Other Fermi ParticiPants:

Istituto di Elaborazione dell'Informazione del CNR - Pisa - Italy
LGI IMAG, Université J. Fourier - Grenoble - France
Informatik 6, Universitit Dortmund - Dortmund - Germany

Fermi

ESPRIT BRA Project N. 8134

Technical Report Series Fermi 4/96

A model for multimedia
information retrieval

Yves Chiaramella,
Philippe Mulhem and
Franck Fourel

Department of Computing Science

University of Glasgow, Glasgow G12 8QQ
Scotland
)

FERMI Technical Report
% B Fermi 4/96
A July 1996

A model for multimedia
information retrieval

Yves Chiaramella,
Philippe Mulhem and
Franck Fourel

© Department of Computing Science

Available from:

Fabio Crestani (Ed.)

Dept. of Computing Science Phone: +44 141 330 4582
University of Glasgow Fax: +44 141 330 4913

Glasgow G12 8QQ - Scotland E - mail: fermi-reports@dcs.gla.ac.uk

A Model for Multimedia Information Retrieval

Yves Chiaramella, Philippe Mulhem, Franck Fourel
CLIPS
IMAG-Campus - BP 53
F-38041 Grenoble Cedex - France
E-mail: {Yves.Chiaramella,Philippe.Mulhem,Franck.Fourel}@imag.fr

July 4, 1996

1 Introduction

Representations of digitalized documents have considerably evolved with the inte-
gration of multimedia technology. Compared to textual documents, the content as
well as the layout of multimedia documents have been extended to manage images,
graphics, schemata, and more generally any multimedia information. Simultane-
ously, the way of consulting such documents evolved towards non-linear browsing
based on hypertext and hypermedia links (which we will refer further as navigation
links).

The model described here integrates two fundamentals aspects of this evolution
of multimedia documents:

e the structure of documents,
e the management of multimedia data.

However it is important to notice that we do not claim here to provide a complete
model of structured multimedia documents; we will instead focus on the aspects of
such documents that have at least a potential interest from an Information Retrieval
(IR) point of view.

1.1 The notion of structure and its impact on IR

The description of structured documents is the goal of existing norms like ODA
[Hor85] and SGML [Bur94]. The origin of these two norms comes from similar
approaches, but have led to different results. They provide a framework for the
representation of structured documents allowing the management and the exchange
of such information. Two types of document structures have been pointed out :

e the logical structure (present in SGML and ODA),

1

2 1 INTRODUCTION

o the layout structure (present on ODA).

The former structure expresses the way a document is logically organized and reflects
the discourse structure of the author(s). For instance a document contains a title,
then a chapter having a title and several sub-chapters and so on, each of these parts
containing an element of the discourse and having its own internal organization.
The layout structure of a document defines the way it is presented to the user in
terms of page presentation, font sizes, and so on. Though they refer to the same
data, the two above structures are well separated : the layout structure provides
an external view of the document, and the logical structure describes the internal
structure of the document. Following the evolution of present standards already in
use for storing and managing multimedia information, a primary goal of any model
in the domain is to focus on structure. In the context of FERMI we have of course
to investigate the impact of this notion when retrieving multimedia information:

e The impact of multimedia information. In the contexi of multimedia
documents, documents combine several classes of media, each actual in-
stance of them corresponding to a specific class of information. To this
heterogeneity of multimedia information corresponds specific requirements
about indexing and retrieving this data. This has been extensively stud-
ied in the former tasks of this work package for text, image and graphics
[Mec95b, Par95, Meg95, Mec95a). From this point of view alone, one cannot
ignore that this heterogeneity of multimedia data is reflected within document
structures, which has then to be integrated within retrieval models. Languages
like SGML [Bur94] or Hytime [Erf94] provide a syntax for describe the logical
structure of multimedia documents. The example of Fig. 1 shows a multime-
dia document comprising a title, two annotated images and a text. A logical
structure usually corresponds to a tree whose nodes are the components of
the document and whose edges implement the composition relationship. The
root node of such a tree represents the whole document, and the leaf nodes
correspond to atomic data defining the raw content of the document. One
have to notice here that this notion of atomic data associated to leaves of the
logical structure is related to this particular view of documents.

e The impact on semantic content. The notion of semantic contents of doc-
uments (i.e., their aboutness [BH94]) is of central importance in 1R. In the
framework of FERMI, models of the semantic content have been designed
by M. Mechkour [Mec95b, Mec95c] and C. Meghini [Meg95] for 2D images,
by F. Paradis for textual documents [Par95]and M. Mechkour for graphics
[Mec95a). The structuration of a document as defined by the author(s) plays a
central role when considering its semantic content because it corresponds to
a discourse structure (i.e. an organization of the underlying knowledge that
constitutes the document content). As indicated before, this important fea-
ture of documents is commonly expressed by the notion of logicalstructure.
Based on this, we will be able to define the content of multimedia documents
as a composition of information entities.

1.1 The notion of structure and its impact on IR 3

Figure 1: A multimedia structured document

e The impact on the corpus. In standard Information Retrieval, any document
is usually considered as an atomic entity that can be indexed and retrieved
as a whole by the system, and presented to the user as a query result. Said
in other words, documents constitute the information units on which IR sys-
tems are based either when indexing or when retrieving. In the context of
structured documents, index units, and consequently retrievable units, are
document components instead of documents. In this context, the classical no-
tion of corpus is extended to the set of all index units (i.e. potentially the set
of all document components).

Finally, one usually associate to the notion of structured document the notion
of attribute. Attributes are predefined, formatted data attached to documents or
document elements belonging to a given class. They apply to the whole document,
or document element they are related to, and are for instance names of authors,
publication dates, etc. They have a rather simple structure and allow access to
documents based more on “contextual information than based on their content.
Despite this they are of course useful in the process of retrieving information; for
example, one may use attributes to retrieve documents about “relevance feedback
written by G. Salton.

Aside these classical attributes there exists an other class of attributes that may be

4 1 INTRODUCTION

used to describe properties of discourse elements themselves, like for example the
language of a word or of a sentence when it differs from the rest of the document.
These attributes act as annotations and may be defined by the author(s) and/or
by other persons. They may be used for retrieval (e.g. retrieve latin citations in
a given corpus) and also to facilitate some processes (i.e. a classical text indexing
program designed for english language would most probably be disoriented when
processing english documents containing latin citations).

It should then be clear from this discussion that there is no longer a need to
talk about “structured multimedia documents” in a context where the notion of
structure cannot be ignored; the simpler terms of “multimedia document”, or even
“document”, will from now refer to this notion.

1.2 Querying and Browsing Multimedia Documents

The notion of browsing has demonstrated the utility of hypermedia systems for
organizing, storing and retrieving information. Users of such systems can browse
across several pre-defined paths (links) to access information (within databases) that
is organized into units of storage (nodes). Hypermedia systems are also user-friendly
systems that provide nice interfaces and necessitate no particular system expertise
from the user. However, experience has demonstrated that extensive browsing
has its own limitations : in the general context of large, complex hyperbases this
approach for retrieving information supposes a lot of time-consuming search by
try-and-error, and users often have to face the well-known problem of orientation
[Hal88, WB90]. After a while they may be lost in the network and need to know
where they are, where to go to resume an effective browsing, and how to be properly
relocated in the hyperbase.

Information Retrieval systems on their side provide powerful and effective access-by-
content processes, but need more expertise from the users who have to master the
indexing language which describes the stored information and the query language of
the system. In this sense, IR systems often provide only poor user interfaces. More
fundamentally, they are based on querying for retrieving information, and this is a
strong limitation in terms of man-machine interaction : each query provides as its
answer a set of documents, and the user cannot "see” anything else than this set of
documents except by issuing a new query. But then, how to formulate it to improve
the answer in the needed way ? Depending on the users expertise this often results
in a long interaction process at the end of which he rarely knows wether he has
found all the relevant information or not. On the other hand there is nothing like
orientation problems in an TR session because the user is permanently asked to
express his information need (i.e to make it explicit via a query).

Hence we believe with others [CT89, ACG91, LDH92, DR93] that querying and
browsing are two complementary approaches that must be integrated to provide
a more efficient and effective environment for accessing and retrieving multimedia
information. As a consequence we think that we cannot ignore the existence of

1.3 Rationale 5

browsing using navigation links in the design of a model for retrieving multimedia
data

Navigation links are related to non-linear access to document components
(nodes). Links relate a starting point, called anchor, to one or more targets.
Although both anchors and targets are parts of documents, it is important to no-
tice here that document components related to anchors and targets may or may
not correspond to elements of the logical structure. As an example, an anchor may
be associated to a word (which is then necessarily part of a leave in the logical
structure) and the target may be a sentence located in an other leave of the logical
structure. In the example of Fig. 1, the underlined word moon is the anchor of a
navigation link related to target information about the moon. A navigation link
also includes a process that implements the access from the anchor to the target(s).
The nature of the information accessed via links depends on the semantics of the
links which is only denoted by the anchors (e.g. the underlined word moonin fig. 1).
But nothing prevents errors such as assigning a picture of Mars to the anchor moeon.
On the other hand, even if the target information is consistent with the anchor
definition, the user usually cannot predict the kind of information that constitute
the hidden target. It could be a picture of the moon, a survey covering everything
known about the moon, a bibliography about the moon etc. A typology of naviga-
tion links (e.g. illustration, ezplanation, documentationtypes of link) could help the
user while deciding to activate or ignore and anchor and thus would be helpful to
prevent useless browsing and disorientation. The HTML language [BLC, BLC93],
for instance, does not provide a typology for navigation links, and the underlying
hypothesis is that human beings are able to properly use these links based only on
anchors and on their context of occurrence within the document. In our opinion this
hypothesis is too weak and significantly contributes to problems like disorientation
and cognitive overload that often affect hypermedia systems. Models for multimedia
documents should thus take into account the potential richness of typed links, either
for browsing or for querying.

1.3 Rationale

The integration of all the aspects developed above is our prime goal when designing
a model for retrieving multimedia data. Our main guidelines when addressing these
problems will be the following:

e Combining Querying and Browsing
At the present time, the available models provide either a pure database ap-
proach [AC95, Boh95] of multimedia documents, or an hypermedia approach
for structured documents [AMC95]. The first approach, usually based on
an object-oriented framework, concentrates on structure, but lacks a suitable
representation of the semantic content of the documents. This implies poor re-
trieval capabilities. The hypermedia approach manages structured documents

1 INTRODUCTION

and navigation links, Like the database approach however, the hypermedia
approach often does not provide content-based querying (sometimes it does
not at all provide such facilities, like the World Wide Web for example, where
the numerous links starting from HTML pages can easily disorient the users).
The approach proposed here is based on a solution proposed by Kheirbek
and Chiaramella in [KC95] which integrates both approaches (i.e. querying
and browsing). The basic principle that underlies this integrated model is a
new definition of domain knowledge of an application encompassing structural
knowledge and content knowledge. This will allow to manage the logical struc-
ture of documents, the navigation links, the semantic contents and attributes
of document components. An important and original aspect of this model is
also the integration of the previous results of the FERMI project to provide a
complete and consistent model for multimedia documents.

Definition and Use of Links

The definition and the use of navigation links in hypermedia and IR systems
may look like an egg-and-chicken problem: while the hypermedia community
tries to use IR techniques to help building navigation links, the IR community
takes them as given and tries to use them for improving retrieval performances.
There is no longer a paradox when observing that these approaches in fact do
not consider the same classes of links: hypermedia investigates how IR could
help building similar-content links (i.e. classes of linked documents having
similar contents), while IR investigates how reference links, or aggregative
links of the logical structure, could help improving retrieval. This is precisely
what we will do in this study.

Representation and Retrieval of Multimedia Documents

We consider that documents cannot be considered as atomic entities any
longer; a query language has to allow retrieval of document components as
well as of documents as a whole, and this process has to offer selection criteria
ranging from attribute selection to content selection. We propose an approach
inspired from MULTOS [Tha90]. The MULTOS document model considers
two kinds of components: the active ones and the passive ones. Active compo-
nents can be retrieved using their semantic content, while passive components
can be queried only based on their existence. Consider, in the document in
Fig. 1, that the first image is a passive component, and that the second image
is an active component. The second image (active) may be retrieved using
queries like : “Retrieve documents containing an image of the earth viewed
from the moon”. On the other hand, the first image (passive) may be re-
trieved from queries like : “Retrieve documents containing an image”. The
only property checked here is the existence of an image object in the retrieved
documents. Active components can also be used as passive when needed. We
want to provide a model that encompasses these two classes of components
in a uniform way. To achieve this goal, we integrate the models of Mechkour
[Mec95b, MBC95] and Paradis [Par95].

e Semantic Content and Structured Documents

If we consider a document A aggregating two components B and C, a “natural”
approach is to consider that the semantic content of A depends on those of B
and C. This hypothesis is similar to a cartesian approach used in programming:
a program composed of several modules processes its task as a composition
of sub-tasks, and the whole program does what its parts do. In fact, this
description has to be refined; one could observe that the whole program does
not necessary use all the exported functionalities of its modules, and thus that
the program does not exactly sum up the potentialities of its components.
Similarly, considering the whole content of a multimedia document as an ag-
gregation of the content of its components is an approximation: some compo-
nents may include for example references to other documents corresponding
to adding implicit (i.e. not directly available) content to the referencing doc-
ument (e.g. a reference to an other document containing the definition of a
concept). As an acceptable approximation of this difficult problem (related in
fact to the problem of indexing which is out of the scope of FERMI) we will
(recursively) consider that the explicit content of a compasite document is an
aggregation of the explicit content of its components, and that the explicit
content of an atomic element is strictly limited to its local data (i.e. ignores
the possible external references). We will have however to define the nature
and properties of this aggregation to be able to design an algorithm that allows
the retrieval of document components in a consistent way.

