
INSTITUT POLYTECHNIQUE DE GRENOBLE

THESE

pour obtenir le grade de

DOCTEUR DE L’Institut Polytechnique de Grenoble

Spécialité : Informatique

préparée au Laboratoire Informatique de Grenoble

dans le cadre de l’Ecole Doctorale Mathématiques, Sciences et Technologies de

l’Information, Informatique

présentée et soutnue publiquement

par

MUZAMMIL SHAHBAZ, Muhammad

le 12 décembre 2008

TITRE

Reverse Engineering Enhanced State

Models of Black Box Software Components

to support Integration Testing

DIRECTEUR DE THESE

Roland GROZ, Professeur à l’Institut Polytechnique de Grenoble

JURY

M. Jean-Claude FERNANDEZ, Professeur à l’Université Joseph Fourier, Président

Mme. Ana CAVALLI, Professeur à Télécom et Management Sud-Paris, Rapporteur

M. Thierry JERON, Directeur de Recherche à l’INRIA Rennes Atlantique, Rapporteur

M. Khaled EL-FAKIH, Professeur à American University of Sharjah (UAE), Examinateur

M. Doron PELED, Professeur à Bar Ilan University (Israel), Examinateur

M. Alexandre PETRENKO, Chercheur Principal au CRIM (Canada), Examinateur

M. Roland GROZ, Professeur l’Institut Polytechnique de Grenoble, Directeur de thèse

M. Benôıt PARREAUX, Ingénieur de Recherche à Orange Labs Lannion, Co-Encadrant

ii

Acknowledgements

While I remain the only responsible of imprecision and omissions, there are lot of

people to whom I am indebted.

“I would like to thank my PhD advisor” — This sentence is quite common one could

find in acknowledgments. I also tried to write some more appropriate words for the

sake of formality; but honestly, I failed. For a moment, I dabbled into the vast

vocabulary of English, French and even Urdu (my mother tongue). But the words

like Thanks, Merci and Shukria suddenly lost their quality —

Roland Groz, my PhD advisor, deserves the appreciation beyond my capabilities of

expression. He is my mentor, not only for the disciplines of Software Engineering,

but for the disciplines of life. Without his guidance, I would be lost.

Apart from the brainstorming meetings and discussions on the perplexed formal

world of automata learning, I enjoyed with him hiking in summers, skiing in win-

ters and theaters on fine evenings. Above all, I cannot forget those memorable two

weeks which I spent at his home last summer in Lannion. I feel greatly obliged for

the kindness his wife Bénédicte has shown upon me, and for the love of his cheerful

children.

I am grateful to Dr. Keqin Li, SAP Research, with whom I have worked for two

years. His constructive remarks on my work have certainly improved my skills for

writing formal algorithms, proofs and research papers.

I am lucky to receive technical insights from Dr. Alexandre Petrenko, Director

CRIM, with whom I have been in touch on and off during my PhD. His dedication

to research has greatly inspired me, and I am always keen to learn something new

from him. As a remembrance, I shall be keeping the notes in his writing which he

prepared to teach me Reachability Graphs.

I am greatly indebted to the reviewers of my thesis, Prof. Ana Cavalli and Prof.

Thierry Jéron for this painstaking work. Their useful comments and remarks have

certainly improved the quality of the thesis. I am also grateful to Prof. Doron Peled

for the fruitful discussions we had during his visits to Verimag time to time. Also,

I am thankful to Prof. Khaled El-Fakih whose insights introduced me to the appli-

cation of machine learning in specification based testing.

I am warmly thankful to Prof. Yves Ledru, head of Vasco team, Dr. Alexandre

Lefebvre, my manager at Orange Labs, Dr. Benôıt Parreaux and Dr. Wei Monin,

my co-supervisors at Orange Labs for their administrative and technical support.

Also, I am grateful to Dr. Yves-Marie Quemener who has provided me various op-

portunities to speak out at Orange Lab’s platform.

I would like to express my deepest gratitude to my parents Mr. & Mrs. Shahbaz,

whose prayers and continuous support is my gospel of encouragement. Its because

of them I have attained this position. I dedicate this thesis to them.

PhD requires lot of energy, especially when one is miles away from his family and

homeland. I received recharging and vitality for this research through the social

aspect of my life. I owe my sincere thanks to my friends Pakistanais and Grenoblois

for their loving support in low and high times.

This research is funded by France Telecom R&D / Orange Labs under the CIFRE

scholarship program. I would like to convey my special thanks to the organization

for its confidence in me.

Abstract

Component based software engineering has gained a strong momentum in software

industry that facilitates the building of complex systems using prefabricated com-

ponents, aka COTS. A challenging issue in this discipline is to deliver quality of

service while integrating COTS from various sources. The system designers require

specifications or models of the components to understand their possible behaviors in

the system. When components come from third-party sources, the specifications are

often absent or insufficient for their formal analysis. Such components are termed

as black boxes in literature.

The thesis addresses the problem of uncovering the behaviors of black box software

components to support testing and analysis of the integrated system composed of

such components. Typically, we propose reverse engineering techniques to infer finite

state models of the components and base the approach of testing and analyzing the

system on the inferred models.

We start by studying the inference of Mealy machine models in the settings of active

learning theory and propose improvements in the existing algorithm to bring down

the learning complexity. Later, we provide a framework for testing and analyzing

the integrated system of black box Mealy components using the inferred models.

The thesis also proposes solutions for learning enhanced state models to cope with

the problem of modeling complex systems. Such systems contain components that

exchange lots of input and output parameters from arbitrary domains. We propose

a parameterized model and an algorithm to infer such models from a black box

component.

We present our tool RALT that implements the reverse engineering techniques and

the integration testing framework. The approach has been validated on various case

studies in the domain of France Telecom that have produced encouraging results.

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Component Based Software Engineering . 2

1.2.1 Notion of a Component . 2

1.2.2 Challenges in the Integration of COTS . 3

1.3 DoCoMo: A Motivational Example in France Telecom 6

1.4 The Approach of Learning and Testing . 6

1.4.1 Learning Finite State Machines . 8

1.4.2 Analyzing Integrated Systems using Learning and Testing 9

1.5 Hypotheses and Scope . 10

1.6 Thesis Organization . 14

2 Definitions, Notations and Models 15

2.1 Finite State Models . 15

2.1.1 Deterministic Finite Automaton . 15

2.1.2 Mealy Machine . 16

2.1.3 Parameterized Finite State Machine . 18

2.2 Quotient of Finite State Machines . 19

2.2.1 Quotients for Mealy Machines . 20

2.2.2 Quotient for PFSM models . 21

2.3 General Notations . 21

3 Background and Related Work 23

3.1 Introduction . 23

3.2 Passive Automata Learning and Testing . 24

3.2.1 Theoretical Results . 24

3.2.2 Applications . 25

3.3 Active Automata Learning and Testing . 27

vii

3.3.1 Theoretical Results . 27

3.3.2 Applications . 28

3.4 Learning Enhanced State Models . 34

3.5 Discussion . 35

3.5.1 Summary . 35

3.5.2 Our Work in Learning and Testing . 36

3.5.3 Extended Work . 38

3.5.4 Main Contributions . 38

4 Deterministic Finite Automaton Inference 41

4.1 Learning Algorithm for DFA . 41

4.1.1 Observation Table . 42

4.1.2 The Algorithm L∗ . 45

4.1.3 Learning with oracle . 45

4.1.4 Complexity . 47

4.1.5 Example . 47

4.2 Variants of L∗ . 51

4.2.1 Proposition of Rivest & Schapire . 51

4.3 Conclusion . 53

5 Mealy Machine Inference 55

5.1 Motivation . 55

5.2 Learning Algorithm for Mealy Machines . 56

5.2.1 Observation Table . 57

5.2.2 The Algorithm LM
∗ . 59

5.2.3 Example . 60

5.2.4 Processing Counterexamples in LM
∗ . 61

5.2.5 Complexity . 62

5.2.6 Example . 63

5.3 Improvements to Mealy Machine Inference . 63

5.3.1 Motivation . 65

5.3.2 The Algorithm LM
+ . 65

5.3.3 Processing Counterexamples in LM
+ . 66

5.3.4 Correctness . 67

5.3.5 Complexity . 68

5.3.6 Example . 69

viii

5.3.7 Discussion . 69

5.4 Relation of MM with M . 71

5.5 Discussion on Processing Counterexamples in L∗ 72

5.5.1 Required Changes in the Observation Table 73

5.5.2 Complexity . 74

5.6 Application: The HVAC controller . 75

5.6.1 Description . 75

5.6.2 Inference of the HVAC controller . 76

5.7 Conclusion . 78

6 Integration Testing 79

6.1 Motivation . 79

6.2 The Integrated System . 80

6.2.1 System Architecture . 80

6.2.2 Formal Model of a Mealy System . 81

6.2.3 Product of Mealy Components . 82

6.3 The Approach of Learning and Integration Testing 84

6.3.1 Step 1: Learning Components with Restrictive Input Sets 86

6.3.2 Step 2: Computing and Analyzing the Product 87

6.3.3 Step 3: Refining the Product . 90

6.3.4 Step 4: Finding Discrepancy between the Product and the System 92

6.3.5 Step 5: Resolving Discrepancy . 93

6.3.6 Termination Criteria . 95

6.4 Conclusion . 96

7 Parameterized Machine Inference 99

7.1 Motivation . 99

7.2 Learning Algorithm for PFSM models . 100

7.2.1 Observation Table . 102

7.2.2 The Algorithm LP
∗ . 110

7.2.3 Processing Counterexamples in LP
∗ . 113

7.2.4 Correctness . 114

7.2.5 Termination . 115

7.2.6 Complexity . 116

7.3 Relation of MP with P . 117

7.4 Application: The HVAC Controller . 118

ix

7.4.1 Inference of the HVAC Controller . 118

7.4.2 Comparison of Mealy and PFSM learning 118

7.5 Conclusion . 121

8 Parameter Function Inference in PFSM models 123

8.1 Motivation . 123

8.2 Approach . 124

8.3 The Daikon Invariant Detector . 124

8.4 Example . 125

8.5 Conclusion . 127

9 Tool and Case Studies 129

9.1 RALT: Rich Automata Learning and Testing . 129

9.2 Case Studies . 133

9.2.1 Edinburgh Concurrency Workbench . 134

9.2.2 Air Gourmet . 138

9.2.3 Nokia 6131 . 141

9.2.4 Domotics . 146

9.3 Conclusion . 150

10 Conclusion and Perspectives 151

10.1 Summary of the Thesis . 151

10.2 Note on Publications . 153

10.3 Future Directions . 155

10.3.1 Learning Variable Approximations . 155

10.3.2 Learning Nondeterministic Machines . 156

10.3.3 Test Generation Methods for Model Refinements 156

10.3.4 Integration Framework for PFSM Components 156

10.3.5 Testing Security Violations . 157

10.3.6 Experiments with Complex Systems . 157

10.4 Lessons Learned . 158

10.5 Ending Note . 159

A Proofs of the PFSM Algorithm 161

B Models of the Domotics Case Study 167

Bibliography 171

x

List of Figures

1.1 Learning and Testing Approach . 7

1.2 Learning and Testing Approach for an Integrated System 11

2.1 Example of a Deterministic Finite Automaton . 16

2.2 Example of a Mealy Machine . 17

2.3 Example of a Parameterized Finite State Machine 20

3.1 The learning and model checking procedure of Black Box Checking 30

4.1 Concept of the Learning Algorithm L∗ . 42

4.2 Example of a Deterministic Finite Automaton . 48

4.3 The conjecture MD
(1) from Table TD(2). 48

4.4 The conjecture MD
(2) from Table TD(4). 49

4.5 The conjecture MD
(3) from Table TD(6). 50

5.1 Example of a Mealy Machine . 60

5.2 The conjecture MM
(1) from Table 5.2 . 60

5.3 Conceptual view of the method for processing counterexamples in LM
+ 66

5.4 Example of a DFA for illustrating our method of processing counterexamples in L∗ 73

5.5 DFA Conjecture from Table 5.5 . 73

5.6 Global diagram of the HVAC system . 76

5.7 Mealy Machine conjecture of the HVAC Controller 78

6.1 Architecture of the Integrated System of n Components 82

6.2 Example of the Mealy System Sys. 83

6.3 Components M and N of the System Sys in Figure 6.3. 83

6.4 The product
∏Sys of components M and N . 84

6.5 Learning and Testing Approach for an Integrated System 85

6.6 The model M (1) from Table 6.1. 88

xi

6.7 The model N (1) from Table 6.2. 88

6.8 The product
∏(1) of the learned models M (1) and N (1). 90

6.9 The model N (2) from Table 6.3. 92

6.10 The product
∏(2) of the learned models M (1) and N (2). 93

6.11 The model M (2) from Table 6.5. 95

6.12 The product
∏(3) of the learned models M (2) and N (2) 96

7.1 Idea of collapsing rows and columns in the Observation Table for PFSM 101

7.2 Illustration of Property 4 . 106

7.3 Illustrations of Property 5 and Property 6 . 112

7.4 PFSM conjecture of the HVAC Controller . 120

8.1 PFSM model of the counter and its conjecture 125

8.2 Daikon output for the observed counter values recorded in Table 8.1 126

9.1 Global Architecture of RALT 4.0 . 130

9.2 Libraries for Learner and Test Generator . 131

9.3 Settings for learning CWB examples with RALT 135

9.4 Conceptual view of the Air Gourmet System . 139

9.5 Mobile Media Player Life Cycle . 142

9.6 PFSM model for the Media Player of Nokia N93 and Sony Ericsson W300i . . . 144

9.7 Conceptual view of the settings of the Domotics system with RALT 148

9.8 Setup of the Domotics System . 149

A.1 Explanation of Lemma 5 . 162

A.2 Realization of Lemma 6 and Lemma 7 . 164

B.1 Light System (ProSyst) (X10 Device) . 167

B.2 Media Renderer Streamium400i (UPnP Device) 168

B.3 Interaction model of the devices in the Domotics System 169

xii

List of Tables

3.1 Summary of the works in Active Learning and Testing Approach 36

4.1 Example of the Observation Table (SD, ED, TD) 43

4.2 The Observation Table TD(1) . 48

4.3 The Observation Table TD(2). 48

4.4 The Observation Table TD(3) . 49

4.5 The Observation Table TD(4). 49

4.6 The Observation Table TD(5) . 50

4.7 The Observation Table TD(6). 50

5.1 Example of the Observation Table (SM , EM , TM) 58

5.2 Closed and Consistent Observation Table (SM , EM , TM) 60

5.3 The Observation Tables (SM , EM , TM) after processing the counterexample using

the adapted method from L∗ . 64

5.4 The Observation Tables (SM , EM , TM) after processing the counterexample using

the improved method . 70

5.5 Observation Table for learning the DFA in Figure 5.4 73

5.6 Filling the Observation Table with ΛD . 74

5.7 Filling the Observation Table with λD . 74

5.8 Closed (and Consistent) Observation Table for learning a Mealy machine model

of the HVAC controller . 77

6.1 Closed Observation Table for M (1). 88

6.2 Closed Observation Table for N (1). 88

6.3 Closed Observation Table for N (2). 92

6.4 List of anomalies for automatic checking during the integration testing procedure 94

6.5 Closed Observation Table for M (2). 95

xiii

7.1 Example of the Observation Table for learning a PFSM model of the HVAC

controller . 104

7.2 Balanced and Dispute-free Observation Table for learning a PFSM model of the

HVAC controller . 104

7.3 Balanced, Dispute-free and Closed Observation Table for learning PFSM model

of HVAC controller . 119

8.1 Balanced, Dispute-free and Closed Observation Table for the counter 126

9.1 Comparison of LM ∗ with LM
+ on the examples of CWB workbench 137

9.2 Results of the Air Gourmet System . 140

9.3 Settings for Media Player Test Driver . 143

9.4 The details of the devices in the Domotics prototype 147

xiv

List of Algorithms

1 The Algorithm L∗ . 46

2 The Algorithm LM
∗ . 62

3 The Algorithm LM
+ . 68

4 The Algorithm LP
∗ . 114

xv

xvi

List of Definitions

Definition 1 . 15

Definition 2 . 16

Definition 3 . 17

Definition 4 . 18

Definition 5 . 20

Definition 6 . 20

Definition 7 . 20

Definition 8 . 20

Definition 9 . 21

Definition 10 . 21

Definition 11 . 43

Definition 12 . 58

Definition 13 . 105

Definition 14 . 105

Definition 15 . 106

Definition 16 . 106

Definition 17 . 107

Definition 18 . 107

Definition 19 . 108

Definition 20 . 108

Definition 21 . 110

xvii

xviii

Chapter 1

Introduction

“Before we trust a component, we must be able to determine, reliably and in advance,

how it will behave.” — Computer, IEEE Computer Society Press 1999

1.1 Overview

Component Based Software Engineering has gained a strong momentum in many sectors of the

software industry. The main reason of its prevalence is that it reduces the cost of developing

complex systems by reusing the prefabricated pieces of software, called components-off-the-

shelf (COTS) or third-party components, instead of developing the systems from scratch. As

a consequence, most large-scale systems such as telecom services, web-based applications, data

acquisition modules etc, are now-a-days based on the integration of COTS.

One of the most open challenges in using COTS is to deliver the quality of service. The

system designers require specifications or models of the components to understand their possible

behaviors in the system. Precisely, they want to check the possible interactions between the

components to avoid any unexpected situation in the later run of the integrated system. In

general, Model Driven Engineering (MDE) approaches are applied as a major mode that pro-

vide rigorous techniques for specifying, designing, analyzing, testing and verifying the system.

However, it is a quite common situation that where MDE techniques are desirable, the specifi-

cations or the formal models of those components are not available. Even if they are available,

they do not provide enough information that could be useful to drive formal techniques. More-

over, maintaining the specifications of COTS is unrealistic because they evolve over time that

quickly invalidates the original design sketches. The need of specifications or formal models as

a prerequisite in using COTS is a daunting prospect to the designers of large-scale systems. In

industry, they mostly rely on informal and incomplete information to evaluate the quality of

the overall system.

1

Our research focuses on devising techniques to uncover the behaviors of components which

lack specifications or formal models, and facilitate the analysis of the integrated system com-

posed of such components. Typically, we extract the finite state models from the components

using (active) learning techniques and provide a framework to test the integrated system using

the extracted models. We also propose solutions of learning enhanced state models to cope with

the problem of modeling complex systems. Our approach is validated on various case studies

provided by France Telecom R&D, that have produced encouraging results.

This chapter is the introduction to the thesis. Section 1.2 provides the general concepts of

the problem we have addressed. Section 1.3 presents a motivational example in France Telecom

R&D in the context of the thesis. Section 1.4 describes the global approach, hypotheses and

scope of the research. Finally, Section 1.6 outlines the organization of the thesis.

1.2 Component Based Software Engineering

The interest in Component Based Software Engineering (CBSE) is increasing in both academia

and industry as witnessed by the escalation of devoted conferences [CPV03] [SCHS07], journal

issues [Rav03] [CSSW05], books [Szy02][GTWJ03] and forums [OCA] [OMG], just to cite a few.

Apart from these research platforms, many new technologies have been established to support

the deployment and execution of component based systems, e.g., Java EE [Mic], .NET [.NE],

CCM [CORa], OSGi [All].

CBSE is the process of integrating components and make them interacting as intended. It

promotes rapid system development by facilitating component reuse, but components may need

to be tuned according to the system requirements before they are actually used. In fact, the

components come from different sources and have been developed in different environments.

Therefore, the capability of components to be adapted and configured according to the desired

environments is important for the success of the CBSE approach. In the following, we discuss

the approach in more detail, by first giving the notion of a component and then an overview

over the challenges in the integration of components.

1.2.1 Notion of a Component

It will be interesting to discuss the notion of a software component before understanding the

challenges in the subject. The widely accepted definition of the component comes from Szyperski

et al [Szy02].

2

“A software component is a unit of composition with contractually specified inter-

faces and explicit context dependencies. A component can be deployed indepen-

dently and is subject to composition by third parties.”

This definition covers the different peculiar aspects of a component, i.e., “unit”, “interface”

and “composition”. A component can be plugged into a system as a unit, with its features

accessible via its defined set of interfaces and it communicates with other components in the

composition for its services to the integrated system. The above definition also points to the

component source, i.e., third party. The component is actually deployed by the system inte-

grating organizations different from the developing organizations.

Since the components come from different sources, it is quite normal that they are not pro-

vided with specifications and technical corpora. Even if some documentation is provided, it

is not sufficient for the component users to understand its behaviors completely. The docu-

mentation usually provides a high level description of the component and limited to syntactic

definitions of its interfaces. Moreover, components continuously evolve over time to incorpo-

rate additional requirements. They are inherently difficult to understand and maintain due

to their size and complexity. As long as, their long evolution history hinders in keeping their

specifications up-to-date.

The implementation of a component is typically not exposed, rather only textual abstractions

are attached as its interface specifications so that it can be plugged in the system. The signature

of the interfaces and the basic set of inputs to the components are provided, but the source

code or complete functional behavioral descriptions are often unavailable. The user simply

benefits from the component functionalities without knowing anything about its underlying

implementation details. In literature, the terms black box, gray box and white box are used

with reference to different levels of closure of the component internal essence. In particular,

a black box component does not disclose anything about its internal design, structure and

implementation, whereas its opposite side, a white box component is completely exposed to its

user. In between, there may exist different levels of grey box components depending upon how

much details are available.

1.2.2 Challenges in the Integration of COTS

We discuss some of the challenges in the integration of COTS that are related to our work, di-

rectly or indirectly. We refer to the works [Har00][CCC+02][GTWJ03][Ber07] for comprehensive

discussions on the topic.

3

Understanding the Component Behaviors

The most common problem in using COTS is the unfamiliarity of their behaviors and functions.

As a first principle, the designers seek for technical corpora for the components and consult

the related documentations and manuals for their understanding. In order to apply more

formal approaches and MDE techniques, they obtain specifications and/or source codes and

then perform activities under white-box framework such as static analysis [ALSU06], program

slicing [Tip95], invariant detection [ECGN01][HL02], model extraction [NE02][WBH06], unit

testing [Corb][JUn], validation [GEH05] and verification [CGP00].

Most of these techniques become ineffective when black box components are under consid-

eration. Understanding the behavior and testing of such components is a challenging task, due

to the unavailability of their source codes, updated specifications or formal models. Conse-

quently, the practice of behavior analysis in industry is presently conducted in an ad-hoc way,

either relying on human insights or using heuristic strategies based on incomplete information.

Normally, the designers test the system on few known scenarios and make a judgment about

its quality by observing its global behavior and matching it with their informal requirements

[CJ02][GTWJ03].

Analyzing the Component Interactions

When the system is built with several components, it is important to ensure that the components

that are developed separately, work properly together. Since the components are developed

under different environments and may not be specialized for the particular environment where

they would be integrated, there could be many interactions between the components which are

undesirable and which could affect the features of each other. Moreover, the system may suffer

from compositional problems such as deadlocks, livelocks and other behavior incompatibility

and interoperability issues due to the interactions. The consequences of such interactions can

range from minor irritations to complete system failures. At this stage, the designers turn their

focus towards integration testing to analyze interactions in the integrated systems. There is also

a research area, called Feature Interaction [CKMRM03], that aims to find ways of detecting as

well as resolving feature interactions in the system.

There are several frameworks (e.g., [OHR01] [Edw01] [WPC01] [WCO03] [MPW04] [CLW05])

which are proposed to handle the interactions between the components during the integration

phase. The designers use tools (see [BfCE04]) that generate interaction graphs [WPC01], which

are useful to analyze the interactions with MDE techniques. However, the problem is complex

in the black box context where these techniques are not directly applicable due to unavailability

of source code and specifications. Moreover, the interpretation of each interaction as “good” or

4

“bad” is not trivial. The interactions can be checked automatically if the expected behaviors

of the system are written formally. When expected behaviors are unspecified or specified in a

way that does not allow automated checking, then the interactions are checked manually which

is notoriously difficult and time-consuming. If some expected i/o behaviors in the system are

given in terms of scenarios in which the designer expresses “should” or “should not” require-

ments [BB98], then the scenarios can be checked on the system through testing and violations

can be detected. When no expected behaviors are available in a formal shape, the designers

often rely on anomalies such as system crashes [MFS90] [KKS98], or uncaught exceptions [CS04]

as symptoms for unexpected behaviors.

Validating the System

The validation of the integrated system requires conformance of the behaviors of the system

according to the requirements. Formally, this phenomenon is referred as Conformance Testing

or Fault Detection Problem in software validation community [LY96]. Ideally, we are given a

complete specification and a system (composed of black box or white box components) and we

test to determine whether the system is a correct implementation of the specification. Other

faces of system validation include evaluating the robustness to stressful load conditions or ma-

licious inputs, or measuring given attributes such as performance or usability, or estimating the

operational reliability, and so on.

The validation of the integrated system is a complex problem because of the quite obvious

fact that testing can never be exact [Dij70]. The challenges of test selection and applying

adequate testing strategies to identify the potential faults in the system are still alive. In

addition to the warning that even though many tests passed, the system can still be faulty,

provides little guidance what we can conclude about the system after having applied those

tests. Going even further, how we can dynamically tune up our testing strategy as we proceed

with accumulating test results, taking into account what we observe from the system in the

result of testing. Especially in the case of black box context, how we could guess that the tests

have explored all the state space of the system and all possible behaviors have been checked.

In theory and practice, we rely on some underlying assumptions, or system approximations, to

conclude that the system is sufficiently tested. If we perform exhaustive testing according to

the approximations, then from successfully completing the test campaign we could justifiably

conclude that the system is correct. That is, we still know that the system could be faulty, but

we also know that we have assumed to be true with respect to the approximations [Ber07].

5

1.3 DoCoMo: A Motivational Example in France Telecom

This PhD thesis was proposed by France Telecom R&D due to the known problems in CBSE

which its designers have experienced in the past. We provide here a motivational example which

was recently experienced before the proposal of the thesis was officially triggered.

In 2004, France Telecom acquired a gaming component from NTT DoCoMo Inc., a Japanese

mobile software components maker. The component was integrated into the mobile phones

and distributed in the market. Later, a complaint was reported that the users of the phones

occasionally experience credit loss.

An investigation was carried out by the test engineers who revealed after several experiments

that it was the gaming component that was causing the credit loss. They found a new behavior

in the component which was previously unknown to them. Actually, when a user starts a game

session, the component connects the user to internet and communicates with the Docomo’s

gaming server. At the end of the session, the component uploads the user’s scores to the server.

When the phone is connected to the internet, the user is charged according to the service tariff.

This was a classic black box component integration problem that was emerged due to i) an

unknown behavior of the component, and ii) an underlying interaction with the web service

module of the phone. Since the behavior was unknown to the users, the deduction of credit was

considered an anomaly in the phones. In fact, Docomo has implemented this behavior to keep

record of its international users and their scores history. However, the implementation was not

specified in the documentation provided with the component.

(courtesy: Benôıt Parreaux, Orange Labs, Lannion)

There is a similar kind of problem concerning the media player of mobile phones, on which

we have demonstrated how our approach of reverse engineering can tackle such problems. In

the explanation of the case studies in the thesis, we shall discuss the specified problem and the

illustration of the approach on the problem in details.

1.4 The Approach of Learning and Testing

One of the major promising approaches to the problem of understanding the black box com-

ponents is to extract their models from their observations. There are various mechanisms to

collect the observations, either passively, i.e., by monitoring the component while it is running,

or actively, i.e., by stimulating the component through testing. Then, certain machine learning

techniques [KV94] [CW98] are used to infer the models that are consistent with the observa-

tions. These models are then used in the MDE techniques to generate tests for validating the

6

components. It is important to note that the application of testing in this context is not only

meant to uncover faults but also to uncover the unknown component behaviors by applying

testing techniques.

The approach of extracting models from observations is not so simple. Although the learning

techniques provide models that are consistent with the observations, they do not always provide

the precise models. In general, it is unknown what amount of observations would be sufficient

to deduce the complete model of the black box component. Normally, several iterations are

required in which tests are generated from the learned model, then the component is tested to

compare its corresponding behaviors with the learned model. When new observations in the

result of testing find a discrepancy in the behavior comparison, then the observations are used

to refine the model, again by using the learning techniques. The general approach is illustrated

in Figure 1.1.

Figure 1.1: Learning and Testing Approach

It is a feedback loop between learning and testing in which the tests are generated from the

learned models, then the learning techniques receive feedback from the tests, and then models

are refined based upon new observations. In the next iteration, better tests are generated from

the refined models and the loop starts again. The termination of the feedback loop could be

based on different strategies, e.g., when certain properties on the models and components are

satisfied, or when the assumptions on the model completeness are observed, or when the test

adequacy criteria are achieved etc. Globally, this approach of learning and testing fulfills two

purposes i) understanding of the behaviors of the components by deriving their approximate

formal models (reverse engineering), and ii) analyzing the components by testing them using

their learned models (validation). The main limit of this approach is the complexity of learning

complete models [KV94] [PVY99]. In most cases, the learned model appears to be a partial

representation of the complete behavior spectrum of the black box component. However, the

partial models are generally acceptable to carry out the validation activities in practice [Ber07].

7

The rationale behind the feedback loop is that if the tests find discrepancies between the partial

learned models and the actual component, it is likely that the tests exercise a new behavior

of the component that was not uncovered so far [XN03]. Therefore, it greatly enhances the

confidence when refined models are used to validate the components.

In our work, we exploit the use of learning and testing approach for component based sys-

tems. We propose solutions in two main directions: i) the components are learned as enhanced1

finite state machines by adapting the existing learning algorithms, ii) the integrated system of

those components is tested and analyzed using their learned models. Thus, we are providing

a framework of testing and analyzing the integrated system of black box components using

enhanced finite state models. In the following, we provide an overview of the two directions.

The different parts of the approach in each direction are explained formally in their dedicated

chapters (see Section 1.6 for the organization of the thesis).

1.4.1 Learning Finite State Machines

We extract the models of the components as finite state machines which can represent the

precise descriptions of the component behaviors formally, and therefore, can be used in various

MDE techniques. We propose algorithmic solutions of learning finite state machines, based on

the existing works in grammatical inference [KV94], and propose improvements to tackle their

complexity. In fact, the learned models are just the approximations of the real components.

Our focus is to abstract the control part of the component and extract its structural and design

information in a formal representation. We do not envision to deduce complete models of

the components, which is impossible without having some strong assumptions on the hidden

structure, such as knowing the upper bound on the number of states of the black box component

[PVY99]. Apart from the assumptions, it is impossible in practice to find a precise model of

the component which is usually far too large and, as results from the study of the application of

the learning theory indicate [BJLS05], too time-consuming to obtain and to manage. It is also

important to note that we are dealing with the integrated system in which components depend

upon each other for their working. Normally, only some parts of the component functionalities

are exercised in the system. So, we believe that learning complete models is not necessary in

the integration framework. We aim to learn models that are approximate enough to represent

the general behavioral spectrum of the black box components so that the system designer could

depend upon objective data (the known set of observations from the systematic testing of the

1The term “enhanced” refers to a richer structure of Finite State Machines, in which transitions are labeled

with inputs and outputs along with parameter values. The different enhanced models we are dealing with are

presented in Chapter 2

8

components) rather than relying only on intuitions and experiences for satisfying their informal

requirement specifications.

The other major focus of this direction is the learning of enhanced state machine models.

Actually, the interactions between components consist of inter-component procedure calls (in

a synchronous environment) or message passing (in an asynchronous environment). In both

cases, the interactions are structured with a type (name of procedure or message) and pa-

rameters exchanged. It is observed that typical interoperability problems in the component

integration framework emerge due to exchange of parameterized data from arbitrarily complex

domains. The modeling of such components with simple finite state machines is inadequate

which cannot capture the fine granularity of the component. Also, such components typically

have formidable size of inputs, but they usually show similar behaviors on a subset of inputs.

Learning such behaviors with fewer inputs and representing them in a compact model can tackle

the complexity of the learning algorithm. Under this view, we propose the inference adapted to

a representation of parameterized interactions of the component. This representation is referred

as a parameterized finite state machine (PFSM) in the thesis.

1.4.2 Analyzing Integrated Systems using Learning and Testing

We use classical divide et impera strategy, i.e., the large and complex integrated system is

disassembled into individual components, where each component is tested separately to learn

its model and then the complete system is taken into account for integration testing using the

learned models of all the components. The different steps of the learning and testing procedure

are described as follows:

Step 1: All the components in the integrated system are learned in isolation so that the finite

state models of each component are extracted.

Step 2: The learned models of each component are composed to make a product that is ana-

lyzed for compositional problems such as deadlocks and livelocks in the system. We can

find a witness to such problems in the product of the learned models through validation

techniques.

Since the product of the learned models is an approximation, the witness of the problem

in the product may not actually exist in the actual system. In other words, it can be just

an artifact due to the partiality of the models. Therefore, we confirm the problem on the

system by simply experimenting the witness. If the experiment produces the problem in

the system then we terminate the procedure by reporting the problem. Otherwise, the

9

witness is a discrepancy between the product and the actual system. In this case, the

witness is treated as a counterexample for the product.

Step 3: When a counterexample for the product of learned models is found, the counterexample

is broken down for each component to identify the components whose partial models

caused the discrepancy between the product and the actual system. Then, the identified

components will be relearned using their relative counterexamples and their refined models

will create a new product (following step 2).

Step 4: Once the product of the models is obtained that contains no compositional problems,

thanks to the steps 2 and 3, the product serves as an input to MDE techniques for the

purpose of analyzing, testing and validation of the integrated system. In fact, the product

is a finite state machine, so several testing strategies from existing works can easily be

used in our case. The generated tests may find more discrepancies between the product

and the system, since the product may still not be a correct representation of the system.

Step 5: We resolve the discrepancies found in the previous step by classifying it as an error in

the system or an artifact of the learned models. The discrepancies may uncover system

integration faults such as components behavioral compatibility issues, unexpected inter-

actions, system errors due to crash or uncaught exceptions etc. In this case, we terminate

the procedure by reporting the potential faults in the system. Otherwise, the discrepancy

is an artifact, so we proceed for step 3 to refine the product by considering the discrepancy

as a counterexample for the product.

The procedure of integration testing terminates when a compositional problem in the system

is confirmed (step 2), or when the generated tests do not find any discrepancies between the

product and the system (step 4), or when the real errors in the system are found (step 5). The

flow of the procedure is given in Figure 1.2.

1.5 Hypotheses and Scope

The hypotheses and the scope of our work are given point wise as follows.

System of communicating components: The integrated system consists of several compo-

nents which communicate with the system’s environment and with each other via matching

input and output symbols. Thus, a component has input/output behaviors, i.e., when re-

ceiving an input it produces the corresponding output to its environment. The input

and output symbols are associated with parameters that represent the values exchanged

10

Figure 1.2: Learning and Testing Approach for an Integrated System

during the component interactions. The typical examples of such systems are telecom

services (e.g., call center solution), web-based applications, data acquisition modules and

embedded system controllers. As a concrete example, suppose a traveler agent system that

consists of a hotel database component and a user interface component. The database

component receives a city name from the interface component and provides a list of hotels

in the city in response. Then, the city name is the input symbol and (Paris) is a possible

input parameter value. Similarly, the hotel list is the corresponding output symbol and

(Hilton, Sheraton, ...) is a possible output parameter value.

System architecture is known: The architecture of the system is known, i.e., we know how

the components are bound together through their interfaces. Moreover, the system can be

disassembled and reintegrated whenever it is required. This assumption is obvious from

11

our context where the designer knows how to integrate third-party components but does

not know the possible interactions between the components and actual ordering of events

etc, once the system is integrated. As an example, the designer knows how to bind the

hotel database component with the user interface component, but unaware of the possible

behaviors on different inputs to the traveler agent system.

Components are black boxes but their inputs are known: The components in the sys-

tem may have different levels of exposure depending upon how much information about

them is available. In our approach, we consider that all components are black boxes, i.e.,

their functional specifications and implementation details are not available. We do not

assume a priori given behavior traces of the components or oracles, often presumed in

traditional model learning. However, we assume that the input/output interfaces of the

components are known and observable. This means we know the basic set of input symbols

that can be given to a component through its input interfaces, and for each input, the

corresponding output of the component can be observed through its output interfaces.

The parameter domains for the input symbols are also known. For example, we know

that the hotel database component receives input symbols such as city name, room type,

check-in date, number of nights etc. We also know that the parameter domain for

city name is the name of a city, e.g., Paris, London, ... etc, for room type is the type

of rooms, e.g., single, double, ... etc, for check-in date is a value of type date, for

number of nights is a positive integer.

Invalid inputs may be observed dynamically: According to the previous assumption, we

know the set of possible input symbols to a component. However during the testing proce-

dure, we may be able to observe which inputs are valid to be given at the current step and

which are invalid. For example, the user interface of the travel agent system may consist

of multiple web pages. At the first page, it receives only city name; then it transfers to

the second page for the next input and so on. In this case, all inputs except city name

are invalid on the first page. This knowledge can be used during the learning of the

component.

