundant usage of modalities.
Redundancy corresponds to the case where two modalities
convey redundant pieces of information that are close in
time. In such a case, one of the two user’s actions must be
ignored. Using Memo, speech, keyboard and mouse
commands can be issued in a redundant way. For example,
the user can use two redundant modalities, voice and
mouse commands, for removing a note: the user issues the
voice command "remove" while pressing the mouse button.
Because the corresponding pieces of information are
redundant and the two actions (speaking and pressing)
produced nearly in parallel or close in time, only one

command will be executed and therefore only one note will
be removed. If the two remove actions were not produced
close in time, there is no redundancy detected and two
remove commands will therefore be executed.

For quitting the system, the user has no choice and must
use a special key on the keyboard. The task of quitting the
system is therefore assigned to typing.

Because the CARE properties have been shown to be
useful concepts for the design and evaluation of
multimodal interaction [4], we decided to reuse those
concepts for formally testing multimodal systems using the
Lutess environment.

4. Lutess: A testing environment for
synchronous programs

Lutess [14] [6] is a testing tool for functional testing of
synchronous software. Lutess enables the automatic
generation of input sequences for a program with respect to
some environment constraints of the program under test.
The environment constraints correspond to assumptions on
the possible behaviours of the environment of the program
under test. Lutess automatically builds a test data generator
and a test harness. The latter links the generator, the
software under test and the oracle, coordinates their
execution and records the sequences of input-output values
and the associated oracle verdicts. The program must be
synchronous, and the environment constraints must be
written in Lustre, a synchronous programming language.

Lustre [8] is a language designed for programming
reactive synchronous systems. With a synchronous
program, computation is performed during the actual time
that an external process occurs, in order that the
computation results can be used to control, monitor or
respond in a timely manner to the external process.
Assuming the time is divided in discrete instants defined by
a global clock, a synchronous program, at instant t, reads
inputs it, computes and issues outputs ot. The synchrony
hypothesis states that the computation of ot is made
instantaneously, at instant t. A synchronous Lustre
program is structured into nodes.

Let us consider the following Lustre program:

node Never (A : bool) returns (never_A : bool);
let
never_A = not A -> (not A and pre (never_A));
tel

This program has one boolean data as input and one

boolean data as output. At any time, the output is true if
and only if the input has never been true since the
beginning of the program execution. For instance, the
program produces the output sequence (true, true, true,
false, false) for the input sequence (false, false, false, true,
false).

A Lustre node consists of a set of equations defining
outputs as functions of inputs and local variables. A Lustre
expression is made up of constants, variables as well as
logical, arithmetic and Lustre-specific operators. There are
two Lustre-specific temporal operators: "pre" and "->".
"pre" makes it possible to use the last value an expression
has taken (at the last tick of the clock). "->", also called
"followed by", is used to assign initial values (at t = 0) to
expressions:
• If E is an expression denoting the sequence (e0, e1, ...,

en, ...), pre E denotes the sequence (nil, e0, e1, ..., en-1,
...) where nil is an undefined value. In other words, pre
E returns, at a moment t, the value of the expression E at
the moment t-1.

• If E and F are expressions denoting, respectively, the
sequences (e0, e1, e2, ..., en ...) and (f0, f1, f2, ..., fn ...),
E -> F denotes the sequence (e0, f1, f2, ..., fn, ...).
Basic logical and temporal operators expressing

invariants or properties can be implemented in Lustre. For
example, once_from_to(A,B,C) states that property A must
hold at least once between the instants where events B and
C occur.

As shown in Figure 2, Lutess requires the environment
description and a test oracle of the software under test. The
test is operated on a single action-reaction cycle: The
generator randomly selects an input vector and sends it to
the software, which reacts with an output vector and feeds
back the generator with it. The generator proceeds by
producing a new input vector and the cycle is repeated. The
oracle observes the program inputs and outputs, and
determines whether the software properties are violated.
The test data generator is automatically built by Lutess
from an environment description written in Lustre while
the software and the oracle are both executable programs
(possibly written in LUSTRE). During a test run, at each
execution cycle (or step), the Lutess generator randomly
selects an input vector consistent with the environment
description assuming that the data distribution is uniform.
Additional strategies are supported by Lutess, consisting in
guiding the test data generation by means of operational
profiles [12], behavioural patterns [6] or according to the
likelihood to violate safety properties [15]. In this paper we
focus on the use of operational profiles to express relevant
interaction scenarios for multimodal interactive
applications.