The proposed model aims at integrating these different aspects, while keeping in
mind that the composite nature of a multimedia document induces the necessity of
being also able to individually retrieve elements of each class of information that are
aggregated in multimedia documents. In the framework of FERMI our goal then
is not to design a new, complete framework for the representation of multimedia
documents, but instead to concentrate on the aspects discussed above and which
have a major impact in the retrieving of multimedia documents. This will in turn
lead us to some developments that are not part of the existing representation norms
(in particular the view mechanism); this means that this non-sandard information
will have to be produced, after the initial loading of documents in the database, by
specific processes related to the indexing of documents.

In the next section we describe the proposed model for multimedia document
(part 2, page 7). Section 3 (page 26) is dedicated to the indexing of multimedia
documents.

2 A Model for Retrieving Multimedia Documents

2.1 Introduction

The notion of structured, multimedia document includes many aspects which, when
considered as a whole, make the modelling of such information a harduous and diffi-

8 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

cult task. This is the main reason why we have chosen to study the proposed model
considering three complementary classes of information that we consider of prime
interest for defining and retrieving multimedia documents. This approach is close
to the one used within Workparts WP3.1, WP3.2 and WP3.3 of FERMI for mod-
elling single-media data by M. Mechkour [Mec95b, Mec95¢c] and C. Meghini [Meg95]
for 2D images, by F. Paradis for textual documents [Par95], and M. Mechkour for
graphics [Mec95a). For each media these views correspond to specific features each
of them contributing in a specific way to the overall notion of “document content”.

A first problem now is about how to integrate these specialized models in the
framework of a multimedia document (“multimedia” refers here to any combina-
tion of these three single medias). The basic principle about this integration is to
consider that each single-media model generates specific attributes called Content
Attributes assigned to leaf-nodes of the logical structure of documents, and then to
define the needed properties of these attributes for retrieving doecument components.
This leads us to view logical structure and atiributes as two classes of information
to be investigated. An other important hypothesis here is that one cannot consider
multimedia information retrieval as a process based only on querying; in our opin-
ion, browsing using navigation links is a complementary approach that has to be
considered and integrated in the model. The access structure then constitutes the
third class of information underlying the proposed model.

Let us first introduce informally these three complementary classes of informa-
tion, next section (see 2.2) gives their formal definition and the global constraints
ensuring their mutual consistency (and thus the overall coherence of the model).

The Logical Structure: The logical structure of documents is viewed in a much
classical way as a hierarchy of structural objects whose leaves correspond to
instances of single-media data models. This structure plays a central role
in our approach because: i) it implements an explicit organization of the
discourse, and consequently of the document’s semantic content, and ii) all the
other classes of information are related to the logical structure when defining
basic properties needed for indexing and retrieving multimedia information.
As an example of these dependencies, we will see later that the semantic
content of any document component is defined as a composition of its logical
structure and of the index expressions assigned to its component elements. The
logical structure includes the definition of a standard order of the discourse, as
designed by the author(s) for a linear, complete, consultation of the document.
For instance, this allows to state that a part of document is “before” another
one with respect to a standard consulting order. In the process of retrieval,
this information can help in discriminating relevant answers (c.g. retrieving
an image located “after” a given section, where “after” refers to the standard
consultation order).

The Attributes: Attributes are viewed here from a more general point of view than
usual. They refer of course to classical attributes such as authors, dates etc.,
but also to more complex information such as index ezpressions describing the

2.2 Formal Definition of the Model 9

semantic content of document components. We consider then that attribute
values are in general not atomic, and are ezpressions of a given language,
while attribute domains correspond to these languages. As an example, the
above-mentioned “index expressions” constitute values of an attribute named
Symbolic and belong to an index language LI (a set of index expressions)
which is the domain of attribute Symbolic. The model includes the case of
multi-valued attributes in which case attribute values are sets of expressions.
Attributes are then used for defining any kind of information attached to
document components (i.e. elements of the logical structure), and then to
define all properties related to the notion of document content. An important
aspect of the model is the consideration of properties induced by attributes on
constituants of the logical structure; we refer to this as: Attribute Propagation.
These properties are the basis of further retrieval mechanisms for accessing
document components.

The Navigation Structure: Access is considered here in a general way: it inte-
grates all aspects in the representation of documents that are intended to help
users accessing document components. This excludes relations that remain
purely symbolic, and are usable only manually (i.e. without standard spe-
cific support by the system). An example of this distinction is provided by
bibliographic references: they may remain purely symbolic (i.e. for accessing
a full reference from its citation, a user has to manually browse the bibliog-
raphy), or they may be part of the access structure, in which case a direct
access from the citation to the actual reference is provided by the system (via
a navigation link or any other access method). The navigation structure in-
ludes all navigation links that may exist between documents and document
components and which usually correspond to classifications and /or non-linear
browsing structures within the corpus.

2.2 Formal Definition of the Model

While presenting the formal definition of each of the individual information classes
introduced above, we will use the following notations:

e upper case identifiers represent sets,

lower case identifiers represent function names,

e notation 2V refers to the powerset of N,

notation 2V* denotes the powerset of N, not including the empty set.

e whenever a relation R corresponds to an order, we note it =,.

10 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

2.2.1 The Logical Structure

The logical structure represents document components in the form of typed struc-
tural objects, and defines the aggregative relation combining them. Structural ob-
jects correspond to basic entities when considering physical and semantic contents of
documents. The logical structure describes a hierarchical aggregation of structural
objects:

LS = (OS: jsh‘s "':stqn TYPES‘T: =tst f?JP'?st, TYPEM: typem)
where:
OS : is the finite set of document structural objects, noted os;.

<.t is an aggregative relation between structural objects that defines their hierar-
chical composition:

= COSx 08

where the first element of each tuple corresponds to the aggregaiing object,
and the second element corresponds to the aggregated (i.e. component) object.
This relation defines a hierarchical partial order on OS:

e =, is partial order on OS and thus is reflexive, asymmetric and transi-

tive.

e the order is hierarchical:
Yos;, 085, 08 € OS5,
08; <str 08 and 08; =g 08p => (08; 2y 05 Or 055 Zgur 08;)

e or is the unique minimal element of the hierarchical order:
Yos; € 08, 0s; =gy or = 08; = oOT

~seq: this relation defines a linear sequence on OS, and corresponds to the stan-
dard, linear order to access components already mentioned in the introduction.
When considering logical structures as hierarchies, this relation might for ex-
ample correspond to a prefixed access-sequence of structural nodes. In the
general case however, the only basic constraint is that <seq corresponds to a
total, strict order on structural components:

<4egC OS x OS

® g is irreflexive, asymmetric and transitive.

e For any tuple (0s;, 0s;) of this relation, os; is the origin of the tuple, while
os; is the extremity of the tuple.

2.2 Formal Definition of the Model 11

e we note 0sjirst and 08y the unique minimal and maximal elements of
this order.

TYPEgy : is the set of types of structural objects. These types can be de-

rived from SGML descriptions of documents [Bur94]. For instance, for a
description of books, TY PEsr can be {Document, Chapter, Section, Sub —
Section, Paragraph, Figure}. Types of structural objects usually correspond
to various abstraction levels which are used for organizing the logical structure
of documents, and ease their understanding and manipulation. These abstrac-
tion levels are defined by a partial order on the structural object types (see
=tst belﬂ\\")<

=4st is a relation on structural object types that defines the hierarchy of abstrac-

tion levels used for a given document base; this order behaves like a hierarchy
of classes:

jtst g TYPEST X TYPEST

The properties are similar to those of <., except that the order allows the
existence of several minimal elements corresponding to possible different doc-
ument types (e.g. letters, books ete.):

e =, is partial order on TY PEgy and thus is reflexive, asymmetric and
transitive.
e the order is hierarchical:
VfS,;, tSJ',tSk = TYPEST
L8 Rt tSk and ‘ts?' =ist L8 = (ts,— =<ist tSj or t.ﬁ'j =ist ts,-)

types : is a total, surjective function assigning to each structural object a struc-

tural type of TY PEsp:

typey : OS = TY PEgy

TYPEp :is a set of media types, with TYPEy =

{text, itnage, graphic, multimedia}. These types define, for any struc-
tural object, the type of media associated to its physical content (see
“Constraints” below).

typem @ is a total function assigning to each structural object its media type in

TY PE,;:
typem : OS = TYPEy

To simplify further definitions and notations we introduce here some useful func-

tions based on the orders <y, and ., introduced before:

12 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

1. We note Descyy(0s;) the set of all component objects of os; € OS:

Descy, : OS — 295

with:
Yos; € 08, Descy,(0s;) = {0s; € OS | 0s; # 0s; & 0s; =g 055}

2. We note LOS C OS the subset of structural objects that are maximal elements
considering the partial order <, (i.e. leaves of the logical structure):

LOS = {os; € OS | Descyy(0s;) =0} € OS

3. we note NeztDescy, (0s;) a restriction of Descgy(0s;) to the closest elements
os; of OS satisfying os; =< os;:

NextDescy, : 0S5 — 0S
with:
Yos;, os € OS, NextDescg,(0s;) =
{os; € OS | 08; =ar 08k Rspr 085 = (08 = 08; Or 08 = 08;5)}
Note that for all os; € LOS, NextDescy, (0s;) = 0.

4. we note Next.,(os;) a function giving the closest element to os; according fo
the order <., 0515 being the maximal element of this order, we have then:

Nextseq : OS — {08105} — OS — {08 first}
with:

Yos; € OS — 081551, 05 € OS, Nextsep(0s;) = 0s; &
08; <5eq 05 & Bosk | 08; <yeq 05 & 08 <4eq 05;

CoNSTRAINTS: we define here the additional constraints needed for ensuring the
consistency of structural components:

1. Consistency between aggregation of structural objects and abstraction levels:
when two structural objects are related by the aggregation relation <., their
types must conform to relation =<y, on types :

V(JS,', 08§ € oS, 08; Sy 085 = t'ypeat(osi) =tat typesl(osj)

Note that since function typey is surjective, the above constraint has as a
corollary that the type of the root structural element is necessarily a minimal

type of TY PEsp according to = (i.e. a type corresponding to a maximal
abstraction level).

2.2 Formal Definition of the Model 13

2. Consistency between aggregation of structural objects and media types: the
multimedia type applies only to structural objects whose components are at
least of two different media types. As a consequence type multimedia does
not apply for leaves of the logical structure which are considered as single-
media elements; this is of course a convention in the model which does not
prevent its extension to other medias (see comment below). On the contrary,
types text, image and graphic apply only to structural objects whose com-
ponents are all of the same media type:

Yos; € 08,

(Jos;, 08 € Descsir(0si) & typem(0s;) # typem(ose)) € typem(osi) = multimedia
Yos; € OS, (Yos; € Descsir(0si), typem(0si) = text) « typem(0s;) = text

Yos; € 08, (Yosj € Descsy(0si), typem (0s;) = image) < typen (os;) = image

Yos; € OS, (Vos; € Descer(08:), typem(0si) = graphic) & typen(os;) = graphic

Would the model be extended to other medias like video-sequence, this
means that video-sequence would be viewed as a single media type, even
if composite in its nature; the video information and the sound information
associated to this type would be modelled as distinct views of a model named
M ideo—sequence- Note also that these definitions allow the modelling of struc-
tured, single-media documents as for example structured textual documents
(in which case all their component units are of type text).

2.2.2 Attributes

We consider here attributes in a uniform and general way; the model associates to
attribute names attribute values that have to conform to the domains defined for
attribute names. As introduced before, each attribute domain is a set of expressions
of a given language having its syntax and its semantics; this allows to consider in a
very general way the great variety of attributes that may be encountered in actual
applications. As will be seen later, this also allows the definition of attribute classes
which constitute a powerful property when considering multimedia information re-
trieval. This class of information is modelled as:

A= (0S,NAMEj,,V ALUE 4, name,, domain,, value,, SM)
where:
OS : is the set of structural objects in the document, noted os;.
NAME, : is the set of attributes names.

VALUE, : is the set of all possible attribute values. This set is the union of all
the domain languages of all attributes (see below).

14 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

name, : is a partial function that associates to structural objects a non-empty set
of attribute names:

name, : 0OS — 2VAMEat

domain, : is a total function defining the domain of any attribute name (i.e. all
the expressions of its associated language):

domaing : NAME, — 2VARVEa+

value, : is a partial function assigning to structural objects the value of a related
attribute name; the definition allows multi-valued attributes:

valueg : 0§ x NAME, — gVALUEA+

Singletons : to simplify notations when considering singletons of attribute values,
we will use function elem that applies to the power set of any sef A:

elem:2% — A

with:
Ye € 24, elem(e) = e

SM : a set of single-media models defining the various abstractions of single-media
data. We develop this notion in the next section (see 2.2.3)

CONSTRAINTS: the only constraint for ensuring the consistency of attributes is
given below, where o is a metasymbol for any attribute name:

e For every structural object, the attribute value for a given associated attribute
name belongs to the domain of this attribute:

Yos; € 08, Ya € name,(os;), value,(0s;, @) C domain,(a)

Given these definitions we may now consider some additional features of at-
tributes which are important in the context of multimedia information retrieval.

2.2.3 Integration of Single-Media Models

As said in the introduction, this integration is done in considering views of the
single-media models as attributes of leaves of the logical structure (i.e. single-media
nodes, as defined before). To ensure this integration we have first to introduce in
a formal way how we view these single-media models at the abstraction level of
multimedia documents.

2.2 Formal Definition of the Model 15

2.2.3.1 Single-Media Models

We refer from now to these models as a set SM = { M ezt, Mimages Mgraphic}, and
we will note M,, any element of SM. We call instances of these models any abstrac-
tion obtained while applying one of them to actual (single-media) data. The process
that produces model instances is the inder process, and one may then intuitively
consider that each model is associated to a function defined on single-media objects
and having complex values corresponding to the various abstractions it generates.
As an example, from an image i the proposed model Mimqge (see [Mec95b, Mec95c])
gives a tuple aggregating the five views that are part of the standard image model:
Mimage(i) = (Phi, Sti, Spi, Sus, Pe;), where Ph; is the physical view of image i, St; is
its structural view, Sp; its spatial view, Sy; its symbolic view, and Pe; its perceptive
VIEW.

