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Abstract This paper presents a novel approach for instance search and ob-
ject detection, applied to museum visits. This approach relies on fully convo-
lutional networks (FCN) to obtain region proposals and object representation.
Our proposal consists in four steps: a classical convolutional network is first
fined-tuned as classifier over the dataset, next we build from this network a
second one, fully convolutional, trained as classifier, that focuses on all regions
of the corpus images, this network is used in a third step to define image global
descriptors in a siamese architecture using triplets of images, and eventually
these descriptors are then used for retrieval using classical scalar product be-
tween vectors.
Our framework has the following features: i) it is well suited for small datasets
with low objects variability as we use transfer learning, ii) it does not require
any additional component in the network as we rely on classical (i.e. not fully
convolutional) and fully convolutional networks, and iii) it does not need re-
gion annotations in the dataset as it deals with regions in a unsupervised way.
Through multiple experiments on two image datasets taken from museum vis-
its, we detail the effect of each parameter, and we show that the descriptors
obtained using our proposed network outperform those from previous state-
of-the-art approaches.

Keywords Fully Convolutional Network · Triplet Loss · Siamese Network ·
Instance Search · Image Retrieval

1 Introduction

The work presented here is dedicated to enhance a museum audio-tour guide
with a camera, in order to help user orientation, enable automatic guidance
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and facilitate museum artifact explanations: when the visitor is close enough to
an object, a multimedia explanation is automatically presented. The camera
is used for the system to localize the user without the need of any extra
hardware to be installed in the museum. Obviously, the entire museum must
be photographed (or video recorded), and each object image then has to be
localized in the digital museum map.

Instance search is a visual task that aims, given an image, to identify the
particular objects shown. Instance search must not be confused with Image
Classification that focuses on identifying object category, with robustness to
intra-class variability. In addition, an instance (representing one given object)
is generally described only by a few shots. The main difference between Image
Classification and image retrieval, is the amount of data and their variability.
In classification, we rely on a large amount of data with high variability of
examples, and we can then train a Deep Convolutional Network with millions
of parameters. In image retrieval or identification, as we want to identify a
particular instance, the variability of examples is less important, and not suffi-
cient to train a network like ResNet. In order to use a CNN, we only fine-tune
a CNN pre-trained on a bigger collection for image classification.

In our work, the solution chosen to identify instances, using an image re-
trieval system is in two steps: in a first step we retrieve all images similar to a
query image, and then we decide, from the image retrieval system result list,
the instance identified.

We propose an image retrieval system that learns image representations
with Deep Learning Convolutional Neural Networks (CNN). The Neural Net-
work model proposed is learned with a siamese network with three streams
and a triplet loss [25]. The aim is to produce an image representation that
allows image comparison based on their contents. Because of the relatively
small number of images available in Instance Search dataset, we need an ex-
ternal source of data to train a convolutional network, such as ImageNet [23].
The network we use is a Fully Convolutional Network (FCN) [15] that allows
any input size, to avoid image deformation or scaling. One main reason that
led us to use such networks is that the FCN can be used to produce region
proposals without any additional component, in the network or in the dataset.
Such property is needed in our case, as we want to be as prrcise as possible,
even when the camera is not correctly positioned on the chest of the user. For
the training phase, we use the triplet loss between the three streams of the
siamese architecture, and a cross entropy loss for classification of the region
with the highest activation. The aim is to create a representation of the image
that captures the position of the object and the difference between images,
whether similar or not. At test time, the trained FCN is passed over the whole
image, but only the location with the top k maximal activations will form the
image description. This representation is compared with the reference images
in the dataset using a dot product, to obtain a ranked list of images in the
deceasing order of similarity. Then, the closest reference image representing
the instance is selected as the identified object.
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We evaluate our approach on two egocentric datasets from museum vis-
its [21]. We show that our approach achieves better results on these datasets
than the previous state of the art by Gordo et al. [11].