5. Testing interactive multimodal systems
with Lutess

5.1 Hypotheses

Although Lutess is a testing environment originally
dedicated to synchronous software, we propose its use for
testing interactive systems. Indeed, in theory, a

synchronous software satisfies the synchrony hypothesis
stating that outputs are computer instantaneously. But in
practice, this hypothesis holds when the software is able to
take into account any evolution of its external environment.
Hence, a multimodal interactive system can be viewed as a
synchronous program as long as all the user's actions and
external stimuli are caught. This means that, during the test
operation, test data will be issued only when the software
under test is ready to catch them.

Lutess focuses on the control part of the software under
test. In other words it checks the ability of the software to
successfully transform an input event sequence into
adequate outputs. Hence, considering an interactive
multimodal system as the software under test, the aim of
the test will be to check that a sequence of user's events
(represented as boolean events) is adequately processed
and results in an appropriate output sequence of events.

5.2 Motivations

Although multiple modalities and forms of
multimodality enhance the flexibility, robustness and
efficiency of the interaction, they also increase the
complexity of the software that must consequently be able
to handle a huge variety of input sequences. For testing
such software, the number of input event sequences to be
considered is therefore increased and motivate our
approach of automatic test. Moreover the software and
especially the fusion mechanism [11] depends on the
temporal window within which the user events occur. For
example when two modalities are used in a complementary
or redundant way, the resulting events are combined based
on a temporal window [11]. Such temporal aspects of the
interaction can be tested with Lutess, as it is shown, for
instance, in section 6.4.2. To summarize, Lutess makes
possible the automatic generation of several and long
context aware input sequences, and therefore can be a
powerful tool to test multimodal systems.

5.3 Main issues

5.3.1 Connecting Lutess to a multimodal system
Linking a multimodal system and Lutess sets the level

of abstraction of the user's events generated by Lutess.
Indeed the level of abstraction of the events will determine
which component within the multimodal system will be
connected to Lutess. If we consider the PAC-Amodeus
software architecture for multimodal systems presented in
[2],[11] three components can be candidates to receive the
input sequences from Lutess as shown in Figure 2. Indeed,
since Lutess cannot generate physical actions, the Physical
Interaction component is not a possible candidate for
plugging Lutess.

A first solution is therefore to connect Lutess with the
Logical Interaction component. As a consequence, Lutess
should send low-level device dependent event sequences to
the multimodal system under test. For example, in the case
of Memo, Lutess should send events corresponding to a
mouse button press. A second solution consists in
connecting Lutess to the fusion mechanism. Events
generated by Lutess are therefore modality (device and
language) dependent. For example for testing Memo,
Lutess can send events such as <Mouse-get> or <Speech-
remove>. A third solution is to connect Lutess to the
Dialog Controller. Events sent by Lutess to the multimodal
system will therefore be complete commands such as
<remove note 3>. For the experiment presented in the
paper, the second solution has been chosen (see section
6.1)

 Multimodal system under test

Environment
simulator

Functional
Core

Functional
Core Adapter

Dialog
Controller

Physical
Interaction

Logical
Interaction

Fusion mechanism

(1) Device dependent event

(2) Modality dependent event

(3) Complete command
(elementary task)

Oracle Trace
Analyzer

Verdict

Figure 2: Three solutions for linking a multimodal

system organized along the PAC-Amodeus software
architecture and Lutess.

5.3.2 Developing the specifications
In order to test a multimodal system with Lutess, we

need:
• The system to test, as an executable program. An event

translator must be added to the program, translating the
program input and output events to boolean events
handled by Lutess.

• A test oracle describing the properties that the system
must meet (such as CARE properties).

• The Lustre specification of the external environment
behaviour. This specification describes the stimuli
captured by the interactive system, typically the user
behaviour. For the case of a context-aware interactive
system where the physical environment of the user has
an impact on the system, the specification may
correspond to variable contexts in addition to user's
behaviour.

5.3.3 Guiding by means of operational profiles
With the above specifications, the interactive system

can be tested by randomly simulating the user behaviour.
However, the user behaviour is seldom random and usually

consists of sequences of actions intending to accomplish a
precise task. To simulate such, more realistic, user
behaviours, Lutess offers several test data generation
techniques. In this paper we focus on operational profile–
guided generation [12].

According to [10], the construction of an operational
profile involves five steps. The first four steps consist in
determining the customer, the user, the system-mode and
the functional profiles, while the fifth step is the actual con-
struction of the operational profile. We focus on the last
step which comprises five main tasks: dividing execution
into runs, defining the input space, partitioning the input
space and finally associating occurrence probabilities with
each partition. The definition of the input space
corresponds, in our case to the environment specification.
The latter is a set of invariant Lustre temporal logic
formulas and provides us with a concise representation of
the input space which corresponds to a (potentially infinite)
set of sequences. The probability assignment supported by
Lutess is of two kinds: unconditional and conditional [12].