Components as finite state machines: The component exhibits regular behaviors, i.e., the

component can be modeled as a finite state machine. We intend to learn only the behav-

iors prescribed by the control structure of the finite state model. Moreover, we do not

assume to know the upper bound on the number of states in the components. Instead of

hunting for exact learning, we aim to learn approximate models that are expressive enough

to provide powerful guidance for testing and to enhance the behavior understanding of

12

the components, and thus, of the system. Another important prerequisite for this ap-

proach is the deterministic property of the component for reproducible and unambiguous

interpretation of the test results.

Formal description expected behaviors are unavailable: We do not assume the provi-

sion of formally described expected behaviors by the designers. In practice, expected

behaviors often do not exist for automatically checking the errors in the system. If some

expected i/o behaviors are given in terms of scenarios, then scenarios can be checked

on the learned models, or on the product of the learned models, and violations can be

detected. However, even if scenarios are not available, then we rely on the detection of

anomalies in the system, such as system crash or uncaught exceptions. In practice, such

anomalies can be detected automatically.

Issue of output delays is overlooked: There may be some cases where the system’s reac-

tion to a given input consists of more than one outputs. Those outputs are produced with

some delay and may occur after giving the next input to the system. Usually, functional

testing does not care for exact timings and so delays do not matter much. But it is very

important to identify the correct outputs of the input which triggered them. Thus, it

is a common practice to wait after each input to collect all its corresponding outputs.

Most often, appropriate timeouts are applied to ensure that the system has produced all

outputs and settled in a “stable” state. In our settings, we overlook the issue of adding

the delays in testing. In practice, this is considered as an implementation detail of the

test drivers, which actually send the inputs from the environment to the system (or to the

component) and send the corresponding outputs back to the environment.

Focus on functional aspects: We keep our focus on behavior learning and studying the in-

teractions between the components and their functional aspects in the system. We are

not dealing with other details, for instance, timing, performance and security issues in the

system. However, we shall provide clues in the conclusion (Chapter 10) how to take such

issues into consideration as a possible extension to our approach.

13

1.6 Thesis Organization

The organization of the thesis (excluding this chapter) is given as follows.

State Of The Art

� Chapter 2: provides the basic definitions and notations which are used globally in

the manuscript. It describes the kinds of finite state models and the formal notion of

their approximations, which will be used in the subsequent chapters. The different

finite state models we are dealing with are:

– Deterministic Finite Automata

– Mealy Machines

– Parameterized Finite State Machines

� Chapter 3 overviews the background work and surveys the state-of-the-art in the

domain of learning and testing.

� Chapter 4 is the continuation of the state-of-the-art but dedicated to the inference

of Deterministic Finite Automata.

Contributions

� Chapter 5 discusses the inference of Mealy Machines.

� Chapter 6 provides a framework for testing the integrated systems of Mealy compo-

nents.

� Chapter 7 discusses the inference of Parameterized Finite State Machines.

� Chapter 8 describes the extended work towards learning functions in parameterized

systems.

� Chapter 9 discusses our implemented tool and case studies.

Conclusion

� Chapter 10 summarizes and concludes the thesis by pointing out the future directions

of the conducted research.

14

Chapter 2

Definitions, Notations and Models

This chapter provides the basic definitions and notations which are used globally in the manuscript.

It describes the kinds of finite state models and the formal notion of their approximations, which

will be used in the subsequent chapters.

2.1 Finite State Models

We are dealing with four kinds of finite state models in our work. The definition and the

example of each model is given in the subsections.

2.1.1 Deterministic Finite Automaton

The formal definition of a Deterministic Finite Automaton is given as follows.

Definition 1 A Deterministic Finite Automaton (DFA) is a quintuple (Q,Σ, δ, F, q0), where

� Q is the non-empty finite set of states

� Σ is the alphabet, i.e., the finite set of letters

� δ : Q× Σ→ Q is the transition function.

� F ⊆ Q is the set of final states

� q0 ∈ Q is the initial state

A string ω = i1 · · · ik ∈ Σ∗ is accepted by a DFA if there exists a sequence of transitions,

labeled with each symbols in ω, starting from initial state and ending in an accepting state.

We extend the transition function from symbols to strings in the standard way, i.e., δ(q0, ω) =

δ(. . . δ(δ(q0, i1), i2), . . . , ik). A string ω is accepted if and only if δ(q0, ω) ∈ F , denoted by the

15

output function Λ(q0, ω) = 1. Otherwise, ω is rejected, denoted by Λ(q0, ω) = 0. We define the

complete output function when applying ω to DFA as follows: λ(q0, ω) = Λ(q0, i1) · Λ(q0, i1 ·
i2) · · ·Λ(q0, i1 · · · ik). An example of a DFA over the alphabet Σ = {a, b} is shown in Figure 2.1.

The final states are represented by double lined circles in the figure.

Figure 2.1: Example of a Deterministic Finite Automaton

2.1.2 Mealy Machine

The formal definition of a deterministic Mealy machine is given as follows.

Definition 2 A Mealy Machine is a sextuple (Q, I,O, δ, λ, q0), where

� Q is the non-empty finite set of states

� q0 ∈ Q is the initial state

� I is the finite set of input symbols

� O is the finite set of output symbols

� δ : Q× I → Q is the transition function.

� λ : Q× I → O is the output function 2

When a Mealy machine is in the current (source) state q ∈ Q and receives i ∈ I, it moves

to the target state specified by δ(q, i) and produces an output given by λ(q, i). We extend the

functions δ and λ from symbols to strings in the standard way as follows. For a state q1 ∈ Q,

an input string ω = i1 · · · ik ∈ I∗ takes the machine to the ending state by traversing each state

qj+1 = δ(qj , ij), 1 ≤ j ≤ k, and reaches to the final state qk+1 = δ(q1, ω), and produces an

output string λ(q1, ω) = o1 · · · ok, where oj = λ(qj , ij). We call i1/o1 . . . ik/ok an i/o trace of

length k in state q1.

16

We consider that the Mealy machines are input-enabled1, i.e., dom(δ) = dom(λ) = Q × I.

For a state where the given input is invalid, we add a loop-back transition on the state and add

a special symbol Ω as the output for that input. So, we add Ω in O. For simplicity, we do not

write Ω in the graphical representation of Mealy machines. We can depict Mealy machines as

directed labeled graphs, where Q is the set of vertices. For each state q ∈ Q and input symbol

i ∈ I, there is an edge from q to δ(q, i) labeled by “i/o”, where o is an output symbol given by

λ(q, i). An example of a Mealy machine over the sets I = {a, b} and O = {x, y} is shown in

Figure 2.2.

Figure 2.2: Example of a Mealy Machine

Definition 3 For every DFA D = (QD,Σ, δD, F, q0D), there is an equivalent Mealy Machine
M = (QM , I, O, δM , λM , q0M), that models the same language. The conversion is defined as
follows:

� QM = QD

� q0M = q0D

� I = Σ

� O = {0, 1}

� δM (q, i) = δD(q, i),∀q ∈ QM , i ∈ I

� λM (q, i) =

1 , δD(q, i) ∈ F,∀q ∈ QM , i ∈ I

0 , otherwise
2

1This is due to the implication of the learning algorithm to state the well-defined transition function. See

Chapter 5, Section 5.2.1 for more on it.

17

2.1.3 Parameterized Finite State Machine

The formal definition of a Parameterized Finite State Machine is given as follows.

Definition 4 A Parameterized Finite State Machine (PFSM) is a septuple (Q, I,O,DI , DO,Γ, q0),
where

� Q is the finite set of states

� I is the finite set of input symbols

� O is the finite set of output symbols

� DI is the set of finite/infinite input parameter values

� DO is the set of finite/infinite output parameter values

� q0 is the initial state

� Γ is the set of transitions

A transition t ∈ Γ is defined as t = (q, q′, i, o, p, f), where q ∈ Q is a source state, q′ ∈ Q
is a target state, i ∈ I is an input symbol, o ∈ O is an output symbol, p ⊆ DI is a predicate

on input parameter values and f : p −→ DO is an output parameter function. The model is

restricted with the following three properties:

Property 1 (Input Enabled) The model is input enabled, i.e., for all q ∈ Q and i ∈ I, there
exists t ∈ Γ such that t = (q, q′, i, o, p, f).

Note that the property of input enabled is restrictively defined only on I, and not on I and

DI . That means, the model has an enabled transition for each state and each input symbol; in

which the input symbol is associated with certain input parameter values, but may not be with

all.

In order to make the model input-enabled, we add a loop-back transition on the state where

the given input symbol is invalid and add a symbol Ω as the output. Similarly, there exists

input symbols which do not take input parameter values at all. We add a symbol ⊥ with the

input symbol that expresses the absence of a parameter value. We add Ω in O and ⊥ in DI .

For simplicity, we do not write these symbols in the graphical representation of PFSM models.

Property 2 (Input Deterministic) The model is input deterministic, i.e., for t1, t2 ∈ Γ such
that t1 = (q1, q

′
1, i1, o1, p1, f1), t2 = (q2, q

′
2, i2, o2, p2, f2) and t1 6= t2, if q1 = q2 and i1 = i2 then

p1 ∩ p2 = φ.

18

Property 3 (Observable) The model is observable, i.e., for t1, t2 ∈ Γ such that t1 = (q1, q
′
1, i1, o1, p1, f1),

t2 = (q2, q
′
2, i2, o2, p2, f2) and t1 6= t2, if q1 = q2 and i1 = i2 then o1 6= o2.

For a given state, input and input parameter value, we determine the target state, output

and output parameter value in a transition with the help of functions δ, λ and σ, respectively.

The functions are defined as follows.

� δ : Q× I ×DI −→ Q is the transition function

� λ : Q× I ×DI −→ O is the output function

� σ : Q × I −→ DO
DI is the output parameter function. DO

DI is the set of all functions

from DI to DO.

The properties 1 and 2 ensure that δ and λ are mappings. When a PFSM is in state q ∈ Q
and receives an input i ∈ I along with a parameter value x ∈ DI , then a transition (q, q′, i, o, p, f)

is enabled, in which x ∈ p, and the target state q′ = δ(q, i, x), the output o = λ(q, i, x) and the

output parameter value f(x) = σ(q, i)(x).

For i ∈ I and x ∈ DI , we write i(x) the association of the input symbol i with the input

parameter value x. For an input symbol string ω = i1 · · · ik ∈ I∗ and an input parameter value

string α = x1 · · ·xk ∈ DI
∗, we define a parameterized input string, i.e., the association of ω

and α as ω⊗ α = i1(x1) · · · ik(xk), where |ω| = |α|. The association of an output symbol string

and an output parameter value string is defined analogously. Then, for the state q1 ∈ Q, when

applying a parameterized input string ω ⊗ α, the machine moves successively from q1 to the

states qj+1 = δ(qj , ij , xj), 1 ≤ j ≤ k. We extend the functions to parameterized input strings

when applying ω ⊗ α on q1 as δ(q1, ω, α) = qk+1 to denote the final state, λ(q1, ω, α) = o1 · · · ok
to denote the complete output symbol string and σ(q1, ω)(α) = y1 · · · yk to denote the complete

output parameter value string, where each oj = λ(qj , ij , xj) and yj = σ(qj , ij)(xj).

An example of a PFSM model over the sets I = {a, b}, O = {s, t}, DI = DO = Z, where Z
is the set of integers, is shown in Figure 2.3.

2.2 Quotient of Finite State Machines

A quotient of a state machine is an approximation with respect to a certain equivalence relation.

In our learning and testing context, we consider the equivalence relation of states with respect to

the observed traces of the machine, denoted by ∼=Φ. The equivalence relation and the quotients

of Mealy machines and PFSM models are defined in the subsections.

19

Figure 2.3: Example of a Parameterized Finite State Machine

2.2.1 Quotients for Mealy Machines

The state equivalence relation for a Mealy machine is defined as follows.

Definition 5 Let (Q, I,O, δ, λ, q0) be a Mealy machine and Φ ⊆ I∗ be a set of input strings,
then the states q, q′ ∈ Q are Φ-equivalent, denoted by q ∼=Φ q′, if and only if λ(q, ω) = λ(q′, ω),
for all ω ∈ Φ. 2

A quotient of a Mealy machine is defined as follows.

Definition 6 Let M = (QM , I, O, δM , λM , q0M) and M = (QM , I, O, δM , λM , q0M) be two
Mealy machines and Φ ⊆ I∗ be a set of input strings. Then, M is a Φ-quotient of M if and
only if

1. QM ⊂ 2QM such that q0M ∈ q0M and if s ∈ qM and t ∈ q′
M

, for qM , q
′
M
∈ QM then

qM = q′
M

if and only if s ∼=Φ t.

2. For all qM ∈ QM there exists s ∈ qM such that for all ω ∈ Φ,
λM (s, ω) = λM (qM , ω). 2

If Φ is the set of all the strings from I of certain length k, then the state equivalence

relation for Mealy machines is called k-equivalence, and a quotient defined on such Φ is called

k-quotient. The definitions are given as follows.

Definition 7 Let (Q, I,O, δ, λ, q0) be a Mealy machine and Φ = Ik be the set of all the input
strings from I of length k, then the states q, q′ ∈ Q are k-equivalent if and only if λ(q, ω) =
λ(q′, ω), for all ω ∈ Φ. 2

A k-quotient of a Mealy machine is defined as follows.

Definition 8 Let M = (QM , I, O, δM , λM , q0M) and M = (QM , I, O, δM , λM , q0M) be two
Mealy machines and Φ = Ik be the set of all the input strings from I of length k. Then, M is
a k-quotient of M if and only if

20

1. QM ⊂ 2QM such that q0M ∈ q0M and if s ∈ qM and t ∈ q′
M

, for qM , q
′
M
∈ QM then

qM = q′
M

if and only if s and t are k-equivalent.

2. For all qM ∈ QM there exists s ∈ qM such that for all ω ∈ Φ,
λM (s, ω) = λM (qM , ω). 2

2.2.2 Quotient for PFSM models

The state equivalence relation for a PFSM model is defined as follows.

Definition 9 Let (Q, I,O,DI , DO,Γ, q0) be the PFSM model and Φ ⊆ {ω ⊗ α|ω ∈ I∗, α ∈
DI
∗, |ω| = |α|} be a set of parameterized input strings, then the states q, q′ ∈ Q are Φ-equivalent,

denoted by q ∼=Φ q′, if and only if λ(q, ω, α) = λ(q′, ω, α) and σ(q, ω)(α) = σ(q′, ω)(α), for all
ω ⊗ α ∈ Φ. 2

The quotient of a PFSM model is defined as follows.

Definition 10 Let P = (QP , I, O,DIP , DOP ,ΓP , q0P) and P = (QP , I, O,DIP , DOP ,ΓP , q0P)
be two PFSM models. Let DIP ⊆ DIP , DOP ⊆ DOP and Φ ⊆ {ω ⊗ α|ω ∈ I∗, α ∈ DIP

∗, |ω| =
|α|} be a set of parameterized input strings. Then, P is a Φ-quotient of P if and only if

1. QP ⊂ 2QP such that q0P ∈ q0P and if s ∈ qP and t ∈ q′
P

, for qP , q
′
P
∈ QP then qP = q′

P
if

and only if s ∼=Φ t.

2. For all qP ∈ QP there exists s ∈ qP such that for all ω ⊗ α ∈ Φ,
λP (s, ω, α) = λP (qP , ω, α) and σP (s, ω)(α) = σP (qP , ω)(α).

2.3 General Notations

Some of the general notations which are used in the manuscript are listed below.

L(D) denotes the language of the DFA D.

⊗ associates a string from one set with a string of another set. Let {a, b, c} and {1, 2, 3} be two

sets, then the string a · b · c is associated with the string 1 · 2 · 3 as a · b · c⊗ 1 · 2 · 3, which

is equal to (a, 1) · (b, 2) · (c, 3). See Definition 4.

Ω denotes the absence of the output. If a finite state machine does not produce any output to

a particular input, then the output to the input is Ω. See Definitions 2 and 4.

⊥ denotes the absence of the parameter value. In PFSM model, if an input symbol i does not

take any input parameter, then i is associated with ⊥, i.e., i⊗⊥. See Definition 4.

21

Φ denotes a finite set of strings. See Definitions 5, 7 and 9.

∼=Φ denotes the equivalence relation of the states of the finite state machines with respect to Φ.

Let Φ be the set of input strings, then two states are equivalent with respect to Φ if they

produce same output strings for all the input strings in Φ. See Definitions 5, 7 and 9.

pref k (ω) denotes the prefix of the string ω of length k. Let ω = a · b · c . . . z be a string, then

pref 3 (ω) = a · b · c.

suff k (ω) denotes the suffix of the string ω of length k. Let ω = a · b . . . x · y · z be a string, then

suff 3 (ω) = x · y · z.

IS(v) denotes the input symbol string from a (parameterized) input string v. This function is

used in PFSM models. Let I = {a, b, c} and DI = {1, 2, 3}. If v = a · b · c⊗ 1 · 2 · 3, i.e., a

parameterized input string, then IS(v) = a · b · c. If v = a · b · c, i.e., a non-parameterized

input string, then IS(v) = a · b · c.

22

Chapter 3

Background and Related Work

This chapter overviews the background work and surveys the state-of-the-art in the domain of

automata learning and testing. It presents the notable works in passive learning and testing,

active learning and testing and learning enhanced state models. It finally discusses the potential

subareas that are addressed in the thesis.

3.1 Introduction

The research in the behavior inference of software systems has extensive body of literature. Most

of the works is related to program understanding in the case of the availability of source code. For

example, Ernst et al. [ECGN01] developed a tool, called Daikon, to infer program invariants over

a set of monitoring variables in the running program. Walkinshaw et al. [WBH06] developed a

method to extract state transitions from source code and identify the statements which trigger

specific transitions. When source code is not available, researchers look for partial specifications

and build their understanding on the inference of component interactions by applying tests on

the system that are derived from the specifications. For example, Abdurazik and Offutt [AO00]

used UML collaboration diagrams for generating test suites that cover the interaction patterns

in the system. Wu et al. [WPC01] derived Component Interaction Graph (CIG) that captures

interactions and dependencies among components by probing their interfaces and consulting

available information. When considering the black box components where no source code and

formal specifications are available, most approaches rely on inference from the system execution

and deriving the formal models from the observations. A promising approach for the behavioral

inference of such systems is applying the automata learning techniques and combining it with

automata based testing techniques. Our work mainly focuses on this approach and we survey

the significant works in automata learning and testing domain in this chapter.

23

The theoretical research in automata learning has been vibrant for decades, but there are

not many studies with respect to its practical orientation, even in its general context. Only in

the past few years, there are some efforts for providing a framework for combining automata

learning and testing techniques and dealing with real applications. This research is generally

divided into two wide categories, i.e., passive and active. In passive learning, there is no control

over the observations we receive to learn the model. In active learning, there is a liberty to

experiment or query the black box machine to collect observations and then learn the model. In

the following sections, we discuss the concepts and some notable works under these categories,

and later we point out the potential subareas that are addressed in the thesis.

3.2 Passive Automata Learning and Testing

The concept of passive learning is to learn the model from a given set of observations. The

essence of this concept is that we are bound to learn from what we are given. The observations

could be randomly collected from the black box machine and then we can build an algorithm to

estimate a model from these observations. In the following, we present the theoretical results of

passive automata learning and then applications of this concept in learning and testing of the

black box systems.

3.2.1 Theoretical Results

The research in automata learning finds its roots in the grammatical inference works. Gold

[Gol72] was the first who laid down the theoretical framework for analyzing the grammatical

inference problem. The problem can roughly be stated as to infer a grammar that represents

an unknown regular language from a given set of samples. The samples are the strings from the

alphabet which are the words of the language, called positive samples, and possibly not in the

language, called negative samples. Such a grammar can be represented as a regular expression

or as a Deterministic Finite Automaton (DFA). Therefore, the problem has been referred as a

regular inference or an automata learning problem [dlH05]. Gold [Gol78] showed that finding a

minimum DFA from a set of positive and negative samples is NP-Complete. The research was

continued to find methods for approximate learnability that could learn concepts with a high

probability but in low complexity. The variety of models like Probably Approximately Correct

(PAC) model [Val84] and the mistake-bound models [Lit87], [HLW94] were proposed. But the

results imply the hardness of the problem.

Other techniques have been proposed for the inference of finite state automata, some of

them based on recurrent neural network architectures [Pol91] [GMC+92] and Markov models

24

[BRH04]. Although these methods may exhibit, from a conceptual standpoint, some advantages;

the results [HG94] [CW98] show that they are not competitive in inference problems.

3.2.2 Applications

The above approaches were based on passive learning that relies on the given information to learn

a model. There is much work on describing the computational complexities of various passive

learning models (see surveys [AS83],[Pit89]). In the following years, the research evolved from

studying the theoretical complexities to evaluating the practical performance of the learning

methods. In the passive learning context, several algorithms based upon the state merging

approach (see survey [BO05]) and the genetic algorithms (e.g., [Dup94],[LCJ06]) were proposed

which were experimented on the standard DFA benchmarks. Cook and Wolf [CW98] compared

the algorithmic and statistical methods of passive learning to infer the software processes from

event based data. Despite the discouraging theoretical results of passive learning approach, there

exists applications of this approach in the behavior inference of black box systems by mixing it

with testing techniques. The intuition was to apply inference techniques on application domains

and assess their practicality. In the following, we discuss some of the recent works under this

context.

Mining Specifications

Ammons et al. [ABL02] proposed mining specifications approach for discovering the formal

models of the black box systems. They observe the system execution and concisely summarize

the frequent interaction patterns of components in the system as state machines that capture

both temporal and data dependencies. The inferred models can be used to increase system

understanding and can be applied for verification and debugging.

The mining approach consists of four parts: tracer, flow dependence annotator, scenario

extractor and automaton learner. The tracer records the interactions of components how they

interact with an Application Programming Interface (API) or Abstract Data Type (ADT) of

each other. The tracer records only function calls and returns, although depending on the

API/ADT, it allows tracing other events such as network messages in the system. The flow

dependence annotates the traces with constraints how the interactions may be reordered and

identify related interactions that could form scenarios. The scenario extractor extracts the

scenarios, i.e., a small set of interdependent interactions from annotated traces, and prepares

them for the automaton learner. The automaton learner analyzes the extracted scenarios and

infers a probabilistic finite state automaton (PFSA) using a passive learning algorithm, called

sk-string method [RP97]. A PFSA is a nondeterministic finite automaton (NFA) in which each

25

edge is labeled by an abstract interaction and weighted by how often the edge is traced generated

or accepting scenarios. Rarely-used edges correspond to infrequent behaviors, which are later

on removed in post processing along with all weights, leaving a NFA.

Detecting Differences in System Versions

Mariani and Pezz [MP05] proposed a behavior capture and testing approach for detecting the

differences in two system versions. The approach consists in first collecting the observations

about component interactions during testing and field execution, and then monitoring the inter-

actions for new component versions or for existing components in the new software system, to

detect differences with respect to the previously observed behaviors. The observed differences

provide information about both new behaviors that may correspond to new requirements, and

misbehaviors that may correspond to unexpected erroneous interactions.

The observations are collected through object-flattening technique, which consists of iden-

tifying the set of methods (or APIs) to extract state information semi-automatically. Those

observations are used to calculate two classes of invariants , i.e., I/O invariants and interaction

invariants. I/O invariants describe the relation between data exchanged among components and

are computed with Daikon [ECGN01]. Interaction invariants describe the interactions among

components, and are computed by synthesizing finite state machines. They provide a passive

learning algorithm to learn the state machine using the collected observations. The calculated

invariants are then checked at runtime in the new system. The invariant violations are inter-

preted by the designers to analyze the behaviors of the new system.

System Verification

Bertolino et al. [BMP06] proposed an approach of verifying system architecture specifications

(which describes the components, connectors, interfaces and ports) with the collected obser-

vations of the system (which specify the actual behaviors of the components). The approach

works by first capturing the traces of executions and transferring the traces into a formal model.

The model is then checked for compliance with the system architecture specifications, using a

model checker.

The specifications of the system architecture are realized in terms of stereotyped UML

2.0 component diagrams. The observations are collected by instrumenting the middleware

and monitoring the component interactions in the running system. The interactions are then

realized into Message Sequence Charts (MSC). The verification is done by applying a tool,

called Charmy [IMP05]. Charmy translates the specifications into Promela (language of the

model checker SPIN) [Hol03]. Then, it translates the MSCs into Büchi Automata [Büc62]

26

(the automata representation for temporal formula [Eme90], which describe properties to be

verified). Finally, SPIN evaluates the properties validity with respect to the Promela code. If

counterexamples are produced, an error is reported.

3.3 Active Automata Learning and Testing

The concept of active learning is to collect observations by asking queries and receiving re-

sponses. It then learns a model based upon those observations. This is different from passive

learning in which the model is learned only based upon the given observations. In active

learning, the ability to ask queries helps to elucidate conflicts in the inference results. In the

following, we present the theoretical results of active automata learning and then applications

of this concept in learning and testing of the black box systems.

3.3.1 Theoretical Results

Pitt and Warmuth [PW89] have shown that although passive learning approach is apparently

intractable, the combination of active and passive learning is feasible. Kearns and Vazirani

[KV94] is a good reference to have an overview on the computational complexities of the pas-

sive and active learning approaches. Active learning is considerably a better approach in which

the black box system is explored (in a systematic way) in finite time and then an inference is

done based on the observations from the system with interesting properties. In this framework,

Angluin [Ang87], elaborated on the algorithm of Gold [Gol72], proved that if a learning algo-

rithm uses queries to collect observations and obtains clues for the target model, then finite

automata can be learned in polynomial time. In the settings of grammatical inference, An-

gluin provided an efficient algorithm to learn a minimum DFA that models an unknown regular

language. Angluin’s algorithm plays an important role in our work. We shall describe the

complete algorithm with its complexity analysis in Chapter 4. Here we provide a brief sketch

of the algorithm.

Angluin’s algorithm asks membership queries over the known alphabet Σ of the language to

check whether certain strings from Σ∗ are accepted or rejected by the language. The result of

each such query is recorded as an observation. These queries are asked iteratively until some

conditions are satisfied on the collective observations. The algorithm estimates a DFA, called

conjecture, based on the recorded observations. It then asks an equivalence query to a so called

oracle, that knows the unknown language, to verify whether the conjecture is equivalent to

the target DFA. The oracle validates the conjecture if it is correct or replies with a counterex-

ample otherwise. The algorithm uses this counterexample to perform another run of asking

27

membership queries until it constructs a “better” conjecture. It iterates in this fashion until

it produces a correct conjecture that is isomorphic to the target DFA. Let |Σ| be the size of

the alphabet Σ, n be the total number of states in the target DFA and m be the length of

the longest counterexample provided by the oracle, then the worst case complexity of Angluin’s

algorithm is O(|Σ|mn2).

Note that there is no polynomial time algorithm if we allow only membership queries and

require that the target DFA be exactly learned [Ang81]. In other words, we must have a

mechanism to check the equivalence of the conjecture and the target model. Angluin [Ang87]

used the concept of the oracle that resolves this equivalence check. The oracle is a theoretical

construction to make an idealization of a potentially hard problem, in order to provide a clean

setup in regular inference. In reality, there exists no such oracle. The alternatives of the oracle

assumption demand a compromise on precision and cost. There are several testing techniques

that can be applied to check this equivalence and obtain counterexamples if the conjectured

model is different from the target model. For example, one can perform a random walk over

the strings of alphabet and test each string on the conjecture and on the black box to detect

the differences [RS93] [SL07] [SHL08]. But this may provide long counterexamples that can

influence the complexity of the algorithm negatively. Moreover, random testing does not provide

a guarantee on the exact learning. Another way is to use the methods from conformance testing

[LY96] that can provide a systematic way of achieving the answer of an equivalence query. Let

d be the number of states in the conjecture and assume that we know some upper bound l

on the number of states in the black box such that l > d, then by applying the tests in a

conformance test suite by Vasilevskii and Chow algorithm (aka VC-algorithm or W-method

[Vas73][Cho78]) to the black box, we shall find at least one test that can detect its difference

with the conjecture. This test constitutes a counterexample as the answer of an equivalence

query. The worst case complexity of this method is O(d2l|Σ|l−d+1), that is, exponential in the

difference between the upper bound on the number of states of the black box and the conjecture.

The other conformance testing techniques that can also be used are Wp [FBK+91] and Z [LY96]

methods, which use a smaller test suite compared to W-method.

3.3.2 Applications

Despite some practical problems in Angluin’s algorithm, this is considered a remarkable work

and has been applied in various domains, for instance, map learning [RS93], behavior modeling

[MS01a] [HMS03] [RSM07], model checking [PVY99] [SL07], testing [HNS03] [SHL08] etc. The

applications of Angluin’s algorithm in real black box learning and testing problems, combined

28

with its improvements and statistical analysis [BJLS05], paves the way toward reverse engineer-

ing complex software systems. In the following, we discuss some of the recent and significant

works under this context.

Black Box Checking

Peled with other researchers has produced a series of papers that provide a solution of model

checking black box systems. Black Box Checking (BBC) [PVY99] is the first and the pioneer-

ing paper, according to our knowledge, which proposed to combine active learning and model

checking under one framework. The problem which is addressed is: a prerequisite for model

checking is the provision of a model, which black box system does not provide. BBC proposes to

learn the model first, then perform model checking on the learned model. The algorithm used

for learning is Angluin’s algorithm, and the equivalence check is performed by VC-algorithm.

Therefore, it is assumed that the upper bound l on the number of states in the system is known.

BBC is an iterative procedure which is described as follows. First, the model of the system

is learned through Angluin’s algorithm. Once a model is learned, it is provided to a model

checker for verifying the given property. This yields one of the following two possibilities.

1. If the model checker produces a counterexample, i.e., the model does not satisfy the prop-

erty, then the counterexample is confirmed on the system if it is indeed a counterexample

for the system. Recall that the model checking is performed on the approximation of the

system, and not on the system directly.

� If the system confirms the counterexample, i.e., the system does not satisfy the

property, then the counterexample is reported and the procedure terminates.

� If the system refutes the counterexample, then the counterexample is given to the

learning algorithm to refine the model.

2. If the model checker does not produce a counterexample, i.e., the learned model satisfies

the property, then the model is checked for equivalence with the system. For this purpose,

VC-algorithm is applied to look for discrepancy between the current approximation and

the system.

� If VC-algorithm finds such a sequence that can distinguish the system with the

current model, then the sequence is a counterexample for the model, which is refined

by giving the counterexample to the learning algorithm.

29

Figure 3.1: The learning and model checking procedure of Black Box Checking

� If VC-algorithm finds no counterexample, i.e., the model is completely learned and

trivially the system satisfies the property, then the procedure terminates.

The BBC procedure is summarized in Figure 3.1. The worst case of this procedure arrives

when the system satisfies the property and the model is completely learned. Assuming that the

total number of states in the system is n (unknown but smaller than the known upper bound

l), then the worst case complexity of the BBC procedure is given as O(n3|Σ|n + n2l|Σ|l−n+1).

Note that if we do not know the bound l, then the learning algorithm can run until time permits

[PVY99].

The next paper of the same series is Adaptive Model Checking (AMC) [GPY02], in which

the authors assume an existing model that may be inaccurate but not completely obsolete.

The experiments of AMC showed that initializing the learning algorithm with the existing

information expedite the performance of the algorithm. The last paper of this series is Grey

Box Checking (GBC) [EGPQ06], in which the authors assume that some components in the

system are known (white boxes), and the rest are unknown (black boxes), giving rise to a grey

box system. The experiments of GBC showed that the speedup over BBC can be up to two order

of magnitude. The experiments of AMC and GBC concluded that the average case complexity

for model checking real systems can be improved depending upon how much information about

the system is available. However, the exponential time complexity cannot be avoided in the

worst case.

30

Protocol Learning and Testing

Shu and Lee [SL07] used active learning techniques to validate the security properties of the

protocol whose implementation is unknown. Their work is inspired by the Black Box Checking

work [PVY99] in which the model is learned through Angluin’s algorithm, then the property

is checked on the learned model, followed by applying a conformance testing method for the

equivalence check. They assume that the protocol specification is given from which the security

properties can be extracted and checked against the unknown implementation. However, the

implementation may contain more behaviors than the given specification. Therefore, they also

intend to learn the implementation in the iterative procedure and check the security property

on the incrementally learned models. The protocol specification is modeled as a Symbolic Pa-

rameterized Finite State Machine (SP-EFSM) that is a compact representation of an equivalent

Mealy machine. They modify Angluin’s algorithm to learn directly the Mealy machine instead

of a DFA model. For equivalence check, they implement a method that generates random check-

ing sequences of the given length up to t times. We explain their learning and testing procedure

as follows.

First, the black box protocol implementation is learned through Angluin’s algorithm. Once

a model is learned, it is checked for security violations against the specification. As in the BBC

procedure, this yields one of the following two possibilities.

1. If a violation is found, i.e., there is a counterexample that leads the model to violation,

then the counterexample is confirmed on the black box.

� If the black box confirms the counterexample then the procedure terminates with

result “FAIL”.

� If the black box refutes the counterexample, then the counterexample is given to the

learning algorithm to refine the model.

2. If no violation is found, then the learned model is checked for equivalence using their

method of generating random checking sequences.

� If the equivalence method finds such a sequence that can distinguish the model with

the black box, then the sequence is a counterexample for the model, which is refined

by giving the counterexample to the learning algorithm.

� If the equivalence method finds no counterexample, then the procedure terminates

with result “PASS”. Note that in this case, it does not necessarily mean that the last

31

learned model is equivalent to the black box; instead it means no further discrepancies

can be found between the model and the black box by their equivalence check method.

Let |I| be the size of the input set of the Mealy machine, n be the total number of states in

the machine and t be the number of times random checking sequences are generated, then the

total complexity of their protocol learning and testing procedure is O(|I|n4+tn2+|I|n3+nf(d)),

where f(d) is the cost of validating the security for a conjecture with d states.

Web Application Exploration

Raffelt et al. [RSM07] used learning and testing approach in the exploration of a web application.

They studied Mantis [Man07], an open-source online bug tracking system, and analyzed the user

authentication module of the application. Their approach is very similar to the works described

above, with a difference is that they do not check any property on the system; rather their

intention is to understand the working of the web application. They learned how the application

behaves if a user enters without login and what parts of the application are accessible if the

user is authenticated.

They adapted Angluin’s algorithm to learn Mealy machines of the system. Initially, the

input set of the system is manually provided to the learning algorithm, but new inputs may

be discovered during the learning process (in terms of links, forms, web pages etc). Therefore,

they dynamically enhance the input set whenever new inputs are discovered, and relearn the

model with the new input set. When no more inputs are discovered, then the equivalence check

is performed on the last learned model by applying the Wp-method [FBK+91]. If the learned

model does not conform to the real system, a counterexample is returned, and thereafter, the

model is refined and the iterative procedure starts again. The procedure terminates when the

equivalence check does not provide a counterexample, which means that the model is completely

learned.

Reverse Engineering by combining Passive and Active Approaches

Walkinshaw et al. [WBHS07] used a combination of passive and active learning approaches for

reverse engineering state models. Their technique is based upon Dupont’s Query-driven State

Merging (QSM) inference algorithm [DLD+08], which espouses the features of both approaches.

The working of QSM algorithm is sketched as follows.

The QSM algorithm accepts a set of positive and negative samples as input. Then, it

represents the samples as a prefix tree automaton, in which each state is either accepting or

rejecting depending upon the corresponding sample. Then, it searches for candidate states

32

to merge, followed by merging those states. The resulting automaton is actually a conjecture

which may accept or reject more strings that are not handled by the previous automaton

(initially the tree automaton). Therefore, the algorithm generates membership queries from the

conjecture to check the validity of those strings. If all queries are validated, then the conjecture

is returned, otherwise the samples are updated with the strings that are not validated and the

QSM procedure is called again. The algorithm runs until no queries are generated.

The authors applied QSM technique in learning an open-source Java drawing tool, called

JHotDraw1. The samples is this case are the traces of method invocations that are accepted

or rejected by the application. First, they develop a set of mappings from the sequences of

method invocations in the traces to abstract functions, such that, a low level dynamic trace can

be lifted to a series of high-level functions. Then, each trace is made into a string of abstract

functions and fed into the QSM algorithm. If the algorithm generates queries, they are asked

to the application. For the queries which are not validated, their corresponding traces are fed

back into the QSM algorithm and the process repeats until no further queries are generated.

Domain Specific Optimizations

Hungar et al. [HNS03][HMS03] studied the domain specific applications of Angluin’s algorithm

and evaluated its practicality. They noticed that Angluin’s algorithm can be optimized if it

learns prefix-closed languages. A language L is prefix-closed if for every string ω in L, all

prefixes of ω are in L. A DFA is called prefix-closed if its language is prefix-closed. So they

proposed improvements in the algorithm for the problems that can be modeled as prefix-closed

DFAs.