In the following, the section 2 presents the related work on instance identi-
fication. Then, in section 3 we describe why the use of pre-trained CNNs and
fine-tuning is important for our problem. The section 4 introduces the region
of interest detection and object localization. The section 5 describes the pro-
posed network and how it was trained on the datasets we used. Datasets used
for evaluation are presented in section 6. Experimental results and evaluation
are shown in section 7, in which we detail the impact of the parameters of our
proposal on the quality of the results. We conclude in section 8 by giving some
future directions of this work.

2 Related Work

Before the ground-breaking results of deep learning methods for object detec-
tion and image retrieval, shallow patch descriptors have been used in several
domains. The SIFT [16], Scale-Invariant Feature Transform, descriptor was
the most used one, among the large variety of traditional patch descriptors. It
has been successfully employed for tasks like image search with content-based
retrieval [13] or classification [18]. For image retrieval, methods inspired by
text retrieval methods, such as bag of words [6], use bag-of-features (BoF)
image representations [28] that group similar features together in clusters and
stores the number of occurrences of each cluster in one image.

In order to compare images for image retrieval, image patch comparisons
have shown better results than SIFT [8,27,32]. Image patches can be con-
structed with deep patch descriptors [8] as patch label, each patch is a label,
by learning patch differences with a siamese network [27,32], or with a Con-
volutional Kernel Network [17].

Starting with the results of AlexNet for image classification in the 2012
ImageNet challenge [14,23], image classification tasks have been dominated
by CNNs. A CNN trained on a large enough labeled dataset like ImageNet
can be used as a feature extractor with its intermediate layers, to construct
an image representation for image retrieval [4,26]. To overcome the lack of
geometry invariance of this approach [9], cross-matching [26], sum-polling [3]
or fine-tuning [4] with an external dataset can be used. Fine-tuning focuses on
the higher layers of a CNN and can increase generalization even in the fine-
tuned model[31]. These approaches are well suited for classification purpose,
i.e., when we have numerous samples per class, but cannot be applied directly
to instance search or image retrieval.

Another important aspect of image retrieval is to learn to rank [1,10].
While Arandjelovic et al. [1] have shown the importance of learning to rank,
Gordo et al. [10] used a siamese network [7] along with a triplet loss, previously
used for face recognition [25], to construct an effective image representation
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Fig. 1 Siamese Architecture use to train a network (NN) with a triplet of images, with an
anchor image (a), a negative image (n) and a positive image (p)

by learning with a similarity metric.

As shown in figure 1, a three-way siamese architecture use a triplet of im-
ages < Ia, In, Ip > with Ia being the anchor image (or query), In the negative
example and Ip the positive one. The triplet loss is define to maximize the dis-
tance between the representation of the anchor (xa) and the negative example
one (xn), and minimize the one between anchor and the positive example (xp).

Previous approaches in image retrieval [11,24,29] usually deal with regions
of interest in one way or another. The idea is that in most cases, only certain
parts of each image can be useful for comparison with other images. In addition
to this, cropping images at their regions of interest can help with differences
in scale of the images to compare: if a painting is visible only in a small part
of an image, cropping the image at that part and then re-scaling the part
should set the painting at a normalized scale. However, in instance search
with museum datasets, it is not obvious where the regions of interest should
be: most images represent an entire painting or parts of it and only some may
contain the painting as part of the image with a wall in the background. This
means for most images, the ground-truth region of interest is simply the entire
image, and some may have a ground-truth region of interest which is almost
the entire image, excluding only a small part of the background.

As noted by previous authors, when using the triplet loss, it is crucial to
choose the best triplets during training in order to obtain convergence. In
particular, many triplets are irrelevant and do not produce any loss since they
are too easy for the network.