Note that specification methods associating occurrence
probabilities with input values according to their past
values have been proposed, for instance, in [17][18]. In
[17] only the last value taken on by the input variables is
taken into account while the method proposed in [18]
allows probabilities association to history classes : each
class correspond to several sequences of input values.
Lutess supports a probability association according to any
past value taken by the inputs. Moreover, Lustre, which is
used for the environment specification, is also used for the
specification of the conditions on which depend the
probabilities.

6. Testing MEMO with Lutess

We illustrate our testing approach by considering the
test of the multimodal system Memo with Lutess.
• Section 6.1 presents the implementation issues related to

linking Lutess and Memo.
• Section 6.2 exposes the test oracle expressed in Lustre

for Memo.
• Section 6.3 is dedicated to the Lustre specification of the

environment of Memo.
• Section 6.4 shows how various operational profiles can

be built with conditional and unconditional occurrence
probabilities associated with input values. Occurrence
probabilities are also used to test modality fusion related
issues, as they can force inputs events to occur in the
same temporal window.

• Finally, section 6.5 provides commented experimental
results, including various operational profile definitions,
from the Memo case study.

6.1 Linking Memo and Lutess

The point of contact between Memo and Lutess consists
of a Java class MemoLutess responsible for translating
Lutess outputs into Memo inputs and vice-versa. Because
we focus on testing the multimodal interaction with Memo,
we set the level of abstraction of events generated by
Lutess at the modality level. It corresponds to case (2) of
Figure 2. Inputs generated by Lutess and received by the
Fusion components of Memo are the following: (1)
Localization is a boolean vector which indicates the user's
movements along the x, y and z axes. For instance,
Localization[xplus]=true means that the user's x-coordinate
increases. For the case of Memo, we fix the
decrement/increment equal to 5 cm (current position +/-
0.05 along x, y or z axis). (2) Orientation is a boolean
vector, which indicates the changes in the user's orientation
along the three orientation angles: yaw, pitch and roll. For
instance, Orientation[pitchplus] indicates that the user is
bending one's head. (3) Mouse, Keyboard and Speech are
boolean vectors corresponding to a get, set or remove
command specified using speech, keyboard or mouse. For
instance, Mouse[get] indicates that the user has pressed the
mouse button corresponding to a get command.

The state of the Memo system is observed through five
boolean outputs: (1) memoSeen, which is true when at least
one note is visible and close enough to the user to be
manipulated, (2) memoCarried, which is true when the user
is carrying a note, (3) memoTaken, which is true if the user
has got a note during the previous action-reaction cycle, (4)
memoSet, which is true if the user has set a carried note to
appear at a specific place during the previous cycle, (5)
memoRemoved, which is true if the user has removed a
note during the previous cycle.

The class MemoLutess includes a constructor, creating
a new instance of a Memo system. A main method creates
a new instance of MemoLutess and links it to Lutess.

/* Main method */
static public main(String[] args) {
 MemoLutess m = new MemoLutess();
 m.connectLutess(); }

The connectLutess method consists of an infinite loop

which (1) gets a sequence of boolean values specified by
Lutess, (2) sends the corresponding events to the Memo
system, (3) waits for Memo to execute the resulting
commands, (4) gets the Memo current state (5) and finally
issues the obtained sequence of boolean values that will be
used in turn by Lutess to produce a new sequence for the
following action-reaction cycle.

/* Main interaction loop */
void connectLutess() {
 while (true) {
 readInputs(); // Get an input from Lutess
 memoApp.sendEvents(); // Send events to Memo
 wait(500); // wait for Memo to do the commands

 memoApp.getState(); // Get the new state of Memo
 writeOutputs();}} // Issue results to Lutess

6.2 Test oracle

The test oracle consists of the required system
properties. The Memo properties hereafter are functional.
First, we require that notes are taken, set or removed only
with appropriate commands:
• After a note has been seen and before it has been taken,

a "get" command has to occur at an instant when the
note is seen (i.e., the note is close enough to the user to
be manipulated).

 once_from_to(cmdget and pre memoSeen, memoSeen,
memoTaken)

• After a memo has been seen or carried and before it has
been removed, a "remove" command must occur.

 once_from_to(cmdremove and (pre memoSeen or pre
memoCarried), memoSeen or memoCarried,memoRemoved)

Moreover the state of the Memo system cannot change
except by means of suitable input events:
• Between the instant the user is seeing a note and the

instant there is no note in her/his visual field, the user
has moved or specified a "get" or "remove" command.

 once_from_to(move or (cmdget or cmdremove) and
pre memoSeen, memoSeen, not memoSeen)

• Between the instant when no note is visible and the
instant when a note is visible, the user has moved or has
specified a "set" command.

 once_from_to(move or (cmdset and pre
memoCarried), not memoSeen, memoSeen)

• If a note is carried, then a "get" command has previously
occurred.

 once_from_to(cmdget and pre memoSeen, not
memoCarried, memoCarried)

• Only a "set" or a "remove" command can cause a carried
note to be dropped.

 once_from_to(cmdset or cmdremove, memoCarried,
not memoCarried)

CARE related properties can also be specified in the
test oracle by means of temporal operators, as it has been
shown in [9].