The correspondance between single-media models and their associated set of
views is defined in considering each model M, as a set of elementary functions Mg
defined on leaves of the logical structure (i.e. LOS), and producing a particular in-
stance of view « for the considered media pt. According to the convention mentioned
before, these instances are all elements of particular languages noted L{:

M, = {M;}
and:
M; 1 LOS — L5
We may then instanciate these generic definitions to the actual models designed
for the three medias considered in the framework of FERMI:
1. Maedel for Texts:
Mtu‘t = {Mi};ﬁsicd,M::;r:ctumt,M:g::bait'C}
with:
Mﬂ;‘:‘;ﬂm! - LOS = £;tze!;;;'simi
M:::;:c!urai . LOS s £Lt;v:cmrul
Migﬂba“c - LOS — C:g::bo!ic
2. Model for Images:

hy si ! boli tial ti
Mimaga = {Mp ystccd Mstructuru ,Msym O lc, M’W U MPG"GEP e

image image image image ? tmage
with:
g+ LOS = Lingnc™
Miluterils o5y psas
Mimiele . 108 — LT
MBS BOg 5 LI

Mggmepf.we . LOS L c)?erceptwe

tmage imnage

16 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

3. Model for Graphics:

hysical bali ti
Mgraphic - {Mp 5 Ms{rucf,urn!’ Msym olic Mpercep we}

graphic graphic graphic » graphic

with:
Ml LOS — Lot
Mitrzsssral « 1)g g cobreaturel

symbolic | symbalic
Mgrcphic 1 LOS — ‘cgmphic

ial tial

M;f:;lhi: 1 LOS =+ L;};:;;:ic

perceplive | perceptive
Mgrnpm'r:: 1 LOS — cgraph:‘c

An important point in the context of logic-based information retrieval, is that
all languages L correspond to logical ezpressions, or closed sentences of a logic:
their syntax and semantics are at the moment those defined for every media. An
important aim of WP4 is then to integrate these preliminary models in the single for-
malism of a Multimedia Information Retrieval Logic; MIRTL (see [Seb94a, Seb94b])
is of course a good candidate for this, though various aspects can also be experi-
mented based on Four-Valued Datalog (see [RF96, TR96]) and Conceptual Graphs
(see [Mec95c]).

2.2.3.2 Content Attributes

Considered as a whole, the three single-media models M, involve five types of
views:

the physical view, which is used in the three models,

the structural view, which is used in the three models,

the symbolic view, which is used in the three models,

L]

the spatial view, which is used only in the image and graphic models,
e the perceptive view, which is used only in the image and graphic models,

To these five views we may associate five standard attribute names, called Content
Attributes, that are elements of NAME 4:

o physical, for the physical view,
e structural, for the structural view,

e symbolic, for the symbolic view,

L]

spatial, for the spatial view,

e perceptive, for the perceptive view.

2.2 Formal Definition of the Model 17

Values of these attributes are those of view-functions My, described before, and
which are assigned to leaves of the logical structure. We may then associate sets of
Content Attributes noted A, to the various single-media models M:

o Awrt = {physical, structural, symbolic}, for the text model,

o Aimage = {physical, structural, symbolic, spatial, perceptive}, for the image
model,

o Agaphic = {physical, structural, symbolic, spatial, perceptive}, for the
graphic model.

The overall consistency between the definitions of logical structure, attributes
and single-media models is then defined by the following generic constraint where g
stands for any single media in {text,image, graphic}, and § stands for any Content
Attribute of {physical, structural, symbolic, spatial, perceptive}:

Vos; € LOS, typem(os;) = p =
V3 € Ay, B € name,(os;) & value,(os;, B) = Mﬁ(osg]

As an example, one may instanciate this constraint for textual information
(where Ayze = {physical, structural, symbolic}); the same principle applies for the
two other medias:

Yos; € LOS,typen(os;) = text =

physical € name,(0s;) & value,(0s;, physical) = MEhusical (55,

and

structural € namea(0s;) & value,(os;, structural) = Mm% (os;)

and
symbolic € name,(os;) & value,(os;, symbolic) = M Symbolic (s,

Finally, it may be inferred from the previous definitions that domains of Content
Attributes are composite languages defined as unions of the sub-languages that
are the value sets of related view functions (i.e. in the general case, distinct sub-
languages):

B I

dom’-ﬂa(phymcal} =L = Stext U Limage U Lgmphic
domaing(structural) = Lotructural — patructural) paoueural y Loree ™

£ s 4 _ psymbalic _ psymbolic symbolic symbolic
domain, (symbolic) = L =3 LB ool DB eliions

. . i tial tial
domain,(spatial) = L7 = LW U LR

& il . reeptive _ pperceplive perceptive
domain, (perceptive) = LPEePive = LEVFTRE U Lo aphic

18 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

If this multiplicity of languages and sub-languages does not simplify the model,
one can foresee that its major impact will be when defining the query language and
when implementing the model. From what has been done in the previous Work Parts
about single-medias one may assert that the only real problem is about £Phwsical; in
this case there is no possible unifying point of view since all these medias correspond
to different standards imposing their own syntax and semantics. All other languages
correspond in fact to expressions of specific abstractions (views) of specific classes
of physical data; considering this, it is then possible to define Lstructural psymbolic
Lspatial gng cpereeptive i 5 much uniform way, whatever the considered media. This
means that the union of sub-languages related to the same type of view may be
attempted in merging their syntax and their semantics, instead of simply considering
the union of expressions produced by distinct sub-languages. This is in fact what is
attempted for £3M%c where all kinds of content concepts from any view may be
expressed in a unique language. For £5t7#mal this is obviously possible because for
all medias, structural views are based on the same hierarchical scheme of aggregated
components. L£Po4al and Lrereertive apply only for images and graphics; in both case
they express much similar notions and it should then be also relatively casy to merge
each of their sub-languages into single ones.

2.2.3.3 Attribute Classes

Attributes usually correspond to properties assigned to elements of the logical
structure (e.g. structural object os; has author Smith). When considering struc-
tured documents, one have to address the problem of possible propagation of these
properties among related structural objects of the logical structure; said in other
words, one have to define what inferences may be defined on these attributes. If we
consider for example to the classical case of attribute Author, and given an assigned
value of this attribute to a structural object os;, an intuitive asumption is that this
property applies to all component objects of os; (if any):

Yos; € OS,Vos; € Descy,(0s;), value,(0s;, author) = value,(0s;, author)

Of course the reality is more complex: there are multi-author documents (e.g.
conference proceedings, encyclopediae etc.), and the inheritance mechanism of at-
tribute Author in the logical structure is in fact not so obvious: the definition given
above holds to some extent, but does not provide any notion of co-authoring. In
our opinion it is important to integrate such properties in the model to allow proper
retrieval of document components based on attribute values. To address this prob-
lem we have chosen to define classes of attributes, these classes being defined by a
common behaviour considering inheritance of attribute values (which has not to be
confused with the inheritance of attribute names). Considering the extreme variety
of attributes that can be used in actual applications, it is of course difficult to foresee
a complete classification based on propagation of attribute values; we will then lim-
itate ourselves to three broad classes which, in our opinion, encompass most of the
cases. Of course, this classification also applies to the Content Attributes introduced

2.2 Formal Definition of the Model 19

above. In the following discussion we use again a as a metasymbol for any attribute
name.

1. Dynamic Attributes: these attributes propagate their values in the logical
structure. This means that if some attibute o of this class has a defined
value v for a given structural object os; (i.e. value,(o0s;, @) = v), one may
infer the values of the same attibute for some other structural objects os;
related to os; in the logical structure (i.e. value,(0s;,a) = f(v), where f(v)
symbolizes this dependancy). Modelling this class of attributes then implies
the definition of a propagation condition (i.e. in which condition attribute
values may propagate), and an assignation operation (i.e. how propagated
values apply to related structural objects). We consider here two subclasses of
Dynamic attributes: Descending Dynamic Attributes and Ascending Dynamic
Attributes.

e a. Descending Dynamic Attributes (DDA): Considering the order
of the logical structure, these attributes propagate values from top to
bottom; the assignation mechanism is here an operator which computes
the attribute values of component objects of os; € OS; we note it ®,.
In a more formal way, the following defnition applies to every instance of
operators @,:

R LY LT

where £° is the domain of attribute a. The descending propagation of
attribute values is then defined as:

Yos; € OS,Vos; € Descyr(08;), valuea(08;, &) = @a(value,(os;, @)

An example of attribute belonging to this class is publication date (noted
Pub-Date), the value of which applies to every component of a document;
in this case, the operator @us—date is simply Copy:

Yos; € OSVos; € Descy,(0s;),
value,(0sj, Pub — Date) = Copy(valueqa(os;, Pub — Date))

There are more complex examples of DDAs, like for example the
numbering of document components where each component number
depends on the number of its embedding component.

e b. Ascending Dynamic Attributes: Considering the order of the
logical structure, these attributes propagate values from bottom to top;

20 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

in this case, the assignation affects the attribute value of common parent-
components. The assignation operator @, corresponds here to some ag-
gregation whose definition depends on the considered attribute . We
may then define this class as the set of all @ € NAME4 such as:

n
Vos; € 0S,Vos; € D; = Descy,(0s;), value,(osi, o) = 69& value,(0s;, o)
os;ED;

An example of such attributes is Author: if two distinct components os;;
and 0s;2 of a single structural object os, are assigned different author
names 1, and ngp, then the infered value of Author for os, is some aggre-
gation of the two author names that models the notion of co-authoring
(for example a set: {ny,ny}).

When assigning any attribute « to this class, one have obviouly to de-
fine the properties of the corresponding operator @,, and particularly its
associativity (as suggested by the generalized notation used in the defini-
tion above). We will discuss later (see 3) an important example of such
a definition for Content Attribute symbolic.

2. Static Attributes: static attributes do not propagate their values in the
logical structure; they correspond to properties that remain purely local to the
structural object they are assigned to. An example of such attributes is Title
which applies to a structural object, but neither to its possible components
nor to its possible parents in the logical structure. Note that this not prevent
several structural components to share the same title, even if these elements
are related in the logical structure; this may occur only if these components
have been assigned the same title for some reason, but is not due to inheritance
of attribute values. This simply means that, for any attribute of this class,
there is no propagation condition and no affectation operator.

2.2.3.4 Classification of Content Attributes

To achieve the integration of these models in the multimedia model we have now to
define their properties about propagation of attribute values in the logical structure;
this is of course related to the notion of inference which underlies the retrieval of
structural components. From this point of view, it is important to remind here that
content attributes are until now assigned only to leaves of the logical structure by
functions M; without any additional properties, it is then impossible to compute
any inference involving these attributes. We have chosen to define these needed
additional properties of content attributes simply by classifying them in the three
attribute classes defined above; the choice here is generic:

e All content attributes are ascending, dynamic (ADA).

This means that we have to define for each of them its corresponding aggregation
operator &, and its properties considering inference; we will develop this point in a

2.2 Formal Definition of the Model 21

specific section dedicated to all querying aspects, and in particular to the various
inferences involved in this process. An important example of such specification will
also be found before in section 3 where we consider the specific case of operator
@symbotic used for aggregating index expressions.

In the context of logic-based information retrieval, we have already observed
that all domain values of attributes (including of course Content Attributes) must
be viewed as logical expressions belonging to given languages. This refers to the
particular syntax and semantics of the logic developped within FERMI; operators
@, are then considered as internal operators of this language, matching the following
definition:

@yt LF x LF = LF

2.2.4 Document Model, Document Base and Hyperbase

We may for now complete our model with

2.2.4.1 Document Model
The model for multimedia document may now be defined as a structure combining
the two classes of information presented above:

D = (LS, A)

A multimedia document is then an instance of this model; such an instance is any
assignation of actual objects, sets, relations and functions as defined in D. We note
document instances d; = (LS;, A;), and xp(d;) a predicate evaluating its conformity
with the document model (i.e. checking all the integrity constraints defined for LS
and A). For simplicity, when referring to document instances we will use the same
notations as those already used for defining D; in particular, we note OS; the set of
instances of structural objects of document d;.

2.2.4.2 The Document Base
A document base B is a set of document instances satisfying the following database
integrity constraints:

e (a) Every document of the document database conforms to the document
model: Yd; € B, xo(d;).

e (b) Independance of document components: Yd;, d; € B,05;n0S; = 0, where
0S; and OS; are respectively the sets of structural components of document
instances d; and d;.

We may then define a document base as a structure:

B= (B! D, XD)

22 2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

The relationship between this model of the document database and document in-

stances (related to the document model) is simple and we will not develop this aspect
in much details; it is sufficient to say that:

e we note OSg the set of all instances of structural components in the database;
given the integrity constraint (b) above, we have:

0Ss =] 0S:

i€B

where sets OS; are disjoint.

all sets defined in D apply to the whole database (i.e. TYPEgsr, TY PE)y,
NAME,, VALUE, were not related to any specific document). As a conse-
quence, relations and functions involving these sets also apply to the database
(i.e. =5, domain,)

e relations on structural objects (i.e. =<, and <;.,) are simply extended to the
database by considering the union of instance relations related to document
instances. Again, constraint (b) ensures that these relations are all distinct,
and that this union preserves their definition.

e the same principle applies for functions (i.e. typey, typen, value,); since they
have all distinct application domains OS;, they may be extended to OSg in a
straightforward way.

2.2.4.3 The Hyperbase

As it is defined, a document database does not allow browsing based on naviga-
tion links, and one may remember that the only access function defined until now is
Nextseq, the standard consultation order defined on logical structures of documents.
As said in the introduction, browsing (which is in the scope of hypertext and hy-
permedia) constitute, aside querying (which is in the scope of classical IR), a much
needed complementary way for retrieving complex multimedia information. On the
other hand, we have not yet defined how information within the document database
may be retreived using queries. As a consequence, we extend the classical notion
of hyperbase by introducing the notion of indez objects and navigation links as the
third class of information intervening in the model. Index units are structural com-
ponents of logical structures that may be retrieved using content queries, while links
are typed objects relating any couple of structural objects os;, 0s; of documents d;
and d;.