The optimizations are realized in terms of filters that parse the membership queries of

Angluin’s algorithm before asking to the real system. The filters select few queries among the

generated queries to ask to the system. The rest of the queries can be answered automatically

according to the result of the asked queries. For example, a prefix of an accepted string ω

will always be accepted in a prefix-closed language. So, it does not need to ask the prefixes;

instead asking ω is sufficient. Another example is of a string that is rejected by the language.

So the suffixes of such a string will always be rejected. In this way, the number of membership

queries can be reduced in the case of prefix-closed DFAs. Their experiments with the randomly

generated prefix-closed DFAs achieved 20 % reduction of membership queries compared to the

basic algorithm.

The authors also applied their improvements in the testing of a call center system. They were

mostly concerned with the inference of the behaviors of the system on different call scenarios.
1http://www.jhotdraw.org

33

Originally, they modeled their problem as a Mealy machine but then transformed it into an

equivalent prefix-closed DFA, so that Angluin’s algorithm could be applied, incorporating their

optimizations.

In the continuation of the same work, Margaria et al. [MNRS04] proposed to learn Mealy

machines directly by adapting Angluin’s algorithm and compared the results of the previous

work of prefix-closed DFA learning with direct Mealy machine learning. Their results showed a

further reduction in the membership queries when learning Mealy machines directly, compared

to the previous results. The authors commented that this is due to the fact that Mealy machines

model more naturally the i/o behavior of the system, which DFAs do not support the structure

directly. DFAs require an encoding in terms of artificial transitory states which increases the

model size in terms of the number of states. Since, the complexity of Angluin’s algorithm is

polynomial on the number of states, Mealy machine learning experiences quite less number of

queries due to its reduced state size compared to the equivalent DFA.

3.4 Learning Enhanced State Models

The domain specific studies and the applications of Angluin’s algorithm, for example in the

learning and testing of telecom systems [HNS03] [HMS03] [MNRS04], in the exploration of web

applications [RSM07] and in constructing the models of protocols [SL07] [BJR06], advocate

for learning more enhanced state machine models than simple DFAs. The main reasons are:

i) Basic DFA models do not capture the fine granularity of a complex system. They can be

used in the context of model checking because it builds reachability graphs akin to DFA. On the

other hand, when considering complex systems which have input and output behaviors or which

are composed of components that exchange lots of parameterized data values from arbitrary

domains (like protocol data unit), DFA modeling could result in a combinatorial blow up on the

transition level. There is a need of rich structure that is more expressive and capable of modeling

such systems without losing generality. ii) In order to mitigate the computational complexity of

the algorithm, it is useful to enclose the (possibly infinite) domains of data values of the system

into some sort of parameterized structure. The number of queries in the learning algorithm

grows with the size of the data values. But usually such systems show similar behaviors on a

subset of those values. If some values are irrelevant or never used, the learning algorithm may

still work without taking them into account.

There have been several trials of learning enhanced models using the settings of Angluin’s

algorithm. The best part of this algorithm is that it can be easily adapted to learn Mealy ma-

chines. This adaptation has been successfully applied in many works, e.g., [MNRS04] [RSM07]

34

[SL07]. Actually, learning Mealy machines is an intermediary level between learning naive mod-

els and expressive models like Extended Finite State Machines (EFSM) [LY96]. For example,

Shu and Lee [SL07] modeled their protocol specifications as SP-EFSM, but they rely on learning

its equivalent Mealy machine. Recently, Berg et al. [BJR06] proposed a parameterized model

which can be learned directly from a black box component using the original settings of An-

gluin’s algorithm. This model preserves all the properties of DFA, plus incorporates parameters

and predicates associated with the labels on transitions. However, the model does not contain

outputs and output parameters. Also, it assumes only boolean space for the parameter values

associated with the labels. Lorenzoli et al. [LMP06] proposed to learn Finite State Automata

with Parameters (FSAP), which is similar to the model of Berg et al. [BJR06]. But this is in

passive learning settings in which they assume the provision of a given set of traces through

which they can learn FSAP by applying a state merging algorithm, called k-tail [BF72]. The

algorithm allows merging states in the traces which have same k future, i.e., that are followed

by the same behaviors up to a depth of k steps.

3.5 Discussion

We have laid out the background for the research developed in this thesis. We summarize the

bibliographic study of the domain and point out the potential subareas that are addressed in

the thesis.

3.5.1 Summary

The problem of behavior inference is in general difficult. Many techniques have been proposed

to derive formal models of the system behaviors under different contexts. When source code is

available, the models are extracted by directly deeming into the implementation. When (partial)

specifications are available, the interactions of the real components are modeled by deriving tests

from the specifications. When considering the behavioral inference of the black box systems,

the problem becomes quite challenging. Previously, passive learning approaches have been used

for the purpose of inferring models and testing the properties on the systems. However, it is

observed that active learning approaches provide quite better results than the passive ones. In

this vein, Angluin’s algorithm [Ang87] has been considered a remarkable work which has been

applied to various domains for learning and testing real applications. It is evident that the

theoretical complexity of Angluin’s algorithm with the alternatives of its oracle assumption is

still intractable [PVY99]. On the contrary, the experimental results of the application of the

learning and testing approach using Angluin’s settings evidence encouraging results where the

35

Works Objective Original Model Learned Model

Peled et al. [PVY99] Model Checking DFA DFA
Shu and Lee [SL07] Inference and Testing SP-EFSM Mealy Machine
Raffelt et al. [RSM07] Inference Mealy Machine Mealy Machine
Walkinshaw et al. [WBHS07] Inference DFA DFA
Hungar et al. [HNS03] Inference and Testing Mealy Machine DFA
Margaria et al. [MNRS04] Inference Mealy Machine Mealy Machine
Berg et al. [BJR06] Inference Parameterized Machine Parameterized Machine

Table 3.1: Summary of the works in Active Learning and Testing Approach

real world systems have been considered [HNS03] [HMS03] [BJLS05] [RSM07] [SL07] [SHL08].

Table 3.1 provides the list of works in the active learning and testing approach, in the order of

their appearance in the chapter. The first column labels the works, the second column mentions

the objective of the works, the third column mentions the original model in which the authors

modeled their problem, the fourth column mentions the model which they actually learned.

3.5.2 Our Work in Learning and Testing

Our work is complementary to the active learning and testing approach that has been addressed

previously, notably in black box checking [PVY99]. In fact, we consider a system of black box

components that are communicating with each other, and then analyze the whole system using

the learned models of the individual components. However, instead of applying system verifi-

cation techniques to check the given user-defined properties, we test the system for finding the

compositional problems such as deadlock and livelock. In the absence of formal requirements,

we look for generic errors in the system that can cause failures during its execution. Moreover,

the availability of observations before starting the learning procedure, as in [GPY02] [EGPQ06]

[WBHS07], is not assumed in our work.

We exploit the use of Angluin’s algorithm to learn each component in isolation and later

compute the product of the learned models. However different from other approaches [PVY99]

[SL07] [RSM07], we do not assume the upper bound on the number of states in the system to

apply conformance testing methods as a replacement of the equivalence check. The accurate

estimation of such a bound in the real system is hard which can explode the complexity of the

learning procedure when applying conformance testing method for the equivalence check. In

our work, we take benefit of the product of the learned models to derive tests for the equivalence

check of the integrated system. These tests from the product most likely visit the unexplored

parts of the components, since the product represents an approximation of the whole system, and

therefore these tests can stimulate interactions between the components. This means the tests

36

from the product can exercise those parts of the components which are relevant to the integrated

system and might not be explored during their unit learning. We argue that this approach can

alleviate the oracle problem, since the same product of models from which the tests are generated

can act as an oracle. The problem is the partiality of the models which may not fully describe

the internal structure of the components. However, partial models are accepted as a viable

solution to oracle automation in the black box testing framework [Ber07]. Weyuker [Wey82]

calls such models “pseudo-oracles” and notes that it is sometimes much easier to distinguish

plausible from implausible results than to precisely distinguish correct from incorrect results.

The challenge is to find the best trade off between precision and cost. In any case, the model

learned from the component is an approximation of the real model. It is necessary to state

the formal relation between what we learn from the component and what is the reality. In the

case of state machines, we show that the approximated model can be described as a quotient1

of the real model, which is defined according to some equivalence relation on states. So, we

propose a framework of leaning and testing the integrated system of black box components, by

learning the quotients of the components, and then deriving tests from the quotients to test the

integrated system.

Learning Enhanced State Models

The other important area we addressed is the learning of enhanced state models. As discussed

before, it is quite desirable to devise learning methods for such models. This problem is still not

addressed adequately and needs more attention in terms of both theory and practice. In our

work, we propose enhanced models and the algorithms for learning such models directly from

the black box components.

First, we consider the adaptation of Angluin’s algorithm for learning Mealy machines (like

Margaria et al. [MNRS04] did for the comparison of DFA and Mealy machine learning). How-

ever, we have observed that even the adapted algorithm can be further improved such that the

complexity of learning is significantly reduced. We propose our improvements and show with

the help of complexity calculations and experiments that our improvements has a gain over the

direct adaptation.

Later, we propose a Parameterized Finite State Machine (PFSM) model and the algorithm

for learning such models. PFSM is more expressive compared to the models proposed in the

previous works of automata inference (e.g., [BJLS05] [LMP06] [RSM07] [SL07]) in terms of

parameterized inputs/outputs, infinite domain of parameter values, predicates on input param-

eters and observable nondeterminism when interacting with input parameter values. Compared
1See Chapter 2 for the definitions of quotients

37

to the usual EFSM model [LY96], we stop short of including variables in the model, because

when we learn a black box, we cannot distinguish in its internal structure what would be en-

coded as (control) state and what would be encoded in variables. All state information in our

model is encoded in the state machine structure.

Following the discussion on PFSM learning, it is important to mention how to select param-

eter values for testing during the learning procedure. DFA and Mealy machines have a finite set

of inputs and the learning algorithm considers all inputs for their learning. The parameterized

model of Berg et. al. [BJR06] consists of boolean parameters and therefore selecting the values

is not a problem. In the FSAP model of Lorenzoli et al. [LMP06], the possible parameter values

are already included in the given traces. In the case of PFSM models, the domain of parameter

values can be infinite. Therefore, the selection of parameter values during the learning of a

PFSM model is an issue. We assume to know only parameter types but it is unknown what

concrete values the components must be given for its learning. This leads to a classic problem

of test data selection in black box testing [Kor99]. There is an enormous body of literature

on this specific problem and we do not refer to any specific strategy for parameter value selec-

tion. In our work, selecting the values is mostly intuitive or relies on simple techniques, e.g.,

random testing, bounded exhaustive testing, equivalence partitioning, boundary value analysis

[MSBT04], to name a few.

3.5.3 Extended Work

We extend the work of learning PFSM models towards learning functions. In fact, the active

learning of PFSM models involves in testing certain input parameter values and observing

the corresponding output parameter values. Finally, it outputs a PFSM conjecture in which

transitions are labeled with input/output parameter value pairs. However, it is possible that

instead of labeling with just pairs, we learn meaningful relationships over the observed values and

then label the transitions with those relations. Those relations are actually an approximations

of the output parameter functions in the PFSM model. We extend the work of PFSM inference

in this direction. In our first attempt, we propose to learn such relations as data invariants.

We exploit the use of Daikon (the invariant detector) [ECGN01] by providing it the set of

observations on the input/output parameter values and then inferring the data invariants over

the values.

3.5.4 Main Contributions

In the light of the above discussion, we summarize the main contributions in the thesis in the

order of their presentation in the manuscript.

38

� We have improved the Mealy machine adaptation of Angluin’s algorithm and proved

that our method has significantly reduced the complexity of the learning algorithm. The

theoretical results are also verified on a workbench of finite state machines.

� We have proposed a framework of learning and testing integrated systems of black box

components.

� We have proposed a Parameterized Finite State Machine model that can be learned using

the original settings of Angluin’s algorithm.

� We have extended the work of PFSM inference towards learning functions. We have

proposed a method to infer output parameter functions in the PFSM model using the

data invariant inference mechanism.

� We have validated our approach on the case studies from the industry in which real systems

have been considered.

39

40

Chapter 4

Deterministic Finite Automaton

Inference

This chapter is a continuation of the state-of-the-art, but dedicated to the inference of Determin-

istic Finite Automata through the active learning approach. It describes Angluin’s algorithm,

its complexity and its variants proposed in other works.

4.1 Learning Algorithm for DFA

A finite regular language is a subset of Σ∗, i.e., the set of finite strings of letters. A regular

language can be modeled as a DFA (Definition 1), which accepts the strings from Σ∗ those are

included in the language and rejects all others. The regular inference problem can be seen as

identifying the regular language modeled as a DFA. There are several frameworks for inferring a

DFA from a black box machine which accepts a regular language. The most well-known in active

learning approach, roughly called “learning from queries”, was introduced by Angluin [Ang87].

She presented an algorithm, called L∗, for learning a minimum target DFA in polynomial time.

The basic idea of the algorithm is to explore the system systematically by asking queries and

collect the observations in the result of queries to build an automaton. The concept of learning

from queries and a full literature on different types of queries is given by her continuation

paper [Ang88], and the later framework paper by Watanabe [Wat94]. However, the two main

assumptions in the concept that are also required by the algorithm L∗ are as follows:

1. The basic alphabet Σ is known

2. The machine can be reset before each query

41

The algorithm asks two types of queries. A membership query is asked to test whether a

string from Σ∗ is contained in the target language. The result of each such query in terms of

1 (accepted) or 0 (rejected) is recorded as an observation. These queries are asked iteratively

until some conditions are satisfied on the collective observations. L∗ estimates the target DFA,

called conjecture, based upon the recorded observations. It then asks an equivalence query to

a so called oracle to verify the hypothetical conjecture. The oracle validates the conjecture if

it is correct or replies with a counterexample otherwise. A counterexample is a string which is

accepted by the target DFA but not by the conjecture, or vice versa. L∗ uses this counterexample

to perform another run of asking membership queries until it constructs a “better” conjecture.

L∗ iterates in this fashion until it produces a correct conjecture that is isomorphic to the target

DFA. The basic set-up of the learning algorithm is presented in Figure 4.1.

Figure 4.1: Concept of the Learning Algorithm L∗

We describe the complete algorithm L∗ and its complexity in the following sections. We

denote by D = (QD,Σ, δD, FD, q0D) the target unknown DFA that has a minimum number of

states. The output function and the complete output function for D are denoted by ΛD and

λD, respectively.

4.1.1 Observation Table

The algorithm L∗ maintains a data structure, called observation table OTD, to record the results

of the queries. To describe the structure of the table, let SD and ED be the non-empty finite

sets of finite strings over Σ. SD is a prefix-closed set and ED is a suffix-closed set of strings.

Let TD be a finite function that maps (SD ∪ SD · Σ) × ED to {0, 1}. An observation table

(SD, ED, TD) can be visualized as a two-dimensional array with rows labeled by the elements of

SD∪SD ·Σ and columns labeled by the elements of ED, with the entry for a row s ∈ SD∪SD ·Σ
and a column e ∈ ED equals to TD(s, e). Suppose s, t ∈ SD ∪ SD ·Σ are two rows, then s and t

are equivalent, denoted by s ∼=ED
t, if and only if TD(s, e) = TD(t, e), for all e ∈ ED. We denote

by [s] the equivalence class of rows that also includes s.

42

Initially, SD and ED contain an empty string ε and augment as the algorithm runs. The

membership queries are constructed from the table, where each s ∈ SD is a prefix and each

e ∈ ED is a suffix of the queries. The interpretation of TD is that TD(s, e) is 1 if s · e is accepted

by D, otherwise it is 0. Thus, TD(s, e) = ΛD(q0D, s · e).
The algorithm L∗ eventually uses the observation table to build a DFA conjecture. The

strings or prefixes in SD are the potential states of the conjecture. So, they are called “access”

strings as they allow to access the states of the target DFA. The strings or suffixes in ED

distinguish these states from each other. So, they are called “distinguishing” strings. The

strings in SD ∪ SD · Σ are used to construct the transition function, such that for every state

s ∈ SD there is a transition for each i ∈ Σ. An example of the observation table (SD, ED, TD)

for learning the DFA in Figure 2.1 is given in Table 4.1, where Σ = {a, b}.

ED

ε

SD ε 1

SD · Σ
a 0
b 0

Table 4.1: Example of the Observation Table (SD, ED, TD)

To build a valid DFA conjecture from the observations, the table must satisfy two conditions.

The first condition is that the table must be closed, that is, for each t ∈ SD ·Σ, there exists an

s ∈ SD such that s ∼=ED
t. If it is not closed, then there is a state s ∈ SD and i ∈ Σ such that

the transition function cannot be defined for s and i (see the definition of δD below).

The second condition is that the table must be consistent, that is, for each s, t ∈ SD such

that s ∼=ED
t, it holds that s · i ∼=ED

t · i, for all i ∈ Σ. If it is not consistent then two seemingly

equivalent states may point to different target states for the same letter in Σ.

When the observation table (SD, ED, TD) is closed and consistent, then a DFA conjecture

can be constructed as follows:

Definition 11 Let (SD, ED, TD) be a closed and consistent observation table, then the DFA
conjecture MD = (QD,Σ, δD, FD, q0D) is defined, where

� QD = {[s]|s ∈ SD}

� q0D = [ε]

� δD([s], i) = [s · i],∀s ∈ SD, i ∈ Σ

� FD = {[s]|s ∈ SD ∧ TD(s, ε) = 1}

43

Angluin proved that this conjecture is well defined with respect to the observations recorded

in the table (SD, ED, TD). Theorem 1 claims the correctness of the conjecture.

Theorem 1 If (SD, ED, TD) is a closed and consistent observation table, then the DFA con-
jecture MD is consistent with the finite function TD. Any other DFA consistent with TD but
inequivalent to MD must have more states. 2

Proof (Sketch) The following three lemmas further illustrate the theorem. We provide a
sketch of the proof here and refer to the original paper [Ang87] for details.

Lemma 1 Assume that (SD, ED, TD) is a closed and consistent observation table and MD is
the conjecture from the table, then for every s ∈ SD ∪ SD · Σ, δD(q0D, s) = [s]. 2

This is proved by induction on the length of s. It is clearly true when the length is 0, i.e.,
s = ε, since q0D = [ε]. Assuming that this is true for every s ∈ SD ∪ SD · Σ of length k, let
t ∈ SD ∪SD ·Σ of length k+ 1, i.e., t = s · i for some i ∈ Σ. Since, SD is prefix-closed, s must
be in SD, for either t is in SD or t is in SD · Σ. Then, by the induction hypothesis, we have
δD(q0D, t) = δD(δD(q0D, s), i) = δD([s], i) = [s · i] = [t].

Lemma 2 Assume that (SD, ED, TD) is a closed and consistent observation table, then the
conjecture MD is consistent with the function TD. That is, for every s ∈ SD ∪ SD · Σ and
e ∈ ED, δD(q0D, s · e) is in F if and only if TD(s, e) = 1. 2

This is proved by induction on the length of e. When e = ε, then for s ∈ SD ∪ SD · Σ,
we know that δD(q0D, s) = [s], by Lemma 1. By the definition of F , [s] is in F if and only if
TD(s, ε) = 1. Assuming that this is true for every e ∈ ED of length k, let f ∈ ED of length
k+1. Since, ED is suffix-closed, f = i ·e for some i ∈ Σ. Let s ∈ SD ·Σ, then since the table is
closed, there exists t ∈ SD such that s ∼=ED

t. Then, we have δD(q0D, s ·f) = δD(q0D, t · i ·e). By
the induction hypothesis on e, δD(q0D, t ·i ·e) is in F if and only if TD(t, i ·e) = 1. Since, s ∼=ED

t

and f = i · e, TD(t, i · e) = TD(s, f). Hence, δD(q0D, s · f) is in F if and only if TD(s, f) = 1 is
claimed.

Lemma 3 Assume that (SD, ED, TD) is a closed and consistent observation table and the con-
jecture MD has n states. Suppose M ′D = (Q′D,Σ

′, δ′D, F
′
D, q

′
0D) is another DFA consistent with

TD that has n or fewer states, then M ′D is isomorphic to MD. 2

Since M ′D is consistent with TD, then for each s ∈ SD∪SD ·Σ and e ∈ ED, δ′D(q′0D, s ·e) is in
F ′ if and only if TD(s, e) = 1, which means δ′D(δ′D(q′0D, s), e) is in F ′ if and only if TD(s, e) = 1.
So δ′D(q′0D, s) is equal to the row s in SD ∪SD ·Σ. Hence, as s ranges over all of SD, δ′D(q′0D, s)
ranges over all the elements of Q, so M ′D must have at least n states, i.e., it must have exactly
n states. To complete isomorphism, Angluin also proved that for each s ∈ SD, there is a unique
q′ ∈ Q′, such that δ′D(q′0D, s) = [s].

44

This concludes the proof of Theorem 1, since Lemma 2 shows that MD is consistent with
TD and Lemma 3 shows that any other DFA consistent with TD is either isomorphic to MD

or contains at least one more state. Thus, MD is uniquely the minimum DFA consistent with
TD. �

4.1.2 The Algorithm L∗

The algorithm L∗ starts by initializing the observation table (SD, ED, TD) by SD = ED =

{ε}. To determine TD, L∗ asks membership queries constructed from the table. For each

s ∈ SD ∪ SD · Σ and e ∈ ED, a membership query is constructed as s · e. The result of each

query is recorded in the table accordingly. After filling the table with the results of the queries,

L∗ checks if (SD, ED, TD) is closed and consistent.

If (SD, ED, TD) is not closed, then L∗ finds t ∈ SD · Σ such that t �ED
s, for all s ∈ SD.

Then, it moves t to SD and extends SD · Σ accordingly. The algorithm then asks membership

queries for the new rows in the table.

If (SD, ED, TD) is not consistent, then L∗ finds s, t ∈ SD, e ∈ ED and i ∈ Σ such that

s ∼=ED
t but TD(s · i, e) 6= TD(t · i, e). Then, it adds the string i · e to ED and extends the table

by asking membership queries for the missing elements.

These two operations are repeated until (SD, ED, TD) is closed and consistent. Finally, L∗

makes a DFA conjecture MD from the table according to Definition 11.

4.1.3 Learning with oracle

The learning of the unknown DFA D by asking queries is an iterative step. A conjecture from

a closed and consistent table after a run of the algorithm may still contain less number of

states than the minimum D. This is because the conjecture is an approximation drawn after

finite number of experiments, which may not have explored all the states of the hidden model.

Therefore, there must be some counterexample that can distinguish the conjecture and the

hidden model to start another iteration of the learning algorithm with a quest to learn a better

approximation.

Angluin uses a concept of an oracle that presumably knows the target language. L∗ presents

the conjecture to the oracle that acknowledges whether the conjecture is correct. This correct-

ness check is called asking an equivalence query for the conjecture. The oracle replies either

yes, signifying that the conjecture is correct, or with a counterexample. If the oracle replies

yes, then L∗ terminates by giving a final conjecture from a closed and consistent observation

table. If the oracle replies with a counterexample, then L∗ processes the counterexample in the

45

observation table to refine the conjecture. The method of processing counterexample is given

as follows.

Let ν ∈ Σ+ be a counterexample, then L∗ processes ν in (SD, ED, TD) by adding all the

prefixes of ν in SD. Then, the table is extended accordingly and the missing elements of the

table are filled by asking membership queries. The algorithm then makes the table closed and

consistent, and outputs the new conjecture.

This follows the asking of another equivalence query for the new conjecture. The process

continues until the oracle accepts the conjecture and the algorithm terminates. Algorithm 1

summarizes the complete method for inferring the exact DFA of the unknown language.

Input: The alphabet Σ
Output: DFA conjecture MD

begin1

initialize the observation table (SD, ED, TD) with the sets2

SD = ED = {ε}, SD · Σ = {ε · i},∀i ∈ Σ ;3

ask the membership queries from (SD, ED, TD) ;4

update (SD, ED, TD) with the results of the queries ;5

repeat6

while (SD, ED, TD) is not closed or not consistent do7

if (SD, ED, TD) is not closed then8

find t ∈ SD · Σ such that t �ED
s, for all s ∈ SD ;9

move t to SD ;10

ask membership queries for the extended table ;11

end12

if (SD, ED, TD) is not consistent then13

find s, t ∈ SD, e ∈ ED, i ∈ Σ such that s ∼=ED
t,14

but TD(s · i, e) 6= TD(t · i, e) ;15

add i · e to ED ;16

ask membership queries for the extended table ;17

end18

end19

make the conjecture MD from (SD, ED, TD) ;20

ask the equivalence query for MD ;21

if oracle replies with a counterexample ν then22

add all the prefixes of ν to SD ;23

ask membership queries for the extended table ;24

end25

until oracle replies yes to the conjecture MD ;26

return the conjecture MD from (SD, ED, TD) ;27

end28

Algorithm 1: The Algorithm L∗

46

4.1.4 Complexity

Angluin proved that the conjecture from a closed and consistent (SD, ED, TD) can be constructed

in polynomial time of factors

� |Σ|, i.e., the size of Σ

� n, i.e., the number of states of the minimum DFA D

� m, i.e., the maximum length of any counterexample provided by the oracle

Initially, SD contains one element. Each time (SD, ED, TD) is found not closed, one element

is added to SD. This introduces a new row to SD, so a new state in the conjecture. This can

happen for at most n − 1 times. For each counterexample of length at most m, there can be

at most m strings that are added to SD, and there can be at most n − 1 counterexamples to

distinguish n states. Thus, the size of SD cannot exceed n+m(n− 1).

Initially, ED contains one element. Each time (SD, ED, TD) is found not consistent, one

element is added to ED. This can happen for at most n−1 times to distinguish n states. Thus,

the size of ED cannot exceed n.

Putting these together, the maximum size of (SD ∪ SD · Σ)× ED in the worst case is

(

|SD|︷ ︸︸ ︷
n+m(n− 1) +

|SD·Σ|︷ ︸︸ ︷
(n+m(n− 1))|Σ|) (

|ED|︷︸︸︷
n) = O(|Σ|mn2)

The maximum number of membership queries is the worst case size of the observation table.

Theorem 2 summarizes the results concerning L∗.

Theorem 2 Given any minimally adequate oracle presenting an unknown regular language, the
algorithm L∗ eventually terminates and outputs a DFA conjecture isomorphic to the minimum
DFA D modeling the language. Moreover, if n is the number of states of D and m is an upper
bound on the length of any counterexample provided by the oracle, then the total running time
of L∗ is bounded by a polynomial in m and n. 2

4.1.5 Example

We illustrate the algorithm L∗ on the DFA D, given in Figure 4.2, over the alphabet Σ = {a, b}.
The DFA D accepts all the strings with an even (or zero) number of “a” and an even (or zero)

number of “b”.

In order to learn D, the algorithm L∗ initializes the observation table (SD, ED, TD) with

SD = ED = {ε} and SD · Σ with {a, b}. It asks the membership queries for ε, a, and b. This

gives the table TD(1), as shown in Table 4.2.

47

Figure 4.2: Example of a Deterministic Finite Automaton (repeated from Figure 2.1)

TD
(1) ε

ε 1
a 0
b 0

Table 4.2: The Observation Table TD
(1). The box in the table shows the row which make the table

not closed.

The table is consistent but not closed, since the row a in SD · Σ is inequivalent to any row

in SD. So, the row a is moved1 to SD and the strings a · a and a · b are added to SD · Σ. The

algorithm asks queries for the new rows to build the table TD(2), as shown in Table 4.3.

TD
(2) ε

ε 1
a 0
b 0

a · a 1
a · b 0

Table 4.3: The Observation Table TD
(2).

Figure 4.3: The conjecture MD
(1) from

Table TD
(2).

The table TD(2) is closed and consistent. So, the algorithm conjectures the machine MD
(1)

from the table, as shown in Figure 4.3.

The next step is to ask an equivalence query for MD
(1). The answer from the oracle is the

counterexample b ·b, since ΛD(q0D, b ·b) 6= ΛD(q0MD
(1) , b ·b). The algorithm adds all the prefixes

of the counterexample, i.e., b and b ·b, to the upper part of the table. The lower part is extended

1Note that the row b in the table TD
(1) also makes the table not closed. Since it is equivalent to the row a,

we move only one row to SD at a time. In this case, we moved the row a

48

accordingly, i.e., the strings b ·a, b · b ·a and b · b · b are added to SD ·Σ. The membership queries

are asked for newly added rows, resulting in the table TD(3), as shown in Table 4.4.

TD
(3) ε

ε 1
a 0
b 0
b · b 1
a · a 1
a · b 0
b · a 0
b · b · a 0
b · b · b 0

Table 4.4: The Observation Table TD
(3) after processing the counterexample b · b. The boxes show

the rows which make the table inconsistent.

The table TD(3) is closed but not consistent, since a ∼=ED
b, but TD(a · a, ε) 6= TD(b · a, ε).

The algorithm adds the suffix a, which distinguishes the rows a and b, to ED. The table is filled

by asking membership queries for the missing entries to get the table TD(4), as shown in Table

4.5.

TD
(4) ε a

ε 1 0
a 0 1
b 0 0
b · b 1 0
a · a 1 0
a · b 0 0
b · a 0 0
b · b · a 0 1
b · b · b 0 0

Table 4.5: The Observation Table TD
(4).

Figure 4.4: The conjecture MD
(2) from

Table TD
(4).

The table TD(4) is closed and consistent, so the algorithm makes the conjecture MD
(2), as

shown in Figure 4.4, from the table.

Next, the algorithm asks an equivalence query for MD
(2). The response from the oracle is

the counterexample a · b · b, since ΛD(q0D, a · b · b) 6= ΛD(q0MD
(2) , a · b · b). This follows the

addition of all the prefixes of the counterexample to SD. Since the prefix a is already in SD,

only the prefixes a · b and a · b · b are added. The lower part of the table is then extended with

49

strings a · b · a, a · b · b · a, a · b · b · b. The algorithm asks the membership queries for filling the

missing entries to get the table TD(5), as shown in Table 4.6.

TD
(5) ε a

ε 1 0
a 0 1
b 0 0
b · b 1 0
a · b 0 0
a · b · b 0 1
a · a 1 0
b · a 0 0
b · b · a 0 1
b · b · b 0 0
a · b · a 0 0
a · b · b · a 1 0
a · b · b · b 0 0

Table 4.6: The Observation Table TD
(5) after processing the counterexample a · b · b. The boxes

show the rows which make the table inconsistent.

The table TD(5) is closed but not consistent, since b ∼=ED
a · b, but TD(b, b) 6= TD(a · b, b).

The algorithm adds the suffix b to ED and queries for the missing entries to get the table TD(6),

as shown in Table 4.7.

TD
(6) ε a b

ε 1 0 0
a 0 1 0
b 0 0 1
b · b 1 0 0
a · b 0 0 0
a · b · b 0 1 0
a · a 1 0 0
b · a 0 0 0
b · b · a 0 1 0
b · b · b 0 0 1
a · b · a 0 0 1
a · b · b · a 1 0 0
a · b · b · b 0 0 0

Table 4.7: The Observation Table TD
(6).

Figure 4.5: The conjecture MD
(3) from

Table TD
(6).

The table TD(6) is closed and consistent. The algorithm makes the corresponding conjecture

MD
(3), as shown in Figure 4.5. The oracle replies yes in the final equivalence check, so the

50

algorithm returns MD
(3) and terminates.

4.2 Variants of L∗

There are variety of methods that tend to improve the algorithm L∗. The three widely referred

methods are listed below.

1. Rivest & Schapire [RS93] improved the algorithm by removing the consistency check1.

They proposed a method for processing a counterexample in the observation table that

consequently reduced the total number of membership queries to learn D completely. The

upper bound on the number of queries in their method is given as O(|Σ|n2 + n log m).

2. Kearns & Vazirani [KV94] used a completely different data structure to record obser-

vations, i.e., a binary discrimination tree with labeled nodes. The upper bound on the

number of queries in their method is given as O(|Σ|n3 + nm).

3. Hungar et al. [HNS03] suggested improvements for learning prefix-closed languages They

showed with the help of experiments [HNS03][BJLS05] that L∗ can be improved with

domain specific optimizations. They achieved 20% reduction of membership queries on

randomly generated prefix-closed DFAs by their method, compared to L∗.

The method of Kearns & Vazirani [KV94] has worst-case estimation quite close to L∗. The

method of Hungar et al. [HNS03] is applied in a specific case, i.e., when the language is prefix-

closed. In the following, we discuss the improvements proposed by Rivest & Schapire [RS93].

4.2.1 Proposition of Rivest & Schapire

Rivest & Schapire [RS93] noticed that Angluin’s algorithm can be improved by removing consis-

tency check. Consistency is checked only when two rows in SD are found equivalent. Otherwise,

the condition of consistency is always satisfied trivially. Therefore, the idea of keeping the size

of SD small was proposed such that it contains only inequivalent rows. They observed that in-

consistency holds in SD due to improper handling of counterexamples. A counterexample is an

experiment that distinguishes two or more equivalent rows (or states) in the table and thereby

causes an increase in the size of ED. However, L∗ does not follow this scheme directly, rather

it adds a new row for each prefix of the counterexample in SD assuming all are the potential

states of the new conjecture. Later, the rows are filled with the help of membership queries
1The other improvement was removing the “reset” assumption by applying a homing sequence [LY96], so

that the algorithm does not need to reset the machine before asking each membership query.

51

(no new column is added yet). This is where an inconsistency can occur in the table if two

rows s, t ∈ SD are found equivalent, i.e., s ∼=ED
t, but their future behaviors are not equivalent,

i.e., s · i �ED
t · i, for some i ∈ Σ. Thus, s and t must be distinguished in SD by adding a

distinguishing string in ED.

Rivest & Schapire proposed a method of processing a counterexample which does not add the

prefixes in SD. Thus, the rows in SD remain inequivalent during the whole learning procedure.

They find a distinguishing string in the counterexample and directly add the string to ED.

But their method requires a relaxation on the prefix-closed and the suffix-closed properties of

the table. In summary, the following two changes on the observation table (SD, ED, TD) are

imposed by their method:

1. SD is not prefix-closed and ED is not suffix-closed.

2. SD contains only inequivalent rows, i.e., for all s, t ∈ SD, s �ED
t.

Since, there cannot be two rows in SD that represent a single state, there is no need to check

consistency. In other words, there cannot occur an inconsistency in the observation table. The

method of processing a counterexample is proposed as follows.

Let ν = i0 . . . im−1 be the counterexample of length m. For 0 ≤ k ≤ m, let uk be the prefix

of ν of length k and vk be the corresponding suffix, i.e., ν = uk · vk ; so that u0 = vm = ε

and v0 = um = ν. Also, ν = uk · ik · vk+1, for k < m. Let qk = δD([ε], uk) be the state of the

conjecture that is reached by applying uk, the initial state be q0 = [ε] and qk+1 be the state

reached by applying ik on qk, i.e., qk+1 = δD(qk, ik). The acceptance of ν by this conjecture is

given by whether the ending state qm is final.

Since the set of strings that are accepted from a state distinguishes the state from the

others, we look upon suffix vk as an experiment on the corresponding state qk, and through

membership queries we find out ΛD(qk, vk), or whether δD(qk, vk) is final. The fact that ν is a

counterexample means that δD(q0D, ν) is final ⇐⇒ qm is not final. So consequently there must

exist one or more breakpoint positions k such that δD(qk, vk) is final ⇐⇒ δD(qk+1, vk+1) is not

final. Since δD(qk, vk) = δD(δD(qk, ik), vk+1), the suffix vk+1 is an experiment that distinguishes

δD(qk, ik) from qk+1 = δD(qk, ik). It suffices now to add vk+1 to ED . Rivest & Schapire show

how a binary search finds a breakpoint with log m queries. For at most n counterexamples, the

method requires n log m queries. The maximum size of SD is n, since it contains all inequivalent

rows which cannot exceed n. The maximum size of ED is n, since it contains one distinguishing

string for each counterexample. Therefore, the maximum size of (SD∪SD ·Σ)×ED is (n+|Σ|n)n.

In total, the method of Rivest & Schapire uses at most O(|Σ|n2 +n log m) membership queries.

52

A point worth noting is the following. The observation table is kept small by not adding all

the prefixes of a counterexample in SD. Thus, the original property of SD that it is prefix-closed

has been altered. For processing each counterexample, only one string is added to ED, where

ED may not contain its suffixes. Thus, the original property of ED that it is suffix-closed has

been altered. Consequently, the observation table is not prefix-closed and suffix-closed; the

properties which are required to prove that the conjecture from the table is always consistent

with the observations (see Theorem 1 and its proof). That means, there may exist a string

s · e ∈ SD ∪ SD · Σ that has already been tested as a membership query but ΛD(q0D, s · e) 6=
ΛD(q0D, s · e). Thus, the method of Rivest & Schapire does not guarantee satisfying Theorem

1. Balcazar et al. [BDG97] argued that the new conjecture obtained from this method may still

classify a previous counterexample incorrectly, so that the same counterexample can potentially

be used to answer several equivalence queries. In addition, Berg & Raffelt [BR05] compiled the

results from Balcazar et al. [BDG97] and explained the complete method of Rivest & Schapire.