6.3 Environment and user's behaviour

Input data are generated by Lutess according to
formulas defining assumptions about the external
environment of Memo, i.e. the user's behaviour. The below
specifications exclude actions that the user cannot perform.
For example the user cannot move along an axis in both

directions at the same time. The corresponding formulas
are:

not (Localization[xminus] and Localization[xplus])
not (Localization[yminus] and Localization[yplus])
not (Localization[zminus] and Localization[zplus])

Similarly, we can also specify that the user cannot turn
around an axis in both directions at the same time.

Moreover, Lutess sends data to Memo at the modality
level and not at the device level. Since there is one
abstraction process per modality, only one data along a
given modality can be sent at a given time. Three
commands (Get, Set, Remove) can be performed using
speech, keyboard or mouse. We therefore have the
following formulas:

AtMostOne(3,Mouse); AtMostOne(3,Keyboard);
AtMostOne(3,Speech).

6.4 Guiding the test data generation by means
of operational profiles

6.4.1 Associating probabilities with inputs
As opposed to usual reactive systems, very few

restrictions can be set to user behaviour. This means that,
according to the environment specification of section 6.3, a
random simulation of the user's actions cannot result in
realistic interaction scenarios. Indeed, every input event has
the same probability to occur. This means, for instance, that
Localization[xminus] will occur as many times as
Localization[xplus] and, as a result, the user's position will
hardly change. To test Memo in a more realistic way, the
data generation can be guided by means of operational
profiles and more precisely, by means of unconditional or
conditional occurrence probabilities associated with inputs.

Unconditional probabilities can be used to force the
simulation to correspond to a particular case, for example
that the user is turning one's head to the right:

proba((Orientation[yawminus], 0.80),

(Orientation[yawplus], 0.01),
(Orientation[pitchminus], 0.01),
(Orientation[pitchplus], 0.01),
(Orientation[rollminus], 0.01),

(Orientation[rollplus, 0.01))

Conditions can be associated with probabilities. For
instance, one can specify that a "get" command has a high
probability to occur when the user has a note in her/his
visual field (close enough to be manipulated):

proba((Mouse[get], 0.8, pre memoSeen),

 (Keyboard[get], 0.8, pre memoSeen),
 (Speech[get], 0.8, pre memoSeen))

As another example, we can specify that, when there is
no note visible, the user will very probably move:

proba((Orientation[yawminus], 0.9, not pre
MemoSeen)…).

6.4.2 Checking the fusion of multimodal events
When two modalities are used in a complementary or

redundant way, the resulting events are combined
according to their occurrence instant position in a temporal
window. Let T be the duration of this temporal window
(this is a parameter of the interactive system) and let C be
the duration of an execution cycle of the Lutess test
generator (that is the time separating the issue of two
successive inputs). C is empirically determined and it is
constant for a given generation type. Therefore, if N = T
div C, then N is approximately the number of execution
cycles included in the temporal window. As a result, for an
input event to occur within the temporal window, its
occurrence probability must be greater or equal to 1/N.

For example, to specify that Mouse[get] and
Speech[get] will both be issued in that order in the same
temporal window, we can write:

proba(Speech[get], 1/N, after(Mouse[get]) and pre
always_since(not Speech[get], Mouse[get]));

Indeed, this formula means that if at least a Mouse[get]
event has occurred in the past and if no Speech[get] event
occurred since the last Mouse[get] occurrence, then the
Speech[get] occurrence probability is equal to 1/N. Since
the temporal window starts at the last occurrence of
Mouse[get] and lasts N ticks, Speech[get] will very
probably occur at least once before the end of the window.
The experimental results presented in the next section use
the above principle to check the validity of the CARE
properties for the Memo interactive system (section 6.5.2).