Hence, the first idea is to choose the hardest triplets. However, this can
lead to a collapsing model with a bad local minima early on in training, as
explained by Schroff et al [25]. Thus, they choose semi-hard triplets instead.
Semi-hard triplets are obtained as follows: use all possible positive couples of
images (couples of images from the same instance). For each positive couple,
choose the hardest negative that is easier than the positive couple. Hard and
easy are defined by the dot product between the descriptors of the images: a
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high value of the dot product for images of the same instance represents an
easy positive couple, a high value of the dot product for images of different
instances represents a hard negative couple. The value of all dot products are
determined before each pass over the whole training data during training, for
all couples of images.

A different triplet selection mechanism was proposed by Gordo et al. [11].
First, calculate the values of dot products for all couples of images before
each pass over the training data. Second, for each image, choose the n easiest
positive images and the m hardest negatives. Then, calculate the loss for all
possible combinations and use the o triplets with the highest loss. This method
probably eliminates some noise when choosing the easiest positive couples, for
images that are labeled as being the same instance but are not visually similar.

3 Fine-tuning and object Localization

The modularity of a CNN means that we can easily transfer the weights from a
pre-trained model, and only re-train the highest abstraction layers. Specifically,
we re-train all fully connected layers and the highest level convolutional layers
in the model (depending on the architecture), since our datasets contain many
visually different images as compared to the ImageNet dataset used for pre-
training the models.

A network fine-tuned on classification on such a dataset should be able
to easily identify the region containing the painting, since the background is
contained in almost all classes, which means it is a particularly bad indicator of
the class. Thus, if the network is applied in a strided manner across an image,
it should produce low maximal activations in parts containing big sections of
background wall.

Figure 2 shows images, along with the heat map representing the maximal
activation of a fine-tuned ResNet-152 at each coordinate, when the network is
applied in a strided manner across the input image. From this image, we can
see that the highest maximal activations of the network usually occur at the
location of the object. This is true even if the object is not correctly classified
by some of the highest activations as can be seen in the second image.

In the third image, it seems like many high maximal activations occur
specifically in the background area. However, the corresponding label-map
shows that these areas correspond to the labels 38E and 43D. Both of these
labels are pieces of art which consist mostly of the background wall. In this
sense, it is not entirely wrong to consider ’wall-only’ patches of the image as
instances of these pieces of art. This simply means that the image consists of
two separate regions of interest: one region with the painting (label 30P) and
one region with the wall (labels 38E/43D).

From these observations, we can confirm the assumption that the maximal
activations of a fine-tuned network are a good indicator of the location of an
object, or a combination of different objects. Using this assumption, there is
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Fig. 2 Sample images (scaled to a smaller side of 448 pixels) along with the heat-map of
maximal activation values at each location when a fine-tuned ResNet-152 is applied to the
image in a strided manner, as well as the labels of all maximal activations that are greater
than the mean maximal activation

no need for a procedure to annotate regions of interest, as employed by most
state-of-the-art image retrieval approaches [10,29,22].

On the other hand, using datasets developed for image retrieval, such as
Paris6k or Oxford5k [20,19], this assumption cannot be applied, since the
dataset is not clean enough for a network fine-tuned on classification to be a
good indicator of location of the query objects.
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4 Fine-tuning on classification using FCN

As shown before, a fine-tuned CNN is already a good indicator of the location
of an object in our datasets. Additionally, it seems like scale is a particularly
important factor.

Thus, the idea is to start by fine-tuning a network with images at different
scales. This can be achieved by using a fully convolutional network (FCN) [15].

In an FCN, the final fully connected layers of a network are replaced by
convolutional layers having a kernel which fits the entire domain of the output
of the previous layer. This type of convolution is equivalent to a fully connected
layer, but allows inputs (and outputs) of any size. The effect is that the network
can be applied in one pass to an arbitrarily sized image. The output then
represents the activations of the network as if it was applied in a strided
manner across the image.

Once an FCN is applied to the image, the loss is calculated by averaging
the cross-entropy (CE) loss (fig. 3). Given a scale s of an image, the loss
Ls is computed by averaging the cross entropy(eq. 1) of every regions. The
equation 1 show the equation for the cross-entropy loss, given an input x, that
contains the score for each class and c the correct class.