4.3 Conclusion

This chapter discussed the inference of a Deterministic Finite Automaton (DFA) through an

active learning approach. It described a well-known algorithm, called L∗ [Ang87], with its

complexity discussion and illustration on the example.

We learned that the complete automaton that models the hidden structure of a black box

machine can be inferred using membership and equivalence queries in a polynomial time (as-

suming that the oracle provides counterexamples for the intermediate conjectures). Rivest &

Schapire [RS93] improved the complexity of the algorithm by proposing a different method of

processing counterexamples. However, the method relaxed the prefix-closed and suffix-closed

properties of the table which are required to produce the conjecture consistent with the obser-

vations. We explained the method and its problems which are also indicated by Balcazar et al.

[BDG97].

We note that the original idea of keeping only inequivalent rows can be encouraged if dif-

ferent methods of processing counterexamples are proposed such that they do not alter the

above mentioned properties of the table. Moreover, we intend to extend this work for learning

enhanced machines (see Chapters 5 and 7). In these extensions, we borrow the idea of Rivest &

Schapire and present a new method of processing counterexamples such that the original prop-

erties of the observation table are preserved. The complete discussion on this topic is presented

in Chapter 5.

53

54

Chapter 5

Mealy Machine Inference

This chapter covers the details of inferring a Mealy machine through the active learning ap-

proach. It describes the inference algorithm adapted from Angluin’s algorithm and its com-

plexity. Then, it presents our improvements on the algorithm and its complexity, followed by

the formal relation of the Mealy conjecture with the actual model, and finally the application

of the Mealy machine inference.

5.1 Motivation

Our application domain, i.e., telecom services, web-based applications, data acquisition mod-

ules, embedded system controllers, are considered as complex systems that characterize their

behaviors in terms of input/output (i/o). Typically, these systems receive inputs from the

environment, take decisions on internal transitions, perform computations and finally produce

the corresponding outputs to the environment. Arguably, the more natural modeling of such

systems is through Mealy machines (Definition 2), which DFAs do not support the structure

directly. Moreover, it is observed that a DFA model normally contains far more states than a

Mealy machine if they model the same problem [MNRS04] [Nei03]. Thus, efforts of learning

Mealy machines are desirable also from this aspect.

Angluin’s algorithm L∗ cannot be used directly to learn Mealy machines because they pro-

duce output strings in response to the queries and do not distinguish states as final or non-final,

as in the case of DFA models. However, it is observed that L∗ can tackle Mealy machines

through model transformation techniques. A simple way is to define a mapping from inputs

and outputs of the machine to letters in a DFA’s alphabet Σ. This can be done either by

taking inputs and outputs as letters, i.e., Σ = I ∪O [HNS03] or by considering couples of inputs

and outputs as letters, i.e., Σ = I × O [MS01b]. But these methods exploit the size of Σ and

thus raise complexity problems because the algorithm is polynomial on these factors. However,

55

there is a straightforward implication of L∗ on learning Mealy machines by slightly modifying

the structure of the observation table. The idea is to record the behaviors of the system as

output strings in the table instead of recording just “1” and “0”, as in the case of language

inference. This adaptation of L∗ to learn Mealy machines has been discussed in several works,

formally [Nei03] [BGJ+05] [SL07], and informally [MNRS04] [PO99].

In this chapter, we discuss the learning of Mealy machines using the settings from L∗. We

can adapt the structure of the observation table and related concepts, such as making the table

closed and consistent and making a conjecture from the table etc, for the algorithm of learning

Mealy machines. For processing counterexamples in the table, we can also easily adapt the

corresponding method from L∗. However, we propose improvements to the basic adaptation

and show that our improvements significantly reduce the complexity of the algorithm. A short

introduction of the improvements is given here.

Inspired by Rivest & Schapire [RS93], we have observed that the algorithm for inferring

Mealy machines can be improved if the consistency check is removed. As discussed in Chapter 4,

an inconsistency can occur due to the improper handling of counterexamples in the observation

table. Our contribution in the inference of Mealy machines is a proposal of a new method for

processing counterexamples that does not cause inconsistency in the table and consequently

reduces the complexity of the algorithm. The complexity analysis shows that by using our

method for processing counterexamples, the algorithm for learning Mealy machines requires

quite less number of queries, compared to the adapted method.

The organization of the chapter is as follows. In Section 5.2, we describe the adapted algo-

rithm to learn Mealy machines. In Section 5.3, we provide our improved algorithm and discuss

the complexity comparison of the two algorithms. Furthermore, we formulate an approxima-

tion relation between a Mealy machine conjecture and the unknown machine in Section 5.4.

In Section 5.5, we discuss the algorithm L∗ according to the new method of processing coun-

terexamples. Finally, an application of the Mealy machine inference and its results are given in

Section 5.6. Section 5.7 concludes the chapter.

5.2 Learning Algorithm for Mealy Machines

The formal definition of a Mealy machine (Q, I,O, δ, λ, q0) is given in Definition 2 (Chapter

2). In this section, we detail the learning of Mealy machines using the settings from Angluin’s

algorithm L∗, that has also been mentioned in the existing works. The basic idea is to explore

the system systematically by asking queries and build the conjecture automaton from the ob-

servations that are collected in the result of the queries. As for DFA learning, the two main

56

assumptions in learning Mealy machines are

1. The basic input set I is known

2. The machine can be reset before each query

The algorithm asks output queries [SL07] that are strings from I+ and obtain the correspond-

ing output strings from the machine. This is similar to the concept of membership queries in

L∗. The difference is that instead of 1 or 0, the machine replies with the complete output

string. Let ω ∈ I+, i.e., an input string of the query, then the machine replies to the query

with λ(q0, ω). The response to each query is recorded in the observation table. The queries

are asked iteratively until the conditions on the observation table are satisfied. Finally, the

algorithm builds a Mealy machine conjecture from the table. If a counterexample is provided

for the conjecture, then the algorithm processes the counterexample in the table and refines the

conjecture.

We describe the structure of the observation table in Section 5.2.1, then the algorithm for

learning Mealy machines in Section 5.2.2 and its illustration on an example in Section 5.2.3.

Later, we explain the method for processing counterexamples in the table in Section 5.2.4.

The complexity of the learning algorithm is given in Section 5.2.5. Finally, the illustration of

processing counterexamples is given in Section 5.2.6.

We denote by M = {QM, I, O, δM, λM, q0M} the unknown Mealy machine model that has a

minimum number of states. We assume that the input/output interfaces of the machines are

accessible, i.e., the input interface from where an input can be sent and the output interface

from where an output can be observed.

5.2.1 Observation Table

We denote by LM ∗ the learning algorithm for Mealy machines. At any given time, LM ∗ has infor-

mation about a finite collection of input strings from I+ and their corresponding output strings

from O+. This information is organized into an observation table, denoted by (SM , EM , TM).

The structure of the table is directly imported from the Angluin’s algorithm L∗. Let SM and

EM be the non-empty finite sets of finite strings over I. SM is a prefix-closed set that always

contains an empty string ε. EM is a suffix-closed set (ε 6∈ EM). Let TM be a finite function that

maps (SM ∪ SM · I) × EM to O∗. If s ∈ SM ∪ SM · I and e ∈ EM , then TM (s, e) contains an

output string taken from λM(q0M, s · e). Since, SM is prefix-closed, we already know the result

for the prefixes of s. Therefore, it is sufficient to record only the suffix of the output string

which corresponds to e. Thus, TM (s, e) = suff |e|(λM(q0 M, s · e)). The rows of the table consist

of the elements of SM ∪ SM · I and the columns consist of the elements of EM .

57

Since SM and EM are non-empty sets, the table is initialized by SM = {ε} and EM = I, i.e.,

every input symbol makes one column in the table, with the entry for a row s ∈ SM ∪ SM · I
and a column e ∈ EM equals to TM (s, e). The equivalence of rows is defined with respect to the

strings in EM . Suppose s, t ∈ SM ∪ SM · I are two rows, then s and t are equivalent, denoted

by s ∼=EM
t, if and only if TM (s, e) = TM (t, e), for all e ∈ EM . We denote by [s] the equivalence

class of rows that also includes s. An example of the observation table (SM , EM , TM) over

I = {a, b} is given in Table 5.1.

EM

a b

SM ε x x

SM · I
a y x

b x x

Table 5.1: Example of the Observation Table (SM , EM , TM)

The algorithm LM
∗ eventually uses the observation table (SM , EM , TM) to build a Mealy

machine conjecture. The strings or prefixes in SM are the potential states of the conjecture,

and the strings or suffixes in EM distinguish these states from each other.

To build a valid Mealy machine conjecture from the observations, the table must be closed

and consistent. The table is closed if for each t ∈ SM · I, there exists an s ∈ SM , such that

s ∼=EM
t. The table is consistent if for each s, t ∈ SM such that s ∼=EM

t, it holds that

s · i ∼=EM
t · i, for all i ∈ I.

When the observation table (SM , EM , TM) is closed and consistent, then a Mealy machine

conjecture can be constructed as follows:

Definition 12 Let (SM , EM , TM) be a closed and consistent observation table, then the Mealy
machine conjecture MM = (QM , I, O, δM , λM , q0M) is defined, where

� QM = {[s]|s ∈ SM}

� q0M = [ε]

� δM ([s], i) = [s · i],∀s ∈ SM , i ∈ I

� λM ([s], i) = TM (s, i),∀i ∈ I

To see that MM is well defined, note that SM is a non-empty prefix-closed set and it contains

at least one row ε, hence QM and q0M are well-defined. For every s ∈ SM , there exists s · i
in SM ∪ SM · I, for all i ∈ I, and since (SM , EM , TM) is closed, [s · i] ∈ QM ; hence δM is well

58

defined. For every s ∈ SM and i ∈ I, TM (s, i) always exists, since EM ⊇ I. Hence, λM is well

defined. Theorem 3 claims the correctness of the conjecture. Neise [Nei03] has given a formal

proof of the correctness, which is a simple demonstration of the Angluin’s algorithm, in which

the range of the output function is replaced by O+. Moreover, the conjecture is the minimum

machine by construction.

Theorem 3 If (SM , EM , TM) is a closed and consistent observation table, then the Mealy ma-
chine conjecture MM is consistent with the finite function TM . That is, for every s ∈ SM∪SM ·I
and e ∈ EM , λM (δM (q0M , s), e) = TM (s, e). Any other Mealy machine consistent with TM but
inequivalent to MM must have more states. 2

Note that the conjecture MM is input-enabled, i.e., for each state in QM and for each input

in I, it has an enabled transition. In practice, we may have a machine M for which we observe

that after applying a certain prefix s ∈ SM to the machine, the given input i ∈ EM is invalid.

Then, we would not ask an output query s · e; instead, we directly add Ω1 to TM (s, e). This is

useful to tackle the query complexity in practice.

5.2.2 The Algorithm LM
∗

The algorithm LM
∗ starts by initializing (SM , EM , TM) with SM = {ε} and EM = I. To

determine TM , it asks output queries constructed from the table. For each s ∈ SM ∪ SM · I
and e ∈ EM , a query is constructed as s · e. The corresponding output string of the machine is

recorded with the help of function TM , i.e., TM (s, e) = suff |e|(λM(q0 M, s · e)).

After filling the table with the result of the queries, LM ∗ checks if the table is closed and

consistent. If it is not closed, then LM
∗ finds t ∈ SM · I such that t �EM

s, for all s ∈ SM .

Then, it moves t to SM and TM (t · i, e) is determined for all i ∈ I, e ∈ EM in SM · I. If the

table is not consistent, then LM
∗ finds s, t ∈ SM , e ∈ EM and i ∈ I such that s ∼=EM

t, but

TM (s · i, e) 6= TM (t · i, e). Then, it adds the string i · e to EM and extends the table by asking

output queries for the missing elements.

When the table is closed and consistent, LM ∗ makes a Mealy machine conjecture MM from

the table according to Definition 12.

1See Definition 2 for the usage of Ω

59

5.2.3 Example

We illustrate the algorithm LM
∗ on the Mealy machine M given in Figure 5.1. The algorithm

initializes (SM , EM , TM) with SM = {ε} and SM · I = EM = {a, b}. Then, it asks the output

queries to fill the table, as shown in Table 5.1. When the table is filled, LM ∗ checks if it is

closed and consistent.

Figure 5.1: Example of a Mealy Machine (repeated from Figure 2.2)

Table 5.1 is not closed since the row a in SM ·I is not equivalent to any row in SM . Therefore,

the row a is moved to SM and the table is extended accordingly. Then, LM ∗ asks the output

queries for the missing elements of the table. Table 5.2 shows the resulting observation table.

The new table is closed and consistent, so LM ∗ terminates by making the conjectureMM
(1) =

(QMM
(1) , I, O, δMM

(1) , λMM
(1) , q0MM

(1)) from Table 5.2. The conjectureMM
(1) is shown in Figure

5.2.

a b

ε x x
a y x

b x x
a · a y x
a · b x x

Table 5.2: Closed and Consistent Obser-
vation Table (SM , EM , TM) for learning M

in Figure 5.1
Figure 5.2: The conjecture MM

(1) from
Table 5.2

The conjecture MM
(1) is not correct and can be refined with the help of a counterexample.

The methods for processing counterexamples are discussed in the following sections. We shall

illustrate the methods with the help of the same example. We provide here a counterexample

that will be used in their illustrations.

Let a · b · a · b · b · a · a be a counterexample for MM
(1), since

60

� λMM
(1)(q0MM

(1) , a · b · a · b · b · a · a) = x · x · x · x · x · x · y and

� λM(q0M, a · b · a · b · b · a · a) = x · x · x · x · x · x · x.

We choose a long counterexample to better illustrate the methods and to realize how they

work when the counterexamples of arbitrary lengths are provided. In practice, it is not sure

whether we obtain always the shortest counterexample.

5.2.4 Processing Counterexamples in LM
∗

Angluin’s algorithm L∗ provides a method for processing a counterexample in the observation

table (SD, ED, TD), so that the conjecture is refined with at least one more state. For the

algorithm LM
∗, we can adapt the Angluin’s method straightforwardly for processing counterex-

amples in the observation table (SM , EM , TM). The adapted method is described as follows.

Directly Adapted Method from L∗

The adaptation of Angluin’s method for processing a counterexample in (SM , EM , TM) is simply

adding the prefixes of the counterexample to SM and then extending the table accordingly. The

formal representation of the method is given below.

Let MM = (QM , I, O, δM , λM , q0M) be the conjecture from a closed and consistent ob-

servation table (SM , EM , TM) for learning the machine M. Let ν be a string from I+ as a

counterexample such that λM (q0M , ν) 6= λM(q0M, ν). Then, LM ∗ adds all the prefixes of ν to

SM and extends (SM , EM , TM) accordingly. The algorithm makes another run of output queries

until (SM , EM , TM) is closed and consistent, followed by making a new conjecture.

Algorithm 2 summerizes the algorithm LM
∗ with the adapted method for processing coun-

terexamples.

61

Input: The set of input symbols I
Output: Mealy machine conjecture MM

begin1

initialize the observation table (SM , EM , TM) with the sets2

SM = {ε}, EM = I, SM · I = {ε · i},∀i ∈ I ;3

ask the output queries from (SM , EM , TM) ;4

update (SM , EM , TM) with the results of the queries ;5

while (SM , EM , TM) is not closed or not consistent do6

if (SM , EM , TM) is not closed then7

find t ∈ SM · I such that t �EM
s, for all s ∈ SM ;8

move t to SM ;9

ask output queries for the extended table ;10

end11

if (SM , EM , TM) is not consistent then12

find s, t ∈ SM , e ∈ EM , i ∈ I such that s ∼=EM
t, but TM (s · i, e) 6= TM (t · i, e) ;13

add i · e to EM ;14

ask output queries for the extended table ;15

end16

make the conjecture MM from (SM , EM , TM) ;17

if there is a counterexample ν for MM then18

add all the prefixes of ν to SM ;19

ask output queries for the extended table ;20

end21

end22

return the conjecture MM from (SM , EM , TM) ;23

end24

Algorithm 2: The Algorithm LM
∗

5.2.5 Complexity

We analyze the total number of output queries asked by LM ∗ in the worst case by the factors

� |I|, i.e., the size of I

� n, i.e., the number of states of the minimum machine M

� m, i.e., the maximum length of any counterexample provided during the learning of M

Initially, SM contains one element. Each time (SM , EM , TM) is found not closed, one element

is added to SM . This introduces a new row to SM , so a new state in the conjecture. This can

happen for at most n − 1 times. For each counterexample of length at most m, there can be

at most m strings that are added to SM , and there can be at most n − 1 counterexamples to

distinguish n states. Thus, the size of SM cannot exceed n+m(n− 1).

62

Initially, EM contains |I| elements. Each time (SM , EM , TM) is found not consistent, one

element is added to EM . This can happen for at most n−1 times to distinguish n states. Thus,

the size of EM cannot exceed |I|+ n− 1.

The maximum size of (SM ∪ SM · I)× EM is given as

(

|SM |︷ ︸︸ ︷
n+m(n− 1) +

|SM ·I|︷ ︸︸ ︷
|I|(n+m(n− 1))) (

|EM |︷ ︸︸ ︷
|I|+ n− 1) = O(|I|2nm+ |I|mn2)

Thus, LM ∗ produces a correct conjecture by asking maximum O(|I|2nm + |I|mn2) output

queries.

5.2.6 Example

For the conjecture MM
(1) in Figure 5.2 for learning the Mealy machine M in Figure 5.1, we

have a counterexample as ν = a ·b ·a ·b ·b ·a ·a. According to the adapted method for processing

counterexample, LM ∗ adds all the prefixes of ν, i.e., a, a · b, a · b · a, a · b · a · b, a · b · a · b · b,
a · b · a · b · b · a, and a · b · a · b · b · a · a to SM and extends SM · I accordingly. The table is

then filled with the missing elements by asking output queries. Table 5.3a shows the resulting

observation table. Then, LM ∗ checks if the table is closed and consistent.

Table 5.3a is closed but not consistent since ε ∼=EM
a · b, but TM (ε · a, a) 6= TM (a · b · a, a).

To make the table consistent, the string a · a is added to EM and the table is filled accordingly.

Table 5.3b shows the resulting observation table, in which the rows ε and a · b have become

different. Now, LM ∗ checks if Table 5.3b is closed and consistent.

Table 5.3b is closed but not consistent since a · b ∼=EM
a · b · a but TM (a · b · a, a · a) 6=

TM (a · b · a · a, a · a). To make the table consistent, the string a · a · a is added to EM . For the

same rows, the other reason for inconsistency is due to TM (a · b · b, a · a) 6= TM (a · b · a · b, a · a).

Therefore, the string b · a · a is also added to EM and the table is filled accordingly. Table 5.3c

shows the resulting observation table, in which the rows a · b and a · b · a have become different.

Table 5.3c is closed and consistent, and thus LM ∗ terminates by making a conjecture iso-

morphic to M (Figure 5.1). The total number of output queries asked by LM ∗ is 85.

5.3 Improvements to Mealy Machine Inference

We propose improvements to the algorithm of learning Mealy machines by providing a new

method for processing counterexamples in the observation table (SM , EM , TM). The complexity

calculations and the experimental results of our proposal evidence a significant reduction in

the output queries that the algorithm asks during the learning procedure. We denote the

63

a b

ε x x

a y x

a · b x x

a · b · a x x

a · b · a · b x x

a · b · a · b · b x x

a · b · a · b · b · a x x

a · b · a · b · b · a · a y x

b x x

a · a y x

a · b · b x x

a · b · a · a x x

a · b · a · b · a y x

a · b · a · b · b · b x x

a · b · a · b · b · a · b x x

a · b · a · b · b · a · a · a y x

a · b · a · b · b · a · a · b x x

(a) Adding the prefixes of

the counterexample a ·b ·a ·
b · b · a · a to SM

a b a · a
ε x x x · y
a y x y · y
a · b x x x · x
a · b · a x x x · x
a · b · a · b x x x · y
a · b · a · b · b x x x · x
a · b · a · b · b · a x x x · y
a · b · a · b · b · a · a y x y · y

b x x x · x
a · a y x y · y
a · b · b x x x · x

a · b · a · a x x x · y
a · b · a · b · a y x y · y
a · b · a · b · b · b x x x · y
a · b · a · b · b · a · b x x x · x

a · b · a · b · b · a · a · a y x y · y
a · b · a · b · b · a · a · b x x x · x

(b) Adding a · a to EM

a b a · a a · a · a b · a · a
ε x x x · y x · y · y x · x · x
a y x y · y y · y · y x · x · x
a · b x x x · x x · x · x x · x · x
a · b · a x x x · x x · x · y x · x · y
a · b · a · b x x x · y x · y · y x · x · x
a · b · a · b · b x x x · x x · x · y x · x · y
a · b · a · b · b · a x x x · y x · y · y x · x · x
a · b · a · b · b · a · a y x y · y y · y · y x · x · x

b x x x · x x · x · y x · x · y
a · a y x y · y y · y · y x · x · x
a · b · b x x x · x x · x · y x · x · y

a · b · a · a x x x · y x · y · y x · x · x
a · b · a · b · a y x y · y y · y · y x · x · x
a · b · a · b · b · b x x x · y x · y · y x · x · x
a · b · a · b · b · a · b x x x · x x · x · y x · x · y

a · b · a · b · b · a · a · a y x y · y y · y · y x · x · x
a · b · a · b · b · a · a · b x x x · x x · x · x x · x · x

(c) Adding a · a · a and b · a · a to EM

Table 5.3: The Observation Tables (SM , EM , TM) for processing the counterexample a·b·a·b·b·a·a
for MM

(1) using the adapted method from L∗. The boxes in the tables show the rows which make
the tables inconsistent.

64

algorithm with the improved method for processing counterexamples by LM+. In the following,

we describe the idea of the improvement in Section 5.3.1, followed by the algorithm LM
+ in

Section 5.3.2 and the improved method for processing counterexamples in Section 5.3.3. We

provide the correctness proof of the method in Section 5.3.4, complexity of LM+ in Section

5.3.5, illustration of the method in Section 5.3.6 and finally the discussion on the improvements

in Section 5.3.7.

5.3.1 Motivation

To explain the main intuition behind the improvement, we recall the discussion on learning DFA

in Chapter 4. As a suggestion to improve the algorithm L∗, Rivest & Schapire [RS93] argued

to avoid consistency check by keeping only inequivalent rows in the first part of the observation

table (SD, ED, TD). This is how the size of the table can be reduced and so the total number

of membership queries that are required to fill the table. They noticed that an inconsistency

occurs due to improper handling of counterexamples in the table. They proposed a method

for processing counterexamples, which cost less in terms of membership queries for learning

DFA. However, their method relaxed the prefix-closed and suffix-closed properties of the table.

Consequently, the new conjecture might not be consistent with the table (Theorem 1), and

therefore, might still classify the previous counterexamples incorrectly. This means the same

counterexample can potentially be used to answer several equivalence queries in L∗ [BDG97].

Our improvement in the algorithm for learning Mealy machines is due to Rivest & Schapire’s

idea. We also suggest to keep only inequivalent rows in SM so that inconsistencies can never

occur. However, we propose a new method for processing counterexamples such that it does

not import the same problem as in the case of Rivest & Schapire. Our method for processing

counterexample keeps (SM , EM , TM) prefix-closed and suffix-closed, and therefore, the new

conjecture is always consistent with the observations in (SM , EM , TM), according to Theorem

3.

5.3.2 The Algorithm LM
+

In the algorithm LM
+, the definition of the observation table (SM , EM , TM), described in Section

5.2.1, and the basic flow of the algorithm, described in Section 5.2, remain unchanged. However,

the additional property of (SM , EM , TM) is that all the rows in SM are inequivalent, i.e., for all

s, t ∈ SM , s �EM
t. This means LM+ does not need to check for consistency because it always

trivially holds. However, LM+ processes counterexamples according to the new method, which

is described in the following.

65

suff 1 (v) suff 2 (v) suff |v|(v)

u v

The counterexample ν = u · v

u

. . .

ε
.
.
.

The Observation Table (SM , EM , TM)

find

.

.
.

. . .

add the suffixes of v

Figure 5.3: Conceptual view of the method for processing counterexamples in LM
+

5.3.3 Processing Counterexamples in LM
+

Let MM = (QM , I, O, δM , λM , q0M) be the conjecture from the closed (and consistent) ob-

servation table (SM , EM , TM) for learning the machine M. Let ν be a string from I+ as a

counterexample such that λM (q0M , ν) 6= λM(q0M, ν). The main objective of a counterexample

is to distinguish the conjecture from the black box machine. That means, the counterexample

must contain a distinguishing sequence to distinguish at least two seemingly equivalent states of

the conjecture; so that when applying the distinguishing sequence on these states, they become

different. In our method, we look for the distinguishing sequence in the counterexample and

directly add it to EM , so that the two seemingly equivalent rows1 in SM become different. For

that purpose, we divide ν into its appropriate prefix and suffix such that the suffix contains

the distinguishing sequence. We divide ν by looking at its longest prefix in SM ∪ SM · I and

take the remaining string as the suffix. Let ν = u · v such that u ∈ SM ∪ SM · I. If there

exists u′ ∈ SM ∪ SM · I another prefix of ν then |u| > |u′|, i.e., u is the longest prefix of ν in

SM ∪ SM · I. The idea of selecting u from the observation table is that u is the access string

that is already known such that λM (q0M , u) = λM(q0M, u). The fact that ν is a counterexample

then λM (q0M , u · v) 6= λM(q0M, u · v) must hold. That means, v contains the distinguishing

sequence to distinguish two rows in SM . So, it is sufficient to add v to EM . In fact, we add all

the suffixes of v such that EM remains suffix-closed.

Figure 5.3 provides a conceptual view of the method for processing a counterexample ν. It

shows that ν is divided into the prefix u and the suffix v, such that u ∈ SM ∪SM · I. Then, ν is

1Recall that the rows in SM represent the states of the conjecture

66

processed by adding all the suffixes of v to EM . The correctness proof of the method is given

in the following section.

5.3.4 Correctness

Let MM = (QM , I, O, δM , λM , q0M) be the conjecture from the closed (and consistent) ob-

servation table (SM , EM , TM). Let ν = u · i · v be the counterexample for MM such that

λM (q0M , u · i · v) 6= λM(q0M, u · i · v). Let u · i be the longest prefix of ν in SM ∪ SM · I and v

be the corresponding suffix of ν. If ν is a counterexample then it must distinguish [u · i] from

a seemingly equivalent state, i.e., λM(q0M, u · i · v) 6= λM(q0M, t · v), for some t ∈ SM such that

[t] = [u · i]. Thus, v contains a distinguishing sequence for the rows u · i and t.

Suppose we process ν in (SM , EM , TM) by adding all the suffixes of v to EM . Lets name

the table as (S′M , E
′
M , T

′
M) after this addition. Later, we ask output queries to fill the missing

elements of the table (S′M , E
′
M , T

′
M). Then, E′M contains the distinguishing sequence that

distinguishes the rows t and u · i in (S′M , E
′
M , T

′
M). That is, there must exist some experiment

e ∈ E′M such that T ′M (t, e) 6= T ′M (u · i, e). This implies that u · i 6∼=E′M
t. In fact, u · i ∈ S′M · I,

since t ∈ S′M and there cannot be two equivalent rows in S′M . If u · i ∈ S′M · I then trivially

u ∈ S′M . Moreover, in the table (SM , EM , TM), if u · i �EM
s, for s ∈ SM , then in the extended

table (S′M , E
′
M , T

′
M), u ·i �E′M s also holds, for s ∈ S′M . Therefore, u ·i is a row in (S′M , E

′
M , T

′
M)

that is inequivalent to any row in S′M . This makes the table not closed. Thus, making the table

closed will move u · i to S′M . Since, u is already in S′M , this operation keeps (S′M , E
′
M , T

′
M)

prefix-closed. Since, S′M is extended by one row, the new conjecture M ′M from the closed

(S′M , E
′
M , T

′
M) will contain at least one more state than MM .

It is simple to check whether (S′M , E
′
M , T

′
M) is suffix-closed, since E′M is extended from EM ,

which is suffix-closed, and E′M contains the suffixes of v. Thus, (S′M , E
′
M , T

′
M) is suffix-closed.

This proves the correctness of the method, since (S′M , E
′
M , T

′
M) is a closed (and consistent)

observation table that is prefix-closed and suffix-closed and contains the prefix u · i and the

suffix v of the counterexample ν. Therefore, the conjecture M ′M from (S′M , E
′
M , T

′
M) will be

consistent with the function T ′M (Theorem 3) that will find at least one more state.

We summarize the correctness results concerning the method in the following theorem.

Theorem 4 Let (SM , EM , TM) be a closed (and consistent) observation table and MM be the
conjecture from (SM , EM , TM). Let ν = u · i · v be the counterexample for MM , where u · i
is in SM ∪ SM · I. Let the table be extended as (S′M , E

′
M , T

′
M) by adding all the suffixes of v

to EM , then the closed (and consistent) observation table (S′M , E
′
M , T

′
M) is prefix-closed and

suffix-closed. The conjecture M ′M from (S′M , E
′
M , T

′
M) will be consistent with T ′M and must have

at least one more state than MM . 2

67

Algorithm 3 summarizes the algorithm LM
+.

Input: The set of input symbols I
Output: Mealy machine conjecture MM

begin1

initialize the observation table (SM , EM , TM) with the sets2

SM = {ε}, EM = I, SM · I = {ε · i},∀i ∈ I ;3

ask the output queries from (SM , EM , TM) ;4

update (SM , EM , TM) with the results of the queries ;5

while (SM , EM , TM) is not closed do6

if (SM , EM , TM) is not closed then7

find t ∈ SM · I such that t �EM
s, for all s ∈ SM ;8

move t to SM ;9

ask output queries for the extended table ;10

end11

make the conjecture MM from (SM , EM , TM) ;12

if there is a counterexample ν for MM then13

divide ν = u · v such that u is the longest prefix in SM ∪ SM · I ;14

add all the suffixes of v to EM ;15

ask output queries for the extended table ;16

end17

end18

return the conjecture MM from (SM , EM , TM) ;19

end20

Algorithm 3: The Algorithm LM
+

5.3.5 Complexity

We analyze the total number of output queries asked by LM+ in the worst case by the factors

� |I|, i.e., the size of I

� n, i.e., the number of states of the minimum machine M

� m, i.e., the maximum length of any counterexample provided during the learning of M

The size of SM increases monotonically up to the limit of n as the algorithm runs. The only

operation that extends SM is closed. Every time (SM , EM , TM) is not closed, one element is

added to SM . This introduces a new row to SM , so a new state in the conjecture. This can

happen at most n − 1 times, since it keeps one element initially. Hence, the size of SM is at

most n.

68

EM contains |I| elements initially. If a counterexample is provided then at most m suffixes

are added to EM . There can be provided at most n−1 counterexamples to distinguish n states,

thus the maximum size of EM cannot exceed |I|+m(n− 1).

The maximum size of (SM ∪ SM · I)× EM is given as

(
|SM |︷︸︸︷
n +

|SM ·I|︷︸︸︷
|I|n) (

|EM |︷ ︸︸ ︷
|I|+m(n− 1)) = O(|I|2n+ |I|mn2)

Thus, LM+ produces a correct conjecture by asking maximum O(|I|2n + |I|mn2) output

queries.

5.3.6 Example

We illustrate the algorithm LM
+ on the Mealy machine M given in Figure 5.1. Since, LM+ is

only different from LM
∗ with respect to the method for processing counterexamples, the initial

run of LM+ is same as described in Section 5.2.3. So, LM+ finds a closed (and consistent) table

as Table 5.2 and draws the conjecture MM
(1), shown in Figure 5.2, from Table 5.2. Here, we

illustrate how LM
∗ processes counterexamples to refine the conjecture.

For the conjecture MM
(1), we have a counterexample as ν = a · b · a · b · b · a · a. According

to the improved method for processing counterexample, LM+ finds the longest prefix u of the

counterexample in SM ∪ SM · I in Table 5.2. The prefix u = a · b is the longest prefix found, so

the remaining suffix is v = a · b · b · a · a. The algorithm adds all the suffixes of v, i.e., a, a · a,

b · a · a, b · b · a · a and a · b · b · a · a to EM . The table is filled by asking output queries for the

missing elements. Table 5.4a is the resulting observation table. Then, LM+ checks if the table

is closed.

Table 5.4a is not closed since the rows b and a · b are not equivalent to any rows in SM .

Hence, the rows b and a · b are moved to SM and the table is extended accordingly. The table is

filled by asking output queries for the missing elements. Table 5.4b is the resulting observation

table. Now, LM+ checks whether Table 5.4b is closed.

Table 5.4b is closed, and thus LM+ terminates by making a conjecture isomorphic to M

(Figure 5.1). The total number of output queries asked by LM+ is 54.

5.3.7 Discussion

We have presented two algorithms for inferring Mealy machines, namely LM
∗ and LM

+. The

algorithm LM
∗ is a straightforward adaptation from the algorithm L∗. The algorithm LM

+ is

our proposal that contains a new method for processing counterexamples. Having the complexity

calculations of the two algorithms, i.e,

69

a b a · a b · a · a b · b · a · a a · b · b · a · a
ε x x x · y x · x · x x · x · x · y x · x · x · x · x
a y x y · y x · x · x x · x · x · x y · x · x · x · x
b x x x · x x · x · y x · x · x · x x · x · x · x · y

a · a y x y · y x · x · x x · x · x · x y · x · x · x · x
a · b x x x · x x · x · x x · x · x · y x · x · x · x · x

(a) Adding the suffixes of v = a · b · b · a · a to EM

a b a · a b · a · a b · b · a · a a · b · b · a · a
ε x x x · y x · x · x x · x · x · y x · x · x · x · x
a y x y · y x · x · x x · x · x · x y · x · x · x · x
b x x x · x x · x · y x · x · x · x x · x · x · x · y
a · b x x x · x x · x · x x · x · x · y x · x · x · x · x
a · a y x y · y x · x · x x · x · x · x y · x · x · x · x
b · a x x x · y x · x · x x · x · x · y x · x · x · x · x
b · b x x x · y x · x · x x · x · x · y x · x · x · x · x

a · b · a x x x · x x · x · y x · x · x · x x · x · x · x · y
a · b · b x x x · x x · x · y x · x · x · x x · x · x · x · y

(b) Moving the rows b and a · b to SM

Table 5.4: The Observation Tables (SM , EM , TM) for processing the counterexample a·b·a·b·b·a·a
for MM

(1) using the improved method. The boxes in the tables show the rows which make the tables
not closed.

� LM
∗ : O(|I|2nm+ |I|mn2)

� LM
+ : O(|I|2n+ |I|mn2)

it is observed that LM+ has a gain on the number of output queries compared to LM ∗. We

discuss the different aspects of this gain in the following.

The crux of the complexity comparison comes from the fact that we are interested in systems

that contain huge data sets. When these systems are learned as Mealy machines, the size of

the input set I becomes large enough to cripple the learning procedure. In most cases, |I| is a

dominant factor over the number of the states n. Therefore, when we look on the parts of the

complexity calculations which exhibit a difference, i.e.,

� |I|2nm for LM ∗ and

� |I|2n for LM+,

then it is obvious that LM+ has a clear gain over LM ∗ as |I| grows.

Another aspect of the complexity gain of LM+ comes from the fact that it is not easy to

obtain always “smart” counterexamples that are short and yet can find the difference between

70

the black box machine and the conjecture. In practice, when the sources of getting counterex-

amples such as random testing or conformance testing methods (see discussion in Chapter 3)

are applied, counterexamples of arbitrary lengths are obtained. They are usually long input

strings that run over the same states of the black box machine many times to exhibit the dif-

ference. When LM
∗ processes such counterexamples in the observation table by adding all the

prefixes of the counterexample to SM ; it adds unnecessarily as many states as the length of the

counterexample. This follows the extension of the table due to SM · I. However, after filling the

table with output queries, it is realized that only few prefixes in SM are the potential states. On

the contrary, the method for processing counterexample in LM+ consists in adding the suffixes

of only a part of the counterexample to EM . Then, LM+ finds the exact rows through output

queries which must be the potential states and then moves the rows to SM (see Section 5.3.4).

So, the length of a counterexample m is less worrisome when applying LM
+. As m becomes

large, LM+ has more gain over LM ∗.

From the above discussion, we conclude that LM+ outperforms LM ∗, notably when the

size of the input set I and the length of the counterexamples m are large. We have also

confirmed the gain of LM+ over LM ∗ by experimentation on a case study: CWB [MS04], which

is a workbench of synthetic finite state models of real world systems. We have measured the

average case complexity of the two algorithms, where m, I and n are of different sizes. The

experimental results are given in Chapter 9 1.

As a reference to our contribution in making automata learning practical, we remark that

the complexity of the learning algorithm can still be tackled further by playing on the factor

|I|. In fact, a Mealy machine has a fixed set of inputs, so all inputs are taken into account for

learning. Whereas, if the machine has a similar behavior for the subset of inputs, then it can be

learned with few inputs, where each input belongs to different subsets. We notice that the issue

of large input set can be tackled by considering PFSM models, which has a reduced |I| (due

to its parameterized structure), compared to the same problem modeled as a Mealy machine.