6.5 Commented experimental results

6.5.1 Random simulation
We first tested Memo with a random simulation (i.e.

random generation of inputs consistent with the
environment specification of section 6.3). Figure 3 shows
an excerpt from the resulting trace. The last column
contains the value of the oracle (1 means "true"). We use
the following abbreviations:
• (ya, p, r) respectively for yaw, pitch and roll,
• (mG, mS, mR) respectively for Mouse[get], Mouse[set]

and Mouse[remove],
• similarly (kG, kS, kR) for the keyboard modality and

(sG, sS, sR) for speech,
• Se for memoSeen, Car for memoCarried,
• Tak for memoTaken and Rem for memoRemoved

x- z- - - - - - ya+ - p+ - r+ - - - - - - - - - Se - - - 1
- - - - - - - - - - - - mG - - - - - - - - Se Car Tak - 1
- - - z+ y+ - - ya+ p- - - - - - - - - - - - - Se Car - - 1
- - - - - - - - - - - - - - - kG - - - - sR - - Tak Rem 1
x- z- - - - y- - - - - r- - - - - - - - - - - Se - - - 1
- - - - - - - - - - - - - mS - - - - - - sR Se - - Rem 1
x- z- - - y+ - ya- - p- - - - - - - - - - - - - Se - - - 1
- - - - - - - - - - - - - mS - - kS - sG - - - Car Tak - 1
- - x+ - y+ - ya- - - - - r+ - - - - - - - - - - Car - - 1
- - - - - - - - - - - - mG - - kG - - sG - - - Car - - 1
x- - - - - y- - - p- - r- - - - - - - - - - - - Car - - 1
- - - - - - - - - - - - - - mR - - kR - - sR - - - Rem 1

Figure 3 : Excerpt from Memo random simulation.

6.5.2 Using operational profiles
We next tested Memo using operational profiles. As

shown by the following experimental results, we focused
on the CARE properties. Complementarity has been
extensively tested since the manipulation of a note implies
two fusions to be performed. A fusion takes place to
combine the information from the localization and
orientation modalities, in order to determine the selected
note. A second fusion is then performed in order to
combine the selected note and the command issued by
speech or by using the keyboard or mouse. As shown in the
execution traces presented hereafter, equivalence has also
been considerably tested: the three equivalent modalities
based on mouse, keyboard and speech for issuing one of
the commands (Get, Set, Remove) have been frequently
simulated. Redundancy has been tested in our third
experiment. Assignment has not been tested, since it only
concerns the Memo exit command.

First experiment
In this first experiment, we choose probabilities such

that the user is likely to move when no note is in his visual
field, and likely to issue a “get” command otherwise.

proba(
(Mouse[get], 0.9, pre memoSeen),
(Clavier[get], 0.7, pre memoSeen),
(Speech[get], 0.5, pre memoSeen),
(Localisation[xminus], 0.5, not pre memoSeen),
(Localisation[zminus], 0.5, not pre memoSeen),
(Localisation[xplus], 0.8, not pre memoSeen),
(Localisation[zplus], 0.8, not pre memoSeen),
(Localisation[yplus], 0.5, not pre memoSeen),
(Localisation[yminus], 0.8, not pre memoSeen));

In the following excerpt of the resulting trace, we can

note that, when no note is visible, the user moves, and
when a note is visible (Se occurs in the previous step) the
user takes it (Tak):

 1 : - - - - - - - - - Se -
 2 : - - - - - - mG kG sG - Tak
 3 : - z- x+ - y+ - - - - - -
 4 : x- - - z+ - y- - - - - -
 5 : - - x+ z+ y+ - - - - - -
 6 : - z- x+ - y+ - - - - - -
 7 : - z- - - - - - - - - -
 8 : - - - - - - - - - Se -
 9 : - - - - - - mG - sG - Tak
 10 : x- z- - - - - - - - - -
 11 : - z- - - y+ - - - - - -
 12 : x- z- - - - y- - - - Se -
 13 : - - - - - - mG kG sG Se Tak
 14 : - - - - - - mG - - Se Tak
 15 : - - - - - - mG kG sG - Tak
 16 : x- z- - - y+ - - - - Se -
 17 : - - - - - - mG kG - - Tak
 18 : x- - - z+ y+ - - - - - -
 19 : x- z- - - y+ - - - - - -
 20 : - - x+ z+ y+ - - - - - -
 21 : x- z- - - y+ - - - - - -
 22 : - z- x+ - - y- - - - - -
 23 : - - x+ z+ y+ - - - - - -

Second experiment
For this second experiment, we have first set a few

notes along the x-axis. The aim is that the user, moving
along the x-axis, removes these notes. We choose to let the
user continue his move in the same direction with a high
probability. When a note is visible, there is a high
probability that the user will remove it. Finally, when a
note is removed, there is a high probability that the user
will change his direction.

proba(
 (Localisation[xplus], 0.9, pre always_since(
 not Localisation[xminus], Localisation[xplus])),--(1)
 (Localisation[xplus], 1, pre always_since(
 not Localisation[xplus],
 Localisation[xminus]) and pre memoRemoved), --(2)
 (Localisation[xminus], 0.9, pre always_since(
 not Localisation[xplus], Localisation[xminus])),--(3)
 (Localisation[xminus], 1, pre always_since(
 not Localisation[xminus],
 Localisation[xplus]) and pre memoRemoved), --(4)
 (Mouse[remove], 0.9, pre memoSeen), --(5)
 (Clavier[remove], 0.9, pre memoSeen), --(6)
 (Speech[remove], 0.9, pre memoSeen)); --(7)

Line (1) means that there is a high probability to move

along (x+), if the user has not moved along (x-) since the
last occurrence of (x+) (the last move was x+). Line (2)
means that there is a high probability to change the user
direction when a note has just been removed. Lines (3), (4)
are similar to (1), (2).