1. Index Objects

Index objects are defined from a functional point of view as retrievable units for
content-based queries. The complete presentation of this sub-model needs an
extended discussion involving, in particular, a presentation of the relationship

2.2 Formal Definition of the Model 23

between indexing and querying. Due to the particular importance of this as-
pects, and to avoid a long digression while giving here the overall presentation
of the model, we have chosen to give this detailed presentation in a separate
section (see 3). It is sufficient for now to provide the following information
about this sub-model:

(a) Indez objects correspond to a subset OI C 0S8 of structural objects,
defined according to a subset TY PE; of TY PEgy, the set of structural
object types introduced before. This distinction is introduced to cope
with general situations where all structural objects may not be considered
as relevant response objects to queries, either because they are estimated
as too specialized or, on the contratry, too general from an average point
of view.

(b) Due to the integrity constraint that binds <y and TY PEsr, the restric-
tion of index objects to a subset of OS induces on <, a sub-order noted
=<ing oD index objects.

(¢) The index process assigns to index objects indez ezpressions that are a
formal expression of their semantic content. Index expressions all belong
to the same language named £5¥™%¢ discussed before. When considering
related index objects (i.e. comparable in <jnq), their index expressions
bound by a property named indez dependancy which may be stated as:

Voi‘-, O‘I:j €0l)

0f; =ing 0i; = (valuey(oi;, symbolic) —rsymeotic value,(oij, symbolic)).
where — gymbotic 1S an implication defined on index expressions. This con-
straint has been introduced to improve the retrieval process when con-
sidering large amounts of structured objects: the goal here is to retrieve,
from any given query, not all structural units satisfying this query, but
instead the most specific index objects that satisfy this query (specific
is understood here as the greatest according to <in4; see section 3 for a
complete presentation).

The submodel related to index objects may be then defined as the structure:
I =(0I,TYPE;, Zina)

As said above, this sub-model is presented in full details in section 3.

2. Navigation Links

What follows in this section is an attempt to incorporate browsing in the
model presented before; since this problem of integrating the two approaches
is a research topic in itself, we limitate ourselves here to some aspects that we
believe of main interest considering this integrated view.

2 A MODEL FOR RETRIEVING MULTIMEDIA DOCUMENTS

N = (ON, RNAV,TY PEy, cross, type;)

where:

ON : is the set of node objects (abbreviated as nodes in the following) of the

hyperbase, noted n;. Nodes may correspond to any objects considered

as individually accessible; in the model, they are all structural objects:
ON C OS;.

RINAYV : this relation defines navigation links on the set of nodes; they may

of course relate any couple of structural components, wether belonging to
the same document instance or not. This allows the definition of intra-
document link (i.e. within instances of logical structures) and of inter-
document links (i.e. between elements of distinct instances of logical
structures). We focus only on features of navigation links that are of
interest in the context of IR (in particular we do not consider here the
various position and layout features of navigation links).

RNAV c ON x ON

TYPEy : a set of link types. Link types are useful to disambiguate existing

links with regard to the types of information they actually relate. Ex-
amples of link types are class links, which connect access objects sharing
a given property (for example having the same author; such links would
be labelled “Same Author”), or “Similar topic” which could relate access
objects having similar values of attribute “symbolic” (the similarity being
evaluated with respect to a given similarity function on L£s¥mbetic),

cross : the standard access function related to navigation links:

cross : RNAV — ON

¥(ni,n;) € RNAV, cross(ni,n;) = n;

Here n; is the anchor of link (n;,n;), while n; is its target. Note that in
this simplified view of navigation links, nodes correspond to structural
units: this is a restriction compared to the classical definition of anchors
and targets which may in fact correspond to more elementary objects
(e.g. a word or a sentence). This means that from the IR point of view,
we are only interested by the fact that a given anchor or target is within
this or this structural unit which we are able to indez and to retrieve (i.e.
using queries); effective use of the link for browsing may be done using
anchors that are visualized within any retrieved structural component
by a process which is out of our scope here (the visualisation process,

2.2 Formal Definition of the Model 25

using the layout structure). The same principle applies for accessing
the target: this document component may not correspond to a standard
structural unit. In this case we consider that it is sufficient here to know
the target’s embedding structural component; the visualization of the
target is then processed separately. Said in other words, anchors and
targets may correspond to units that are sub-atomic compared to the
standard logical structure, and we consider that a visualization process is
able to present these units to the user when displaying their embedding
structural component.

type. : a total function assigning to every link of RNAV a type of TY PEy:

type, : RNAV — TYPE,

CONSTRAINTS: definition of the constraints ensuring the consistency of the
navigation structure.

(a)

(b)

relations <., and RNAV are not necessarily disjoint; one can super-
impose on any subset of <, a corresponding set of navigation links of
RN AV in this case there are sequences of structural components that
are accessible either using the standard access order or using navigation
links.

Relation RN AV has very weak general properties; this is mostly related
to the necessity of allowing the definition of navigation links in a very
unconstrained way. This of course does not prevent to enforce these
constraints in particular situations. There may also exist integrity con-
straints related to the management of certain classes of links; a simple
example is when navigation links implement a formal property on classes
of nodes such as “having the same author”).

e RNAV is not reflexive; there is no use of reflexive navigation links.

e RNAV is in general not symmetric; the existence of a navigation link
between two relational objects does not imply the existence of the
reverse link. Note that the standard backtracking function commonly
associated to links is different fom the notion of link, and thus does
not contradict this non-symmetry.

e RNAV isin general not transitive; the existence of a sequence of nav-
igation links does not imply the existence of “shorteut” links within
this sequence.

Given this definition of the third class of information of the model, which cor-
responds to access information as given by A and Z, we may now introduce the
notion of hyperbase H which allows both querying and browsing:

H=(B,N,I)

26 3 INDEXING MULTIMEDIA DOCUMENTS

2.3 Conclusion

The model defined in this section integrates main features of multimedia, struc-
tured, documents as this has been delimitated in the scope of the FERMI project.
The model is centered on the notion of logical structure (a main information about
the discourse structure of any document) and two related, complementary classes of
information (attributes and access structure) that complete the definition of what
we think a good basis for multimedia information retrieval. In particular, we have
shown how the single-media models (here viewed as sub-models) may be integrated
in the context of the broader notion of multimedia documents. The central notion
of (hierarchical) logical structure might be estimated somewhat limitative; in our
opinion however, this kind of structure is still intensively used in many applications,
in particular those involving hyperbases built from various sources of structured
documents loaded from SGML or HTML formats, and then interrelated by naviga-
tion links. One can also notice that in the context of hypermedia, most modelling
approaches tend to preserve, if not enforce, the notion of abstraction level which
clearly helps users in the understanding and manipulation of what would be other-
wise a gigantic network of unorganized information. These abstraction levels are also
designed in a hierarchical way, and usually preserve and embed the original logical
structure of documents. We have also put a certain emphasis on the necessity to
integrate querying and browsing as complementary aspects of information retrieval,
a feature we think even more needed in the particular context of retrieving within
large, heterogeneous and highly structured repositories of multimedia information.
This finally led us to the notion of hyperbase that constitutes, in our opinion, the
right modelling level for multimedia information retrieval.

3 Indexing multimedia documents

3.1 Introduction

Classical IR systems usually provide an indez relation which gives access, from any
term of the index language, to the set of all documents indexed by this term (inverted
files are implementations of such index relation). This is due to the necessity of
ensuring acceptable response times while managing vast amounts of information
(thousands of index terms, tens of thousands documents, and often more); the
index relation is then no more than a tabular form of an access function of the
form is — about(t) which could in principle (at high computing cost) be evaluated
in real time. From the previous discussions about the extension of the notion of
corpus to the set of all structural components, it seems mandatory to follow a similar
approach, and to consider that each indexed structural object is assigned a symbolic
attribute whose value expresses its semantic content: though these values might
be dynamically computed, this would be unacceptable in terms of efficiency. The
index process described here explains how such attribute values are pre-computed
and assigned in the context of the model presented before. Of course the index

3.1 Introduction 27

process is not semantically independent of the retrieval model, since the later is
based on information produced by the former, and it is then difficult to present them
separately. Without anticipating too much on the next section dedicated to retrieval,
and for clarity, we have to present here the basic retrieval principle that underlies
the whole indexing strategy detailed below. We have said in the introduction that
an important problem to solve when retrieving structured information is the possible
structural dependency of retrieved objects; if not processed consistently, this could
lead to system responses containing for example a section s and one or several of
its components. We consider such responses as inconsistent for three major reasons:
1) they are redundant, 2) they are misleading for the user, and 3) they increase
the cognitive load of the user who has to find himself which of the related retrieved
units are the most specific to his information need. One might object that these
problems may be solved using navigation links which the user could browse for
examining related response units; in our opinion, this is simply shifting the problem
from querying to browsing, and does not solve problem 3) above in an efficient way.
We think that the retrieval process, in the context of large amounts of structured
information, has to focus on the smallest units (i.e. of the lowest level in the logical
structure), that fulfill the query (i.e. in the context of logic-based retrieval, that
logically imply the query).

Retrieving structural components while satisfying this constraint requires that
index expressions of related units are logically bound: stated informally the index
espression assigned to any parent structural-object has to logically imply the index
ezpressions assigned to each of its possible component objects in the logical structure.
This property of index expressions will be exploited by the retrieval algorithm to
filter, among all the structural components implying the query, those which are the
most specific to the query. One will find a complete explanation about how this
property is used to fulfill this goal in section 4, page 37 (see also [CK98]).

We describe in this section the index process that assigns index expressions
verifying this implication property to indexed structural-components. We define first
the notion of indez object that corresponds to structural objects that are retrievable
using content-based queries (i.e. that are assigned a value of attribute symbolic, see
2. We consider that, in the general case, only a subset of structural units are indexed
and thus retrievable (see discussion below); this distinction is based on specific types
of structural units TY PE; € TY PEsy. The index process then operates on each
structural object of each document, and assigns index expressions (i.e. values of
attribute symbolic) only to structural objects of type in TY PEy (i.e. index objects).
Then, we propose a definition of the operator @ymboiic introduced in the model when
considering propagation of attribute values (remember that symbolic is a standard,
ascending dynamic, content attribute), and which is defined on expressions of the
index language £5v™°, This operator produces index expressions satisfying the
indes dependency constraint introduced in the previous section, and which is noted
‘3,". We do not distinguish the different medias of the document components
because, as we already stated in part 2, all index expressions belong to the same
language LV = domain, (symbolic) whatever the considered media.

28 3 INDEXING MULTIMEDIA DOCUMENTS

Since there is no ambiguity about the considered Content Attribute symbolic
which is the unique one referred in all this section, and for improving conciseness of
notations, we will abbreviate this symbol by .

3.2 The Symbolic attribute
3.2.1 Characteristics

As presented in the document model, attribute symbolic is one of the five standard
Content Attributes and is specifically dedicated to the representation of semantic
content of documents. When considering the retrieval of structured objects (i.e.
structural objects in our model) four problems arise: 1) the definition of indez
objects among the set of structural objects, 2) the definition of the index language
itself, 3) the possible dependence among related structural objects considering their
content, and 4) the incidence of this content dependency on retrieval.

1. We name indez objects structural objects that are indexed (i.e. that are as-
signed an explicit representation of their semantic content using the symbolic
attribute) and consequently units that are individually retrievable from queries
that include semantic content requirements. Defining index objects in this way
reflects the specific importance given to the logical structure of documents: this
is a direct consequence of our preliminary assumption that the logical struc-
ture reflects the structure of the discourse, and hence that structural objects
are considered as consistent units considering their semantic content.

The choice of the proper subset of units of this kind within the set of struc-
tural objects is thus related to the notion of informative units, or said in
other words, units that bear self-explaining information from the users’ point
of view. Lets consider an example: a leaf object of the logical structure cor-
responding to a graphic can be self-explaining for example if it consists in a
histogram showing the annual gross benefit of IBM between years 1970 and
1995 (provided of course that the graphic contains the proper textual captions
and title). A graphic representing a curve with G as y coordinates, f as x
coordinates, and entitled Variations of Gain with Frequency for solution 3 is
probably not self-explaining, because one do not know what gain, what fre-
quency it is about, and what is solution 3. Clearly this object, if presented to
the user, has to be displayed jointly with some textual node that ezplains these
notions. Thus while the first example may correspond to an index object, the
second will most probably not. Such choices are then directed by application
requirements about the types of units to be managed and the typology of
the users who are querying the hyperbase (i.e. are they, at least in average,
knowledgeable enough about the application domain to properly interpret any
informative object?). From the modelling point of view this means that one
have to define, among the various abstraction levels on structural objects (i.e.
types of TY PEsr), the ones which correspond to index objects in a particular
application; objects belonging to instances of these types will be retrievable

3.2 The Symbolic attribute 29

from queries; the user will be able, if needed, to browse from them in the
document hyperbase using links which eventually start from these nodes.

As introduced in section 2, we name indez objects all structural objects that
are assigned a symbolic attribute (i.c. that are indexed), and we note them

oi; € O C OS.

2. The definition of the index language (i.e., the domain of attribute symbolic)
has to fulfill two major requirements: 1) due to the explosion of the corpus size
(in terms of retrievable objects, the corpus is now the set of index objects which
will have a much larger cardinality than the set of documents) it should allow
the definition of precise concepts to improve precision (i.e. to avoid ambiguities
in the expression of information needs, and to improve the discrimination
power of index expressions), and 2) it has to allow inferences to match the
basic requirements of logic-based retrieval.

In IR, and whatever the underlying retrieval model, there always exists an
associated index language that can be defined either in extension or (most
often) in intention using a formal grammar of the form G = (S,V,Z) where
S is the starting non-terminal symbol, V is the vocabulary (both terminal
and not terminal), and ¥ is the set of rules. To avoid confusion with indez
terms which often refer to elementary entities like keywords, we will refer to
the elements of the index language as index ezpressions. As an example, the
Boolean retrieval model offers index terms that are keywords (i.e. elements
of V) and index expressions that are sets of keywords. Here X is a (simple)
set of rules that allows, given a set of keywords V; C V, a set of non-terminal
symbols Vy,; C V, to derive expressions that belong to the language of Boolean
conjunctions like t) Aty Aty2, where the ¢; € V}. Index expressions are produced
from raw data by specific indez processes. Considering multimedia documents,
we will assume here that there is a unique index language used for describing
the semantic content of any kind of document component (i.e. of any media).
This does not mean that a given media has no incidence on the nature (classes)
of concepts that can be used to properly describe the semantic content of
corresponding data; we in fact assume here that all these possible media-
dependent facets about content description are integrated within a unique
language (as described in part 2).