In PFSM, we can consider few key inputs and consider the rest as parameters associated with

the inputs which show similar behaviors. Thus, the complexity of the algorithm can be further

reduced in practice. This topic is discussed in Chapter 7.

5.4 Relation of MM with M

A Mealy machine conjecture given by LM+ is an approximation of the unknown model. In the

absence of an oracle, the procedure of learning cannot rely on the counterexamples which could

1Chapter 9 is dedicated for case studies. The result for this case study is also given in that chapter.

71

progressively lead to a correct conjecture. Therefore, we must have a formal relation between

the conjecture and the unknown model which is known to be true at any given time. We prove

that the Mealy machine conjecture MM drawn from a closed (and consistent) observation table

(SM , EM , TM) is a Φ-quotient (Definition 6) of the unknown model, where Φ = EM . This is

stated in the following theorem.

Theorem 5 Let M = {QM, I, O, δM, λM, q0M} be the unknown machine and
MM = (QM , I, O, δM , λM , q0M) be the conjecture from the closed (and consistent) observation
table (SM , EM , TM), then MM is an EM -quotient of M. 2

Proof According to the definition of the Mealy machine quotient (Definition 6), the theorem
can be proved in two parts.

1. Let MM be a conjecture from the closed (and consistent) observation table (SM , EM , TM),
then for two states qM , q′M ∈ QM , there exists s, t ∈ SM such that [s] = qM and [t] = q′M ,
according to Definition 12. We also know that s ∼=EM

t, if and only if TM (s, e) = TM (t, e),
for all e ∈ EM . This is true for all the members of [s] and [t]. Therefore, [s] ∼=EM

[t]
implies that qM = q′M . Otherwise, there exists e ∈ EM such that TM (s, e) 6= TM (t, e) and
hence s �EM

t. This means, [s] �EM
[t], implies that qM 6= q′M . This proves the first part,

since qM and q′M can only be equal when s and t are equivalent with respect to EM , i.e.,
they produce same output on all the strings from EM , and not otherwise.

2. For qM ∈ QM , there exists s ∈ SM such that [s] = qM (Definition 12). We know that
TM (s, e) = suff |e|(λM(q0 M, s · e)) = λM(δM(q0M, s), e), for all e ∈ EM . Since, MM is
consistent with the observations in (SM , EM , TM), then λM (δM (q0M , s), e) = TM (s, e)
also holds (Theorem 3). This proves the second part, since
λM(δM(q0M, s), e) = λM (δM (q0M , s), e). �

5.5 Discussion on Processing Counterexamples in L∗

A question that naturally emerges from the improvement of the Mealy machine algorithm is

the following: Why the method of processing counterexamples of LM+ cannot be used as an

improvement to the basic DFA learning algorithm L∗?

The answer is stated in the following. The method of processing counterexamples that is

used in the algorithm LM
+ can also be used in the algorithm L∗. However, we have to take

into account certain changes in the structure of the observation table (SD, ED, TD) for this

purpose. Due to those changes, the query complexity of the algorithm becomes greater than

the complexity of the original algorithm L∗, given in Chapter 4, Section 4.1.4. The explanation

72

is provided in the following. First we explain what changes in (SD, ED, TD) we have to consider

in order to use our method of processing counterexamples in L∗ in Section 5.5.1. Then, we

calculate the query complexity and compared to the original in Section 5.5.2

5.5.1 Required Changes in the Observation Table

Recall that for learning the DFA D = (QD,Σ, δD, FD, q0D) with the output function ΛD and

the complete output function λD, we construct the observation table (SD, ED, TD) to ask mem-

bership queries (with the help of (SD ∪ SD ·Σ)×ED) and to record the answers of the queries

(with the help of TD). The function TD is defined as (SD ∪ SD · Σ) × ED −→ {0, 1}. That

means, we record the answers as either 0 or 1 given by ΛD.

In order to process counterexamples in (SD, ED, TD) according to our method, we shall add

the suffixes of a counterexample to ED. Recall that there must be at least one suffix that contains

a distinguishing sequence to distinguish at least two rows in the table. If a counterexample is

not the shortest one, then the suffix might end up with a letter that could not distinguish the

rows. In this case, if we record only the information given by ΛD, then we can miss the vital

information to distinguish rows. This information can be obtained through λD, i.e., we must

record the strings of 0s and 1s (given by λD), instead of recording just 0 and 1 (given by ΛD).

Precisely, we record only the suffix of the length of e ∈ ED, likewise in the algorithm LM
+.

That is, for the query s ·e, s ∈ SD ∪SD ·Σ, e ∈ ED, we record suff |e|(λD(q0 D, s · e)) in TD(s, e).

Figure 5.4: Example of
a DFA for illustrating our
method of processing coun-
terexamples in L∗

ε

ε 0

a 0
b 0

Table 5.5: Observation Ta-
ble for learning the DFA in
Figure 5.4

Figure 5.5: DFA Conjec-
ture from Table 5.5

Let us explain this concept with the help of an example. Figure 5.4 shows a DFA defined

on Σ = {a, b}. For learning this DFA, we construct a closed (and consistent) observation table,

shown in Table 5.5, and draws the conjecture from the table, as shown in Figure 5.5.

Let a · b · a be a counterexample for the conjecture. According to the method of processing

counterexamples, we look for the longest prefix of the counterexample in SD ∪ SD · Σ and add

73

the suffixes of the remaining string to ED. In this example, we find the remaining string as b · a
and thus add the suffixes a and b · a to ED. The table is then filled with the help of asking

membership queries and recording the information given by ΛD, as shown in Table 5.6.

In this table, however the counterexample has been processed, we do not observe any rows

that are distinguished from each other. This is due to the fact that the counterexample is not

the shortest one and none of its suffix in ED ends up on a letter that can distinguish the rows.

ε a b · a
ε 0 0 0

a 0 0 0
b 0 0 0

Table 5.6: Observation Table after pro-
cessing the counterexample a · b ·a and fill-
ing the information given by ΛD

ε a b · a
ε 0 0 00

a 0 0 10
b 0 0 00

Table 5.7: Observation Table after pro-
cessing the counterexample a · b ·a and fill-
ing the information given by λD

Now, let us redefine the function TD as T ′D : (SD∪SD ·Σ)×ED −→ {0, 1}∗, i.e., the function

maps to the strings of 0s and 1s. Then, we can construct the table to record the information

given by λD. For the same example, we construct the table (SD, ED, T ′D) as shown in Table

5.7. Now, we can clearly distinguish the rows ε and a due to the suffix b · a in ED.

5.5.2 Complexity

We calculate the query complexity of the algorithm L∗ with our method of processing coun-

terexamples in the table (SD, ED, T ′D), with the help of factors

� |Σ|, i.e., the size of Σ

� n, i.e., the number of states of the minimum machine D

� m, i.e., the maximum length of any counterexample provided during the learning of D

Initially SD contains only element, i.e., ε. The size augments when new rows are added for

making the table closed. This can happen at most n− 1 times. Thus, the maximum size of SD
cannot exceed n.

Initially ED contains one element, i.e., ε. The size augments when new strings are added for

processing counterexamples. If a counterexample is provided then at most m suffixes are added

to ED. There can be provided at most n− 1 counterexamples to distinguish n states, thus the

maximum size of ED cannot exceed m(n− 1).

So, the maximum size of (SD ∪ SD · Σ)× ED is given as

74

(
|SD|︷︸︸︷
n +

|SD·Σ|︷︸︸︷
n|Σ|) (

|ED|︷ ︸︸ ︷
m(n− 1)) = O(|Σ|mn2)

In the original algorithm L∗, the number of membership queries is the maximum size of the

table. This is because for each s ∈ SD ∪ SD · Σ, e ∈ ED, the string s · e is considered as one

query. There, we ask whether s · e is accepted or rejected and record 1 or 0 respectively.

In our case, we need to record the answer of each letter in e. Thus, the number of membership

queries for getting the answer of s · e is actually |e|. This is true for all e ∈ ED. If m is the

maximum length of e, then the maximum number of membership queries in the worst case is

O(|Σ|mn2) ·m = O(|Σ|m2n2).

This complexity is greater than the worst time complexity of the original algorithm that is

O(|Σ|mn2) (cf. Chapter 4, Section 4.1.4). Thus, our method of processing counterexamples in

the algorithm LM
+ does not claim improvements in the algorithm L∗.

5.6 Application: The HVAC controller

5.6.1 Description

We study the application of the Mealy machine inference on a simplified version of a real world

example. The example is an HVAC (Heating-Ventilation-Air-Conditioning) controller that reg-

ulates the heating and cooling components in a building according to the specific temperature

values. The specification of the controller is taken from the UPNP standardization1. Figure

5.6 presents the global HVAC system and the interactions of the controller with other compo-

nents. There are various modes of the controller according to the specifications, however we

focus on its very generic functionality, that is, controlling the heating and cooling components

on the change of climate. The controller accepts inputs from its environment to control the

components. It receives ON and OFF for starting and shutting down the components, and

temperature T that changes its mode of controlling. The temperature values range from -20�

to +50�. The control modes are as follows. It turns on the heater H when temperature values

are between -20� and 11�, turns on the fan F when the temperature values are between 16�

and 50�. The controller stops S the components when the temperature value becomes out of

range for the specific component or the command OFF is given from the environment. Each

component can also be regulated on high h and low l speed levels depending upon the temper-

ature intensity. The speed levels will be used in PFSM model inference and are not taking into

account here.
1HVAC V1.0 Standardized DCP. http://www.upnp.org/standardizeddcps/hvac.asp

75

The working of the HVAC Controller on different temperature values is as follows.

For low temperature values, i.e., [−20, 11], it turns on the heater.

For high temperature values, i.e., [16, 50], it turns on the fan.

For medium temperature values, i.e., [11, 16], it stops the heater/fan.

Figure 5.6: Global diagram of the HVAC system

5.6.2 Inference of the HVAC controller

The behavior of the HVAC controller can be modeled as a Mealy machine. We can use LM+ to

explore the controller behaviors and its interactions with other components in the HVAC system.

As a basic requirement of the algorithm, the input set of the controller is prepared which consists

of inputs ON , OFF and the temperature values. In fact, there are many temperature values

as inputs to the controller. We can consider each value as an input symbol to construct queries

for learning. For example, a temperature value 12� can be symbolized as T12 in the set. But

this method yields many inconveniences.

� It enumerates all the data values with in range. In the example, there would be 71

different inputs only for the temperature values, i.e., [-20�, +50�], if we insist to include

whole domain. It becomes more tricky when the values are from complex domains (e.g.,

floating-point, real etc).

� It would lead to unnecessary complexity of the model which cripples the practicality of

the learning algorithm (as |I| and n will increase).

� It will result in losing the control structure of the model, by mixing with the data values.

In fact, the interest of learning is to extract the control structure or an abstraction which

is relevant to investigate the functional behaviors of the system.

76

Due to these reasons, we design a restrictive input set for learning a Mealy machine model

of the controller by selecting few temperature values from each interval. For example, we choose

-5� and 5� as low temperatures from the interval [-20,11], 15� as a moderate temperature from

the interval [12,15], 25� and 35� as high temperatures from the interval [16,50]. They are sym-

bolized as T -5, T5, T15, T25 and T35 respectively. The complete input set for learning Mealy

machine model of the controller in this experiment is given as I = {ON,OFF, T -5, T5, T15, T25, T35}.

The observation table (SM , EM , TM) is initialized and the algorithm LM
+ is applied till the ta-

ble is closed. Table 5.8 shows the final observation table (SM , EM , TM). The outputs for the

invalid inputs are recorded as Ω. For simplicity, we skip the rows in the table which contain Ω

in all cells. Figure 5.7 shows the conjecture from Table 5.8. The total number of output queries

to learn the conjecture is 140.

EM

ON OFF T -5 T5 T15 T25 T35

SM

ε OK Ω Ω Ω Ω Ω Ω
ON Ω S H H S F F

ON · T5 Ω S H H S S S

ON · T25 Ω S S S S F F

SM · I

ON ·OFF OK Ω Ω Ω Ω Ω Ω
ON · T -5 Ω S H H S S S

ON · T15 Ω S H H S F F

ON · T35 Ω S S S S F F

ON · T5 ·OFF OK Ω Ω Ω Ω Ω Ω
ON · T5 · T -5 Ω S H H S S S

ON · T5 · T5 Ω S H H S S S

ON · T5 · T15 Ω S H H S F F

ON · T5 · T25 Ω S H H S F F

ON · T5 · T35 Ω S H H S F F

ON · T25 ·OFF OK Ω Ω Ω Ω Ω Ω
ON · T25 · T -5 Ω S H H S F F

ON · T25 · T5 Ω S H H S F F

ON · T25 · T15 Ω S H H S F F

ON · T25 · T25 Ω S S S S F F

ON · T25 · T35 Ω S S S S F F

Table 5.8: Closed (and Consistent) Observation Table for learning a Mealy machine model of the
HVAC controller

77

Figure 5.7: Mealy Machine conjecture of the HVAC Controller from Table 5.8

5.7 Conclusion

This chapter discussed the inference of Mealy machines from a black box machine. We studied

the adaptation of Angluin’s algorithm L∗ to infer Mealy machines. We proposed improvements

to the basic adaptation by providing a new method for processing counterexamples in the

observation table. The complexity analysis showed that our improved algorithm has a significant

gain over the adapted algorithm. The gain has also been confirmed on a case study for measuring

the average case complexity of the algorithms.

Later, we discussed the approximation of the Mealy machine conjecture given by the learning

algorithm with respect to the unknown model. We proved that a Mealy machine conjecture

drawn from a closed (and consistent) observation table (SM , EM , TM) is an EM -quotient of the

unknown model.

We also discussed why our proposed method of processing counterexamples does not improve

complexity in the basic algorithm L∗. We explained the algorithm with the help of an example

and calculated its worst case complexity with our method.

Finally, an application of the Mealy machine inference for the HVAC controller is given and

its results are discussed.

We believe that learning Mealy machines is a step forward towards learning more enhanced

models. From the discussions in this chapter – especially the complexity analysis of the algo-

rithm and the inference of the HVAC controller – it is evident that learning enhanced models is

strongly desirable, such that they could adequately model the structurally complex systems and

the complexity of learning could be tackled. Therefore, we propose PFSM models (Definition

4) and provide an algorithm for leaning such models. This topic is discussed in Chapter 7.

78

Chapter 6

Integration Testing

This chapter provides a framework for testing integrated system of black box components using

the partial models of the components. It describes the system architecture, the composition of

the components and the integration testing procedure.

6.1 Motivation

The experience in component based software engineering is evident that the integration of

high-quality components may not yield high-quality software systems. That is why integration

testing came into place to assess the quality of the integrated system [GTWJ03]. It is not easy

to evaluate all the possible interactions between the components in the system and uncover

inter-component faults. It is even harder to assess the quality of the integrated system when

the components are used without source code, specifications or other related information.

We propose the approach of combining learning and testing techniques to test the integrated

system composed of black box components. In the previous chapters, we have explained how

the components can be learned individually in order to extract their finite state models. At

this stage, we use these models to evaluate the quality of the integrated system by applying

integration testing techniques. Specifically, we want to understand how the components interact

with each other in the system, or what conclusions can be inferred about the system resulting

from the composition of the components. In fact, unit learning of components cannot confirm

their reliable behavior in the system because i) the learned models are partial and thus their

composition cannot portray the integrated system exactly, ii) the system may suffer from com-

positional problems such as deadlocks, livelocks or behavioral compatibility issues, which can

only be detected with integration testing activities.

In this chapter, we propose an integration testing framework for the system of black box

components using their partially learned models. Our goal is to automate integration testing

79

by deriving tests from the learned models to trigger the potential interactions between the com-

ponents in the system. The integration testing activity from partially learned models provides

results in two dimensions:

� The models of the components can be refined iteratively whenever the derived tests find

discrepancies between the behaviors of the models and the actual system. The refined

models will provide better understanding of the system, and also more tests can be gen-

erated for the system.

� The compositional problems and potential errors in the system can be discovered during

the course of testing.

Recall that we do not assume the provision of formal specifications so that tests could be

generated for the system and errors could be uncovered. In this case, our approach can guarantee

the integration testing based upon at least the quotients of black box components. Moreover,

the models are refined iteratively which enhance confidence when tests are generated from the

refined models.

The organization of the chapter is as follows. Section 6.2 describes the architecture of the

integrated system and the composition of the components in the system. Section 6.3 explains

the approach of learning and testing integrated systems. Section 6.4 concludes the chapter.

6.2 The Integrated System

We first describe the system architecture in Section 6.2.1, then provide a formal model of the

system of Mealy components in Section 6.2.2. Later, we define the product of Mealy components

in Section 6.2.3.

6.2.1 System Architecture

We consider an integrated system of black box components in which components are commu-

nicating asynchronously through their input/output interfaces with each other and with the

system’s environment. The components communicate by receiving inputs through their input

interfaces and sending outputs through their output interfaces. In the system architecture, we

distinguish two kinds of interfaces, namely, external and internal. The external interfaces of the

system are the ones through which the components communicate with the environment. The

internal interfaces of the system are the ones through which the components communicate with

each other. We can distinguish external and internal inputs (outputs) of the system through the

80

type of interfaces. We write simply inputs (outputs) to generalize external or internal; unless

they are specified.

It is important to mention that the number of components and the way they are assembled

in the system are known a priori. This means, we can easily distinguish the external and

internal interfaces in the system. However, the notion of external and internal vary from one

system architecture to the other. We may assemble the system in a different way so that the

interfaces are distinguished differently. Here, we assume that once the architecture is built

for integration, the external and internal interfaces of the system are not changed during the

whole integration testing procedure. Moreover, we assume that both external and internal

interfaces are observable, but only the external interfaces are controllable. This means that the

communication between the components can be monitored but cannot be interrupted on the

integrated level.

We assume that the system has a single message in transit, i.e., for each component and

each input, only one output is produced. Furthermore, the components in the system are

deterministic and input-enabled. This means when a component receives an input on any of its

state, one and only one transition on the state is enabled and an observable output is produced.

Recall that the observability can be handled, e.g., by considering Ω as the output, when the

given input is invalid or the component responses with no outputs. The absence of outputs can

be detected with the help of timeouts.

The system is in stable mode when no transition of any components is enabled. The system

can receive external inputs only when it is in stable mode. The architecture of the system with n

components is shown in Figure 6.1, in which the components communicate with the environment

through the external interfaces and to each other through the internal interfaces of the system.

The dotted line shows that the internal interfaces are observable to the environment.

6.2.2 Formal Model of a Mealy System

The architecture of the system composed of Mealy components (or shortly, Mealy system) is

described as follows:

Assume a system of n components, i.e., {C1, . . . , Cn}, where for each i 6= j, 1 ≤ i, j ≤ n,

Ci = (Qi, Ii, Oi, δi, λi, q0i) and Cj = (Qj , Ij , Oj , δj , λj , q0j) are Mealy components, such that

Ii ∩ Ij = ∅ and Oi ∩ Oj = ∅. The components Ci and Cj communicate if Ii ∩ Oj 6= ∅ or

Oi∩Ij 6= ∅. Let I be the union of all inputs, i.e., I =
⋃n
i=1 Ii, and O be the union of all outputs,

i.e., O =
⋃n
i=1Oi. The set Iext = I\O contains the external inputs of the system that can be

given from the environment and Oext = O\I contains the external outputs of the system that

can be given to the environment. We consider a system with at least one external input and one

81

Figure 6.1: Architecture of the Integrated System of n Components. The dotted line shows that
the internal interfaces are observable to the environment.

external output. For each component Ci it holds that if a ∈ Ii then either a ∈ Iext or a ∈ Oj ,

and if a ∈ Oi then a ∈ Oext or a ∈ Ij for some Cj .

We assume that the system is working under slow environment that provides external in-

puts only when the system is in stable mode. Initially, the system is in stable mode and can

be stimulated by providing an external input from Iext. A component receives the input and

produces either an external output to the environment or an internal input to another compo-

nent. The other component receives the internal input and produces either an external output

to the environment or an internal input to another component. Finally, the system produces

an external output to the environment and stays in the stable mode until it receives another

external input. An example of the Mealy system Sys that consists of two components M and

N is given in Figure 6.2. We write the external inputs (outputs) in uppercase letters and in-

ternal inputs (outputs) conversely. The models M = (QM , IM , OM , δM , λM , q0M) and N =

(QN , IN , ON , δN , λN , q0N) are given in Figure 6.3, in which IM = {A, b,E}, OM = {x, y, Z},

IN = {x, y, t} and ON = {b,D, F}.

6.2.3 Product of Mealy Components

Given a Mealy system {C1, . . . , Cn}, the slow asynchronous product of the components in the

system, denoted by
∏

, is a Mealy machine (Q, I,O, δ, λ, q0) such that

� I =
⋃n
i=1 Ii and O =

⋃n
i=1Oi are the sets of all inputs and outputs respectively.

82

Figure 6.2: Example of the Mealy System Sys.

(a) Component M (b) Component N

Figure 6.3: Components M and N of the System Sys in Figure 6.3.

� Q ⊆ Q1 × . . . Qn × (I ∪ {ε}) is a subset of the Cartesian product of the states of the

components and the union of their input sets. Since, the system has a single message in

transit, a state in Q holds only one input. The symbol ε in the state represents no input,

i.e., the system is in stable mode and the state is a stable state of the system waiting for

an external input.

� q0 = (q01, . . . , q0n, ε) ∈ Q is the initial state

The functions δ, λ and the set Q are the smallest sets obtained by applying the following

inference rules. For 1 ≤ i ≤ n, let Ci = (Qi, Ii, Oi, δi, λi, q0i) and qi ∈ Qi then for a ∈ I

1. If a ∈ Iext ∩ Ii and (q1, . . . , qn, ε) ∈ Q then λ((q1, . . . , qn, ε), a) = λi(qi, a) and

� If λi(qi, a) ∈ Oext then δ((q1, . . . , qn, ε), a) = (q1, . . . , δi(qi, a), . . . , qn, ε)

� If λi(qi, a) /∈ Oext then δ((q1, . . . , qn, ε), a) = (q1, . . . , δi(qi, a), . . . , qn, λi(qi, a))

2. If a ∈ Ii\Iext and (q1, . . . , qn, a) ∈ Q then λ((q1, . . . , qn, a), a) = λi(qi, a) and

� If λi(qi, a) ∈ Oext then δ((q1, . . . , qn, a), a) = (q1, . . . , δi(qi, a), . . . qn, ε)

� If λi(qi, a) /∈ Oext then δ((q1, . . . , qn, a), a) = (q1, . . . , δi(qi, a), . . . , qn, λi(qi, a))

83

Figure 6.4: The product
∏Sys of components M and N . The stable states of the product are

shown in double circles. The dotted arrow shows how the product can be minimized.

Note that the product
∏

is not input-enabled, i.e., for certain q ∈ Q and a ∈ I, λ(q, a)

and δ(q, a) are undefined. However, all the stable states of the product have a transition for

each external input, i.e., for all (q1, . . . , qn, ε) ∈ Q and a ∈ Iext, λ((q1, . . . , qn, ε), a) and

δ((q1, . . . , qn, ε), a) are defined.

As an example, the product of components M and N , denoted by
∏Sys, is shown in Figure

6.4. The stable states of the product are shown in double circles.

6.3 The Approach of Learning and Integration Testing

We explain our approach of learning and integration testing of the system of black box compo-

nents in five steps. We introduce each step here and then explain in the subsections. In Step

1, we learn the components in isolation using the learning algorithms described in the previous

chapters. For each component, we consider a restrictive input set, contrary to considering all

possible inputs for learning. In Step 2, we construct the product of the learned models obtained

in the previous step (Step 2(a)). The models may partially represent the system, therefore, we

analyze the product of the models to find compositional problems (Step 2(b)). The problem

found in the product will be confirmed on the actual system (Step 2(c)). If confirmed, we

terminate the procedure by reporting the problem. Otherwise, the problem is an artifact and

we proceed for refining the product by considering the problem as a counterexample for the

product. In Step 3, we refine the product by relearning one or more components using the

84

learning algorithms and then repeat Step 2 on the refined product. In Step 4, we generate tests

from the product of the learned models which contains no compositional problems thanks to

Steps 2 and 3. The tests are executed on the real system, which may find discrepancies between

the product and the system. In case a discrepancy is found, we proceed for Step 5. Otherwise,

the procedure will terminate. In Step 5, we resolve the discrepancy if it is classified as a real

error in the system or just an artifact due to the partiality of the product. In the former case,

we terminate the procedure by reporting the error. In the latter case, we refine the product

by proceeding for Step 3 and considering the discrepancy as a counterexample. The iterative

procedure is repeated until any compositional problem in the system is found, a real error in the

system is found or no discrepancy between the product of the learned models and the system

is found.

Figure 6.5: Learning and Testing Approach for an Integrated System

85

The approach of learning and testing for integrated systems is illustrated in Figure 6.5. In

the following, we explain each step of the approach in details and demonstrate it on Mealy

systems with the help of the example Sys in Figure 6.2.

6.3.1 Step 1: Learning Components with Restrictive Input Sets

The first step is to learn the components in the system to extract their models. For each

component, we need to construct its input alphabet in order to start its learning process. A

straightforward method is to consider all possible inputs. Considering the complexity issues,

this may not be a reasonable approach, since a subset of the component inputs is used in the

integrated system normally. However, we can restrict the size of the input alphabets by knowing

which inputs a component can receive from the other components in the system. In reality, this

knowledge is usually not completely available beforehand and inputs to the components are

discovered during testing or system execution.

In our approach, we construct the input alphabets of the components on-the-fly during

learning. The idea is to select some components in the system and construct their input set

manually. Then learn those components one by one and extract their models. The learning of

the components reveals the outputs which would be given as the inputs to the other components

in the system. This means we can learn the other components considering only those inputs

which are possible in the system. In this way, we can restrict the input set of some components

by observing what possible inputs the components can receive in the system.

In this approach, if the learning of a component Ck discovers new inputs for an already

learned component Cj , then Cj will be relearned with the new set of inputs. This can be seen

as a particular type of a counterexample for the component which has already been learned, but

now its input set is augmented with new inputs by the learning of Ck. Hence, the learning of the

individual components is an iterative process in which a component may be learned iteratively

whenever its new inputs are discovered. The approach is useful when the input alphabets of

the components are of formidable sizes. Fortunately, the input set of each component is finite,

so the process of discovering new inputs for each component must converge to the subset of the

inputs used by other components in their interactions.

The order of component learning is important in this approach and the system architecture

should be taken in view for setting the priority of selecting components for learning. Initially,

we select the components which have most interactions with the environment to learn them

at first place because they are more independent than the components which totally rely on

the other components for their execution. Recall that the system architecture is known and we

know a priori which components in the system do or do not communicate with the environment.

86

In the example of system Sys, we select component M first to learn since it receives external

inputs. Whereas, component N is learned after the inputs from M to N are discovered.

In the following, we discuss Step 1 for Mealy systems and illustrate it in the example.

Description on the Mealy System

In a Mealy system, we learn each component one by one using the algorithm LM
+ (Algorithm

3). The procedure is described as follows.

For the system {C1, . . . , Cn}, let a component Ci = (Qi, Ii, Oi, δi, λi, q0i) be selected to learn

first. Let Ii(1) ⊆ Ii be the input set constructed to learn Ci andMi
(1) = (Qi(1), Ii

(1), Oi
(1), δi

(1), λi
(1), q0i

(1))

be its learned model.

Let a component Cj = (Qj , Ij , Oj , δj , λj , q0j) such that Oi(1) ∩ Ij 6= ∅, then the input

set of Cj is constructed as Ij
(1) = Oi

(1) ∩ Ij . In fact, Ij(1) ⊆ Ij , so we restrict the in-

put set for Cj with respect to the composition of Ci and Cj . Similarly, the model Mj
(1) =

(Qj(1), Ij
(1), Oj

(1), δj
(1), λj

(1), q0j
(1)) will be learned for Cj and the set Oj(1) will restrict the

input set of the other components in the system.

Assume there exists a component Ck whose learned model is given as

Mk
(1) = (Qk(1), Ik

(1), Ok
(1), δk

(1), λk
(1), q0k

(1)). Then, Ok(1) discovers new inputs for a previously

learned component, say Cj , if Ok(1)∩Ij 6= ∅ and Ok(1)∩Ij(1) = ∅. Let Ij(2) = Ij
(1)∪(Ok(1)∩Ij),

i.e, the set of the previous and the newly discovered inputs for Cj , then Cj will be relearned as

Mj
(2) = (Qj(2), Ij

(2), Oj
(2), δj

(2), λj
(2), q0j

(2)).

Example

In the example Sys, we select component M to learn first and construct its input set IM (1) =

IM = {A, b,E}. The algorithm LM
+ is applied and the conjecture

M (1) = (QM (1), IM
(1), OM

(1), δM
(1), λM

(1), q0M
(1)), shown in Figure 6.6, is obtained from the

closed observation table, shown in Table 6.1.

Next, we learn component N and construct its input set. We have obtained the output set of

M (1) as OM (1) = {x, y, Z}. So, the input set for N is constructed as IN (1) = IN∩OM (1) = {x, y}.

The learning algorithm obtains the conjecture N (1) = (QN (1), IN
(1), ON

(1), δN
(1), λN

(1), q0N
(1)),

shown in Figure 6.7, from the closed observation table, shown in Table 6.2.

6.3.2 Step 2: Computing and Analyzing the Product

This step is explained in three parts.

87

A b E

ε x x Z

A y x Z

b x x Z

E x x Z

A ·A y x Z

A · b x x Z

A · E y x Z

Table 6.1: Closed Observation Table for
M (1).

Figure 6.6: The model M (1) from Table
6.1.

x y

ε b b

x b b

y b b

Table 6.2: Closed Observation Table for
N (1).

Figure 6.7: The model N (1) from Table
6.2.

Step 2(a): We compute the product of the models that have been obtained after learning in

Step 1. Now, we analyze the product in Step 2(b).

Step 2(b): We analyze the product of the learned models for any compositional problems such

as deadlocks and livelocks. Such problems can be detected via reachability analysis of the

state space of the product. Moreover, user-defined properties on the system can be also be

checked, for instance, by using a model checker [PVY99]. The detection of a problem in

the product would produce an i/o trace as a witness to the problem in the product. The

witness will be confirmed on the real system in Step 2(c). In case no problem is found,

we proceed for Step 4.

Step 2(c): The composition problems of the product detected in Step 2(b) may also exist in the

real system. But the witness to a problem in the product does not confirm the existence of

the problem in the system because it may be just an artifact due to the partial learning of

the individual components. Therefore, we have to confirm the problem in the product on

the actual system. If the problem is confirmed then we terminate the procedure and report

the problem. Otherwise, the problem in the model is proved to be an artifact and the

corresponding behavior of the system upon the confirmation of the problem is considered

88

to be a counterexample for the product. In this case, we proceed to the refinement of the

product, which is Step 3 of the procedure.1

In the following, we discuss Step 2 for Mealy systems and illustrate it on the example.

Description on the Mealy System

� According to Step 2(a), we compute the product of the learned components in the Mealy

system. For all learned models, M1
(k),M2

(k), · · · ,Mn
(k) obtained after Step 1, we compute

the product
∏(k) of the models as described in Section 6.2.3. We denote by

∏
, the product

of the actual components, or in other words, the real system.

� According to Step 2(b), we analyze the product
∏(k) for compositional problems. This is

explained as follows.

In the definition of the Mealy system, each component in our assumption is modeled

as an input-enabled Mealy machine. This means that for every input, the component

must produce an observable output. We also assume that the internal interfaces of the

components in the system are observable and the communication between the components

cannot be blocked. Thus, the system in this case cannot contain deadlocks. However, the

system can contain compositional livelocks such that by inputing a specific sequence of

external inputs, the system exhibits a cyclic behavior of the composed components and

does not terminate by producing an external output. In our approach, we find a livelock

in the system by analyzing the product of the learned components. If the product contains

a cyclic path of internal inputs and outputs, i.e., there is a loop on a set of unstable states

with no stable state in between, then it contains a livelock. The formal definition of the

livelock in Mealy system is given below.

Let
∏(k) = (Q(k), I(k), O(k), δ(k), λ(k), q0

(k)) be the product of the learned models obtained

after Step 1, q(k) ∈ Q(k) be an unstable state of
∏(k). Then,

∏(k) contain a livelock if

there exists a sequence of internal inputs, i.e., u ∈ I(k)\Iext, such that δ(k)(q(k), u) = q(k).

Let u′ ∈ I(k) such that δ(k)(q0
(k), u′) = q(k), then u′ · u is a witness to a livelock in

∏(k).

� According to Step 2(c), we confirm the livelock found in
∏(k) on the real system

∏
. We

confirm the livelock by applying the witness u′ · u to
∏

and observe its corresponding

behavior. In fact, we apply the external input projection of the witness, since only the

external inputs can be applied to the integrated system. If
∏

contains a livelock, then it

1Note that a “witness” is an i/o trace that witnesses a problem in the product, and a “counterexample” is

an i/o trace that proves the difference between the product and the model.

89

Figure 6.8: The product
∏(1) of the learned models M (1) and N (1).

will enter into a never ending loop exhibiting the cycles of internal inputs and outputs.

What number of times a cycle should be observed to declare a livelock is an open question

in black box testing [GLPS08]. Here, we assume that if the cycle is observed twice, then

we stop1 the system execution and declare a livelock. Under this assumption, let w be an

i/o trace of
∏(k) when applying u′ ·u·u on q0

(k). Let v be the i/o trace of
∏

when applying

the external input projection of w, i.e., w↓Iext . If v = w, then
∏

contains a livelock. We

declare the livelock in
∏

and terminate the procedure. Otherwise,
∏

produces an external

output and v is a counterexample for
∏(k).

Example

In the example Sys, we first compute the product
∏(1) = (Q(1), I(1), O(1), δ(1), λ(1), q0

(1)) of the

learned models M (1) and N (1) shown in Figure 6.8. Then, we analyze
∏(1) for compositional

problems. The product
∏(1) contains a livelock, since from the unstable state (m0, n0, x),

there exists a sequence of internal inputs x · b such that δ(1)((m0, n0, x), x · b) = (m0, n0, x).

Then, we obtain the i/o trace w = A/x ·x/b · b/x ·x/b · b/x ·x/b · b/x that contains a witness to

a livelock in
∏(1). Now, we confirm the livelock on the system. For that, we give the external

input projection w ↓Iext= A to the real system, i.e.,
∏Sys in Figure 6.4. The corresponding

behavior of
∏Sys is obtained as v = A/x · x/b · b/x · x/b · b/x · x/D. The behavior v ends by

producing the external output D, which means v 6= w and v is a counterexample for
∏(1).

6.3.3 Step 3: Refining the Product

If we find a counterexample v for the product of learned models, then the product is refined

in this step. The counterexample is found due to the partiality of the models of one or more
1This logic can be implemented in the test driver that is actually sending the inputs to the real system and

observing the corresponding outputs

90

components in the system. Therefore, we can identify those components whose models can be

refined using v as a counterexample. In fact, v is a complete i/o trace of the system, so we need

to project v on the input and output sets of each component to obtain its respective i/o trace.

Then, each projected trace will be run on its component’s model to identify the differences in

the behaviors. When a component is identified, it is relearned using its projected trace as a

counterexample. The refined model obtained from relearning the component will contain at

least one new state (see Theorem 4 in Section 5.3.4 of Chapter 5). Therefore, the product of

the refined models will also be refined. Moreover, the refined model of the component may

discover new inputs for other components. This follows the procedure of learning components

with restrictive input sets, described in Step 1, followed by the iterative process (Steps 2-5).

In the following, we discuss Step 3 for Mealy systems and illustrate it on the example.

Description on the Mealy System

Let v be a counterexample for the product of the learned models
∏(k) and

Mi
(1) = (Qi(1), Ii

(1), Oi
(1), δi

(1), λi
(1), q0i

(1)) be the learned model of a component Ci. To check

whether v contains a counterexample for Mi
(1), we obtain v ↓Ii(1) and v ↓Oi

(1) , i.e., the input

and output projections of v on Ii
(1) and Oi

(1), respectively. If λi(1)(q0i
(1), v ↓Ii(1)) 6= v ↓Oi

(1) ,

then v ↓Ii(1) is a counterexample for Mi
(1). We provide the counterexample to LM+ to relearn

Ci
(1) and obtain Mi

(2).

Note that if v is a counterexample for a product then it contains a counterexample for at least

one component in the system. This is trivial because every transition in the product represents

a transition of some component in the system. This means if a transition in the product shows a

different behavior in the system then the corresponding transition in the component also behaves

differently. Therefore, the projection of v on the input and output sets of each components will

correctly find a counterexample for at least one component.