In the following excerpt from the resulting trace, we
can note that generally the user moves towards the same
direction until finding a note (step 64: event memoSeen
Se). Then s/he removes it (step 65: event memoRemoved
Rem). Then the user changes his direction, and so on.

 53 : - - mR kR sR - -
 54 : - x+ - - - - -
 55 : - - mR kR - - -
 56 : - x+ - - - - -
 57 : - - - kR - - -
 58 : - x+ - - - - -
 59 : - - - - - - -
 60 : - x+ - - - - -
 61 : - - - - - - -
 62 : - x+ - - - - -
 63 : - - mR - - - -
 64 : - x+ - - - Se -
 65 : - - - kR sR - Rem
 66 : x- - - - - - -
 67 : - - - - sR - -
 68 : x- - - - - - -
 69 : - - mR - sR - -
 70 : - x+ - - - - -
 71 : - - - - - - -
 72 : - x+ - - - - -
 73 : - - - - - - -
 74 : - x+ - - - - -
 75 : - - - - - - -
 76 : - x+ - - - - -
 77 : - - - kR - - -
 78 : - x+ - - - Se -
 79 : - - - - - - -
 80 : - x+ - - - - -
 81 : - - - - sR - -
 82 : - x+ - - - Se -
 83 : - - mR kR sR - Rem

Third experiment
 The third example describes a redundant usage of two

modalities: mouse and speech. We have reconfigured the

Memo system for allowing “redundancy2” between mouse
and speech. In this mode, to execute a command, one event
from every redundant modality is necessary and both
events must occur in the same temporal window.

We first consider a high probability to issue a “get”
command by using mouse and speech when a note is
visible:

proba ((Speech[get], 0.9, pre memoSeen),
 (Mouse[get], 0.9, pre memoSeen));

Here is an excerpt from the resulting trace:

 1 : - - Se - -
 2 : - - Se - -
 3 : mG sG Se Car Tak
 4 : - - Se Car -
 5 : mG - Se Car –

We start the test in a state where two notes are close to

the user. Step 2 contains the event memoSeen (Se),
implying that one or several notes are close to the user. In
step 4, the two simultaneous events mouseGet and
speechGet (mG and sG) cause, because of the redundancy,
one note to be taken (Tak). Thus, a note is still visible (Se),
and the user carries one note (Car). Note that in step 5, the
single event mouseGet (mG) does not cause any reaction,
because in this mode we need two events to accomplish the
task.

Let’s now assume now that the following situation must
be tested: when a note is visible, a “get” command with
mouse and a “get” command with speech are issued in the
same temporal window, but not at the same instant. Such a
scenario checks the redundancy fusion mechanism. For
this, we give a probability pr to issue Speech[get] when
a memo is visible and Speech[get] has not yet occurred
since the last occurrence of Mouse[get]. Because we do
not want both events to occur at the same instant, we give
the probability 0 to the Mouse[get]condition.

 proba (
 (Speech[get], pr, pre memoSeen and
 after (Mouse[get]) and
 pre always_since(not Speech[get], Mouse[get])),
 (Mouse[get], 0, pre memoSeen and
 after (Mouse[get]) and
 pre always_since(not Speech[get], Mouse[get])));

The value of pr is chosen as follows (see section 6.4.2).
Let T=5000ms be the duration of the temporal window and
let C=1000ms be the duration of a cycle of execution (i.e.
the frequency of the input events generated by Lutess). If
pr = 1000/5000 = 0.2, then Speech[get] will occur about
one time every 5 cycles of execution when the precondition
is true (Mouse[get] has occurred and Speech[get] has
not occurred since Mouse[get]). If we wish both events to

2 As opposed to the original definition of Redundancy provided in section

3, the two modalities are here required to accomplish a task.
Redundancy-Equivalence (see fourth experiment) requires only one of
several modalities.

be closer, we have to increase pr. We have processed this
example with different values of pr:

Here is an excerpt from the resulting trace for pr = 0.2:

 1 : mG - Se - -
 2 : - - Se - -
 3 : - - Se - - T
 4 : - - Se - -
 5 : - - Se - -
 6 : - - Se - -
 7 : - - Se - -
 8 : - - Se - -
 9 : - sG Se - -
 10 : - - Se - -
 11 : - sG Se - -
 12 : - - Se - -
 13 : - - Se - -
 14 : - - Se - -
…………

The temporal distance between the two redundant
events mouseGet and speechGet (mG, sG) is equal to 8
cycles (8000 ms), which is more than T, so no task is
executed. We can note that, considering the whole trace,
the average distance between mG and sG is about 5 cycles
(5000ms).