At this step of the presentation we will consider the index language £” as a
set of index expressions which are sentences of a given logic; our main concern
in this section will be to specify the needed properties of such expressions to
allow indexing and retrieval of structured information.

3. If we suppose that the previous problem is solved, then have already observed
that the semantic content of different structural objects may not be indepen-
dent: for example, what is the incidence of the content of a sub-section on the
content of its embedding section? This kind of problem has never been exten-
sively studied in its own, though several researches are more or less related to
this problem (e.g. one can mention here the numerous investigations aimed

30 3 INDEXING MULTIMEDIA DOCUMENTS

to evaluate the impact of citations and bibliographical references on retrieval
performances). Whenever two index objects are related by <y (see the logical
structure in section 2), we will consider that there is a dependency between
the index objects, which is modelled by relation =;ns. This relation states how
index objects are aggregated and that they are logically bound as introduced
before.

4, When index objects are structured, the whole strategy of searching is changed
in a drastic way. Let us consider a simple example: suppose that given a query
Q, and given a proper indexation of sections, paragraphs of the documents, the
system can retrieve a paragraph p and a section s that are considered relevant
for Q. Then what happens if p is a component of s (L.eif s < p)? If the system
answer contains p and s then it will be most probably estimated redundant
(and maybe misleading) by the users. Solving this particular problem has to
be considered in the framework of logic-based retrieval. The main requirement
here is that an index object oi; is relevant for a query @ iff its index expression
ie, € £° logically implies @; this is noted in the following as: ie; — Q. Going
back to the problem of structured index objects, our proposition for a proper
retrieval of such information (i.e. for retrieval avoiding redundancy) is to use
the reverse implication @ —, ie; as a filter among index objects satisfying the
direct (classical) implication. This principle is described in section 4; what is
needed for now is to understand that such a filtering is possible only if the
index expressions assigned to structured index objects oi; and oi; satisfy the
inder dependency property:

08 Sind O'ij = (ie; e ‘EBJ'}

where ie; and ie; are respectively the index expressions assigned to oi; and oi;.

3.2.2 Properties of Content Attribute symbolic

To sum up the points above, all index objects, and only them, are instances of
TY PE;, a subset of the logical structure types TY PEgr. When considering index
objects of types in TY PEj, one can also derive from = the order <4 that relates
structured index objects. One important thing to notice is that index objects being
structural objects, all the properties of structural objects apply also to index objects.
The indez model of a hyperbase, as introduced in section 2, is then defined as:

I =(0I,TYPE;, Zind)
where:
OI : the set of indexed structural objects of the corpus, named index objects and

noted oi;. Because all types of components may not be potential responses to
users’ queries (see discussion above), we have OI C OS.

3.2 The Symbolic attribute 31

TYPE; : the set of index object types. This subset of TY PEsr determines the
types of structural objects that may correspond to index objects (i.e that may
be retrievable objects using content-based queries).

TYPE; C TY PEsr

=ind @ & relation representing the structural dependency between index objects,
induced by relation =, on types:
<inga C OI x 01

with:

Yoiy, 01; € OI,0i; =ina 01 = typeq(oi;) S types(ot;).

One may easily see that <;,q is a sub-order of =<, induced by the restriction
of TY PEgy to TY PE; and to the integrity constraint relating <qr and =y
(see “Logical Structure” in the previous section).

For more concision and clarity, we introduce here the following notation:

index : a total function returning the index expression of L7 associated to any
index object oi;. We consider here that attribute symbolic is mono — valued:

index : O = L7
Yoi; € OI,index(oi;) = element(value, (0i;, o))

where functions value, and element have been defined previously in the doc-
ument model. The use of function element refers to the mono-valuation of at-
tribute symbolic (remember that function value, has its values in 2VALUEAT),

CONSTRAINTS: the constraints that ensure the consistency of indexes are:

1. Any structural object of a type in TY PEy is an index object :

OI = {oi € OS | typey(oi) € TY PE;}
2. The relation =<nq is a sub-order of <;:

VO?:{‘O’I:_{ € OI,01; <ing O‘i:j = 01 =1 Ol".j

3. Semantic expressions indexing related index objects are logically bound; this

property, named index dependency, is needed for proper retrieval of structured
information:

VU?:‘-,O?:J; € OI,0i; =ing Oi‘:j = (mdea,(m,} —a index(oij))‘

where the symbol —, denotes the logical implication between index expressions
of L°.

32 3 INDEXING MULTIMEDIA DOCUMENTS

3.2.3 One example of indexing structure

The example described here shows an instantiation of symbolic attributes. We see
in Fig. 2 the partial order <5 in the context of documents composed of chapters,
sections, subsections, ... The set TY PE; is represented on the right of the figure
as a subset of TY PEgr. In this figure, the partial order <, is shown from “top to
bottom”, which means that Chapter <;,; Section <, Subsection etc.

Structure Types Symbolic Types

' N
Document /
Chapter

Section

| Subsection

Paragraph

Figure 2: An example of structure and index hierarchy types

According to figure 2 the only document components that will be potentially re-
trieved are of types Chapter or Subsection. In this context, we express that neither
whole documents nor paragraphs correspond to index objects. Minimal components
of document that can be retrieved are Subsections, and not Paragraphs; this means
that, for this type of documents, paragraphs are not considered as enough informa-
tive for users, and the system is entailed to provide at least subsections. Said in
other words, this means that in this application paragraphs may be retrieved only
in the context of their embedding subsections.

Let us now consider an instance of Document containing two Chapters, with
Chapters containing Sections etc., as shown in Fig. 3. In this figure, we name
0s;,1 <t < 19 the structural objects that constitute the Document. The index
objects appear in bold and are of type Chapter or Subsection and correspond to
retrievable structured components noted Ui in Fig. 3. The figure also shows (circled
by dotted lines) the structure of each index object (based on the <, partial order).

3.3 Properties operator @,

Operator @, has as arguments index expressions that are elements of £7 and
produces values of the same type; its properties (sce the following) are then
constrained because 1) index expressions are logical ezpressions and the operator
must then have the properties of an internal operator on logical expressions, and 2)
as already introduced, the result of the operation is logically bound to its arguments.

3.3 Properties operator &, 33

Siruciural View Semantic View

33“/“\ AN

Subsection 7+ 08 ' 09! ,", SS0sI0 N, 1 Oslli ,om ‘\ Osem? Oseml0 Osemll Osemi2

N 72NNV

v
VoIS Oaléi o.n' ‘0;18 0s19)
|
i

Figure 3: Parts of the structural and semantic views of a document

In what follows, we have to make a distinction between the syntactical and
semantic levels of language £° which corresponds to the classical distinction between
syntax and semantics in logic. The symbol “—,"” denotes a reflexive relation between
two elements of £%: ie; —, ies; expresses that ie; implies e; in the particular
logic of £7. We also consider a reflexive binary operator “=,", denoting that two
expressions of £7 are logically equivalent. At the syntactical level, we introduce
one specific element of £7, namely &,, denoting the empty index expression. This
element is needed when some structural unit may be not indexed (i.e. belonging to
0S8 — OI). A logical property needed for g, is:

Yie € L%, ie =4, &4

As an example, if £7 were the language of first order logic, true would be a
satisfying denotation for &,.

Given these considerations, and remembering that attribute symbolic is an As-
cending Dynamic Attribute, we can now postulate needed properties of operator &,
which is dedicated to compute index expressions of parent index objects from index
expressions of component index objects. We consider at first the properties relating
the operator to the implication —,:

e @, is a binary, internal operator on £7:
R v) e
e Implication property:
VI:E",‘E:EJ' e L7 ie; Dy ?:ej —+o g
" = i ej
This property specifies how indez dependency is ensured while aggregating in-
dex expressions. One may notice that this property in fact expresses a notion of
“information conservation” when combining index expressions: nothing is lost

from the argument expressions since the result expression remains a possible
response to any query that would match with any of the argument expressions.

34 3 INDEXING MULTIMEDIA DOCUMENTS

e &, is commutative. This property expresses that the semantic content of
a parent index object is independent of the order in which we consider the
aggregation of its components’ index expression:

Viei, ie; € L7, 1e; B, iej =4 iej Dy t€;

Note that this commutativity does not contradict the index dependency prop-
erty.

by definition —, is reflexive; using this property, one may infer that operator
@, is idempotent. This property is consistent when considering the notion
of “conservation of information” mentioned before:

Vie € L7, ie @, ie =, ie
Again, this reflexivity does not contradict the index dependency property.

e B, is associative. This property is used when recursively combining index
expressions:

Vie;, ie;, iex € L7, (ie; By ie;) B, teg =, ie; B, (ie; B, iey)
Note that associativity does not contradict the implication property:

Vie;, ie;, iex € L7, (ie; By ie;) By iex —o i€ By ie;
u —, ig
n

g 1€k

We obtain the same result when considering ie; @, (ie; @, iex)
e £, is a neutral element for @,:

Vie € L7, ie B, £, =, 1€

3.4 The index process

We describe now the index process that computes and assigns index expressions
to index objects using operator @,. It is important to notice that computation
and assignation of index expressions are distinct operations that do not necessarily
affect the same sets of structural units. This is because index objects (to which index
expressions are assigned) are in general subsets of structural objects, and because,

despite of this distinction, the computation of index expressions may involve all
structural objects:

o the computation of index expressions is performed from bottom to top of the
logical structure on every structural component, up to the structural units
corresponding to the maximal level of index objects (i.e. minimal value of
TY PE; for each indexed document).

3.4 The index process 35

o the assignation of the computed index expressions concerns only structural
objects that are inder objects (i.e. of type in TY PE;). This corresponds to
the assignation of a symbolic attribute to each index object.

3.4.1 Computation of Index Expressions

We define the index process as a recursive function named &, defined on structural
components of documents, which computes index expressions in a bottom-up
way. The functioff of course involves the binary operator @, that combines
expressions of £°. The definition of this recursive function supposes that atomic
(monomedia) structural objects have been already indexed (i.e. have been assigned
Content Attributes as defined in section 2). We have to remind here that these
indexes are computed by specific functions named M?, and assigned only to
leaves of the logical structure (set LOS) viewed as atomic monomedia objects. So,
for any os; representing a document or a document component, the definition of 4 is:

6d: 05— L°
S = os; € LOS : M%(0s;),
= 0s; @ LOS :6(0sj1) ®g -+ Bo 6(08jn), ¥ 085z € NextDescq(0s:)

where function NeztDesc(os;) gives the immediate descendants of os; in the logical
structure (see “Logical Structure” in 2).

3.4.2 Assignation of Index Expressions

A procedure named A assigns index expressions computed by function d to index
objects having a structural type in TY PE;:

A:Os— Osx L7

VC‘S;‘ € OS 0s; € O‘I : Uaiuea{osi, 0') = 5(051');
o0s; € Op : value,(0s;,0) =&,

As an example, if we consider figure 3, function delta is computed for each
structural objects 0sy,...,0s19, but the assignation concerns only index objects
083, 083, 0Sg, 08, 081p, 0811, 0812-

In part 3.3, we have defined the property of index dependency that logically binds
index expressions assigned to related index objects:

Vos;, 08; € OSy,08; =ing 08; = (index(0s;) =, index(os;))

Given the recursive definition of A and the properties defined for operator &,
it is easy to verify (in a recurrent way) that the index expressions assigned by this
function to index objects satisfy this property.

36 3 INDEXING MULTIMEDIA DOCUMENTS

3.4.2.1 Example

Figure 4 shows a simple case of logical structure used here to illustrate how func-
tion A ensures the index dependency. For simplification we consider in this exam-
ple that TY PE; = TY PEgy. This simplification conforms with the definition of
TY PE; (see definition 3.2.2). Considering a non-atomic structural object of this
structure, for instance o5, we have:

NextDescgr(0sg) = {010, 0511}
NextDescy,(0510) = {0515, 0516, 0517}
NeztDescy,(0s) = 0
NextDescyy(0s15) = 0
NextDescy-(0515) = 0
NextDescgr(0517) = 0
The value of §(osg) is then computed as follows:
osg € LOS = d(0ss) = 8(0510) By 6(0511)
081w & LOS, 081y € LOS = 8(0sg) = (8(0515) By 6(0516) By 5(0817) By (i€11)
0515, 0815, 0817 € LOS = 6(0sg) = (ie1s B, ie15 Do t€17) By (1€11)
where ie;; = M%(osyy),. .. ,ie17 = M7(0s17) are the index expressions associated
to the symbolic views of single-media objects 0s1,... ,08,7.

According to the property of index dependency we have then:

inde:r:(oslo) —ta éndez[osm} =iei5 Dy t€16 Do iey7
index(0s1) —o index(os;7) = ier

Swructural View

Document Osl
Chapter 052 Os
R /
Section 054 /OsS Ds6 0s7
Subsection Os8 Os9 0s10 Osl] 0512
Paragraph ~ Os13 0Os14 0515 Oslé 0s17 Os18 0519

Figure 4: A document with all queryable parts

Having TY PE; = TY PEgy implies here that procedure A assigns to osg and
to all its descendants Content Attributes symbol with values corresponding to the

3.5 Conclusion 37

index expressions described above for each of these objects. Would we go back to a
definition of TY PE; = {chapter, subsection}, then §(0ss) would have made exactly
the same calculus, but A would have done the assignation only for objects 05,0 and
0813 which are the only component objects of oss with types in TY PE}.