The final loss is then obtained by passing images at different scales through
the FCN and averaging across all cross-entropy losses of all outputs and scales.

CE(x, y) = −y log(softmax(x)) (1)

We choose to give each scale of the image the same weight in the loss. This
is because the images are passed to the network at their true aspect ratio,
which means the loss for different images may have different values for the
heights and widths of the feature maps Hs and Ws.

5 Constructing the image descriptor

5.1 Training with siamese architecture

When training, the network is applied to a triplet of images (fig. 4) with a
siamese configuration. The overall loss L used for this training is the triplet
loss defined in [25]. The triplet loss, defined initially in [25] using squared
distances, can be expressed using dot products when considering normalized
vectors. This leads to simpler gradient computation.

In experiments, we found that method developed by Gordo et al. [11] for
triplets selection does not perform well for datasets with few images per in-
stance, since we either have to choose n as very low or we end up choosing
all positive couples after all for most instances, just like in the semi-hard se-
lection. We choose the semi-hard triplet selection for the first two passes over
the dataset, after which we only choose the hardest negatives for all positive
couples.
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Fig. 3 Loss computation when training the network over different regions and scales of
the image. LSM is logsoftmax and NLL is Negative Log-Likelihood, there are used for cross
entropy loss(eq. 1)

Fig. 4 Proposed architecture for instance search based on an FCN [15] for region proposals,
at training time

Equation 2 shows the loss as used in our experiments to train the proposed
model, for N images. In this equation, (hl, wl) represent the spatial coordinates
of the l-th region of highest maximal activation in the feature map produced by
the FCN. xai x

n
i corresponds to the dot product between the i anchor descriptor

and the i negative example descriptor and xai x
p
i to the dot product between the

anchor descriptor and the positive example descriptor. The scalar m represents
the margin between a positive and a negative pair of images.

We regularize the triplet loss by a cross-entropy loss to make sure that the
k locations with highest maximal activations are correctly classified. This loss
is averaged over the k locations.

L =
1

N

N∑
i=1

(
max(0, xai x

n
i − xai x

p
i +m) + α

1

k

k∑
l=1

CEhl,wl

i (xai , y
a
i )

)
(2)
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Fig. 5 Proposed architecture for instance search based on an FCN [15] for region proposals,
at deploy time

In our experiments, we choose the number of regions with highest maximal
activation to be k = 6 and the regularization hyper-parameter α = 1.0. The
margin of the triplet loss is m = 0.1.

This approach allows the network to decide which region of interest is
best suited for classification and ultimately which regions are best suited for
comparison with other images. Another advantage is that this approach does
not require any annotation of the images with regions of interest, which can
be a long, manual or automatic process, as evident from the cleaning process
used by Gordo et al [11].

5.2 Descriptor Extraction Network

Figures 5 illustrate the proposed architecture for image descriptor extraction.
To obtain a descriptor, we first apply the convolutional layers of a previous
architecture. We then obtain all classification outputs at all locations using the
FCN. We only consider the maximal activation at all locations. The locations
with the top k maximal activations will form the descriptor.

For each of these locations, the convolutional features are reduced by a ‖·‖2-
normalization, then a shifting and fully connected layer. Finally, all descriptors
from the k locations are sum-aggregated and ‖ · ‖2-normalized again.

An important property of the descriptor is that it heavily relies on the
classification capabilities of the network. This means the descriptor is mostly
meaningless for a different dataset and needs to be learned for each dataset.
This can be an advantage, since the descriptor can be better suited to a partic-
ular dataset and the learning process does not take long. On the other hand, it
means that the descriptor cannot be applied in a typical image retrieval task.