Example

In the example Sys, v = A/x ·x/b ·b/x ·x/b ·b/x ·x/D is a counterexample obtained after Step 2

for the product
∏(1). We project v on the input and output sets of each component and check

the behavior of the component against its model. we find that λM (1)(q0M
(1), v↓IM (1)) = v↓OM

(1) .

However, λN (1)(q0N
(1), v↓IN (1)) 6= v↓ON

(1) . In fact, v↓IN (1)= x · x · x and v↓ON
(1)= b · b ·D, but

λN
(1)(q0N

(1), v↓IN (1)) = b ·b ·b. Thus, x ·x ·x is a counterexample for N (1) and the refined model

N (2), shown in Figure 6.9 along with its closed observation table in Table 6.3, is obtained.

91

This follows Step 2 in which we make the new product
∏(2) of M (1) and N (2), shown

in Figure 6.10. The product
∏(2) does not contain any compositional problems and thus we

proceed for Step 4.

x y x · x
ε b b b · b
x b b b ·D
x · x D D D ·D
y b b b · b
x · y b b b ·D

x · x · x D D D ·D
x · x · y b b b · b

Table 6.3: Closed Observation Table for
N (2).

Figure 6.9: The model N (2) from Table
6.3.

6.3.4 Step 4: Finding Discrepancy between the Product and the System

At this stage, we obtain the product of the learned models that contains no compositional

problems. But the product may still partially represent the system and there can be found

discrepancies between the behavior of the system and the behavior depicted by the product. In

previous works [PVY99][SL07][SHL08] of the similar framework, VC algorithm [Vas73] [Cho78]

has been used to find the counterexamples as discrepancies between the partial model and the

black box system. However, we must have an upper bound on the number of states in the system

in order to apply the algorithm. In spite of this, we can use model based testing methods based

on coverage criteria for test generation. There can be many different coverage criteria [PvBY96],

in which case excessive number of tests of arbitrary lengths can be generated. In our approach,

we do not fix a particular method for generating tests for finding discrepancies; rather we leave

it as an open choice to the designer of the system.

For the sake of simplicity, we describe the integration testing approach using transition

based coverage criteria to generate tests for the system. In fact, we generate tests by covering

each transition in the stable states of the product at least once. We cover only transitions of

the stable states because only the external inputs can be given to the system in the integration

testing. Then, the behavior of the system in the result of testing can be compared with the

behavior depicted by the product. If the behaviors are different, then a discrepancy is found.

In the following, we describe the test generation method for Mealy systems.

92

Figure 6.10: The product
∏(2) of the learned models M (1) and N (2).

Description on the Mealy System

We calculate the spanning tree of the product of the learned models
∏(k) and traverse the tree

from the root to each leaf node in the breadth-first-search manner to obtain the i/o traces in

the tree. The set of i/o traces are the tests for the integrated system. Let w be a test from the

set of traces, then the external input projection of w, i.e., w ↓Iext , is the input sequence given

to the system. For each test w, the behavior of the real system
∏

on w ↓Iext can be compared

with the corresponding inputs and outputs in w. Let the i/o trace obtained from
∏

be v. If

w 6= v, then a discrepancy between
∏(k) and

∏
is detected.

Example

In the example Sys, we generate tests from the product
∏(2) using the method described above.

Here, we show a test w = A/x·x/b·b/x·x/b·b/x·x/D·A/x·x/D·A/y·y/D such that the behavior

of
∏Sys on w↓Iext= A·A·A is observed as v = A/x·x/b·b/x·x/b·b/x·x/D ·A/x·x/D ·A/x·x/D.

Thus, w 6= v and v is a witness to a discrepancy between
∏(2) and

∏Sys.

6.3.5 Step 5: Resolving Discrepancy

In the previous step, the actual behavior of the system v instead of the behavior w of the product

reveals a discrepancy between the system and the product. Surely, v is a counterexample for

the product which does not represent the system accurately. Then, we can refine the product

with the help of this counterexample.

93

Anomalies Symbols

System Crash SC

Uncaught Exception Exp

Out of Memory problem OutMem

Table 6.4: List of anomalies for automatic checking during the integration testing procedure

At the same time, since the system has been exercised on the tests generated in Step 4, the

tests might have revealed real errors in the system. In this case, although we know that the

learned product is different from the system, we have also found an error in the system.

The functional errors in the system can be checked automatically if a partial specification

or expected behaviors in the form of scenarios are provided [RG99] [RF07]. Otherwise, the

designer can intervene to classify them manually. In our approach, we are checking the kind of

anomalies in the system for which we do not need the provision of partial specifications to detect

them automatically. Actually, we add this logic in the test driver that if the system exhibits

any such anomalies during testing, then it highlights a special symbol against the anomaly in

v. The list of such anomalies and their symbols according to our current implementation of the

approach is given in table 6.4. The list is not exhaustive and can be extended to incorporate

more general programming errors.

In this step, we resolve whether v exhibits an anomaly or we should go for the refinement of

the product considering v as a counterexample. If v exhibits an anomaly, then v is reported as

a witness to a real error in the system. In this case, we terminate the procedure. Otherwise, v

is a counterexample for the product that shows that the product does not represent the system

accurately. Here, an eyeball inspection would be useful to decide either to continue for the

refinement step or to stop the iterative learning procedure. We choose to refine the product in

quest of learning a more complete representation of the system. Moreover, this choice makes

the approach more automatic.

Therefore, when a counterexample is found, we go for the refinement of the product (Step

3) and start again the procedure on the refined product. The description of the step is given

on Mealy systems as follows.

Description on the Mealy System

Let v be the behavior of the real system
∏

obtained in Step 4, such that v is a witness to a

discrepancy between
∏

and the product of the learned models
∏(k). Then, v is checked if it

exhibits an anomaly. If an anomaly is found, v is reported as a witness to a real error in
∏

.

Otherwise, v is a counterexample for
∏(k), which follows Step 3 for the refinement of

∏(k).

94

Example

In the example Sys, we found a witness v = A/x ·x/b · b/x ·x/b · b/x ·x/D ·A/x ·x/D ·A/x ·x/D
after Step 4, that is a discrepancy between

∏(2) and
∏Sys. In this step, we classify v as a

counterexample for
∏(2) instead of an error in Sys. Therefore, we proceed for Step 3 to refine∏(2).

In Step 3, we identify the exact component for refinement by making the projection of v on

the input and output sets of M (1) and N (2). Then, we find that v ↓IM (1)= A · b · b · A · A and

v ↓OM
(1)= x · x · x · x · x, but λM(1)(q0M

(1), v ↓IM (1)) = x · x · x · x · y. Hence, A · b · b · A · A is

a counterexample for M (1). We refine the model as M (2), shown in Figure 6.11 along with its

closed observation table, shown in Table 6.5. For the model N (2), there is no counterexample

found. Hence, we proceed for Step 2.

In Step 2, we make the new product
∏(3) of M (2) and N (2), shown in Figure 6.12. The new

product does not contain compositional problems and therefore, we proceed for Step 4.

In Step 4, we do not find discrepancies between
∏(3) and

∏Sys. Hence, we terminate the

procedure.

A b E A ·A b ·A ·A
ε x x Z x · y x · x · x
A y x Z y · y x · x · x
b x x Z x · x x · x · x
E x x Z x · y x · x · x

A ·A y x Z y · y x · x · x
A · b x x Z x · x x · x · x
A · E y x Z y · y x · x · x
b ·A y x Z x · y x · x · x
b · b y x Z x · x x · x · x
b · E x x Z x · x x · x · x

Table 6.5: Closed Observation Table for
M (2).

Figure 6.11: The model M (2) from Table
6.5.

6.3.6 Termination Criteria

We terminate the procedure of integration testing at three steps, 1) At Step 2, when a compo-

sitional problem is confirmed in the system, 2) At Step 4, when no discrepancies between the

product and the system are found, 3) At Step 5, when we classify a discrepancy as a real error

in the system.

95

Figure 6.12: The product
∏(3) of learned models M (2) and N (2). The dotted arrow shows how

the product can be minimized.

Note that the absence of discrepancies in Step 4 does not necessarily mean that the product

has been learned completely. Instead, it means that no discrepancies can be found by the gener-

ated tests. Here, we can opt for a different testing strategy to generate more tests. Moreover, we

can also count the number of iterations in the procedure and terminate if the number exceeds

certain threshold. Such criteria can be used for customization and for making the approach

more flexible.

6.4 Conclusion

We have given an approach for learning and testing integrated systems of black box components.

The procedure consists of five steps. In the first step, we learn the components in isolation with

their restrictive input sets. In Step 2, we compute the product of the learned models and

analyze the product to find composition problems. For every problem found in the product, we

confirm it on the system and report on confirmation and terminate the procedure. Otherwise,

we consider the problem as an artifact and proceed for Step 3. In Step 3, we refine the product

by relearning each component. In Step 4, we generate the tests from the product model with

no compositional problems and find discrepancies between the product and the system. If no

discrepancies are found, then we terminate the procedure. In Step 5, the discrepancies found in

the previous step are resolved. If the discrepancies are classified as real errors then we terminate

the procedure by reporting the errors. Otherwise, we proceed for refining the product and the

iterative procedure starts again.

96

We have explained each step with the help of an example (Figure 6.2). It is worth noting

that the final product
∏(3), shown in Figure 6.12, is actually same as the real system

∏Sys,

shown in Figure 6.4, in the sense that they are isomorphic if they are minimized1. Whereas, the

final learned model of component M , i.e., M (2), is still not learned completely. This example

justifies that we do not always need to learn complete models of the components in the integrated

system. Moreover, the learned models serve as oracles in the integration testing procedure to

find potential errors such as compositional problems and general kind of errors in the system.

Also, the tests generated from the product find counterexamples for the partial models which

are then refined in the iterative procedure.

As discussed in Chapter 5, the size of counterexamples is a key factor for analyzing the

complexity of learning a model. In our procedure of integration testing, the counterexamples

of the shortest length are not always produced, which is not the ideal case for learning the

model in minimum number of queries. However, the worst case complexity of learning in our

procedure remains polynomial as we have computed (cf. Chapter 5, Section 5.3.5).

The finding of counterexamples for the product depends upon the quality of tests that are

generated through the testing strategy in our procedure. The comparison of different strategies

has not been addressed in the scope of this work. We use the existing works of test generation

from models in our approach, which are mentioned and discussed in Chapters 1 and 3.

1The minimization is shown with dotted arrows in both products

97

98

Chapter 7

Parameterized Machine Inference

This chapter covers the details of inferring a Parameterized Finite State Machine through the

active learning approach. It describes the inferring algorithm and its complexity. The proofs of

the related theorems and an application of the model are also given.

7.1 Motivation

It is argued that learning Mealy machines is still not sufficient because they do not model

adequately the systems that exchange lots of parameterized data values from arbitrary complex

domains. For example, the controller of HVAC system works on many different temperature

values, user modes and status of external devices. The Mealy machine modeling of such system

would create a formidable size of input set, and thus, would result in a combinatorial blow up

on the transition level. Moreover, the complexity of the learning algorithm is greatly enhanced

by taking all data values (as inputs) in the learning procedure. As a matter of fact, it is not

obvious to test all values to identify the complete behavioral spectrum of the system. First,

it is not possible to exhaustively test all possibilities. Second, the behavior of such systems is

confined on a few subsets of values and differs only on minor details. For example, the behavior

of the HVAC controller on all the temperature values less than 12� is the same, that is turning

on the heater, but only the speed of the device may differ from one value to another. Thus, it

will be more adequate if such a system could be modeled in a compact (finite state machine)

representation that shows the global behaviors (as state transitions) and the minor details could

be treated as parameter values (associated with inputs and outputs on transitions).

Due to these reasons, there is a good argument to model a system into an expressive form,

that can detail the intended behaviors of the system in a compact representation and can

encapsulate a large (or infinite) input set into few key inputs; such that the complexity of

the learning algorithm can be catered. We have presented a parameterized model PFSM in

99

Definition 4 (Chapter 2). In this chapter, we discuss the learning of PFSM models using the

original settings of Angluin’s algorithm. Section 7.2 explains the learning algorithm for PFSM.

Section 7.4 provides an illustration of learning HVAC controller using PFSM learning algorithm.

Section 7.5 concludes the chapter.

We shall be using HVAC Controller example in the explanation of the PFSM learning

algorithm. The complete description of the example can be seen in Chapter 5 (Section 5.6).

Here, we recall the terms that we use in the example: ON to turn on the system, OFF to turn

off the system, T for temperature, H for heater, F for fan, l for low speed, h for high speed and

S to stop the fan/heater.

7.2 Learning Algorithm for PFSM models

Keeping in view the fundamentals of DFA and Mealy machine inference algorithms, we move

towards the inference of PFSM models. We illustrate the motivation of enriching the structure

of the observation table and adapting the previous definitions to accommodate input/output

parameters. Consider a Mealy machine model of the HVAC controller when all 71 temperature

values, i.e., [−20,+50], are taken as different input symbols. The structure of the table will

expand as the number of rows and columns augment with the size of the input set. If the

observation table is adapted for parameterized inputs then the whole range of temperature

values can be encapsulated into a single input symbol as T and [−20,+50] can be considered

as the domain of parameter values for T . Thus, the behaviors of different temperature values

recorded in multiple rows and columns of the observation table (in case of Mealy machine

inference) can be collapsed into a single cell as shown in Figure 7.1. Moreover, if the behaviors

recorded in the multiple cells are the same, then the observation table for PFSM inference is

extended only with one row contrary to multiple rows in the case of the observation table for

Mealy machine inference.

The problem with learning PFSM models is that we can only test a finite number of input

parameter values. That means, we may not be able to learn completely the i/o parameter

domains, or precisely, the predicates on the input parameter values and the output parameter

function on a transition. However, the number of transitions labeling different outputs from a

given state can be learned if a parameter value from each of the predicates on these transitions

is tested. The issue can be resolved under uniformity hypothesis [BGM91] [Pha94], i.e., the

domain of parameter values is partitioned into equivalence classes such that the component

behaves indifferently for all parameter values in a class of the partition. Then, it is sufficient to

100

T

ON · T

. . .

(5 · 15, S) (5 · 35, S)(5 · 25, S). . .
.

.ON · T · T

T15

ON · T5

. . .

S. . .
.

.ON · T5 · T15

S S

T25 T35

ON · T5 · T25

ON · T5 · T35

. . .

. . .

. . .

. . .

.

.

Observation Table for Mealy Machine Inference

Observation Table for PFSM Inference

Collapsing 3 rows

Collapsing 3 columns

Figure 7.1: Idea of collapsing rows and columns in the Observation Table for PFSM inference

test only one value from each class. But such a hypothesis would take us back to the learning

of Mealy machines, in which, we can create one input for all the elements of a class.

It turns out that the issue of selecting the parameter values in the learning procedure points

to the classical problem of selecting test data in black box testing [Kor99]. In our case, we

opt for a random selection of parameter values from the domain. For example, if the domain

is [−20,+50], then the learning algorithm selects randomly the values between the range and

test the black box machine on those values. Other techniques, e.g., equivalence partitioning,

boundary value analysis etc, and heuristics could also be applied based upon the available

knowledge on the parameter domain.

For the description of the PFSM learning algorithm, let P = {QP, I, O,DI , DO,ΓP, q0P} be

the unknown PFSM model that has a minimum number of states. The transition function,

the output function and the output parameter function for P are denoted by δP, λP and σP,

respectively. Following the active learning theory, the main assumptions for PFSM learning are

� The basic set of the input symbols I and the domain of the input parameter values DI

are known. In the example of the HVAC controller, we have I = {ON,OFF, T} and

DI = [−20, 50] ∪ {⊥}. The inputs ON and OFF do not take input parameters, so they

will be associated with ⊥ 1. The input T will be associated with [−20, 50].

� The machine can be reset before each query.

1See Definition 4 for the usage of ⊥

101

The algorithm asks parameterized queries that are strings from I∗ and DI
∗. Therefore, it

requires an access to its interfaces, i.e., the input interface from where a parameterized input

can be sent and the output interface from where a parameterized output can be observed.

In the following sections, we describe the structure and properties of the observation table

and then the algorithm for PFSM inference. We use ω to denote an input symbol string from

I∗, α to denote an input parameter value string from DI
∗, $ to denote an output symbol string

from O∗, β to denote an output parameter value string from DO
∗. A string of the form ω⊗α is

called an input parameterized string. A string of the form $⊗β is called an output parameterized

string. Moreover, we assume that ⊥ ∈ DI and Ω ∈ O always hold.

7.2.1 Observation Table

We denote by LP ∗ the learning algorithm for PFSM models. At any given time, LP ∗ maintains

an observation table, denoted by (SP , R,EP , TP), for constructing the parameterized queries,

recording the corresponding observations in the result of queries and making the PFSM con-

jecture consistent with the observations. The examples of such a table are given in Table 7.1

and Table 7.2. In order to deal with the specific nature of PFSM models, we have to adapt

the structure of the table accordingly. Lets have an overview what adaptations we require for

inferring PFSM models before digging up into the formal definitions.

The basic structure of the table is similar to the structure of the observation table (SM , EM , TM)

in Mealy machine inference. That is, the rows given by SP ∪ R and the columns given by EP

consist of input symbol strings. Table 7.1 is an example in which rows and columns are labeled

with input symbol strings. In addition, (SP , R,EP , TP) deals with a parameterized structure

of the PFSM model. Therefore, the rows of the table may also consist of input parameterized

strings in addition to the input symbol strings. Table 7.2 is an example in which some rows are

labeled with input symbol strings and the others with input parameterized strings. Similarly,

the table records the output parameterized strings in the cells in result of the parameterized

queries. Table 7.1 and 7.2 both show the cells containing the output parameterized strings.

The other particularity of the PFSM model is that it produces different parameter output

strings on different input parameter value strings. In the example of the HVAC controller, the

parameter value 5 for the input T turns on the heater, but the parameter value 25 turns on the

fan. The two different behaviors are recorded in the table in the same cell. This can be seen

in Table 7.2, where the cell of the row labeled by ON and the column labeled by T contains

two parameterized output strings H ⊗ l and F ⊗ l for the values 5 and 25 respectively. We call

the rows that record multiple behaviors in the cells as disputed rows, since they yield multiple

transitions in the conjecture, which are labeled with different output strings for the same input

102

symbol strings but for the different input parameter strings. This requires further testing to

determine the target states of the transitions. We refer to this special treatment as treating the

disputed rows.

Finally, we need new definitions for the comparison of rows. The rows must contain the

common input parameter values so that their corresponding output strings could be compared.

In Table 7.1, the rows labeled by ε and ON contain different parameter values, namely 5 and 25,

for the column labeled by T . The two rows are not directly comparable. In Table 7.2, the two

rows contain both values, and thus are comparable. We call the operation of making the rows

containing common input parameter values as balancing the rows. This follows the definition of

row equivalence, that the rows are not only equivalent by the output symbol strings but also by

the output parameter value strings. With the new definition of row equivalence, the definition

of closed is also modified accordingly. We take advantage of our improvement in the Mealy

machine inference, and keep the size of SP in (SP , R,EP , TP) reduced, i.e., all rows in SP are

inequivalent. Therefore, we do not need to check consistency in the table.

In the following, we describe the structure of the observation table and provide the related

definitions with examples.

Basic Structure of the Table

Let U be a set of parameterized input strings, i.e., U = {ω ⊗ α|ω ∈ I+, α ∈ DI
+, |ω| = |α|}.

Then, the structure of the observation table (SP , R,EP , TP) is defined as follows.

SP ⊆ U∪I∗ and R ⊆ U∪I∗ are the nonempty finite sets of parameterized input strings that

make the rows of the table. SP is a prefix-closed set that is used to identify potential states in

the conjecture and R is used to satisfy properties of the table.

EP ⊆ I+ is the suffix-closed nonempty finite set of input symbol strings that makes the

columns of the table and distinguishes the states of the conjecture from each other.

The elements of (SP ∪R)×EP are used to construct parameterized queries. The result of the

query is recorded in the table with the help of the function TP that records the pairs of input

parameter value strings and parameterized output strings. Formally, TP maps (SP ∪ R) × EP
to the power set of {(α,$ ⊗ β)|α ∈ DI

+, $ ∈ O+, β ∈ DO
+}.

Section 7.2.2 describes how to construct parameterized queries and record the corresponding

observations in the table. Here an example is given. Let s ∈ SP ∪ R, e ∈ EP , α ∈ DI
+, where

|α| = |IS(s)| + |e|, then a query is constructed as IS(s) · e ⊗ α.1 Let the corresponding

parameterized output string be $ ⊗ β, where $ = λP(q0P, ω, α) and β = σP(q0P, ω)(α) (and

|$| = |β|). Then, the observation is recorded by adding the pair (α, suff |e|($)⊗ suff |e|(β)) to

1IS(s) is the input symbol string from s. See Chapter 2 for the definition.

103

TP (s, e). Note that we record only the suffixes of $ and β of length |e|, likewise the algorithm

of Mealy machine inference. In Table 7.1, a query is constructed as ON · T ⊗ ⊥ · 25, in which

s = ON ∈ SP ∪R, e = T ∈ EP and α = ⊥ · 25. The corresponding parameterized output string

of the query is observed as OK · F ⊗⊥ · l, in which $ = OK · F and β = ⊥ · l. Then, the pair

(⊥ · 25, F ⊗ l) is added to TP (ON,T).

EP

ON OFF T

SP ε (⊥, OK ⊗⊥) (⊥,Ω⊗⊥) (5,Ω⊗⊥)

R

ON (⊥ · ⊥,Ω⊗⊥) (⊥ · ⊥, S ⊗⊥) (⊥ · 25, F ⊗ l)
OFF (⊥ · ⊥,Ω⊗⊥) (⊥ · ⊥,Ω⊗⊥) (⊥ · 5,Ω⊗⊥)
T (25 · ⊥,Ω⊗⊥) (25 · ⊥,Ω⊗⊥) (5 · 25,Ω⊗⊥)

Table 7.1: Example of the Observation Table for learning a PFSM model of the HVAC controller

EP

ON OFF T

SP
ε (⊥, OK ⊗⊥) (⊥,Ω⊗⊥) (5,Ω⊗⊥) (25,Ω⊗⊥)
ON (⊥ · ⊥, OK ⊗⊥) (⊥ · ⊥, S ⊗⊥) (⊥ · 5, H ⊗ l) (⊥ · 25, F ⊗ l)

R

OFF (⊥ · ⊥,Ω⊗⊥) (⊥ · ⊥,Ω⊗⊥) (⊥ · 5,Ω⊗⊥)(⊥ · 25,Ω⊗⊥)
ON ·ON (⊥ · ⊥ · ⊥,Ω⊗⊥) (⊥ · ⊥ · ⊥,Ω⊗⊥) (⊥ · ⊥ · 5,Ω⊗⊥) (⊥ · ⊥ · 25,Ω⊗⊥)
ON ·OFF (⊥ · ⊥ · ⊥, OK ⊗⊥) (⊥ · ⊥ · ⊥,Ω⊗⊥) (⊥ · ⊥ · 5,Ω⊗⊥) (⊥ · ⊥ · 25,Ω⊗⊥)

ON · T ⊗⊥ · 5 (⊥ · 5 · ⊥,Ω⊗⊥) (⊥ · 5 · ⊥, S ⊗⊥) (⊥ · 5 · 5, H ⊗ l) (⊥ · 5 · 25, S ⊗⊥)
ON · T ⊗⊥ · 25 (⊥ · 25 · ⊥,Ω⊗⊥) (⊥ · 25 · ⊥, S ⊗⊥) (⊥ · 25 · 5, S ⊗⊥) (⊥ · 25 · 25, F ⊗ l)

Table 7.2: Balanced and Dispute-free Observation Table for learning a PFSM model of the HVAC
controller

Notations in the Table

We define the notations in (SP , R,EP , TP) that are helpful to describe the learning algorithm.

Distinguishing Subsets:

In a PFSM model, different input parameter values can generate different output symbols

and output parameter values. For example, the temperature value 5� turns on the heater while

the value 25� turns on the fan. The two different behaviors will be represented as two different

transitions. This can be seen in Table 7.2. For ON ∈ SP ∪R and T ∈ EP , TP (ON,T) contains

the pairs (⊥·5, H⊗ l) and (⊥·25, F ⊗ l) indicating that the behavior on the query ON ·T ⊗⊥·5

104

is different from the query ON · T ⊗ ⊥ · 25. Thus in (SP , R,EP , TP), for any s ∈ SP ∪ R
and e ∈ EP , there may exist (α1, $1 ⊗ β1), (α2, $2 ⊗ β2) ∈ TP (s, e) such that $1 6= $2, i.e,

TP (s, e) contains pairs in which the output strings are different. Then, we can divide TP (s, e)

into distinguishing subsets such that the output strings in all the pairs in one subset are same

and the output strings in two pairs from different subsets are different. The formal definition

of the distinguishing subsets is given as follows.

Definition 13 Let η(s, e) denote the number of different output strings contained by TP (s, e),

then we can divide TP (s, e) into η(s, e) distinguishing subsets, i.e., TP (s, e) =
η(s,e)⋃
k=1

dk(s, e), such

that for all (α1, $1 ⊗ β1), (α2, $2 ⊗ β2) ∈ dk(s, e), $1 = $2. Moreover, if d1(s, e) and d2(s, e)
are two distinguishing strings then for all (α1, $1 ⊗ β1) ∈ d1(s, e), (α2, $2 ⊗ β2) ∈ d2(s, e),
$1 6= $2. 2

In Table 7.2, TP (ON,T) contains two distinguishing subsets, namely d1(ON,T) = {(⊥ ·
5, H ⊗ l)} and d2(ON,T) = {(⊥ · 25, F ⊗ l)}, since H 6= F .

Distinguishing Input Parameter Value Strings:

In each pair in a distinguishing subset, e.g., (⊥ · 5, H ⊗ l) ∈ d1(ON,T), the string ⊥ · 5 is

called a distinguishing input parameter value string. We create a set of such parameter value

strings from all the distinguishing subsets in TP (s, e). The definition of the set is as follows.

Definition 14 Let a distinguishing subset dk(s, e) = {(α1
(k), $(k) ⊗ β1

(k)), . . . , (αm(k), $(k) ⊗
βm

(k))} ⊆ TP (s, e), with m = |dk(s, e)|. Then, we call π(dk(s, e)) the set of distinguishing input
parameter value string from dk(s, e), i.e., π(dk(s, e)) = {α1

(k), . . . , αm
(k)}. Moreover, for two

distinguishing subsets d1(s, e) and d2(s, e), π(d1(s, e))∩π(d2(s, e)) = ∅, i.e., each distinguishing
subset contains different distinguishing parameter value strings. We call π(TP (s, e)) the set of

all the distinguishing parameter value strings from TP (s, e), i.e., π(TP (s, e)) =
η(s,e)⋃
k=1

π(dk(s, e)).2

Here are the examples for the above notations. In Table 7.2, π(d1(ON,T)) = {⊥·5}, π(d2(ON,T)) =

{⊥ · 25} and π(TP (ON,T)) = {⊥ · 5,⊥ · 25}.
We denote by D(s, e, α) a distinguishing subset dk(s, e) such that α ∈ π(dk(s, e)), 1 ≤ k ≤

η(s, e), for s ∈ SP ∪R, e ∈ EP . For example, D(ON,T,⊥ · 5) = {(⊥ · 5, H ⊗ l)} in Table 7.2.

Output Functions in (SP , R,EP , TP):

Each pair in a distinguishing subset contains an output symbol string and an output param-

eter value string. We refer the two as the functions OS and OPS respectively. The functions

are defined as follows.

105

T ⊗ 15

T

(15 · 25, F ⊗ l)
and σP(q0P, T · T)(15 · 25) = ⊥ · l
If λP(q0P, T · T, 15 · 25) = S · F

then OS(T, T, 15 · 25) = F
and OPS(T, T, 15 · 25) = l

Figure 7.2: Illustration of Property 4

Definition 15 For (α,$⊗β) ∈ D(s, e, α), we refer to$ as the output string functionOS(s, e, α)
and β as the output parameter string function OPS(s, e, α). 2

For example, for D(ON,T,⊥·5) = {(⊥·5, H⊗l)}, OS(ON,T,⊥·5) = H and OPS(ON,T,⊥·
5) = l. The relation of OS with λP and OPS with σP can be formalized as Property 4. Figure

7.2 illustrates Property 4 that when a parameterized input string is given as T · T ⊗ 15 · 25

and the corresponding output symbol string is λP(q0P, T · T, 15 · 25) = S · F and the output

parameter value string is σP(q0P, T · T)(15 · 25) = ⊥ · l, then we have OS(T, T, 15 · 25) = F and

OPS(T, T, 15 · 25) = l. Following is the formal description of Property 4.

Property 4 Assume that there exists s ∈ SP ∪ R, e ∈ EP , α · γ ∈ π(TP (s, e)), where |α| =
|IS(s)|, |γ| = |e|, then we have λP(q0P, IS(s) · e, α · γ) = λP(q0P, IS(s), α) · OS(s, e, α · γ) and
σP(q0P, IS(s) · e)(α · γ) = σP(q0P, IS(s))(α) ·OPS(s, e, α · γ).

Disputed Rows:

For s ∈ SP and e ∈ EP , a distinguishing subset in TP (s, e) represents a transition in

the conjecture. If TP (s, e) contains multiple distinguishing subsets then we call such an s a

disputed row. For example, the row ON in Table 7.2 is disputed since TP (ON,T) contains two

distinguishing subsets, namely d1(ON,T) and d2(ON,T). The formal definition of a disputed

row is given as follows.

Definition 16 The row s ∈ SP is disputed if and only if there exists e ∈ EP , such that
η(s, e) > 1, i.e., TP (s, e) contains more than one distinguishing subsets. 2

In order to make a well-defined transition function, the disputed rows must be treated.

This is because a disputed row s ∈ SP contains many distinguishing subsets. Then, for each

distinguishing subset, there will be a transition in the conjecture. In order to determine the

target state of the transition, we must have a row in the table for the distinguishing subset. If

there is a row for each distinguishing subset of s, then s is called treated. For example, the

disputed row ON in Table 7.2 is treated because for each distinguishing subset d1(ON,T) =

{(⊥ · 5, H ⊗ l)} and d2(ON,T) = {(⊥ · 25, F ⊗ l)}, we have ON · T ⊗⊥ · 5 and ON · T ⊗⊥ · 25

in R, where ⊥ · 5 ∈ π(d1(ON,T)) and ⊥ · 25 ∈ π(d2(ON,T)). The formal definition is given as

follows.

106

Definition 17 Let s ∈ SP be a disputed row in the observation table (SP , R,EP , TP), then s is
treated if and only if for every distinguishing subset dk(s, e) ⊂ TP (s, e), e ∈ EP , 1 ≤ k ≤ η(s, e),
there exists t ∈ SP ∪R such that t = IS(s) · e⊗ α, where α ∈ π(dk(s, e)). 2

Single Notation for types of rows:

Each s ∈ SP ∪R represents a row of the table. There could be two types of rows according

to the definition. That is,

Type I: s can be an input symbol string, i.e., s ∈ I∗.

Type II: s can be a parameterized input string, i.e., s ∈ U.

In Table 7.1, all the rows consist of input symbol strings (Type I), e.g., T in SP ∪ R. In

Table 7.2, there are two rows that consist of parameterized input strings (Type II), namely

ON · T ⊗ ⊥ · 5 and ON · T ⊗ ⊥ · 25 in SP ∪ R. The latter is in fact the result of the disputed

row treatments. We unify the two types with a single notation as follows.

Definition 18 For certain ω ∈ I∗, α ∈ DI
∗ such that |ω| = |α|, we define ωα to identify

s ∈ SP ∪ R such that either s = ω (Type I) or s = ω ⊗ α (Type II), and there exists e ∈ EP
and γ ∈ DI

∗ such that α · γ ∈ π(TP (s, e)). For ω, the two types cannot exist at the same time
in SP ∪R. 2

In Table 7.1, T5 means the row T ∈ SP∪R since there exists 5·25 ∈ π(TP (T, T)). Here s = T ,

e = T , α = 5 and γ = 25. In Table 7.2, (ON · T)(⊥·25) means the row ON · T ⊗⊥ · 25 ∈ SP ∪R
since there exists ⊥·25 ·5 ∈ π(TP (ON ·T⊗⊥·25, T)). Here s = ON ·T⊗⊥·25, e = T , α = ⊥·25

and γ = 5. Additionally, in Table 7.1, T5 = T25. In Table 7.2, (ON · T)(⊥·5) 6= (ON · T)(⊥·25).

Comparison of Rows

The rows s1, s2 ∈ SP ∪R are comparable with the help of the following definitions.

The rows s1 and s2 are called balanced, if they contain the same input parameter values for

all e ∈ EP . In Table 7.1, for ε and ON ∈ SP ∪R and T ∈ EP , TP (ε, T) contains only one pair in

which T is associated with the input parameter value 5. Whereas, TP (ON,T) contains only one

pair in which T is associated with the input parameter value 25. This creates an unbalance in

the rows, since the observations are recorded for different input parameter values and the rows

ε and ON cannot be compared directly. On the other hand, the rows ε and ON in Table 7.2

are balanced since both TP (ε, T) and TP (ON,T) contain values 5 and 25. The formal definition

is given below.

107

Definition 19 Let s1 and s2 be two two rows in (SP , R,EP , TP), then s1 and s2 are balanced
if and only if for all α1 ∈ π(TP (s1, e)) there exists α2 ∈ π(TP (s2, e)) such that suff |e|(α1) =
suff |e|(α2), and for all α2 ∈ π(TP (s2, e)) there exists α1 ∈ π(TP (s1, e)) such that suff |e|(α2) =
suff |e|(α1), for all e ∈ EP . 2

The rows s1 and s2 are equivalent if they are balanced and they contain same parameter-

ized output strings for the same parameterized input strings. Let ΦP = {e ⊗ suff |e|(α),∀α ∈
π(TP (s, e)), s ∈ SP , e ∈ EP } be the set of parameterized strings from (SP , R,EP , TP). For ex-

ample in Table 7.2, ΦP = {ON⊗⊥, OFF ⊗⊥, T ⊗5, T ⊗25}. Then, the rows in (SP , R,EP , TP)

are equivalent if for each parameterized input string in ΦP , they produce the same parameter-

ized output string. In Table 7.2, the rows ε and ON are not equivalent because for T ⊗ 5 ∈ ΦP ,

they contain different output string, namely Ω ⊗ ⊥ and H ⊗ l. On the other hand, the rows ε

and ON ·OFF are equivalent. The formal definition is given below.

Definition 20 Let (SP , R,EP , TP) be a balanced observation table and ΦP = {e⊗suff |e|(α),∀α ∈
π(TP (s, e)), s ∈ SP , e ∈ EP } be the set of parameterized strings from the table, then for all
e ⊗ γ ∈ ΦP , there exists α1 ∈ π(TP (s1, e)) and α2 ∈ π(TP (s2, e)) such that γ = suff |e|(α1) =
suff |e|(α2), for all s1, s2 ∈ SP ∪ R, e ∈ EP . Then, s1 and s2 are equivalent, denoted by
s1
∼=ΦP

s2, if and only if OS(s1, e, α1) = OS(s2, e, α2) and OPS(s1, e, α1) = OPS(s2, e, α2). 2

For s1, s2 ∈ SP ∪R, if s1
∼=ΦP

s2 then s1 is in the equivalence class of s2. We denote by [s],

s ∈ SP ∪R, the equivalence class of rows that also includes s. The following lemma claims that
∼=ΦP

is an equivalence relationship.

Lemma 4 Assume that (SP , R,EP , TP) is a balanced observation table, then ∼=ΦP
is an equiv-

alence relationship. 2

Proof The lemma is proved on the properties symmetry, reflexivity and transitivity as follows.

Symmetry:
The property of symmetry for ∼=ΦP

is obvious.

Reflexivity:
The property of reflexivity implies that if s1

∼=ΦP
s2 then s2

∼=ΦP
s1 also holds, for all s1, s2 ∈

SP ∪ R. This is easy to prove from Definition 19. If s1
∼=ΦP

s2 then s1 and s2 are balanced,
i.e., for all α1 ∈ π(TP (s1, e)), there exists α2 ∈ π(TP (s2, e)) such that suff |e|(α1) = suff |e|(α2),
for all e ∈ EP . Conversely, for all α2 ∈ π(TP (s2, e)), there exists α1 ∈ π(TP (s1, e)) such that
suff |e|(α2) = suff |e|(α1), for all e ∈ EP . If s1

∼=ΦP
s2, then OS(s1, e, α1) = OS(s2, e, α2) and

OPS(s1, e, α1) = OPS(s2, e, α2) must hold. If s2
∼=ΦP

s1, then OS(s2, e, α2) = OS(s1, e, α1)

108

and OPS(s2, e, α2) = OPS(s1, e, α1) must hold. This implies that when s1
∼=ΦP

s2 then
s2
∼=ΦP

s1 also holds.