3.5 Conclusion

We have defined in this section an IndezModel that applies to structured docu-
ments. This model introduced first the notion of indez objects, defined as classes
of structural objects which, depending on application requirements, correspond to
retrievable objects using content-based queries. We have then defined how values
of Content Attribute symbelic, which describe the semantic content of document
components according to an indez language, are computed and selectively assigned
to index objects; we have also introduced the notion of indez dependency, a property
that index expressions have to verify to allow retrieval of minimal, relevant objects.
This later aspect, which we think important in the context of large, complex corpus
of information, is developed in the next section.

4 Retrieving multimedia structured documents

4.1 Introduction

All the studies presented in the previous sections are dedicated to the data definition
level of the model. Here we address the problem of how to query this data to
retrieve structured multimedia documents. One important statement here is that the
query language proposed here combines classical database capabilities and typical
IR capabilities based on attribute selection or consultation for example. The second
case typically produces answers that implicitly contain only document components,
while the first produces answers that main relate to any fact from the database, as
for example the author(s) of a document. One may notice that this later case could
include the former, providing that the database model offers proper operations to
deal with content and uncertainty (which is not currently the case). On the other
hand, one may also notice that in the complex process of information retrieval, users
might need at some moment classical database queries: for example, one might ask
what are the authors of cited documents without accessing them explicitly. In our
opinion, these two ways of querying should then be integrated in the model, though
they might correspond to separate querying tools at practical level. This is the
reason why we propose a query language that does not implicitly retrieve documents
only, but rather provides access to any kind of information stored in the document
database. The proposed query language is presented in four steps. First we introduce
the notion of predicate that implement the main features of the document model
presented in section 2, and we consider a new definition of the Document Base,
derived from this notion of predicate. The query language itself is then presented in
both its syntactical and semantic levels. Finally we consider the requirement stated

38 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

before about the optimality of system responses, which stated that when answering
queries the system should avoid multiple presentations of the same documents in
responses. We show in this context how the classification of attributes proposed in
the definition of the data model (basically the indez dependency property) may be
used to fulfill this requirement.

4.2 Basic Predicates

We define here a set of predicates that are used to describe and to query the
document database. The essence of these predicates is to capture the basic notions
and properties introduced in the data model in a logic-based way.

Notations
e In the following, we note constants using italic lower case characters (like
smith), the variables using normal lower case characters (like author), and

all predicates names have an uppercase initial letter and are written in italic
(like CompStr).

e The set of constants C on which all predicates are defined is globally referred
as:

C=0SUTYPEst UTYPE,yUNAME,UVALUE4, U RNAV UTY PEy,

o The set of variable names V AR is defined such that VARNC = 0.

Given any predicate P(Aq,...,M\,), the ordered sequence T, = Aj,..., A,
defines the sort of P. Every symbol A; refers to a place and to one set D; of
constant symbols among the ones listed in C'. At syntactical level we note 7,
a predicate checking the conformity of any notation P(s;,...,s,) involving
P, where the s; are actual symbols respectively assigned to places \;. These
symbols can be either variable symbols, or constant symbols that conform to
(i.e. are elements of) the reference set D; assigned to position A;:

true : iffVs;€5y,...,8n, (5 € VAR or 5; € D;)
YolBryvc g Bp) =)
false : otherwise

We organize the presentation of these basic predicates according to the three
classes of information used when defining the data model: logical structure, at-
tributes, and access structure.

4.2 Basic Predicates 39

4.2.1 Logical Structure

CompStr(os;,0sz) : this predicate is based on order <, to verify that a document
component 0s; is a structural component of an other document component 0s;.

CompStr(0s1,082) =de 081,082 € OS & 083 € Descyr(081)

InfTst(ty,tz) + This predicate is related to the partial order <, on types of struc-
tural objects TY PEgyp :

InfTst(ty,ta) =aesy b ta € TYPEsy &1y R b2

TypeSt(os, t) : This predicate is true if document os is of structural type ¢, and
false otherwise:

TypeSt(os,t) =g 0s € OS &t € TY PEgr & t1 # t2 & t = type,i(0s)

TypeM(os,t) : is true if a document os has t for media type:

TypeM(0s,t) =45 05 € 0S & m € TYPEy & t = typem(0s)

Precede(0s;,08;) : this predicate is based on relation <, which defines the stan-
dard linear consultation order for documents. Predicate precede is true wher-
ever the structural objects os; and os, are related by relation <seq:

Precede(0s,,083) =gef 081,082 € OA, 081 <eq 052

4.2.2 Attributes

We focus now on basic predicates related to attributes; one have to re-
mind that attributes, as defined in the data model, are generally multi-
valued. This property causes representation problems in the fact base since
no symbol or variable may represent complex objects like sets. Thus, when
attribute is multi-valued, this is modelled in FB by a list of predicates in-
volving the same structural object os and the same attribute name attribute :
HasValue(os, attribute, value,), . .. , HasValue(os, attribute, value,) is the repre-
sentation of value,(os, attribute) = {value,,... ,value,} in the fact base.

EqualValue(cy, cz) ¢ this predicate evaluates the equality of constants ¢, and c;
belonging to C.

HasAtt(os, attribute) : this predicate is true iff a document component os has an
attribute named attribute (i.e., attribute € name,(os)).

HasAtt(os, attribute) =45 o0s € OS & attribute € NAME, &
attribute € name,(os)

40 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

HasValue(os, attribute, value) : this predicate is true iff a document component
o0s has value among its values for attribute.

HasValue(os, attribute, value) =45 0s € OS & attribute € NAME, &
attribute € name,(os) &
value € value,(os, attribute)

Aside these basic predicates, we consider predicates associated to Content
Attributes. Of particular importance in the context of IR, is attribute symbolic,
which is related to the semantic content of document components. A predicate
related to attribute symbolic implements the notion of implication between
index expressions ie € L£7:

MatchSymbolic(ie;, iea) : is a predicate that indicates if the value of index ex-
pressions ie; matches index expression ie; € L7 of the index language:

MatchSymbolic(ieq, teg) =gy ie1,1€z € L7 & ey —, i€y

This type of predicate is of slightly different nature compared to those pre-
sented before; the difference comes here from ie; which is a special case of
constant. Being an element of a language, ie; generally does not correspond
to a self-defining, atomic value as constants usually do; instead, ie; (as already
discussed in section 2) has a more complex syntax and semantic, and in fact
has properties that have to be interpreted in a given sub-logic (here the one
corresponding to the semantic of £7). This is the meaning of the condition
value,(0s, symbolic) =, ie mentioned in the definition above. There is thus
a double interpretation of ie;: one at the level of our model, where it behaves
exactly like a constant, and an other one as a closed formula in the logic under-
lying £7. Although this difference should be fully integrated in a formal way
within the model, we think that not doing this at this step does not prevent
the understanding of what follows (i.e. how queries are solved).

The same discussion applies for the four other Content Attributes physical,
structural, spatial, perceptive; as discussed in section 2, they all have their
associated domain languages and corresponding sub-logics providing specific
definitions of operator —,, where « stands for any of these attributes. We
will then consider the availability of predicates MatchPhysical, MatchStruc-
tural, MatchSpatial, MatchPerceptive whose definition is a direct adaptation
of the definition of MatchSymbolic to these attributes.

4.2.3 Access Structure

Predicates related to the access structure of documents are:

4.3 The Fact Base 41

Navigation(ay,az) : this predicate is true iff there exists a navigation link be-
tween the two argument access-objects (remember that all access objects are
structural objects: OA C 0S):

Navigation(ay, az) =a; a1, 62 € OA & a1 = target(a)

TypeNav(ay,a,,t) ¢ this predicate is true iff the navigation link between two ac-
cess objects is of the given type &:

TypeNav(ay,az,t) =def aj,a3 € OA&teTYPE,
& ay = target(ar) & t = typer(ar, az)

To cope with application requirements, the above list of basic predicates may be
extended by predicates which express other specific properties of sets of constant
symbols such as, for example, the existence of orders (like the total ordering of
integers for instance). Since there is nothing specific here to our model we will not
give here a complete list of these complementary basic predicates.

4.3 The Fact Base

Using the predicates defined above, it is then possible to describe a Fact Base (named
FB) that constitutes a logic-based redefinition of the Document Base described in
section 2. Two approaches may be used to achieve this; the first is alike the one
proposed by deductive databases, where F'B would be in fact a knowledge base con-
taining facts and rules. Facts would correspond in this case to a minimal set of
closed predicates (i.e. predicates without variables) of the sorts described in the
previous section, and rules would be deduction rules allowing the inference of facts
not explicitly represented in the knowledge base. As an example, considering order
=< and its associated predicate CompStr, the minimal set of facts would corre-
spond to closed predicates describing each elementary arc of each tree-like logical
structure (i.e. arcs linking nodes to their immediate descendents), and associated
rules would complete the definition of predicate CompStr to include all properties
of order =:

o Reflexivity:
CompStr({z,z) : —;
e Transitivity:

CompStr(z, z) : —CompStr(z,y) & CompStr(y, z);

42 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

The second approach considers that all explicit and all implicit facts that can
be derived using all deduction rules are explicitly represented in the knowledge base
(hence its name fact base) using closed predicates. These two solutions are logically
equivalent considering the set of facts represented and retrievable in the knowledge
base; the difference between the two approaches is related to implementation and
knowledge management issues. Since this choice does not deter the generality of
the data model, or the generality of the query language as described below we will
assume in the following that we are in this second case, and thus that F'B is the

finite set of all the closed predicates that correspond to every explicit or implicit
fact deductible from the document base. We consider also that the fact base FB is
a consistent set of predicates (i.e. containing no contradictory fact).

4.4 The Query Language

The query language is defined in a much classical way and integrates, as discussed
in the introduction, database queries and IR queries.

4.4.1 Syntax

A query belongs to the set of well formed formulas of first order logic:

e Every predicates P is of one of the sorts described in section 4.2. As defined
also in this section, each of them is syntactically defined by its name and its
sort, namely a finite, ordered list of arguments noted £, = Ay,... , Ay, where
each); represents a place associated to a finite sef of constants. As an example,
predicate CompStr is of sort Aj, Aa, where A; and and), are associated to OS.
Places in predicates may be affected either to variable names or to constant
symbols (see consistency constraint below).

e every consistent predicate notation P is a formula.

e if F' and G are formulae, then ~F, F A B, (3z)F are formulae.

Before detailing in the next section how queries are evaluated, and what are their
responses it is necessary to introduce the following notations:

» A consistent predicate notation of predicate P is any expression P(sy, ... ,s,)
where yp(51,... , 5,) holds (that is, s; are either variables symbols, or constant
symbols that conform to D;). We note o, any such consistent, ordered sequence
of (variable and/or constant) symbols assigned as arguments of P.

e Given a predicate P and 0, = $1,... , s, a consistent sequence of symbols, we
note @, = ci1,...,¢, any ordered sequence of constant symbols obtained by
substituting in ¢, all existing variables symboals s; by a constant symbol ¢; of
D;. Formally this is defined as:

4.4 The Query Language 43

- let ¥}, be the (possibly empty) subset of symbols in o, that are variables,

- let C, be the (possibly empty) subset of symbols in o, that are constant,

- then o, is obtained from o, by substituting every variable symbol s; .G.V’
by a constant ¢; € D;. The sub-sequence C, of g, is unchanged when deriving
any sequence Gp.

From this definition it is then clear that:

1. (o) = 7p(Tp)-
2. given oy, if C, is not an empty list the corresponding ordered sequence
of constant symbols is part of any consistent derived sequence 7.

4.4.2 Evaluation of Queries

A query belongs to the set of well formed formulas of the first order logic and
may have any number of free variables. The predicates that constitute the most
elementary query level are the basic predicates described above. The free variables
of the query define a structure of the response which is generally a set of ordere.d
lists of constant symbols corresponding to these free variables. An extreme case is
when a query has no free variable, in which case ifs response will be either true or
false. ‘ ‘ .

Here are some simple examples giving an informal illustration of the way queries are
evaluated:

e to find all the documents of type Book, we write:
TypeSt(os, book)

This case is the simplest, because it involves only one predicate; the response
will be the set of constants os; such that TypeSt(os;, book) is true.

e to find if a document of type Book exists:
Jos TypeSt(os, book)

The answer here will be either true or false, depending on the existence of at
least a constant os; satisfying TypeSt(os;, book).

e to find the books having “Smith” as one of its authors we write:
TypeSt(os, book) A HasValue(os, author, smith)

This example combines two attributes related by a conjunction, the two prc@-
icates sharing the free variable os in the first position. The response will
here the set of constants os; satisfying the conjunction TypeSt(os;, book) A
HasValue(os;, author, smith)

44 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

e when looking for books illustrated by at least one image, a query is:

TypeSt(os, book) A (3os;)(CompStr(os, 0s;) A TypeM (os;, image))

This example is more complicated, because we use a quantified variable that
denotes any component of the document corresponding to the free variable
os. The response will be the set of constants os; satisfying the formula
TypeSt(os;, book) A CompStr(os;, 0s;) A TypeM (os;, image), for any 05j.

Of course this intuitive way of defining query responses has to be defined in a
more formal way. We will base this definition on the notion of query denotation
using a function § that gives all the constant sets that match query F.

4.4.3 Denotation of queries

The function § provides a denotation of queries which are, in general, open formulae.
The queries considered here conform to the syntax presented before and may be
either single predicates or formulae combining several of them. In a query, the free
variables correspond to the elements of the result: we name the result variables. As
will be seen later, result variables are any non-gquantified variables.

We use in the definition of the denotation of queries the usual notation A = B where
A is a set of closed predicates and B a formula to indicate that A satisfies B (i.e. all
models of A are models of B). We also use the notation “a | C(a)” as a definition
of a set composed of elements a such that the condition “C(a)” is satisfied. We will
then introduce the definition of function § in considering gradually more complex
queries. All the definitions below are based on the notations introduced in section

4.4 about predicate sorts noted I, predicate argument lists noted oy, and predicate
value lists noted &,.