5.3 Instance Feature Augmentation

An approach called Database-side feature augmentation [30,2], proposes to
combine descriptors of the reference images in order to form better database-
side descriptors. Every reference descriptor is simply replaced by a combina-
tion of itself and the k nearest neighbors. This combination is computed as a
weighted sum, weighted by the rank of the neighbors with respect to k (the
closest neighbor has the highest weight and the k-th neighbor the lowest).
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In our work, we use a technique called Instance Feature Augmentation. We
use the fact that we know the corresponding label for each image in our dataset.
For each label, we compute the representation of an instance by averaging the
features of every images corresponding to this label. This representation is
added to the dataset as a new instance. We show that this approach does not
improve mean precision@1, but gives a better Mean Average Precision. This
suggests that the internal representation of the instance is improved.

6 Dataset

The proposed approaches as well as several baselines are evaluated on two
datasets of still images, namely CLICIDE and GaRoFou. These datasets are
described in detail by Portaz et al. [21]. They represent artwork photos, taken
by classical or head-mounted cameras. Table 1 details their characteristics.

Corpus #instances #images #queries images/instance

CLICIDE 473 3425 177 7.24
GaRoFou 311 1252 184 4.03

Table 1 Characteristics of the two corpus considered in the experiments.

Both datasets are typical of instance search datasets in museums or touris-
tic sites. The objects represented by their images are paintings for one, first
column) and glass cabinets containing sculptures and artifacts for the other
dataset (fig. 6). Both datasets contain a small number of images per instance
and a small number of images in total, with respectively 4 and 6 images per
instance in average.

7 Evaluation

7.1 Fine-tuning

In our experiments, we focus on two well studied networks: AlexNet [14] and
ResNet [12].

7.1.1 Layers selection

The experiments conducted in [21] on those datasets, show that the best re-
sults are obtained when fine-tuning the last convolutional layer and above. We
conducted experiments by first retraining the last layer, and after few epochs
and stabilization, add the previous last layer*, and so on. This led to the
following choices:

– For the AlexNet architecture, we choose to re-train all layers above and
including the last convolutional layer.
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Fig. 6 CLICIDE and GaRoFou Dataset example. The first column are images from CLI-
CIDE dataset, representing painting. The right column are images from GaRoFou, with
pictures of 3D objects, like sculptures.
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– For a ResNet architecture, we re-train all layers above and including the
third to last block of convolutional layers. This contains the nine highest
convolutional layers in total.

This can be explained by the high specialization on the dataset of the last
layers of the network. On the other side, a large amount of data is required to
retrain deeper layers.

7.1.2 Data augmentation

Image retrieval methods focus on problems with few examples and little vari-
ability in instance images. This leads to too few data to train a typical CNN
model designed for classification, even with fine-tuning. One way to overcome
this is to augment the data, by randomly applying affine transformations, color
perturbations and other random transformations.

The lack of geometry invariance and scaling invariance of the model can
be reduced by randomly rotating and flipping the images and using differ-
ent scaling, thus we perform this type of data augmentation throughout our
experiments.

For data augmentation in order to fine-tune a CNN, we use the following
values in our experiments:

1. Rotation: any angle is chosen with the same probability.
2. Scaling: the scaling factor is chosen independently for each dimension in

the range [0.75, 1.25].
3. Flipping: with probability 0.5, images are horizontally flipped.

7.2 Parameter for the Fully Convolutional Network

The stride of a full network depends on the architecture and is 32 pixels for
the architectures used here: AlexNet and ResNet.

For the processing of the Fully Convolutional networks (step 2 of our pro-
posal, described in part 5), all images are scaled to have the same number of
pixels in the smaller side in order to normalize the sizes of the features present
in the images. Note that for large aspect ratios and large scales of the smaller
side, the memory consumption of training can be high for single images hav-
ing a very large aspect ratio. To limit this spike in memory consumption, the
aspect ratios are limited by introducing uniform random noise on the smaller
side of images with high aspect ratios. In our experiments, we use a maximal
aspect ratio of 2.0 and images at two scales of 448 and 224 pixels for the smaller
side. We found that the AlexNet architecture did not have good convergence
behavior, thus we used scales of 384 and 224 instead.