Transitivity:
The property of transitivity implies that if s1

∼=ΦP
s2 and s2

∼=ΦP
s3, then s1

∼=ΦP
s3 also

holds, for all s1, s2, s3 ∈ SP ∪R.
Assume that s1 and s3 are not equivalent, i.e., s1 �ΦP

s3. Since s1
∼=ΦP

s2, we know that s1

and s2 are balanced, and for all α1 ∈ π(TP (s1, e)) and α2 ∈ π(TP (s2, e)) such that suff |e|(α1) =
suff |e|(α2), for all e ∈ EP , OS(s1, e, α1) = OS(s2, e, α2) and OPS(s1, e, α1) = OPS(s2, e, α2)
holds.

Similarly, since s2
∼=ΦP

s3, we know that s2 and s3 are balanced, and for all α2 ∈ π(TP (s2, e))
and α3 ∈ π(TP (s3, e)) such that suff |e|(α2) = suff |e|(α3), for all e ∈ EP , OS(s2, e, α2) =
OS(s3, e, α3) and OPS(s2, e, α2) = OPS(s3, e, α3) holds.

If s1 �ΦP
s3, then there must exist α1 ∈ π(TP (s1, e)) and α3 ∈ π(TP (s3, e)) such that

suff |e|(α1) = suff |e|(α3), for all e ∈ EP , and OS(s1, e, α1) 6= OS(s3, e, α3). Since the table
is balanced, there exists α2 ∈ π(TP (s2, e)) such that suff |e|(α1) = suff |e|(α2) = suff |e|(α3).
Since s1

∼=ΦP
s2, OS(s1, e, α1) = OS(s2, e, α2) and OPS(s1, e, α1) = OPS(s2, e, α2) holds.

Since s2
∼=ΦP

s3, OS(s2, e, α2) = OS(s3, e, α3) and OPS(s2, e, α2) = OPS(s3, e, α3) holds.
This means, OS(s1, e, α1) = OS(s3, e, α3) and OPS(s1, e, α1) = OPS(s3, e, α3). Therefore,
s1
∼=ΦP

s3, which is a contradiction to the supposition. Hence, if s1
∼=ΦP

s2 and s2
∼=ΦP

s3 then
s1
∼=ΦP

s3 also holds, for all s1, s2, s3 ∈ SP ∪R. �

Constructing the PFSM conjecture

A PFSM conjecture from the table (SP , R,EP , TP) can be constructed if the table fulfills the

following three properties.

The table (SP , R,EP , TP) must be balanced, i.e., for all s, t ∈ SP ∪R, s and t are balanced.

The table must be dispute-free, i.e., for all disputed rows s ∈ SP , s is treated. The table must

be closed, i.e., for every t ∈ R, there exists s ∈ SP such that s ∼=ΦP
t.

When the observation table (SP , R,EP , TP) is balanced, dispute-free and closed, the PFSM

conjecture can be constructed as follows.

109

Definition 21 Let (SP , R,EP , TP) be a balanced, dispute-free and closed observation table,
then the PFSM conjecture MP = (QP , I, O,DI , DO,ΓP , q0P) with the transition function δP ,
output function λP and output parameter function σP is defined, where

� QP = {[s]|s ∈ SP }

� q0P = [ε]

� ΓP : The set of transitions for the conjecture is defined as follows.

For each s ∈ SP , i ∈ I, there exists η(s, i) transitions. Then, each distinguishing subset
dk(s, i) ⊆ TP (s, i), 1 ≤ k ≤ η(s, i), defines a transition {s, s′, i, o, p, f}. Let x = suff 1 (α),
for all α ∈ π(dk(s, i)), then

– p is the set of all such x

– s′ = δP ([s], i, x) = [(IS(s) · i)γ], γ ∈ π(dk(s, i))

– o = λP ([s], i, x) = OS(s, i, α)

– f(x) = σP ([s], i)(x) = OPS(s, i, α)

To see that MP is well-defined, note that SP is a non-empty set and always contains at

least one row ε. Also, ∼=ΦP
is an equivalence relationship (Lemma 4). Hence QP and q0 are

well-defined. For all s ∈ SP , i ∈ I, α ∈ π(dk(s, i)), 1 ≤ k ≤ η(s, i), there exists only one row

(IS(s) · i)γ ∈ SP ∪ R such that γ ∈ π(dk(s, i)) for x = suff 1 (α), since the table is balanced,

dispute-free and closed. Hence, [(IS(s) · i)γ] ∈ QP exists and therefore, δP is well-defined.

Similarly, for dk(s, i), α and x, OS(s, i, α) and OPS(s, i, α) always exist. Hence, λP and σP are

well-defined. We refer to Section 7.2.4 for details regarding the correctness of the conjecture.

7.2.2 The Algorithm LP
∗

The algorithm LP
∗ starts by initializing (SP , R,EP , TP) with SP = {ε}, EP = I and R = {ε · i},

for all i ∈ I. Then, it asks parameterized queries constructed from the table and records the

corresponding result of the queries in the table. Then, it checks properties and makes the table

balanced, dispute-free and closed. Finally, it outputs a PFSM conjecture from the table. Each

step of the algorithm is explained below.

Constructing the parameterized queries

The parameterized queries are constructed by the elements of (SP ∪ R) × EP . Since SP ∪ R
contains input symbol strings as well as parameterized input strings, the queries in each case

are constructed as follows:

110

� Let ω ∈ SP ∪ R and e ∈ EP , where ω ∈ I∗ is an input symbol string. Then the query is

constructed as ω · e⊗α1 ·α2, where α1 and α2 are selected1 from DI
+ such that |ω| = |α1|

and |e| = |α2|. For example, in Table 7.1, for ON ∈ SP ∪ R, T ∈ EP , the query is

constructed as ON · T ⊗⊥ · 25, where ⊥ · 25 ∈ DI
+.

� Let ω ⊗ α1 ∈ SP ∪ R and e ∈ EP , where ω ⊗ α1 ∈ U is a parameterized input string.

Then the query is constructed as ω · e⊗ α1 · α2, where α2 is selected from DI
+ such that

|e| = |α2|. For example, in Table 7.2, for ON · T ⊗⊥ · 25 ∈ SP ∪R, T ∈ EP , the query is

constructed as ON · T · T ⊗⊥ · 25 · 5, where 5 ∈ DI .

Recording the observations

The observation of each query is recorded in the table. There can be multiple rows which are

updated correspondingly. Let ω ⊗ α be a query that generates a parameterized output string

$ ⊗ β, where $ = λP(q0P, ω, α), β = σP(q0P, ω)(α). Then, the string $ ⊗ β is recorded in the

table as follows:

Let s ∈ SP ∪ R, e ∈ EP such that IS(s) · e is a prefix of ω. Let α′ = pref |IS(s)·e|(α),

$′ = pref |IS(s)·e|($), β′ = pref |IS(s)·e|(β) be the prefixes of α, $ and β respectively of the

length of IS(s) · e, then the pair

(α′, suff |e|($′)⊗ suff |e|(β′)) is added to TP (s, e), if it does not exist already.

For example, for the query ON ·T ·T ⊗⊥·25 ·25, we have the observation OK ·F ·F ⊗⊥· l · l.
Then, in Table 7.2, for ε ∈ SP ∪ R, ON ∈ EP , we add (⊥, OK ⊗ ⊥) to TP (ε, ON), for ON ∈
SP ∪R, T ∈ EP , we add (⊥·25, F ⊗ l) to TP (ON,T) and for ON ·T ⊗⊥·25 ∈ SP ∪R, T ∈ EP ,

we add (⊥ · 25 · 25, F ⊗ l) to TP (ON · T ⊗⊥ · 25, T).

From the observation recording rule, we have Property 5 and Property 6, explained in Figure

7.3a and 7.3b respectively. Figure 7.3a explains that if 5 · 15 · 25 · 35 ∈ π(TP (T · T, T · T)) then

5 · 15 ∈ π(TP (T, T)) also holds. Figure 7.3b explains that if 5 · 15 · 25 · 35 ∈ π(TP (T, T · T · T))

then 5 ·15 ·25 ·35 ∈ π(TP (T ·T, T ·T)) also holds. The properties are defined formally as follows.

Property 5 Assume that there exists s, t ∈ SP ∪R and i ∈ I such that IS(t) = IS(s) · i. Then,
for all e ∈ EP and α · γ ∈ π(TP (t, e)), where |α| = |IS(t)|, α must be in π(TP (s, i)).

Property 6 Assume that there exists s ∈ SP , t ∈ SP ∪R, i ∈ I and e, f ∈ EP , such that f = i·e
and IS(t) = IS(s) · i. Then, for all α ·x ·γ ∈ π(TP (s, f)), where |α| = |IS(s)|, |x| = |i|, |γ| = |e|,
α · x · γ must be in π(TP (t, e)).

1We opt for random selection of parameter values. See discussion in Section 7.2

111

T · T

T · T
T

T

(5 · 15, S ⊗⊥)

(5 · 15 · 25 · 35, F · F ⊗ l · h)

If 5 · 15 · 25 · 35 ∈ π(TP (T · T, T · T), then 5 · 15 ∈ π(TP (T, T)

(a) Illustration of Property 5

T · T

T · T

T · T · T

T

T

(5 · 15, S ⊗⊥)

(5 · 15 · 25 · 35, F · F ⊗ l · h)

(5 · 15 · 25 · 35, S · F · F ⊗⊥ · l · h)

If 5 · 15 · 25 · 35 ∈ π(TP (T, T · T · T))

then 5 · 15 · 25 · 35 ∈ π(TP (T · T, T · T))

(b) Illustration of Property 6

Figure 7.3: Illustrations of Property 5 and Property 6

Checking the properties of the table

After recording the results of the queries, the table is made balanced, dispute-free and closed

in the following order.

Balanced: The table is made balanced after each query. Whenever it is not balanced, LP ∗ finds

s1, s2 ∈ SP ∪R, e ∈ EP , α1 ∈ π(TP (s1, e)) such that there does not exist α2 ∈ π(TP (s2, e))

where suff |e|(α1) = suff |e|(α2). Then, LP ∗ balances s1 and s2 by constructing the query

IS(s2) · e⊗ pref |IS(s2)|(α′2) · suff |e|(α1), where α′2 ∈ π(TP (s2, e)),

and records the observations accordingly.

Dispute-Free: The table is made dispute-free after balancing. Let s ∈ SP be disputed then

LP
∗ finds e ∈ EP such that η(s, e) > 1. Then, for every distinguishing subset dk(s, e) ⊂

TP (s, e), 1 ≤ k ≤ η(s, e), the string

IS(s) · e⊗ α is added to R, where α ∈ π(dk(s, e)).

LP
∗ removes the original row IS(s) · e ∈ SP ∪R, and constructs additional queries for the

new rows in the table.

112

Closed: When the table is made balanced and dispute-free, LP ∗ checks if it is closed. Whenever

it is not closed, LP ∗ finds t ∈ R such that for all s ∈ SP , s �ΦP
t, and moves t to SP .

Then, R is extended as follows.

– If t = ω ∈ I+ an input symbol string, then the string ω · i is added to R, for all i ∈ I.

– If t = ω ⊗ α ∈ U an input parameterized string, then let x = suff 1 (α′) and α′ ∈
π(TP (t, i)), then the string ω · i⊗ α · x is added to R, for all i ∈ I.

Constructing the PFSM conjecture

When the observation table (SP , R,EP , TP) is balanced, dispute-free and closed, the PFSM

conjecture can be constructed according to Definition 21.

7.2.3 Processing Counterexamples in LP
∗

Let ν = ω ⊗ α, ω ∈ I+, α ∈ DI
+ be a parameterized string. In PFSM inference, we distinguish

two types of strings that can be provided through external sources. The first type of strings

may consist in parameter values that have not been tested in the learning procedure. If these

parameter values do not bring any structural changes in the model, i.e., their processing in the

table does not consequently create new transitions or states in the conjecture, then we call such

strings parameter augment examples. If ν is a parameter augment example then processing ν in

(SP , R,EP , TP) consists in recording λP(q0P, ω, α) and σP(q0P, ω)(α) in the table accordingly,

followed by making the table balanced. Since there are no structural changes; balancing the rows

does not create any more disputed rows or make the two rows inequivalent that are previously

equivalent. Therefore, the properties dispute-free and closed in the table shall hold trivially.

The second type of strings are those which bring structural changes in the model, i.e., their

processing in the table consequently creates new transitions or states in the conjecture, then we

call such strings counterexamples. If ν is a counterexample then processing ν is the reflection

of the method that we have described in the Mealy machine inference (Chapter 5, Section 5.3).

The method for processing counterexamples in (SP , R,EP , TP) is described as follow.

Let ν = ω⊗α be a counterexample then LP ∗ processes ν by searching u ∈ SP ∪R such that

IS(u) is the longest prefix of ω in SP∪R. Let v be the corresponding suffix of ω, i.e., ω = IS(u)·v.

Then it adds all the suffixes of v to EP and records λP(q0P, ω, α) and σP(q0P, ω)(α) in the table

accordingly. Then (SP , R,EP , TP) is made balanced, dispute-free and closed to conjecture a

new PFSM model consistent with the observations.

Algorithm 4 summarizes the algorithm LP
∗.

113

Input: The set of input symbols I and the set of input parameter values DI

Output: PFSM conjecture MP

begin1

initialize the observation table (SP , R,EP , TP) with the sets2

SP = {ε}, EP = I,R = {ε · i},∀i ∈ I ;3

ask the parameterized queries from (SP , R,EP , TP) ;4

update (SP , R,EP , TP) with the results of the queries ;5

while (SP , R,EP , TP) is not balanced, dispute-free or closed do6

make the table balanced, i.e., for all s, t ∈ SP ∪R, s and t are balanced ;7

make the table dispute-free, i.e., for all s ∈ SP , e ∈ E, such that η(s, e) > 1, s is8

treated ;
make the table closed, i.e., for every t ∈ R, there exists s ∈ SP such that s ∼=ΦP

t ;9

end10

make the conjecture MP from (SP , R,EP , TP) ;11

if there is a parameter augment example ω ⊗ α for MP then12

update (SP , R,EP , TP) with λP(q0P, ω, α) and σP(q0P, ω)(α) accordingly ;13

end14

if there is a counterexample ω ⊗ α for MP then15

divide ω = IS(u) · v such that u ∈ SP ∪R and IS(u) is the longest prefix of ω in16

SP ∪R ;
add all the suffixes of v to EP ;17

ask the parameterized queries for the extended table ;18

end19

return the conjecture MP from (SP , R,EP , TP) ;20

end21

Algorithm 4: The Algorithm LP
∗

7.2.4 Correctness

Let (SP , R,EP , TP) be a balanced, closed and dispute-free observation table and

MP = (QP , I, O,DI , DO,ΓP , q0P) be the conjecture from the table, then the correctness of the

conjecture is claimed by Theorem 6 and Theorem 7. The proofs of the theorems are given in

appendix A with illustrations.

Theorem 6 If (SP , R,EP , TP) is a balanced, dispute-free and closed observation table, then the
conjecture MP is consistent with the finite function TP . 2

Theorem 7 If (SP , R,EP , TP) is a balanced, dispute-free and closed observation table and the
conjecture MP has n states. Let another PFSM M ′P that accepts exactly the same parameter

114

values as of MP , i.e., for all s ∈ SP , i ∈ EP , α ∈ π(TP (s, i)), M ′P accepts only the values
suff 1 (α) for i. If M ′P is consistent with TP but inequivalent to MP , then M ′P must have more
states. 2

7.2.5 Termination

The termination of LP ∗ is guaranteed by the finite space of states and transitions in P. The

operations which keep the algorithm running are making the table balanced, dispute-free and

closed. Only the operations dispute-free and closed extend the table by adding rows. We show

by analyzing each operation that LP ∗ will always terminate and produce a PFSM conjecture

MP .

Suppose a row s is added to SP because the table is not closed. Then, by definition, s is

not equivalent to all rows t in SP , before SP is augmented. So the number of rows in SP is

increased by one when s is added. Since, rows represent the states in the conjecture and SP

contains only inequivalent rows, the table will be found not closed for at most n − 1 times, as

there is initially one row in SP already. Hence, LP ∗ will always eventually find a closed table.

Suppose a row t is added to R because the table is not dispute-free. Then, by definition,

there exists s ∈ SP , e ∈ EP such that η(s, e) > 1. The treatment of the disputed row s

adds η(s, e) rows in R. Let η(s) denote the total number of distinguishing subsets in s, i.e.,

η(s) = η(s, e1) + . . . + η(s, e|EP |), for all ek ∈ EP , 1 ≤ k ≤ |EP |. Suppose w is the maximum

number of total distinguishing subsets that can be found in the table, i.e., w = η(s) such that

η(s) ≥ η(t), for all t ∈ SP . Then, for at most n rows in SP , there can be added at most nw

rows in R. Hence, LP ∗ will always eventually find a dispute-free table.

The operation of making the table balanced does not add a row in the table. Balancing is

required when there are input parameter values in a row which are not found in the other rows.

The rows are added in the table when the table is found not closed or not dispute-free. Both

operations add finite number of rows in the table, i.e., at most n+nw. For each row, there can

be tested finite number of parameter values. Thus, balancing finite number of rows with finite

number of parameter values require finite number of queries to balance each row. Hence, LP ∗

will always eventually find a balanced table.

As far as parameter augment examples are concerned, the table is required to balance for

new parameter values in the examples. This does not bring any structural change in the model.

Thus, balancing the table in this case is no more than updating the transitions of the conjecture

with new parameter values.

As far as counterexamples are concerned, the number of new states that can be discovered

are at most n. So there can be at most n−1 counterexamples to distinguish n states, since there

115

is one state initially. For transitions, there can be at most w transitions that can be discovered

for a state. Both cases yield finite number of new rows in the table, when the table is found

not closed or not dispute-free.

Hence, LP ∗ will always eventually find a balanced, dispute-free and closed observation table

and terminate by producing a PFSM conjecture in finite number of operations.

7.2.6 Complexity

We analyze the total number of parameterized queries asked by LP
∗ in the worst case by the

factors

� |I|, i.e., the size of I

� n, i.e., the minimum number of states in P

� m, i.e., the maximum length of any counterexample provided during the learning of P

� w, i.e., the maximum number of total distinguishing subsets η(s) such that η(s) ≥ η(t),

for all t ∈ SP .

� p, i.e., the maximum number of input parameter value strings that are recorded in a cell

of the table.

SP contains initially one row. Every time the table is not closed, one element is added to

SP . This can happen at most n− 1 times. Hence, the size of SP is at most n.

R contains initially |I| rows. Every time SP is augmented (when the table is not closed), |I|
rows are added. This happens for n − 1 times, so the number of rows that can be added to R

in this case cannot exceed n|I|.
Every time the table is not dispute-free, at most w elements are added to R. For at most n

rows, the number of rows that can be added to R in this case cannot exceed nw. Recall that

w = η(s) and η(s) = η(s, e1) + . . . + η(s, e|EP |) for all ek ∈ EP , 1 ≤ k ≤ |EP |. Since, EP ⊇ I,

therefore, nw includes n|I| number of rows in the case the table is not closed. Hence, the size

of R is at most nw.

EP contains |I| elements initially. If a counterexample is provided then at most m suffixes

are added to EP . There can be provided at most n− 1 counterexamples to distinguish at most

n states, thus the maximum size of EP cannot exceed |I|+m(n− 1).

The number of parameterized queries are the queries required to balance the rows according

to the number of parameter values recorded in the table. The row s ∈ SP ∪ R is balanced

when for all t ∈ SP ∪ R, e ∈ EP , α1 ∈ π(TP (t, e)), there exists α2 ∈ π(TP (s, e)) such that

116

suff |e|(α1) = suff |e|(α2). Otherwise, suff |e|(α1) is a parameter value string that is required to

balance s for such e.

Let p be the maximum number of input parameter value strings that are required to balance

any s ∈ SP ∪R for any e ∈ EP , then there will be maximum p(|SP ∪R| × |EP |) parameterized

queries required to balance the whole table.

Thus, the maximum parameterized queries required to output a correct PFSM conjecture is

p(
|SP |︷︸︸︷
n +

|R|︷︸︸︷
nw) (

|EP |︷ ︸︸ ︷
|I|+m(n− 1)) = O(p|I|nw +mn2wp)

7.3 Relation of MP with P

We prove the relation MP with P with respect to the set ΦP . The relation is stated in the

following Theorem.

Theorem 8 Let P = {QP, I, O,DI , DO,ΓP, q0P} be the unknown PFSM model and
MP = (QP , I, O,DI , DO,ΓP , q0P } be the PFSM conjecture from the balanced, dispute-free and
closed observation table (SP , R,EP , TP) and ΦP = {e⊗ suff |e|(α), ∀α ∈ π(TP (s, e)), s ∈ SP , e ∈
EP } be the set of parameterized strings from (SP , R,EP , TP), then MP is a ΦP -quotient of P.2

Proof According to the definition of a PFSM quotient (Definition 10), the theorem can be
proved in two parts.

1. LetMP be a conjecture from a balanced, dispute-free and closed observation table (SP , R,EP , TP),
then for two states qP , q′P ∈ QP , there exists s, t ∈ SP such that [s] = qP and [t] = q′P ,
according to Definition 21. We also know that s ∼=ΦP

t, if and only if for all e⊗ γ ∈ ΦP ,
there exists e ∈ EP , α1 ∈ π(TP (s, e)) and α2 ∈ π(TP (t, e)) such that γ = suff |e|(α1) =
suff |e|(α2) and OS(s, e, α1) = OS(t, e, α2) and OPS(s, e, α1) = OPS(t, e, α2). Since the
table is balanced, such α1 and α2 must exist. This is true for all the elements of [s] and
[t]. Therefore, [s] ∼=ΦP

[t] implies that qP = q′P . Otherwise, there exists e ⊗ γ ∈ ΦP ,
e ∈ EP , α1 ∈ π(TP (s, e)) and α2 ∈ π(TP (t, e)) such that γ = suff |e|(α1) = suff |e|(α2)
but the condition OS(s, e, α1) = OS(t, e, α2) and OPS(s, e, α1) = OPS(t, e, α2) does not
hold. Hence, s �ΦP

t in this case. This means [s] �ΦP
[t], implies that qP 6= q′P . This

proves the first part, since qP and q′P can only be equal when s and t are equivalent with
respect to ΦP , i.e., they produce same parameterized output on all the strings from ΦP ,
and not otherwise.

2. For qP ∈ QP , there exists s ∈ SP such that [s] = qP (Definition 21). We know that for all
e ⊗ γ ∈ ΦP , λP(δP(q0P, IS(s), α), e, γ) = OS(s, e, α · γ) and σP(δP(q0P, IS(s), α), e)(γ) =

117

OPS(s, e, α ·γ), where α ·γ ∈ π(TP (s, e)). Since, MP is consistent with the observations in
(SP , R,EP , TP), then λP (δP (q0P , s, α), e, γ) = OS(s, e, α ·γ) and σP (δP (q0P , s, α), e)(γ) =
OPS(s, e, α · γ) also holds (Theorem 6). This proves the second part, since
λP(δP(q0P, IS(s), α), e, γ) = λP (δP (q0P , s, α), e, γ) and
σP(δP(q0P, IS(s), α), e)(γ) = σP (δP (q0P , s, α), e)(γ). �

7.4 Application: The HVAC Controller

We have applied the algorithm LP
∗ for the inference of the HVAC controller described in

Chapter 5 (Section 5.6). The discussion on the inference results is given in the following.

7.4.1 Inference of the HVAC Controller

In order to infer a PFSM model of the HVAC controller, the input set for the algorithm can be

taken exactly as shown in Figure 5.6, without any particular adaptation like we did in the Mealy

machine inference. Therefore, the input set for LP ∗ is constructed as I = {ON,OFF, T} with

DI = [−20,+50] ∪ {⊥} as the input parameter domain. The algorithm is run until a balanced,

dispute-free and closed observation table is found, shown in Table 7.3. The temperature values

that are tested in the PFSM inference are the same as tested in the Mealy machine inference,

i.e., -5,5,15,25,35 centigrades. The PFSM conjecture from the table is given in Figure 7.4.

7.4.2 Comparison of Mealy and PFSM learning

When a system can be modeled as a PFSM with the finite domain of i/o parameter values, there

is an equivalent modeling as a Mealy machine. The correspondence between the PFSM model

(QP , IP , OP , DIP , DOP ,ΓP , q0P) and the Mealy machine model (QM , IM , OM , δM , λM , q0M) is

the classical unfolding in extended state machines, i.e., QM = QP , q0M = q0P , IM = IP ×DIP ,

OM = OP × DOP . The states remain the same, and transitions are replicated for each value

of the parameter. Actually, the conjectures built by the algorithm LP
∗ always correspond to

PFSM models with finite domains, since we test only finite number of values from the input

parameter domains. The next chapter will address the issue of extending the parameter domain;

but up to that point, we can consider for this comparison just PFSM models with finite domains.

Suppose that the system can be represented in both models, then we have the observation

tables (SM , EM , TM) and (SP , R,EP , TP) for learning the Mealy machine and the PFSM model

of the system respectively.

In Mealy machine learning, suppose there are k inputs i1, . . . , ik ∈ IM , such that for certain

s ∈ SM , the behaviors for all such inputs on the states [s] ∈ QM are the same, i.e., TM (s, i1) =

118

EP

ON OFF T

SP

ε (⊥, OK ⊗⊥) (⊥,Ω⊗⊥)
(−5,Ω⊗⊥), (5,Ω⊗⊥), (15,Ω⊗⊥),
(25,Ω⊗⊥), (35,Ω⊗⊥)

ON (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, H ⊗ h), (5, H ⊗ l), (15, S ⊗⊥),
(25, F ⊗ l), (35, F ⊗ h)

ON · T ⊗⊥ · 5 (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, H ⊗ h), (5, H ⊗ l), (15, S ⊗⊥),
(25, S ⊗⊥), (35, S ⊗⊥)

ON · T ⊗⊥ · 25 (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, S ⊗⊥), (5, S ⊗⊥), (15, S ⊗⊥),
(25, F ⊗ l), (35, F ⊗ h)

R

ON ·OFF (⊥, OK ⊗⊥) (⊥,Ω⊗⊥)
(−5,Ω⊗⊥), (5,Ω⊗⊥), (15,Ω⊗⊥),
(25,Ω⊗⊥), (35,Ω⊗⊥)

ON · T ⊗⊥ · 15 (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, H ⊗ h), (5, H ⊗ l), (15, S ⊗⊥),
(25, F ⊗ l), (35, F ⊗ h)

ON · T ·OFF ⊗⊥ · 5 · ⊥ (⊥, OK ⊗⊥) (⊥,Ω⊗⊥)
(−5,Ω⊗⊥), (5,Ω⊗⊥), (15,Ω⊗⊥),
(25,Ω⊗⊥), (35,Ω⊗⊥)

ON · T ·OFF ⊗⊥ · 25 · ⊥ (⊥, OK ⊗⊥) (⊥,Ω⊗⊥)
(−5,Ω⊗⊥), (5,Ω⊗⊥), (15,Ω⊗⊥),
(25,Ω⊗⊥), (35,Ω⊗⊥)

ON · T · T ⊗⊥ · 5 · 5 (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, H ⊗ h), (5, H ⊗ l), (15, S ⊗⊥),
(25, S ⊗⊥), (35, S ⊗⊥)

ON · T · T ⊗⊥ · 5 · 25 (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, H ⊗ h), (5, H ⊗ l), (15, S ⊗⊥),
(25, F ⊗ l), (35, F ⊗ h)

ON · T · T ⊗⊥ · 25 · 5 (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, H ⊗ h), (5, H ⊗ l), (15, S ⊗⊥),
(25, F ⊗ l), (35, F ⊗ h)

ON · T · T ⊗⊥ · 25 · 25 (⊥,Ω⊗⊥) (⊥, S ⊗⊥)
(−5, S ⊗⊥), (5, S ⊗⊥), (15, S ⊗⊥),
(25, F ⊗ l), (35, F ⊗ h)

Table 7.3: Balanced, Dispute-free and Closed Observation Table for learning PFSM model of
HVAC controller

. . . = TM (s, ik). According to the structure of the table, we have additionally k rows in the

table, i.e., s · i1, . . . , s · ik ∈ SM ∪ SM · IM .

Now, suppose that in PFSM learning, we have an input i ∈ IP that is associated with

parameter values i1 . . . ik ∈ DI . According to the assumption that all the parameter values

produce same behaviors, then we have t ∈ SP such that OS(t, i, α1) = . . . = OS(t, i, αk), where

α1, . . . , αk ∈ π(TP (t, i)) and i1 = suff 1 (α1), . . . , ik = suff 1 (αk). Since, η(t, i) = 1, we have

additionally only one row in the table, i.e., t · i ∈ SP ∪R. Then the table (SP , R,EP , TP) has a

gain of k − 1 rows compared to the table (SM , EM , TM).

So the reduction in complexity achieved by using the PFSM learning algorithm over the

Mealy machine learning algorithm is directly linked to the reduction in the size of the models

119

T ({-5, 5})/H
 -57→h
57→l



T ({25, 35})/F
 257→l
357→h



T ({25, 35})/

T ({-5, 5, 15})/S

T ({15, 25, 35})/S
ON/OK

OF F/S

OF F/S

OF F/S

T ({15})/S

T ({-5, 5})/

F
 257→l
357→h



H
 -5 7→h
57→l



1 2

3

4

Figure 7.4: PFSM conjecture of the HVAC Controller from Table 7.3

that can be achieved with the use of PFSM modeling.

Actually, this crude analysis has to be refined by taking into account the level of information

we may have on the equivalence of input parameter values; so the partitions induced by the

predicates in the transitions of the PFSM model. In the above analysis, we assume that the

Mealy machine splits the input parameter domain with one input for each value of the domain.

This would be the case if we had no knowledge about the equivalence of parameter values to

determine the behaviors of the machine.

If, however, we are testing with a perfect knowledge of the partition defined on the input

parameter domain into equivalence classes, such that the system exhibits a similar behavior on

all the values of a class, then we can perfectly construct our input set for learning the Mealy

machine, in which each input symbol represents one class in the partition. As in the example of

the HVAC controller, the values -5� and 5� both turn on the heater. Ideally, there should be

one input that represents the whole interval [−20, 11], since the behavior of the system on all the

values within the interval is the same. In the Mealy machine inference of the example (Chapter

5, Section 5.6), we did not assume this knowledge beforehand and used two separate inputs,

namely T -5 and T5, which actually represent the interval [−20, 11]. Thereby, the learning

algorithm for Mealy machine LM+ constructed separate rows for each input in (SM , EM , TM),

120

shown in Table 5.8. On the contrary, the values -5� and 5� were considered as a single input

when the PFSM model of the controller was inferred, because they exhibited the same behavior

in (SP , R,EP , TP), shown in Table 7.3.

Moreover, even with a perfect knowledge of the partition, there is still a gain with the

PFSM learning algorithm, because rows would be split only in the case when there are different

behaviors induced during testing. However, this is not the case in Mealy machines learning.

There, we enumerate all values despite that some of them might have shown similar behaviors

in some rows. In reality, what we should distinguish on one state of the system may not be true

for the other states. This can be observed in the Mealy machine model of the HVAC controller,

shown in Figure 5.7. In state 3, we only have to distinguish the interval [−20, 11] from the

other intervals, i.e., [12, 15] and [16, 50]. Whereas in state 2, we really have to distinguish three

intervals. And in state 1, we do not have to distinguish any interval, since the input is not valid.

To summarize the results of the HVAC controller example, let us take a closer look on Table

7.3. It is observed that the number of rows and columns in Table 7.3 are reduced (and so

the number of queries), compared to Table 5.8. The total number of parameterized queries

in PFSM learning for the HVAC controller is 84, compared to 140 output queries for learning

Mealy machine (cf. Chapter 5, Section 5.6). The obvious reason is that each temperature value

in the Mealy machine learning is considered as an input to the controller which contributed in

its expansion. Whereas, the behavior of the controller remained mostly the same for different

values (e.g., -5� and 5�).

Therefore, the main gain in the case of PFSM learning is that the algorithm efficiently keeps

the size of the table reduced and only expands when it is required. This remains true whatever

information we may have or learn about equivalent values.

Another benefit we get from PFSM learning, thanks to the parameterized structure of the

model, is that, we were also able to obtain additional information about the HVAC system in

terms of the output parameters. The output parameters indicate the speed of the appliances

(heater/fan). That is, the heater is regulated with high h and low l speed levels on temperature

values -5 and 5 centigrades respectively. The speed of the fan on the temperature values 25 and

35 centigrades is regulated analogously.

7.5 Conclusion

This chapter discussed the inference of parameterized black box systems. It is observed that the

Mealy machine modeling is not sufficient because they do not adequately model the system that

exchange lots of parameterized data values from arbitrary complex domains. The Mealy machine

121

modeling of such systems would create a formidable size of the input set. As a consequence, it

often results in a combinatorial blow up on the transition level. Moreover, the complexity of the

learning algorithm is greatly enhanced by taking all data values as inputs. However, the systems

usually manifest similar behaviors on a subset of values and differ only on minor details. Thus,

it will be more adequate if such a system could be modeled in a compact (finite state machine)

representation that shows the global behaviors (as state transitions) and the minor details could

be treated as parameter values (associated with inputs and outputs on transitions).

We have proposed a parameterized finite state machine (PFSM) for modeling such systems.

Taking the building blocks of the (active) learning algorithms for simple state machines, we

have proposed a new algorithm LP
∗ that can learn a PFSM model in a polynomial time from a

black box machine given the set of input symbols and the knowledge of the (infinite) parameter

domain of the input symbols. If there is provided a counterexample then the algorithm refines

the conjecture by processing the counterexample.

Finally, LP ∗ is applied on the inference of the HVAC Controller that is given in Chapter

5 for the application of Mealy machine inference algorithm LM
∗. The comparison of the two

algorithms in terms of the size of the observation table, number of queries for inference and the

amount of observations obtained in the two algorithms is also discussed.

The limitation of PFSM inference is that we learn a restrictive form of output parameter

functions on the transitions. The functions are restricted with respect to the input parameter

values we have tested in the learning procedure. In our case, we just have a simple mapping

of input parameter values to their corresponding output parameter values. However, we have

studied that if we assume certain restrictions on the functions, i.e., the functions are computable

given the observations on input and output parameter values, then we can learn the functions

and annotate the transitions with the functions instead of simple mappings. We are working

on the application of the invariant detector Daikon [ECGN01] to detect such functions (as data

invariants) using the observations in the table. We have tested on the machines that contain

simple functions, like linear relationships (e.g., y = 2x + 1), ordering (e.g., x ≤ y), etc. This

work is detailed in Chapter 8.

122

Chapter 8

Parameter Function Inference in

PFSM models

This chapter presents our extended work in PFSM inference for learning parameter functions.

It proposes an idea of using invariant detection mechanism that can learn functions as data

invariants over the observed parameter values during the learning procedure. The idea is ex-

plained with the help of an example. However, the results are preliminary at this stage and

require further investigation from both theory and practice point of view.

8.1 Motivation

We have presented a parameterized model PFSM (Definition 4), and provided the algorithm

LP
∗ (Algorithm 4) for inferring the PFSM models. A PFSM model contains transitions in which

input and output symbols are associated with parameter values. The output parameter value

for a given input parameter value is determined by an output parameter function in a transition.

In the PFSM inference, we are limited to test certain input parameter values and observe the

corresponding output parameter values, and finally produce a conjecture in which transitions

are labeled with the input/output parameter value mappings. This means, we do not actually

learn completely the output parameter functions on the transitions that have determined the

output parameter values.

We extend the PFSM inference work in the direction of learning output parameter functions.

We noticed that the observations on the input/output parameter values during the initial run

of the algorithm can be used to infer the functions that have determined the output parameter

values on the given input parameter values. Assuming that the input/output parameter domain

is numeric, we can use external tools to learn arithmetic relations between the provided numeric

parameter values. An example of such tools is invariant detectors.

123

In this chapter, we discuss the approach of using the invariant detection mechanism to

learn functions (as invariants) using the observations of input and output parameter values.

Section 8.2 discusses the approach in general. Section 8.3 introduces the invariant detector

Daikon [ECGN01]. Section 8.4 illustrates the approach with the help of an example. Section

8.5 concludes the chapter.

8.2 Approach

We have observed that the output parameter functions in the PFSM model can be learned

if certain restrictions on the functions are assumed, i.e., the functions are computable given

the observations on the input and output parameter values. We see an application of invari-

ant detection mechanism such that the functions can be learned as data invariants, using the

observations on input and output parameter values on each transition as data values.

The key idea is the following. Once the learning algorithm LP
∗ terminates and a PFSM

conjecture is obtained, then for each transition in the conjecture, we collect the mappings of

input and output parameter values on the transition and provide the mappings to an invariant

detector. The detector would learn the function as a data invariant over the mappings. The

invariant is actually an approximation of the real output parameter function that has determined

the output parameter values during the learning of the PFSM conjecture. Finally, the learned

function will be annotated on the transition, replacing the original input and output parameter

value mappings.

We have used the invariant detector Daikon [ECGN01] in our initial experiments. In the

following, we introduce the tool shortly and then illustrate the approach of learning functions

with the help of an example.