Here is an excerpt from the resulting trace for pr = 0.8:

 145 : - - Se - -
 146 : - - Se - -
 147 : mG - Se - -
 148 : - - Se - -
 149 : - sG Se Car Tak T
 150 : - - Se Car -
 151 : - - Se Car –

The average distance between mG and sG is lower. We

can observe that the events mG and sG, which occur in the
same temporal window, cause one note to be taken and the
other to remain in the physical field.

Fourth experiment
In the last experiment, we use the same expressions of

probabilities used in the previous experiment, but we have
configured the Memo system in order to work in the
Redundancy-Equivalence mode. In this mode, the
application uses the modes Redundancy and Equivalence at
the same time: for two events occurring in the same
temporal window and carrying the same information, there
is only one executed task (Redundancy mode). However, a
single event can cause the task execution (Equivalence
mode).

We first choose the probabilities as follows:

proba ((Speech[get], 0.9, pre memoSeen),
 (Mouse(get], 0.9, pre memoSeen));

Here is an excerpt from the resulting trace for N = T/C

= 10 000/1000 = 10
 …
 10 : - - Se - -
 11 : mG sG Se Car Tak
 12 : - - Se Car -
 13 : mG - Se Car -
 14 : - - Se Car -
 15 : mG sG Se Car -
 16 : - - Se Car - T

 17 : mG sG Se Car -
 18 : - - Se Car -
 19 : mG sG Se Car -
 20 : - - Se Car -
 21 : mG - - Car Tak
 22 : - - - Car -
 23 : - - Se - -
 24 : - - Se - -
 25 : mG sG Se - -
 26 : - - Se - -
 27 : mG sG Se - -
 28 : - - Se - -
 29 : mG sG Se - -

As in the previous example, we first set two notes close
to the user. Step 11 shows that, because of the redundancy
mode, the two simultaneous events mouseGet and
speechGet (mG and sG) cause one note to be taken (Tak).
Thus, one note is still visible (Se), and one note is carried
(Car). After that, all the events in the same temporal
window are ignored. In step 21, because of the equivalence
mode, the single event mouseGet (mG) cause a digital note
to be taken.

Assume that we wish to check the fusion mechanism.
For this, we choose the probabilities as in the third
experiment: we assign a probability pr to Speech[get]
when a memo is visible and Speech[get] has not yet
occurred since the last occurrence of Mouse[get]. We
assign the probability 0 to Mouse[get] to avoid both
events to occur at the same instant.

proba (
(Speech[get], pr, pre memoSeen and
 after(Mouse[get]) and
 pre always_since(not Speech[get], Mouse[get])),
(Mouse[get], 0, pre memoSeen and
 after(Mouse[get] and
 pre always_since(not Speech[get], Mouse[get])));

Here is an excerpt from the trace with pr = 0.8 and N =
5000/1000 = 5 cycles:

 1 : - - - - -
 2 : - - Se - -
 3 : - - Se - -
 4 : - - Se - -
 5 : - - Se - -
 6 : - - Se - -
 7 : - - Se - -
 8 : mG - Se Car Tak
 9 : - - Se Car -
 10 : - - Se Car -
 11 : - sG Se Car -
 12 : - - Se Car -
 13 : - sG - Car Tak
 14 : - - - Car -
 15 : - - - Car -
 16 : - - - Car -
 17 : - sG Se - -
 18 : - - Se - -
 19 : - - Se - -
 20 : - - Se - -
 21 : mG - Se - Tak
 22 : - - Se - -
 23 : - sG Se - -
 24 : - - Se - -

Note that at step 8, because of equivalence, the

event mouseGet (mG) causes one note to be taken.
Then, the event speechGet (sG) at step 11 is ignored,
because of redundancy, and so on.

7. Conclusion and future work

In this article, we have presented a method for
automatically testing multimodal systems by means of the
Lutess environment, initially designed for synchronous
software. Our hypothesis is that the behaviour of an
interactive multimodal system is to a certain extent similar
to the one of a synchronous system. Based on this
hypothesis, we used the Lutess testing environment to test a
prototype multimodal application, Memo. We focused on
multimodal interaction in light of the CARE properties.