7.3 Results

Table 3 gives an overview of the results obtained. First, the baselines estab-
lished by SIFT descriptor, CNN network features extraction are shown. Addi-
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Mean Precision@1 (in %)
CLICIDE

Proposed AlexNet FT only 79.39
Proposed AlexNet FT + FT-region 81.21
Proposed ResNet-152 FT only 92.73
Proposed ResNet-152 FT + FT-region 94.55

Table 2 Evaluation of the influence of region fine-tuning on the final model.

Mean Precision@1 (in %) Mean Ave. Precision (in %)
CLICIDE GaRoFou CLICIDE GaRoFou

SIFT [21] 70.08 78.82 N/A N/A
ResNet-50 [10] 90.30 95.65 65.49 88.43
ResNet-50, multi-res [10] 92.73 95.65 N/A 89.32

AlexNet IN 72.73 85.87 32.71 66.11
AlexNet FT 78.18 90.76 38.51 72.92
AlexNet SS 75.76 90.20 36.20 77.73
Proposed AlexNet 81.21 83.15 45.53 71.71
Proposed AlexNet (IFA) 80.61 82.61 71.02 81.66

ResNet-152 IN 72.12 85.33 40.99 70.15
ResNet-152 FT 79.39 94.57 75.11 93.44
ResNet-152 SS 85.45 95.11 83.00 91.90
Proposed ResNet-152 94.55 96.20 82.94 91.83
Proposed ResNet-152 (IFA) 93.94 95.11 94.23 93.86

Table 3 Mean precision@1 and mean average precision evaluation results for the CLICIDE
and GaRoFou datasets.

tionally, we show the relevant results obtained by fine-tuning a classification
network, abbreviated by FT in the table. We then show the results obtained
by a simplified Siamese architecture, abbreviated SS. Finally, we show the re-
sults obtained by the proposed network. In addition to the mean precision@1,
we show the mean average precision obtained by the different approaches.

From the baselines presented, we can make two observations. First, even
a simple global descriptor obtained from the convolutional features of a CNN
pre-trained on ImageNet performs better than matching local SIFT descriptors
on our datasets. Second, the ResNet-50 proposed by Gordo et al. [10] out-
performs the descriptors from pre-trained networks by far, even though it has
never seen the images from our datasets during training, either.

Table 3 confirms these observations when taking into account the mean
average precision of the ResNet-50 and the convolutional features of networks
pre-trained on ImageNet. The difference is more than 10 points gained in mean
average precision even when comparing against the ResNet architecture. This
means that a ResNet fully optimized for image matching captures the visual
information much better than just the convolutional features of a pre-trained
network. This is expected, since that was one of the goals of the approach
proposed by Gordo et al. [10].

Another observation we can make from Table 3 is that fine-tuning a net-
work on the reference dataset consistently out-performs a pre-trained network.
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This shows that transfer learning is very powerful for small datasets with many
classes. Indeed, networks with many parameters such as AlexNet and ResNet
could not have been trained on such small datasets with uninitialized weights.

However, when comparing the classification fine-tuning method with the
simplified Siamese architecture (fine-tuning with a triplet loss), it is not as
clear which one performs better. From the results, we can see that the clas-
sification fine-tuning has a better performance for AlexNet while the triplet
loss fine-tuning has a better performance for ResNet-152. This is most likely
due to two factors: the hyper-parameters when training the Siamese AlexNet
were not perfectly suited, hence the convergence behavior is not as good as
with the Siamese ResNet. Furthermore, the AlexNet fine-tuned for classifica-
tion has a much larger descriptor of dimension 9216 versus the descriptor of
dimension 2048 of the simplified Siamese architecture. This may explain that
the simplified Siamese architecture performs worse in this case.