4.4.3.1 Single-Predicate Queries
Consider a single-predicate query P(o,) with +,(c,) asserting the conformity of
argument list o, to the sort of P. We define a, as the (possibly empty) subsequence
of o, that corresponds to variables. Then, all variables of o, are considered as
free variables of the query. Given o, and any (possibly empty) sequence o, as
defined before, then any valid sequence &, contains a sequence of constants noted
@, which corresponds to constants assigned to places occupied by variables of o, in
op. Moreover, we can state that any constant (possibly) existing in o, still exists
(at the same place) in &,.
We note P(gy)[ay] for telling that the predicate P has o, as argument list, and

that this list contains a (possibly empty) list of free variables c,. We consider then
two cases in the evaluation of §:

e When oy # 0, we have :

$(P(op)le]) = {ap | FB = P(5) (@]}

4.4 The Query Language 45

The response then contains all ordered constant sequences @, that satisfy P
together with all others constants of o

e When o, is empty, all the places in g, are constants (and then oy is equfil to
;). We consider then that the query is closed, and that the result is either
true or false:

true iff FB = P(7,)[0]
F(P(ep)[0]) = {fn.lse iff FB = P(7,)[0]

For example, consider the case of predicate TypeSt:

e F(TypeSt(os,t)[os,t]) corresponds to the set of couples (structural object,
structural type) so that the structural object has the associated type.

o F(TypeSt(os, chapter)[os]) corresponds to the set of constants (structural ob-
jects) that have the structural type chapter.

o F(TypeSt(osas, chapter)[d]) is true if structural object o34 is a chapter, and
false otherwise.

These examples already illustrate how the proposed query language may combine
database-style queries and IR queries (in which case predicates would always have
os as unique result variable).

4.4.3.2 Complex queries _

We refer to complex queries as queries combining formulae (as described above).
To describe how query responses are defined we introduce now some notations that
are direct extensions of the ones presented before for predicate queries. We dgﬁne
%}, the sort of formula F, as a concatenation of the I, of the predicates combme.cl
in formula F. The order for this concatenation has to be fixed in some way; at this
level in the model this choice has no particular importance, provided only that there
is one (for example the lexical order of predicates involved in the e.xpression of F).
Similarly, we note oy any argument list derived from %y for the dlﬂ:erent plaf:es of
predicates involved in F. Then, @ is the result of any valid substitution of. variables
of o; by constants of the related domains defined by X Note that in this process
the conformity function ~y; for formula F' is simply defined by:

Y1(F) = %(P) A%(Q); - . s A% (R)

where P,Q, ..., R are all the predicates involved in the definition of F.

46 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

We note then «y, a (possibly empty) sequence of variable symbols of g that are
free variables of F. Quantified variables of F', when they exist, are not considered

here as free variables, because they do not participate to the definition of query
results.

Like in the case of predicates, when a query is a sentence (i.e. it reduces to a formula
with only constants and /or quantified variables), the result is either true or false:

_ [true iff {o/|FB | F(a,)[0]} #0
8(F(on)I0]) = {fa!se iff {o;|FB W F(7,)[0]} =0

We notice that this definition is consistent with the simpler case of single-
predicate queries given before.
When the query is a negation of a formula F' having free variables, we have:

S(=F(oy)ley)) = {a; | FB | F(7,)[ay]}

We consider now the case where some of the variables of the formula are quan-
tified. In this case, we need to represent formula F'(oy) as F(oy)[ay, Bf] where:

e a; is the (possibly empty) list of free variables in F(oy),
e [i; is the list of quantified variables.

Then, such a query gives as its answer any ordered list @y, sub-sequence
of &y that satisfies F. In the following definition, 3B, is an abbreviation for
(36,)(382) . . . (3B,), where beta; are all quantified variables of §j:

§((36y) Floy)ley, By)) = {a7 | FB = F(o))[ay, By}

When f3; is empty, we are in the case presented before with no quantified variable.
When a; is empty, the results is either true or false, since there is no result variable:

.. _ Jtrue iff {5;|FB = F(a;)[0,5,]} #0
§((38y) Flan)0.8]) {fa!se iff {5;|FB | F(?;)[@,Ef]} =0

Of course the same result applies when both a; and 8; are empty lists; in this
case we have again oy = 7 and the query is a sentence.

We notice of course that these three cases above are generalizations of the
similar ones about single predicates.

Let us consider now the problem of formulae that are combinations of two sub-
formulae. In our case, a query is a conjunction or a disjunction of well formed
formulas. We note then oy, and oy, the argument sequences of Fy and Fy defined
exactly as described before for each of these formulae. Since F; and F; may share
variables we have then to consider new sub-sequences of variables:

4.4 The Query Language 47

e we note ay, and ay, the sequences of result variables that are ezclusive to 31
and to Fy respectively.

e we note a, the sequence of result variables that are common to Fy and F.

So, for a query F combining (either with a conjunction or a disjunction) two
subqueries F; and F, we have to describe the evaluation of Fy and F5 using more
elaborate notations which are: Fi(oy,)[ay,,c.] and Fa(op,)[ap,, ac.

We may consider now the two different cases that can occur with such queries. We
consider below the case of a conjunetion, and then the case of a disjunction:

e Conjunction:If one sequence ay,, oy, and a. is not empty, we have :

G{Fl(afl){&fﬂac]f\
Fyop)lenmad) = {@n, 8.8 | FB | Fi(7,)[ay, o]
AFZ(E;&}[&J’?:E‘:}}

The introduction of sequence @, defines that there is no repetition of corre-
sponding constant sequences @, in the response.

e Disjunction:We consider below the case of a disjunction; this definition ap-
plies whenever at least one of the sequences ay,, op, and o, is not empty:

E(F‘l (Jh){ah NeAN
F2(Uh){a'fzvacl)] {Eﬁ:ahrac l
FB = Fi(oy)@n, 8] V Fa(G5) [0, @}

o In both cases of conjunction and disjunction, sub-sequences if ey, ey, and a;
are all empty, then the query is again a sentence and the answer is either true
or false, as in the similar cases described before.

Let us consider now examples of such queries:

o Attribute values can be used to find documents “written by Smith in 1995”.
In this case, the query is composed of two sub-formulae that are predicates:

HasValue(os, pub — date, 1995) A HasV alue(os, author, smith)

If we name F this query formula and F, and F its two sub-queries, we have
F,(os, pub — date, 1995)[0, os] and Fy(os, author, smith)[0, os] according to our
description above. The result is then a set of constants (structural objects)
that match the query.

48 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

e The logical structure can be used to find documents containing a structured
section followed by one image:

(3osz, 083, 0s4) CompStr(osy,0s;) A CompSir(os;, 0s3)A
TypeSt(osq, section) A CompStr(osq, 054)A
TypeM (os3, image) A Precede(oss, 0s3)

Here, the only result variable is os; and the query result is a set of structural
objects.

e Queries combining content-based and structural criteria may be issued, like for
example when searching books about relational databases. We suppose then
here that topic “relational database” is expressed by the index expression
relational — database of L7 (a constant):

(3ie) (T'ypeSi(os, book)A

(HasV alue(os, symbolic, ie) A MaichSymbolic(ie, relational — database))

The only result variable here is os and the query result is a set of structural
objects (in this case index objects, since only them have attached symbolic
attributes).

e Queries can also refer to the access structure. We may for example refine the

previous query in requiring books about relational databases and citing author
“Smith”:

(Sie, 0sy,082) TypeSt(os, book) N HasV alue(os, symbolic, ie) A
MatchSymbolic(ie, relational — database) A CompStr(os, 0s,)A
TypeNav(os,, 08, citation) A HasValue(osy, author, smith)

Note that the notion of citation has been expressed here as the existence of at
least one component object os; of os linked to a structural object os; having
anthor “Smith” by a link of type “citation”. Note also that there is no type
constraint on os, (the structural object of author “Smith”); this means that
any kind of document component is considered here as a possible source of
a citation, provided that it has the required author. Again, the only result
variable here is os and the query result is a set of structural objects (index
objects in this case too).

4.5 Retrieving structured documents

When we consider the above definition of the evaluation of query results, we do not
consider at all the fact that specific classes have been associated to attributes (see
section 2. Three classes for attributes have been proposed: the Dynamic Ascending

Attributes (DAAs), the Dynamic Descending Attributes (DDAs), and the Static
Attributes (SAs).

4.5 Retrieving structured documents 49

These classes have been introduced with the specific goal to optimize query
responses in terms of minimality, which means here avoiding redundant responses.
This notion of redundancy is related only to structural objects which constitute the
basic retrievable objects in this context (index units): redundancy occurs whenever
a response R = {0s1,089,... ,08,} is such that there exists couples (os;,0s;) that
are structurally related : os; <, 0sj or 0s; <y 0s;. To manage such structural
properties of the documents, we limit then the application of this optimization to
queries that have one result variable related to structural objects. In this context we
can avoid the retrieval of redundant document components; the proposed approach
is based on attribute classes and on a notion of query type.

To be more generic, we consider that given a query F satisfying the property
given above (i.e., one result variable on the domain of structural objects), its optimal
response ¥ is defined as:

§(F(o1)las)) = Optr,({a7 | FB |= F(3y)[ay, Byl })

Where function Optr, () handles the simplification of the result R obtained in
the classical way from F, according to the type of the query noted ;. We consider
first three different basic query types corresponding to the three attribute classes.

4.5.1 DAAs Optimization

With a dynamic ascending attribute A, a propagation rule defines the value of this
attribute for a document component based on the atiribute values of its components.
In this case, we consider that when two related structural units are answers to a
query involving a Dynamic Ascending Attribute, the response should contain only
the greatest according to the order <, (i.e. the deepest component in the logical
structure). This choice corresponds to the selection of the most specific components
of the document that satisfy the query. Since we are in an hyperbase environment,
one have to remind then that from these smallest document components as entry
points (obtained using queries), the user can then decide to browse in the structure
if he needs so.
We name Opt,se the optimization function associated to ascending attributes:

Optase: 295 — 295
¥S € 295, Optose(S) = {os; € S| Bosj € S & 0s; 2 055} €S

This optimization may be implemented using both direct and reverse implica-
tions; this will be illustrated in the next section while considering the important
case of attribute symbolic (which, as all content attributes, is a DAA).

4.5.2 DDAs Optimization

We consider now the case of Dynamic Descending Attributes to determine the best
document chosen when a response contains several related (always relatively to <str)
document components.

50 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

With such attributes, values affected to document components depend on the value
of their parent components. The consequence is then that attribute values of parent
components logically imply those of their descendants in the logical structure. So,
when a structural component of a document satisfies a query involving a DDA,
all its components also satisfy the query. We consider then that in this case, the
optimal response is the parent component, because it constitutes an aggregation
of components that all satisfy the query. For instance, in the context of the DDA
Pub — date, if a Book has a publication date that matches the user's need, we
consider that the book is the optimal answer for the query (as opposite to giving as
response all its components).

The optimization function Optges. for Dynamic Descending Attributes queries,
is then defined as:

Optjese: 205 - 208
VS € 295, Optaese(S) = {o0s; € S| Bos; € S & os; Zgr 085} T8

4.5.3 SAs Optimization

Because the definition itself of a static attribute does explicitly indicates that there is
no dependency of any kind between parts of documents containing these attributes,
no a priori decision can be made to simplify the results of queries dealing with
static attributes. In fact, the documents structure can be used in the same way
as for DAAs when related components match the query; this may occur only when
for some reason the same attribute value has been assigned at different levels of
the same logical structure. We consider then that the best response are the most

specific units (i.e. the lowest in the logical structure). The definition the Optsa, is
then identical to Optaec:

Opts!ﬂf : 203 - 203
VS € 295, Optoya(S) = {os;i € S| Aos; € S & 0s; Zgr 08} €S

4.5.4 Mixed Optimization

A query may combine attribute predicates of various classes; there is then a con-
flictual situation to be solved since, for example, Opt,s. and Optyes. have opposite
optimization strategies. The only way to solve this problem is to define a priority
order among conflictual solutions. Since our overall strategy is to maintain a balance
between the notions of ezhaustivity and of specificity of a response, we tend to favor
the most specific responses that satisfy the query. As a consequence, the proposed
priority order for optimizing responses in conflictual situations is first asc, the desc
and finally stat:

e when a query is of type asc, desc or stat, the corresponding optimization
function is applied (no conflict).

e when a conflictual situation occurs, and if it involves at least an ascending
attribute then function Opt,,. is used,

4.6 The Fetch and Browse approach for DAAs 51

e when a conflictual situation without any DAA occurs, and if it involves at
least a descending attribute then function Optyesc is used,

4.6 The Fetch and Browse approach for DAAs

We describe here a possible solution for implementing function Optasc described
before. The characteristics of dynamic ascending attributes have been described
in section 3 dedicated to the indexing of structured documents. We consider here
again the example of attribute symbolic which belongs to this class. ‘We describe
also the properties of operator @, on index expressions of £L” in a way to ensure
that they satisfy the dependency constraint presented in section 3. In fact, the
dependency constraint is related to the logical approach to IR introduced by Van
Rijsbergen [Rij86], and which is based on the following principle: “given a query
Q and a document D, D is relevant to Q if D logically implies Q”. We do not
focus here on one or another definition of this implication; because we still need to
remain general, but we consider here that the implication involved underlying the
retrieval process is assimilated to —,, the implication between index expressions.
We consider however an interesting extension of Van Rijsbergen’s proposition due to
Nie [Nie90]. This extension proposes to evaluate document relevance based on two
distinct criteria: the direct implication it D implies Qand its reciprocal it Q implies
D. This approach is formulated as follows: “given a query Q and a document D, the
matching R between D and Q is determined by a function F of the exhaustivity of
the document about the query (measured by it D implies Q) and the specificity of
the document about the query (measured by it Q implies D):

R(D,Q) = F[Px(D — Q), Px(Q — D)]

where P, P’ are two functions measuring the implications’ uncertainties, F is a
function that combines these two measures, and K expresses that these implications
are evaluated according to a knowledge base K including domain knowledge and
knowledge about the users. We use in the following these two implication in a way
to find the optimal document components that are responses to Q.

Returning to our context where we base the evaluation of document relevance on
implication —,, we may then translate Nie's proposition as follows:

R(D, Q) = F[Px(D -, Q), Pk(Q =+ D)]

Since we are mainly interested here in some kind of structural optimization of
responses, we ignore at the moment the definitions of uncertainty evaluations P, P’
and F, and we will consider that a document D is relevant to a query Q simply
based on the fact that implications holds.