Although a more thorough empirical evaluation of the
approach is necessary, this experiment has shown that
Lutess, especially when used in the operational profile
based generation mode, can simulate relevant interaction
scenarios, involving modality fusion. The occurrence
probability of the input modalities involved in a fusion can
be easily computed and depends on the length of the
temporal window and the duration of an execution step.

In future work, we plan to enhance the Lutess
simulation engine in order to handle occurrence
probabilities associated with logical expressions (rather
than with single variables). Such an extension would make
possible the expression of more complex execution
scenarios and operational profiles.

8. References

[1] Bolt, R. Put That There: Voice and Gesture at the Graphics
Interface. Proc. of SIGGRAPH'80. ACM Press (1980) 262-
270.

[2] Bouchet, J., Nigay, L., & Ganille, T. ICARE Software
Components for Rapidly Developing Multimodal Interfaces.
Proc. of ICMI'04. ACM Press (2004) 251-258.

[3] Bouchet, J., Nigay, L. ICARE: A Component-Based
Approach for the Design and Development of Multimodal
Interfaces. Proc. of CHI'04 extended abstract. ACM Press
(2004) 1325-1328.

[4] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., &
Young, R. Four Easy Pieces for Assessing the Usability of
Multimodal Interaction: The CARE properties. Proc. Of
INTERACT'95. Chapman et Hall (1995) 115-120.

[5] d'Ausbourg, B. Using Model Checking for the Automatic
Validation of User Interfaces Systems. Proc. of DSVIS'98.
Springer Verlag (1998) 242-260.

[6] du Bousquet, L., Ouabdesselam, F., Richier, J.-L., &
Zuanon, N. Lutess: a Specification Driven Testing
Environment for Synchronous Software. Proc. of ICSE'99.
ACM Press (1999) 267-276.

[7] Duke, D., Harrison, M. Abstract Interaction Objects. Proc. of
Eurographics'93. North Holland (1993) 25-36.

[8] Halbwachs, N. Synchronous programming of reactive
systems, a tutorial and commented bibliography. Proc. of
CAV'98, LNCS 1427. Springer Verlag (1998) 1-16.

[9] L. Madani, L. Nigay, I. Parissis. Testing the care properties
of multimodal applications by means of a synchronous
approach. Proc. of IASTED Int’l Conference on Software
Engineering, (2005).

[10] J. Musa. Operational Profiles in Software-Reliability En-
gineering. IEEE Software (1993), 14–32.

[11] Nigay, L., Coutaz, J. A Generic Platform for Addressing the
Multimodal Challenge. Proc. of CHI'95. ACM Press (1995)
98-105.

[12] F. Ouabdesselam, I. Parissis. Constructing Operational
Profiles for Synchronous Critical Software. Proc. of 6th Int'l
Symposium on Software Reliability Engineering (1995).

[13] Palanque, P., Bastide, R. Verification of Interactive Software
by Analysis of its Formal Specification. Proc. of
INTERACT'95. Chapman et Hall (1995) 191-197.

[14] Parissis, I., Ouabdesselam, F. Specification-based Testing of
Synchronous Software. Proc. of ACM SIGSOFT Fourth
Symposium on the Foundations of Software Engineering.
ACM Press (1996) 127-134.

[15] I. Parissis, J. Vassy. Thoroughness of Specification-Based
Testing of Synchronous Programs. Proc. of 14th. IEEE
International Symposium on Software Reliability
Engineering (2003) 191-202.

[16] Paterno, F., Faconti, G. On the Use of LOTOS to Describe
Graphical Interaction. Proc. of HCI'92. Cambridge
University Press (1992) 155-173.

[17] J. Whittaker. Markov chain techniques for software testing
and reliability analysis. Thesis, University of Tenessee
(1992).

[18] D. Woit. Specifying Operational Profiles for Modules. Proc.
of the International Symposium on Software Testing and
Analysis (1993) 2–10.

[19] Zouinar, M. et al. Multimodal Interaction on Mobile
Artefacts. Chapter 4 in Communicating with smart objects.
Hermes Penton Science/Kogan Page Science (2003).

	5.1 Hypotheses
	5.2 Motivations
	5.3 Main issues
	5.3.1 Connecting Lutess to a multimodal system
	5.3.2 Developing the specifications
	5.3.3 Guiding by means of operational profiles
	6.1 Linking Memo and Lutess
	6.2 Test oracle
	6.3 Environment and user's behaviour
	6.4 Guiding the test data generation by means of operational profiles
	6.4.1 Associating probabilities with inputs
	6.4.2 Checking the fusion of multimodal events

	6.5 Commented experimental results
	6.5.1 Random simulation
	6.5.2 Using operational profiles