Finally, when comparing the proposed architecture with the previous ones,
it is clear that the proposed architecture out-performs all of them. It achieves
higher precision@1 as well as higher mean average precision, especially when
combined with the instance feature augmentation. The comparison with the
ResNet-50 from Gordo et al [10] is difficult though. This is because on the one
hand, our proposed network is trained on the reference dataset used when com-
paring images, giving it an unfair advantage. On the other hand, the ResNet-50
is trained on the much larger Landmarks dataset [5], giving it the advantage
of data volume. The training methodology developed by Gordo et al. is not
applicable to a small, clean dataset, such as the ones used in our evaluation.

The figure 7 shows some example of success and failure of the system.
The first two lines are successfully recognize images. The last two are failing
examples. Each line represents the query, and the two first images return by the
system. The system fail if the first image returned do not represent the same
instance than the query. On the two failed example, the system successfully
return the correct image, but as second closest image.

7.4 Study on Data augmentation

In the previous subsection, we presented the results obtained using all the
elements described earlier. We focus here on a detail analysis of the impact of
each specific data augmentation, namely rotation, scaling and flipping. Table 4
describes the combinations of these augmentations on the fine-tuned results
of the best network tested, namely Resnet-152.

We specifically focus on the impact of the flipping augmentation in our
case: as flipping augmentation is commonly used used classical from image
classification learning, the flip of images does not seem a priori a good idea
in our case of instance search, as we do not want to confuse painting that
may differ due to flip. As an example, masterpiece “4900 Colors”1 of Gerhart

1 https://www.gerhard-richter.com/en/art/microsites/4900-colours
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Fig. 7 Success and Failing examples. The first column are test queries. The second column
are the closest image from the dataset that the system found.
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Rotation Scaling Flipping Mean Precision@1 (in %)
CLICIDE GaRoFou

72.12 92.93

74.55 94.02

76.36 93.48

72.12 94.57

76.97 94.57

75.75 94.57

78.18 93.48

79.39 94.57

Table 4 Influence of rotation/scaling/flipping data augmentation on ResNet-152 fine-
tuning results.

Richter is a good example of such case where the flip may not be considered in
the learning set. As table 4 shows, compared to no augmentation (first line of
results), rotation-only and scaling-only augmentations increases the learning
of the network. However, as expected, the flipping-only augmentation does not
increases the quality of the learning. Another interesting finding is that, any
pair of combination of augmentations outperform the single component aug-
mentations. Surprisingly, this remarks also holds when considering the flipping
augmentation, which is somewhat counterintuitive. The conclusion drawn fro
this table is that using all the data augmentations is the best solution, even
for paintings as in CLICIDE.drawn fro this table is that using all the data
augmentations is the best solution, even for paintings as in CLICIDE. From
the experiments on the GaRoFou dataset, we can not conclude about the in-
fluence of data augmentation due to the lack of differences between runs. The
results are more likely to depend on which local minimum we are.

8 Conclusion

This paper presents a novel approach for instance and image retrieval with
low variability and small datasets. The proposed approach consists of two
key elements. First, we leverage the concept of fully convolutional networks
in order to perform classification training at different scales, without a heavy
computational overhead. Second, we show that the fully convolutional network
can be used to obtain region proposals without the need for an additional
component in the network and training. This is particularly important, since
region proposals are costly to define manually in our research problem. The
region proposals used by the state of the art do not seem applicable to that
kind of problem of instance search.

The proposed model consist of first fine-tuning a network over the target
dataset. Then a Fully Convolutional Network is trained over the images, each
one at different scales. This network is then train in siamese configuration, with
a modified triplet loss. This network is used to extract an image representation,
which is used to do Instance Retrieval.
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Finally, the proposed network keeps all the benefits of state-of-the-art ap-
proaches: it can be trained end-to-end and it produces an effective global
descriptor, which can be compared using the dot product. Additionally, it is
modular in the sense that it can be built upon any type of CNN, pre-trained
for classification.

Through multiple experiments on two datasets, we show that the descriptor
obtained using our proposed network outperforms previous state-of-the-art ap-
proaches on the instance search task, while being just as memory-efficient and
fast for encoding images. The experiments were conducted on two egocentric
image datasets taken from museum visits.
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