An important point here is to remind about the optimization strategy: as usual,
many of them could be defined. Considering the impact of structure, our choice
for dynamic ascending attributes is to select the greatest document components
(according to <, they correspond to deepest components in the logical structure)

52 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

that satisfy the exhaustivity criterion. This means that the exhaustivity criterion
has a higher priority rank than the specificity criterion; whenever there is no ideal
solution that satisfy both of them (which will be the most frequent case) we will
then prefer those satisfying exhaustivity. In the following we propose a way to
implement this approach (see also [CK96]), based on the direct use of direct and
reverse implications.

We illustrate this process using the example of the document shown in figure 3
of section 3. This figure shows in its left side the logical structure of a document
D, and only the Chapters and Subsections of this document correspond to index
components (i.e. potential results of queries). We complete this representation in
fig 5 by assigning to index units values of attribute symbolic. We also exhibit in this
figure the dependency constraint —, that exist between index expressions assigned
to Chapters and Subsection.

Q
indext0s2) indexOs).
2 % / | Yh"‘*l}
indexi0s8) index(0s9) index(0s10) index(Os11) index(0s12)

Figure 5: The —, relation between indexes of semantic objects

We describe now the expressions of the indexes (only the final forms of the values
of the index are given):

index(osy) =, 0(0s13) B 8(0s14) ® 5(08g)

index(osg) o 8(0s13) B 6(0s14)

index(osg) =, I(0ss)

index(os;) =, 0(0s15) ® 0(0s15) B d(0s17) B 6(0s1;) @ 8(0s15) B 5(0819)
indez(0s10) =, 6(0s15) B 6(0815) B §(0517)

‘i‘i‘ldﬂl‘(ﬂ&’]]) =g 1(08“}

index(0s12) =, 0(0s18) ® 8(0s19)

Il

Il

As we described in section 3 dedicated to indexing, we have then the following
dependency constraints:

index(os;) —, index(oss)
index(0sy) —, index(osq)
index(os3) —, index(osio)
index(os3) —, index(osy)
index(os3) —, index(osia)

Let us consider the index expression ie; assigned to oss and the index expression
ie, involved in @. Is this object an optimal answer for Q7 To ease the explanation,
we assimilate D to its index expression ie; and its components D; to the index

4.6 The Fetch and Browse approach for DAAs 53

expressions iejg, iey; and iej; respectively assigned to osig, osn and osia. The
following situations may occur when matching D; and @Q:

1. D =, @: the index expressions associated to D and @ are logically equivalent.
This is the ideal case, and component D is an optimal response to @ (i.e., it
satisfies both implications). Though logically possible, this case is of course
certainly rare in actual situations; much frequent are the following cases.

2. not(D —, Q) and not(Q —+, D), which means that D does not satisfy both
exhaustivity and specificity criteria. The document is not relevant for the
query, and so are each of its components (if any). We may assert this due
to the dependency constraint: since Vei;,ei —, ei;, having any ie; —o i€g
would mean, by transitivity of —, that ie —, ieg, equivalent to D —, Q
which contraries the hypothesis. The same reasoning applies to the reverse
implication.

3. D =, Q and not(Q —, D): this case is illustrated by the dotted arrow in
figure 5. The document is relevant to the query considering the criteria of
exhaustivity. This means that the document represented by os3 as a whole
matches the query. Here we have to notice that it might also exist in its
structure a component D; that also matches the exhaustivity criterion (i.e.,
such that D; —, Q); in this case D; would be a better response than D
considering the specificity criterion . Of course if we had also Q@ —, D; we
would match the ideal case described above, but again, this situation will not
occur most of the time. More often what happens when considering a sub-unit
D; falls into one of these two possibilities:

e (D; =, Q) and not(Q —, D;): it is still possible to find a better match
a level down in the indexing structure. This correspond to a brows-
ingsituation.

o not(D; =, Q) and (Q —+, D;): the component does not satisfy any more
the exhaustivity criterion: we have been too deep in the structure and the
component does not satisfy the whole query (it is too restrictive). The
optimal response is either D, the parent component of D;, or an other
descendant D; of D.

4. Q =, D and not(D —+, Q) (see the solid arrow in figure 5): in this case ,
the document is relevant to the query considering the second criterion only.
According to our general strategy, D is not relevant. The query then neces-
sarily also implies all the document’s components (due to the transitivity of
rightarrow,): D being too restrictive for Q, the same applies for its compo-
nents.

So, using both implications as filters, we may find structural objects (index
objects) that are optimal relatively to the proposed optimization strategy. What

54 4 RETRIEVING MULTIMEDIA STRUCTURED DOCUMENTS

is important to notice is that this strategy works because the index objects are
assigned index expressions that satisfy the dependency constraint. Without this
property, it would be impossible to assert any property about possible relevance of
related components, and hence it would have been impossible to optimize anything.
A possible implementation of this approach could be based on a two-steps algorithm:

o Fetch: a preselection of documents is made using the exhaustivity criterion
(D —, Q). This is corresponds exactly to classical retrieval processes on
unstructured documents. Note again that according to the index dependency
constraint, if the index expression of a document does not imply the query,
there cannot be any of its components that implies the query. Hence such
documents may be discarded without any further investigation.

e Browse: the structural objects of the preselected documents are investigated:
this is done in browsing within their logical structure, and using both impli-
cations to select optimal components as described before.

Going back to the query language, one may see how these two implications may
be implemented using basic predicates:

e Fetch: here we have to select documents (i.e. structural objects of minimal
types according to =y, see section 2.2.1), based on the exhaustivity crite-
rion. Using basic predicates, one may check if a given type t; is minimal by
evaluating the query —(3t,)/nfTst(t:,t;). One might then define a query
implementing the fetch operation as:

(—3t1)(3t2) TypeSt(os, t2) A InfTst(ty, ta) A
(Jie) HasValue(os, symbolic, ie) A MatchSymbolic(ie, ie,)

Note that the only result variable is os.

e Browse: when checking the reverse implication, we do not have constraints
about the type of document. The corresponding query is then:

(3ie) HasValue(os, symbolic, ie) A MatchSymbolic(ie,, ie)

Note finally that the whole algorithm may be defined (though in a not optimal
way) by the following query which selects every os satisfying the exhaustivity cri-

terion and having no component that also satisfies this condition (hence being the
optimal structural unit):

(Jie) HasValue(os, symbolic, ie) A MatchSymbolic(ie, ie,) A
(—3os;)Compstr(os, 0s3) A
(Jiez) HasV alue(os,, symbolic, ie;) A MatchSymbolic(ie,, iey)

4.7 Conclusion 55

The query may of course retrieve several optimal components in the same docu-
ment; this is natural considering the implemented optimization strategy. The prob-
lem of displaying them in the most appropriate way (from the users’ point of view),
though out of the scope of this study, is an important matter related to interfaces.
As mentioned before, one have to remind here that:

e We are no longer in the closed world of querying: navigation is also available
at any time, facilitating the access to information closely related to retrieved
objects.

o All retrieved objects are structural objects. This means that the interface
may make full use the logical structure, navigation links to adequately display
the retrieved objects (for example in showing their structural/navigational
relationship).

The approach presented above is applicable to any dynamic ascending attribute
provided of course that the basic requirements about indexing strategy and query
optimization are satisfied.

4.7 Conclusion

In this section we have defined a query language based on a set of predicates and a
resolution mechanism that allow the retrieval of structured documents. The main
features of multimedia data are imported within the framework of this upper-level
model through the basic implication operators noted o, , where o stands for any of
the five Content Attributes defined in section 2. According to the model, we have
focused on hierarchical structures which are of major interest in the context of stan-
dards for document representation and also in the context of hypermedia systems.
We have also investigated the problem of optimizing query responses in avoiding the
production of redundant (relatively to the logical structure) information. Finally, we
have proposed a model and a query language that integrates several complementary
approaches for retrieving information: content-based querying, database querying
and navigation. In our opinion this is extremely useful in the context of complex,
multimedia information. Its major limitation at the moment is that it does not
integrate uncertainty processing. Our purpose then is to complete the model within
WP4 (Integration) in two directions: integration of uncertain information for Con-
tent Attributes, and integration of single-media models (i.e. definition of operators
—4). The first aim will be based on the approach developed by the University of
Dortmund (probabilistic datalog) which is quite close to ours. The second goal will
be developed mainly in our site for texts and graphics, and in collaboration with
IEI-Pisa for the images.

96 REFERENCES
References
[AC95] Anastasia Analyti and Stavros Christodoulakis. Multimedia object mod-

[ACG91]
[AMC95]

[BH94]

[BLC]

[BLC93)]

[Boh9s]
[Bur94]

[CK96]

[CT89)]

[DR93)
[Erf94]

[Halgg]

elling and content-based querying. In Advanced Course Multimedia
Database in Perspective, pages 213-240, Enschede, The Netherlands, June
1995.

M. Agosti, R. Colotti, and G. Gradenigo. A two-level hypertext retrieval
model for legal data. ACM, pages 316-325, 1991.

M. Agosti, M. Melucci, and F. Crestani. Automatic construction of hy-
permedia for information retrieval. Muliimedia Systems, 1995,

Peter D. Bruza and T.W.C. Huibers. Investigating aboutness axioms
using information fields. In ACM SIGIR, tutorial, Dublin, Ireland, July
1994.

T.J. Berners-Lee and D. Connolly. Hypertest Markup Language -
2.0. MIT/W3C. http://www.w3.org/hypertext/WWW/MarkUp/html-
spec/html-spec. toc.html.

T.J. Berners-Lee and D. Connolly. Hypertext markup language - a rep-
resentation of textual information and metainformation for retrieval and
interchange. internet draft, July 1993.

Klemens Bohm. Building a configurable database application for struc-
tured documents. Technical Report 942, GMD-IPSI, September 1995.

Lou Burnard. What is sgml and does it help ? In ACM SIGIR, tutorial
matertal, Dublin, Ireland, July 1994.

Y. Chiaramella and A. Kheirbek. Information Retrieval and Hypertezt,
chapter An Integrated model for Hypermedia and Information Retrieval.
Kluwer Academic Publ., 1996.

W. B. Croft and H. Turtle. A retrieval model for incorporating hypertext
links. In Second ACM Conference on Hypertext (Hypertext’89), pages
213-224, Pittsburgh, USA, 1989. ACM.

M. D. Dunlop and C. J. Van Rijsbergen. Hypermedia and free text re-
trieval. Information Processing & Management, 29(3):287-298, 1993.

Robert Erfle. Hytime as the multimedia document model of choice. IEEE,
pages 445-454, 1994.

F. G. Halasz. Reflections on notecards: Seven issues for the next genera-
tion of hypermedia system. Communication of the ACM, 31(7):836-852,
july 1988.

REFERENCES 57
[Hor85] W. Horak. Office document architecture and office document interchange

[KC95]

[LDHY2)

[MBC95]

[Mec95a]

[Mec95b)

[Mec95c]

[Meg95]
[Nieg0]
[Pax95]
[RF96]
[Rij86)

[Seb94a]

formats: Current status of international standardization. IEEE Computer,
18, November 1985.

Ammar Kheirbek and Yves Chiaramella. Integrating hypermedia and
information retrieval with conceptual graphs. In Conference Hypertest,
Information Retrieval and Multimedia (HIM), Konstanz, Germany, April
1995.

Z. Li, H. Davis, and W. Hall. Hypermedia links and information retrieval.
In 14th Information retrieval Colloquium, pages 169-180, Lancaster, 1992.

Mourad Mechkour, Catherine Berrut, and Yves Chiaramella. Using con-
ceptual graph frame work for image retrieval. In International conference
on MultiMedia Modeling (MMM‘95), pages 127-142, Singapore, Novem-
ber 1995.

M. Mechkour. A conceptual graphics model for inflormation retrieval. In A
model for the semantic content of multimedia data, chapter 3. Deliverable
1, FERMI Esprit BRA project N. 8134, May 1995.

Mourad Mechkour. Emir2: an extended model for image representation
and retrieval. Technical report, Basic Research Action FERMI, n. 8134,
1995.

Mourad Mechkour. A multifacet formal image model for information re-
trieval. In MIRO final workshop, Glasgow, UK., page (to appear), septem-
ber 1995.

Carlo Meghini. A model for image bases and its query facility. In ACM
SIGIR, Seattle, USA, 1995.

J. Nie. An inormation retrieval model based on modal logic. Information
Processing and Management, 25(5):477-491, 1990.

Frangois Paradis. Modeling textual information. Technical report, Basic
Research Action FERMI, n. 8134, 1995.

T. Rélleke and N. Fuhr. Retrieval of complex objects using a four-valued
logic. Technical report, FERMI Esprit BRA project N. 8134, march 1996.

C.J. Van Rijsbergen. A non-classical logic for information retrieval. The
Computer Journal, 29(1), 1986.

F. Sebastiani. A probabilistic terminological logic for modelling infor-
mation retrieval. In W. B. Croft and C.J. Van Rijsbergen Ed., editors,
Proceedings of the Seventeenth Annual International ACM SIGIR Con-
ference on Research and Developments in Information Retrieval, pages
122-130. ACM, Springler Verlag, July 1994.

58

REFERENCES

[Seb94b] F. Sebastiani. A probabilistic terminological logic for modelling informa-

[Tha90]

[TR96]

[WB90]

tion retrieval. Technical report, FERMI Esprit BRA project N. 8134,
March 1994.

C. Thanos. Multimedia Office Filling: The MULTOS Approach. North-
Holland, 1990.

N. Fuhr T. Rélleke. Retrieval of complex objects using a four-valued
logic. In Proceedings of ACM-SIGIR Annual International Conference

on Research and Developments in Information Retrieval, Zurich, August
1996. ACM.

T. P. Van Der Weide and P. D. Bruza. Two level hypermedia: An im-
proved architecture for hypertext. In Springer Verlag, editor, Database
and Ezpert System Application (DEXA’90), Vienna, Austria, september
1990.