8.3 The Daikon Invariant Detector

Daikon [ECGN01] is an implementation of dynamic invariant detection that infers invariants

over scalar and structured variables from program execution. The essential idea is to run the

program over a test suite, collect traces from the program execution and use a generate-and-

check algorithm to test a set of potential invariants against the traces. The algorithm initially

assumes that all potential invariants over the variables of interest are true and incrementally

tests each invariant against the observed values of these variables from the traces. At each step,

the invariant is discarded if it is violated by the values to obtain a set of positive invariants. The

remaining invariants at the end of the process are reported describing the relations as invariants

on the set of values observed in the program behavior.

124

Daikon collects all program executions in a large file called data trace file ’.dtrace’. It does

not use source code at all when inferring invariants. The inference engine reads data trace files

and runs the invariant detection algorithm on the values collected in the files. This functionality

exactly matches our requirements. We have the mappings of input and output parameter values

on each transition of the conjecture. The mappings can be written in a data trace file such that

there will be one file for each transition. Then, Daikon can learn the invariant over the given

values in the file. The learned invariant is actually the approximation of the parameter function

on the transition of the system which has determined the output parameter values during the

learning of the PFSM conjecture.

Daikon is enhanced with a number of optimizations that allows it to scale to large numbers

of invariants. Currently, it checks over 70 invariants and the list is extendible by the users to

accommodate their own domain-specific invariants and derived variables. Some of the invariants

it detects are as follows: constant value (x = a), small value set (x ∈ {a, b, c}), range limits

(x ≤ a), non-zero (x 6= 0), modulus (x ≡ a (mod b)), comparisons (x > y, x = y, ...), linear

relationships (y = ax + b), functional relationships (y = f(x)) and polynomial relationships

(z = ax+ by + c).

8.4 Example

c(x)/r(y)

x, y ∈ Z
y = x + 1

(a) PFSM model of the

counter

c({1, 5, 9, 14})/r
(17→2

57→6
97→10
147→15

)

(b) PFSM conjecture of the

counter from Table 8.1

Figure 8.1: PFSM model of the counter and its conjecture

Let us illustrate the approach with the help of a simple example. Consider a counter which

increments a given numeric value and returns the result back to the environment. A PFSM

model of the counter is given in Figure 8.1a. The input symbol is c with the input parameter

x and the output symbol is r with the output parameter y. The possible values for both

parameters lie with in the range of integers.

The learning algorithm LP
∗ is applied to the counter and the balanced, dispute-free and

closed observation table (SP , R,EP , TP), shown in Table 8.1, is obtained. The input parameter

125

EP

c

SP ε (1, r ⊗ 2) (5, r ⊗ 6) (9, r ⊗ 10) (14, r ⊗ 15)

R c (1 · 1, r ⊗ 2) (1 · 5, r ⊗ 6) (14 · 9, r ⊗ 10) (5 · 14, r ⊗ 15)

Table 8.1: Balanced, Dispute-free and Closed Observation Table for the counter

Daikon version 4.3.1, released August 2, 2007;

http://pag.csail.mit.edu/daikon.

Processing trace data; reading 1 dtrace file:

[15:14:39]: Finished reading counter.dtrace

===

Counter.counter():::ENTER

===

Counter.counter():::EXIT

x one of { 1, 5, 9, 14 }

y one of { 2, 6, 10, 15 }

x == orig(x)

x - y + 1 == 0

Exiting Daikon.

Figure 8.2: Daikon output for the observed counter values recorded in Table 8.1. The invariant is
inferred as: x− y + 1 == 0.

values that have been tested during the learning are 1, 5, 9, 14 (random selection). The corre-

sponding output parameter values are observed as 2, 6, 10, 15 respectively. The conjecture is

obtained from the table as shown in Figure 8.1b. The transition in the conjecture is labeled

with the input and output parameter values observed in the learning procedure.

We write the mappings of the input and output parameter values as a pair (x, y), i.e.,

(1, 2), (5, 6), (9, 10), (14, 15) in a data trace file and feed the file to Daikon. Daikon analyzes the

values in the file and infers the invariant as x − y + 1 == 0, i.e., the value of y is always one

greater than the value of x. The output of Daikon is shown in Figure 8.2. So, we replace the

original mappings of input and output parameter values on the transition of the conjecture in

Figure 8.1b, by the learned invariant. Finally, we achieve the PFSM model as shown in Figure

8.1a.

126

8.5 Conclusion

We have extended our work of inferring PFSM models and presented an idea of learning output

parameter functions in the conjecture. The idea is to supply the observed mappings of input and

output parameter values during the learning procedure to an invariant detector. The detector

learns the output parameter function (as invariants) which has determined the output parameter

values during the learning of the PFSM model.

The work of learning functions using invariant detection mechanism is currently in progress.

We have performed additional experiments with Daikon and found it efficient for numeric appli-

cations. However, it has limitations for use in large sized applications where complex formulas

are used for computations. Moreover, it generates few invariants unless it is supplied with

very large data. We continue to further investigate in this direction with the intention to find

solutions to overcome the limitations in learning functions.

127

128

Chapter 9

Tool and Case Studies

This chapter presents the implementation work carried out in the thesis. It introduces our tool

RALT that implements our approach of learning and testing. Then, the number of case studies

are presented that are performed with the tool.

9.1 RALT: Rich Automata Learning and Testing

The tool Rich Automata Learning and Testing (RALT) has been developed that implements our

approach of learning and testing. RALT is developed under Java 2 Platform Standard Edition

5.0 and has been tested under Windows XP and Linux (Fedora) environments. The current

version is 4.0 that consists of 70+ classes and 3 MB of source code. RALT has various modules

and libraries for learning and testing black box systems. The architecture of RALT 4.0 with

main modules is given in Figure 9.1. We refer to the technical report [NS08] for its complete

design with UML diagrams of the classes.

Once the actual system of black box components is connected, RALT is a push button

solution that finally outputs the models of the components, traces for compositional problems

and generic errors in the system. The working of the modules shown in Figure 9.1 is given as

follows.

Test Drivers: Test Drivers are responsible for connecting the actual system with RALT. The

main functions include providing the input set of each component in the system to RALT,

converting the abstract queries from RALT to actual tests for the system/components,

executing the tests on the system/components and converting the concrete test results

back to RALT’s abstract format. The drivers are specific for each system. RALT provides

an Abstract Test Driver class which the system specific test drivers inherit to communicate

with RALT.

129

Figure 9.1: Global Architecture of RALT 4.0

Learning and Testing Platform (LTP): This is the main module with which the user inter-

acts and accesses other modules. It contains the Abstract Test Driver and basic methods

for the access of internal data structures. All other modules communicate through this

module.

Learner: This module performs all learning operations using the learning algorithms library.

It asks queries and get responses for the algorithms and finally outputs the conjectures.

The different models that can be learned through this module are DFA, Mealy machines

and PFSM. The learning algorithms that have been implemented are L∗ (Algorithm 1),

LM
∗ (Algorithm 2), LM+ (Algorithm 3) and LP ∗ (Algorithm 4). The learning algorithms

library is shown in Figure 9.2. This module is also responsible for refining the models by

receiving counterexamples.

Note: The module is the implementation for Step 1 and Step 3 of our approach (cf.

Chapter 6, Section 6.3.1 and Section 6.3.3).

Product Composer and Analyzer: This module has a composer that receives (Mealy ma-

130

chine) models and computes their product. It has an analyzer which analyzes the product

for compositional problems. It also confirms the problem on the system through the LTP

module. It outputs the trace for the problem if detected or acknowledges if there is no

problem.

Note: The module is the implementation for Step 2 of our approach (cf. Chapter 6,

Section 6.3.2).

Test Generator: This module receives the product of (Mealy machine) models, generates tests

from the product and executes the tests on the system through the LTP module. It uses the

test generation methods library for the test generation. Then, it checks the discrepancies

between the product and the system. Finally, it outputs a trace for a discrepancy or

the product/models if no discrepancy is found. The test generation methods library

is shown in Figure 9.2. Currently, it implements the method of test generation from

transition coverage. We are enhancing it to incorporate other methods, e.g., W-method

[Vas73][Cho78] and Wp-method [FBK+91].

Note: The module is the implementation for Step 4 of our approach (cf. Chapter 6,

Section 6.3.4).

Figure 9.2: Libraries for Learner and Test Generator

131

Discrepancy Resolver: This module checks whether the discrepancy highlights an error in

the system. Currently, it checks for system crash SC, uncaught exception Exp and out

of memory problems OutMem. If any of such errors are found, it outputs the discrepancy

trace for the error. Otherwise, it returns the discrepancy for the product refinement.

Note: The module is the implementation for Step 5 of our approach (cf. Chapter 6,

Section 6.3.5).

Automata Converter: This module converts the conjectured models produced by other mod-

ules into the visual formats. Currently, it outputs “.jff” and “.dot” files for the models

which can be seen using external tools JFLAP [Rod06] [JFL] and Graphviz [Gra] respec-

tively.

When the test drivers for the system are written and the system is attached with RALT

through the drivers, the user interacts with the LTP module to initialize the learning and testing

procedure. The LTP module gets the input sets of the components from the test drivers and

calls other modules for the specific operations. The modules are run according to the approach

(explained in Chapter 6). However, the user can interact with each module separately on her

choice. At any point, the user can output the learned models to one of the visual formats

to check the intermediate learning step. Debugging option is also provided which outputs the

information related to observation tables and test generation during the procedure on the user

console. RALT is equipped with number of examples and short applications to help the user to

understand how the modules work.

132

9.2 Case Studies

This section presents the case studies that has been performed with RALT. The number of case

studies and their purpose are described below.

Edinburgh Concurrency Workbench: This case study is performed to assess the gain of

our proposed algorithm LM
+ (Algorithm 3) over the adapted algorithm LM

∗ (Algorithm

2) for learning Mealy machines. The purpose was to conduct experiments on a workbench

of finite state machines so that we could evaluate the average case complexity of the

algorithms. The results show that LM+ outperforms in terms of number of output queries

when compared to LM ∗.

Air Gourmet: This case study is performed to evaluate our learning and testing approach

explained in Chapter 6. This is an online flight reservation application that has spe-

cial features for managing passenger meals on-board. The application consists of several

components communicating to each other. Our experiment achieved good results and

identified many implementation faults in the application.

Nokia 6131: This is our “star” case study in which we have discovered the unspecified be-

haviors of real mobile phones. We have conducted experiments on the Media Player which

is a built-in component in the phones. We have experimented on three phone models, i.e.,

Nokia 6131, Nokia N93 and Sony Ericsson W300i, and identified that Nokia 6131 has

different behaviors compared to the other phones. Those behaviors are not specified by

its vendor. The purpose of this case study was to apply our reverse engineering technique

on the real systems to extract their models (e.g., through the PFSM learning algorithm

LP
∗) and to uncover the hidden behaviors.

Domotics: This is the largest case study we have taken in our work. Domotics is a system for

home automation that consists of several consumer appliances. The experiments have been

conducted on a prototype of Domotics deployed at Orange Labs. The prototype consists

of real devices, i.e., Light, Media Renderer and TV. We have derived Mealy machine

models of the devices to discover their behaviors and also learned their interactions in the

prototype.

133

9.2.1 Edinburgh Concurrency Workbench

Introduction

The purpose of this case study is to compare the adaptation of Angluin’s algorithm for learning

Mealy machines LM ∗ (Algorithm 2) with our improved algorithm LM
+ (Algorithm 3). As

discussed in Chapter 5, the improvement on the adapted algorithm is in fact the proposal of a

new method of processing counterexamples in the observation table. The worst case theoretical

complexity analysis has shown that LM+ outperforms LM ∗ in terms of number of output queries

(see Chapter 5, Section 5.3.5). It is interesting to evaluate the average case complexity of the

algorithms when the input sets, the number of states and the length of counterexamples are of

arbitrary sizes.

The examples in the case study are the synthetic finite state models of real world systems

(e.g., Vending machine, ATM and ABP protocols, Mailing Systems etc) that are shipped with

Edinburgh Concurrency Workbench (CWB) [MS04]. CWB is a tool for manipulating, analyzing

and verifying concurrent systems. The examples in the workbench have also been used to

investigate the applicability of Angluin’s algorithm in learning reactive systems [BJLS05]. These

examples were originally modeled as Non-Deterministic Finite Automata (NFA), with partial

transition relations, in which every state is a final state. Therefore, we have transferred first

each example to its corresponding DFA. The resulting DFA contains every state as final, plus

one non-final (sink) state which loops itself for all inputs. All inputs from a state that are

invalid (missing transitions in the original NFA) are directed to the sink state. According

to Definition 3, a DFA D = (QD,Σ, FD, q0D, δD) can be seen as an equivalent Mealy machine

M = (QM, I, O, δM, λM, q0M). Here, we learn the Mealy machines models of the CWB examples.

RALT has the implementation of both algorithms LM ∗ and LM
+. However, we had to

simulate an oracle in order to obtain counterexamples for CWB examples. This was achieved

by using the simple principles of union and integration of finite state machines. The simulation

of the oracle is described as follows.

Let D be an unknown DFA and C be a conjecture DFA then the language L(D∩C) accepts

those strings which are accepted by C but not by D. The language L(D ∩ C) is analogously

defined. Thus, we construct a DFA Z such that

L(Z) = L(D ∩ C) ∪ L(D ∩ C)

That is, the language L(Z) accepts strings which are accepted either by C or by D but not

by both. Therefore, any string accepted by L(Z) is a counterexample for C. If L(Z) = ∅, then

L(D) = L(C).

134

Note that the principle of finding counterexamples is explained for DFAs. In our case, we are

learning Mealy machines. This means that every time a Mealy machine conjecture is learned, we

have to convert it into its equivalent DFA in order to get counterexamples. Since there are only

two outputs, i.e., O = {0, 1}, the transformation from a Mealy machine to an equivalent DFA

is always possible [HU90]. This transformation is also done by the oracle which is explained in

the implementation details.

Implementation Details

The action plan for the CWB case study is as follows. First we obtain the NFA of an example

in CWB and convert it into its equivalent DFA D. Then, we learn the Mealy machine of

the example through RALT. The execution of output queries is performed by the test driver

(details of the test driver are given below). Once the Mealy machine conjecture is obtained, the

oracle converts the conjecture to its equivalent DFA. Then it calculates a counterexample by

performing operations on the converted DFA and D (details of the oracle are given below). If a

counterexample is produced, it is given back to RALT for refining the conjecture. Otherwise, the

oracle says “yes” and RALT outputs the Mealy machine conjecture. The procedure is repeated

for each algorithm.

Figure 9.3: Settings for learning CWB examples with RALT

The settings of RALT for learning CWB examples is given in Figure 9.3. In this case

study, we have used only the Learner module that implements LM+ and LM ∗ algorithms. The

implementation details for the test driver and the oracle are described in the following.

135

Test Driver: The test driver obtains the DFA example D to run output queries from RALT.

For each query, it starts from the initial state of D and runs the inputs in the query over

the states of D progressively. For each input, it records the observation as “1” or “0”,

depending the target state is final or not. Finally, the test driver returns the collective

observations to RALT. The pseudo-code of the test driver for one query is given below.

begin
Let D = (QD,Σ, FD, q0D, δD) be the DFA example ;
Let ω = i1 . . . im be a query ;
Let obs be a boolean array of size m that is initialized with zeros ;
Let q = q0D be the initial state of D ;
for j = 1 . . .m do

q = δD(q, ij) ;
if q ∈ FD then obs[j] = 1;

end
return obs ;

end

Oracle: The oracle obtains the DFA example D and the Mealy conjecture M . It then converts

M into its equivalent DFA conjecture C. A Mealy machine does not produce output on

the initial state. On the contrary, a DFA can accept an empty string if its initial state is

final. Therefore, if the initial state of D is final, then the initial state of C is also made

final. Then, it calculates the DFA Z, i.e., the difference between D and C (as described

above). Then, it traverses Z in the breadth-first-search manner and searches for a final

state in Z. If a final state is found, it returns a string from the initial state to the final

state to RALT. The string is a counterexample for C, and thus for M . If no final state is

found, it returns “yes”. The pseudo-code of the oracle is given below.

begin
Let D be the DFA example and M be the Mealy machine conjecture ;
Convert M into its equivalent DFA conjecture C ;
Calculate Z = (D ∩ C) ∪ (D ∩ C) ;
Starting from the initial state, traverse Z in the breath-first-search manner ;
foreach state q in Z do

if q is final then /* counterexample is found */
Find a string from the initial state to q ;
return the string as a counterexample ;

end
end

return “yes” /* no counterexample is found */ ;
end

If RALT receives a counterexample then it reruns the specific learning algorithm for pro-

136

cessing the counterexample. This follows another iteration of making a refined conjecture.

The process goes on until RALT receives “yes” for the conjecture. Then, RALT returns the

conjecture and terminates the procedure.

Experimental Results

Each example in CWB is learned through RALT by applying both algorithms, i.e., LM+ and

LM
∗, one by one, until their complete models are learned. The number of output queries

required by the algorithms are given in Table 9.1. The first column labels the example. The

second column shows the size of the input set I. The third column shows the minimum number of

states in the example when modeled as DFA and Mealy machines. The fourth and fifth columns

show the number of output queries asked by LM ∗ and LM+, respectively. The last column shows

the reduction factor in queries asked by LM+ against LM ∗, i.e., no. of output queries in LM
∗

no. of output queries in LM
+ − 1.

Examples |I| No. of States No. of Output Queries Reduction Factor
DFA / Mealy (min) LM

∗ LM
+

R 3 5 48 48 0
ABP-Lossy 3 11 754 340 1.22
Peterson2 3 11 910 374 1.43

Small 5 11 462 392 0.18
VM 5 11 836 392 1.13

Buff3 3 12 580 259 1.24
Shed2 6 13 824 790 0.04

ABP-Safe 3 19 2336 754 2.1
TMR1 5 19 1396 1728 -0.2
VMnew 4 29 2595 1404 0.85

CSPROT 5 44 4864 3094 0.57

Table 9.1: Comparison of LM
∗ with LM

+ on the examples of CWB workbench. The examples are
listed in ascending order with respect to the number of states.

The experiments have been conducted on 11 CWB examples. All examples are of different

sizes in terms of number of states and input set size. The results show that LM+ outperformed

LM
∗ in almost all the examples. The greatest reduction factor we achieved is 2.1 on the example

ABP-Safe which consists of 19 states and 3 inputs. The largest example in the workbench is

CSPROT that consists of 44 states and 5 inputs. The reduction factor of 0.57 on this example

is also significant. There is only one example TMR1 in which LM
+ has negatively performed.

As we know from our worst case complexity analysis (cf. Chapter 5.3, Section 5.3.5) that

LM
+ performs better than LM

∗. From the results of these experiments, we can also conclude

that the average case complexity of LM+ is less than LM ∗. We have also conducted experiments

on randomly generated DFAs. The result drawn from the CWB case study is also confirmed

on those experiments.

137

9.2.2 Air Gourmet

Introduction

Air Gourmet [Sch01] is a sample Java application for flight reservations that has special features

for managing passenger meals on-board. There are two main functions in this application. The

first function is to reserve a flight. A passenger reserves a flight and provides her choices for

meals that would be served on-board. She can also request quality attributes for meals. The

second function is to provide a procedure for welcoming a passenger on-board and managing

the meals which she has requested while reserving the flight. This is an open source application

and consists of several components. We describe here the main components which took part in

our case study.

Flight Reservation: The component registers a passenger for a specific flight and manages

the functions related to meal choices.

Passenger Check-in: The component provides a procedure for checking-in a passenger.

Meals Manager: The component manages all functions related to the meals on-board and

provides a procedure to select the meal for the specific passenger. It also manages the

quality attributes the passenger might have requested during the flight reservation.

Each component can be accessed in the system separately to use its specific functions.

However, the components also communicate with each other because of their dependencies. For

example, Passenger Check-in uses Flight Reservation to obtain flight records and passenger data

for checking the passenger. Similarly, Meals Manager uses Flight Reservation for checking the

meals options which the passenger has requested. Figure 9.4 provides a conceptual view of the

Air Gourmet application. It depicts how the components are communicating to each other and

to the environment.

Implementation Details

We considered each component as a Mealy machine and applied our approach of learning and

testing (explained in Chapter 6) to the Air Gourmet system. In order to conduct experiments,

the system was connected to RALT with the help of test drivers. Since the source code was

available, writing the test driver was an easy task. There were four test drivers in total, i.e., one

for each component and one for the global system. The test driver for a single component was

required for learning the component separately. The test driver for the global system was used

to communicate with the integrated system as a whole. The communication of the components

138

Figure 9.4: Conceptual view of the Air Gourmet System

were held by method calls. So, the implementation of the test drivers was a simple translation

of abstract inputs from RALT to their corresponding method calls. Similarly, the test drivers

translated each output, i.e., the return value of the called method, into an abstract symbol and

sent back to RALT.

In order to initialize learning algorithms, we constructed input sets for each component.

Apart from the normal inputs that each component accepts, we also added invalid inputs in the

set to infer the behavior of the system on such inputs. Then, we implemented the notification of

the invalid inputs in the test drivers. That is, the test drivers raised an InvalidInputException

if the components returned a valid result on the invalid input.

Experimental Results

We followed the procedure of the learning and testing approach by first learning the components

in isolation through their respective test drivers (Step 1). RALT learned each component and

derived its Mealy machine model. The models obtained after learning were partial; except for

the Passenger Check-in component that was learned completely.

Then, RALT composed the learned model to make a product analyzed for detecting livelocks

(Step 2). There were no livelocks detected in the product. Hence, the refinement step (Step 3)

was skipped and it proceeded for the test generation step.

RALT generated tests from the product and ran the tests on the integrated system through

the system test driver (Step 4). The tests discovered several discrepancies between the product

and the behavior of the system.

139

Then, RALT resolved the discrepancies if they were classified as real errors in the system

(Step 5). Sometimes, a discrepancy revealed a real error in the system. In this case, RALT

terminated the procedure by reporting the error. Otherwise, it refined the product by re-

learning components using discrepancy as a counterexample (Step 3) and followed the iterative

procedure.

Whenever a real error was found, we corrected the error in the implementation and reran

RALT for the corrected system. This procedure went on until no further discrepancies were

found and no further errors were detected.

The whole procedure was terminated in six iterations (including the rerunning of RALT

after corrections in the implementation). Finally, we achieved the learned model of each com-

ponent. As noted before, the model for Passenger Check-in was learned completely after Step

1. Moreover, the model for Flight Reservation was also learned completely after the third it-

eration. However, the model for Meals Manager was not learned completely. We spotted in

the code of the component that few functions could not be learned by RALT. As far errors

are concerned, we found several errors in the system, especially related to uncaught exceptions,

e.g., Java NullPointerException. We also noted that the system accepts invalid inputs. For

example, Flight Reservation accepted the reservation date as 14 July 1789 1 in our experiments.

The results of the case study are provided in Table 9.2. The first column shows the compo-

nent, the second column shows the number of inputs (including the invalid inputs), the third

column shows the number of states in the learned model, the fourth column shows the number

of errors that were detected in the component and the fifth column shows the type of errors.

Components |I| No. of States No. of Errors Error Types

Passenger Check-in 3 4 0 -
Flight Reservation 5 7 3 NPE, IIE, Date Parsing Exception

Meals Manager 4 8 4 NPE, IIE, IAE

NPE: NullPointerException, IIE: InvalidInputException, IAE: IllegalArgumentException

Table 9.2: Results of the Air Gourmet System.

As a whole, our experiments achieved good results on the case study in terms of learning

models and identifying implementation faults in the application. The case study is small,

but it enhances confidence that the approach is workable for behavioral exploration and for

uncovering implementation errors in the systems. We intend to extend our experiments on

large scale systems to assess the approach. Domotics is an example of such a system.

1révolution française

140

9.2.3 Nokia 6131

Introduction

Today’s mobile phones provide a heterogeneous platform for adding new components that pro-

vide custom services to their users. The new components usually access the built-in mobile

components to activate specific functions. For example, a game component accesses the inter-

nal media player to enable sound on phone’s speakers. These components benefit from Mobile

APIs that are provided by phone manufacturers, as it allows to use basic phone functions and

to adapt, e.g., to change in quality of service, connectivity, and to integrate new functions. The

general working of the built-in components and the design of APIs must adhere to some defined

specifications, e.g., Java Specifications Requests (JSR) [Pro] for Java enabled mobile phones; so

that, the same components can be added across the mobile platforms. However, it is observed

that the built-in components contain far more behaviors than the specifications. This is because

the specifications only describe the high level functions of the components and miss the details

how the functions should be implemented. For example, the Mobile Media API (MMAPI) spec-

ifies how the basic media playback function can be accessed, but does not describe how actually

the media processing happens and how the media player reacts with different playback settings.

These implementation details depend upon the specific hardware and operating systems the

phone manufacturers use. As a result, the implementation of the built-in components usually

vary from one mobile platform to another.

Mobile Media Player

We have studied Nokia 6131 (S40 series) and discovered the unspecified behaviors of its built-

in components. Specifically, we studied the media player component how it behaves when other

components interact to use its playback functions. The life cycle of the media player according

to the standard multimedia specifications, i.e., JSR-1351, is shown in Figure 9.5.

It consists of five states, namely, UNREALIZED, REALIZED, PREFETCHED, STARTED

and CLOSED. Initially, the player is in the UNREALIZED state. Calling realize() moves it to

the REALIZED state and initializes the information the player needs to acquire media resources.

Calling prefetch() moves it to the PREFETCHED state, establishes network connections for

streaming data, and performs other initialization tasks. Calling deallocate() returns the player

to the REALIZED state, thereby releasing all the resources that it would have acquired. Calling

start() causes a transition from the PREFETCHED state to the STARTED state, where the

player can process data. When it finishes processing (reaches the end of a media stream) or

1http://java.sun.com/javame/reference/apis/jsr135

141

Figure 9.5: Mobile Media Player Life Cycle

when stop() is called, it returns to the PREFETCHED state. Finally, calling close() moves the

player to the CLOSED state.

Inference Objectives

Figure 9.5 demonstrates the life-cycle for playing one media file on the phone. However, it is

unspecified how the media player behaves and the changeover on the states takes place when

more than one files are played simultaneously. Our objective was to learn the behaviors of the

media player under this context for Nokia 6131. We learned the behaviors by connecting the

mobile phone with RALT, and applied the algorithm LP
∗ (Algorithm 4) for learning a PFSM

model of the media player. The first step in learning is to construct the input set for the

component. Since, we were interested in checking the behaviors on two media files, we created

two instances of the media player, namely p1 and p2. In order to play the files, we had to call

realize(), prefetch() and start() methods in a particular sequence. However, the specifications

say that if start() is called when the player is in the UNREALIZED or REALIZED state, it

implicitly calls prefetch(). Thus, we used directly start() method for p1 and p2 instead of

going through intermediate steps. The other two methods we considered are stop() and close().

Thus, the input set for learning the behaviors of the media player for two media files was

I = {p1.start(), p2.start(), p2.stop(), p2.stop(), p1.close(), p2.close()}. The parameter values for

p1.start() and p2.start() were the media files, p1.wav and p2.wav respectively, which we played

on the player. The other inputs do not take parameter values; so the domain of parameter

values was DI = {p1.wav, p2.wav}.

142

Settings Details

Java Micro Edition Sun Java Wireless Toolkit 2.5.1

Connected Limited Device Configurations (CLDC) version 1.0

Mobile Information Device Profile (MIDP) version 2.0

Mobile Media API (MMAPI) specifications JSR-135

Package javax.microedition.media

Table 9.3: Settings for Media Player Test Driver

Details for the Test Driver

The test driver for connecting RALT with the mobile’s media player was developed under Java

Micro Edition framework. The detail settings for the media player test driver is given in Table

9.3.

The behaviors of the media player can be observed by listening to the player events. Player

events deliver the information about the player’s state changes and other relevant information

from the player’s controls. For example, when the start() method is called and the media

file is started playing, the event STARTED is delivered. Similarly, the events STOPPED and

CLOSED are delivered when the media file is stopped or closed respectively. The MMAPI pro-

vides a listener through which the events can be captured. The test driver kept track of events

after calling each input method and recorded the corresponding observations through the lis-

tener. It recorded the events STARTED, STOPPED and CLOSED, as well as any exception

Exp raised by the player during the testing procedure. The events are guaranteed to be deliv-

ered in the order that the methods representing the events are called. That means the events

STARTED, STOPPED and CLOSED are delivered in the same order as the methods start(),

stop() and close() are called. Therefore, the test driver always got deterministic behaviors of the

player. Summarizing the observation recording, the output set of the player was constructed as

{p1.STARTED, p2.STARTED, p1.STOPPED, p2.STOPPED, p1.CLOSED, p2.CLOSED,Exp}.
The outputs do not contain parameters; so, the domain of output parameter values was DO = ∅.

Inference Results

RALT ran the algorithm LP
∗ to learn a PFSM model of the media player of Nokia 6131 on the

given inputs and parameter values. The learned model is shown in Figure 9.6a. The transitions

with invalid method invocations are not shown in the model.

The model shows that when the player is in the initial state q0, calling either p1.start() or

p2.start() results in playing the given media files. However, if one of the files are being played

143

(a) PFSM model for the Media Player of Nokia 6131 (b) PFSM model for the Media Player of Nokia N93

and Sony Ericsson W300i

Figure 9.6: PFSM model for the Media Player of Nokia N93 and Sony Ericsson W300i

or the file is stopped, calling the methods to play the other media file raised the exception. This

takes the player in the state q3 from where no input is accepted. However, if the player is on

state q1 or q2 and the respective files are closed, then this takes the player to the initial state

where any of the files can be played. Thus, the model depicts that the two media files cannot

be played at the same time. Even if the files are stopped, the player throws the exception if

the other file has already been started. Therefore, one file has to be closed before starting the

other.

We have performed the same experiments on Nokia N93 (S60 series) and Sony Ericsson

W300i mobile phones. Both have shown different behaviors from Nokia 6131. Their model is

shown in Figure 9.6b, which depicts that the two files can be played simultaneously on these

phones.

Application of the Case Study

The case study has successfully applied our reverse engineering technique on real mobile phones

and uncovered hidden behaviors. It points out to a real benefit of the technique in the context of

industry where understanding the system of third-party components is an issue. The designers

manually conduct tests on the components using scattered pieces of incomplete information,

combining with the knowledge from domain expertise, to uncover the unspecified behaviors of

the system.

144

The case study is acknowledged by Orange Labs that has faced similar problems of unspec-

ified mobile phone components in the past. We have given the example of Docomo in Chapter

1 (Section 1.3), which explained the problem of gaming components due to its unknown behav-

iors. The Nokia 6131 case study can be seen as a proof-of-concept for the Docomo example in

the sense that the same kind of experiments can be performed to learn the model of the gaming

component to reveal its hidden behaviors.

From this case study, Orange Labs has gain a benefit to understand Nokia 6131’s media

player behaviors. A problem might occur if a phone user starts playing a media file and then

switches to third-party, e.g., a game component, which also plays its own file, then the two files

cannot be played at the same time. Moreover, the exception raised in this scenario could halt

the phone if it is not handled properly in the game component.

145

9.2.4 Domotics

Introduction

Domotics or Home Automation is a system for building automation, specializing in the specific

automation requirements of private homes and in the application of automation techniques for

the comfort and security of its residents. Although many techniques used in building automa-

tion (such as light and climate control, control of doors and window shutters, security and

surveillance systems, etc.) are also used in home automation, additional functions in home

automation include the control of multimedia home entertainment systems, automatic plant

watering and pet feeding, and automatic scenes for dinners and parties.

ArchiteCture for Smart Environment (ACSE) [Gr08] is a running project in Orange Labs

aiming to provide a smart home service-oriented-architecture and related services. We took a

case study from this project to experiment with real devices that provide services under home

automation context. The number of devices we have considered are:

Light Control System: involves aspects related to controlling electric lights that include

� Extinguished general of all the lights of the house

� Automatization of switched off / ignition in every point of light

� Regulation of the illumination according to the level of ambient luminosity.

Media Renderer: involves in rendering Audio/Video contents from the home network. It

exposes a set of rendering controls for various features such as brightness, contrast, volume,

etc.

TV: involves in playing the audio or video contents from the Media Renderer. It also displays

the messages and events notified by other devices.

Prototype at Orange Labs

Orange Labs has deployed a prototype of Domotics that consists of abovementioned devices.

There are several technologies for device installation that allows devices to connect seamlessly

in home and corporate environments for the purpose of data sharing, communications, and

entertainment etc. The two well-known technologies are

UPnP: The UPnP architecture [MNTW01] allows peer-to-peer networking of PCs, consumer

appliances, and wireless devices. It is a distributed, open architecture based on established

standards. The UPnP devices are compliant with the specifications provided by UPnP

146

Device Vendor Product Name Technology

Light System ProSyst - X10

Media Renderer Philips Streamium400i UPnP

TV Acer AT3705-MGW UPnP (compliant)

Table 9.4: The details of the devices in the Domotics prototype

Forum [UPn]. The specifications detail the input actions on which the devices operate; as

well as, the methods to access their functions and to observe their status. However, the

implementation may vary from vendor to vendor which is usually not exposed.

X10: X10 [Pac05] is an international and open industry standard for communication among

electronic devices used for home automation. It primarily uses power line wiring for

signaling and control, where the signals involve brief radio frequency bursts representing

digital information.

The details of the device in our prototype are given in Table 9.4.

Implementation Details

OSGi [All] is a standardized Java-based lightweight service framework, which offers an access

to a network of UPnP devices and services. Apache Felix [Apa] is a platform that provides

an implementation for the OSGi framework and supporting the UPnP technology. The X10

devices can be accessed over the network through X10 protocol device drivers.

So, we have a network of UPnP and X10 devices that are accessible from Felix through

OSGi framework. Felix contains bundles(jar files) to execute control on the devices. In order

to connect the network with RALT, we have written test drivers for the devices which are

actually the bundles deployed in Felix. Those bundles communicate with the devices and

perform operations like running queries and sending back the results to RALT. We have also

implemented a system test driver for Domotics that manages bundles in Felix. Figure 9.7 is a

conceptual view of the settings of the Domotics system with RALT.

Experimental Results

We have conducted experiments on the prototype of Domotics that consists of devices described

in Table 9.4. As a first step, we learned the Light System LS and Media RendererMR separately

and derived their Mealy machine models. Thereafter, we learned the interactions of all the

devices and derived the Mealy machine model of the whole system. We explain the learning of

LS and MR in the following, and then provide details of the whole system.

147

Figure 9.7: Conceptual view of the settings of the Domotics system with RALT

LS has four basic functions, i.e., ON , OFF , BRIGHT and DIM . For the inputs BRIGHT

and DIM , it changes the lightning intensity according to predefined levels. In the device

configuration, we used levels from 1 to 4, where 1 is the dimmest and 4 is the brightest intensity

level. When the test driver receives the inputs BRIGHT or DIM from RALT, it sends the

inputs to the device and provides back the current intensity level.

We learned the model of the device using the input set described above. It took about four

minutes and a five state Mealy machine model was derived as shown in Figure B.1 (Appendix

B). It is observed that the LS uses the brightest intensity level when it is lit up. It decreases

one level when it receives DIM and increases one level when it receives BRIGHT .

MR has five basic controls, i.e., ON , OFF , PLAY , PAUSE, STOP . We set a media file

in the device configuration, so that it could perform specific actions on the file when it is given

the specific inputs. For example, it could play the file on receiving the input PLAY .

We learned the model of the devices using the input set described above. It took about

sixteen minutes and a four state Mealy machine model was derived as shown in Figure B.2

(Appendix B).

We have also prepared an experimental setup so that the devices could interact each other

during their execution. The setup of the system is described as follows. The devices LS and

MR can receive inputs from the environment and operate accordingly. Moreover, when LR

changes its status, then TV displays the corresponding notification on its screen. We have

written a kind of a test driver, called TV Ctrl, which listens to the interactions of the devices

and notifies to the environment. TV Ctrl has the following responsibilities:

148

Figure 9.8: Setup of the Domotics System

� It receives a status change notification from LS and displays the notification on the TV

screen. It also sends the notification as an external output.

� It listens to an action performed by MR and notifies the action by sending an external

output.

The setup of the Domotics system is given in Figure 9.8. The interaction model of the

system is learned in about thirty minutes. The Mealy machine model comprises of 141 states

is given in Figure B.3 (Appendix B).

Our initial experiments on Domotics learned simple and custom made device interactions.

However, we have learned the models of the real devices that are structurally complex and

require great deal of attention for constructing their input sets. We have explained this case

study very succinctly in this section and ignored the details of the device configurations and

implementation of the test drivers. The complete illustration and experimental results of this

case study can be seen in the technical report [NS08]. The work on this case study has been

started since August 2008. Orange Labs is extending this prototype with more complicated

scenarios, which follows the further expansion of our experimental results.

149

9.3 Conclusion

This chapter presented the implementation work carried out in the thesis. The details of the

tool RALT 4.0 are given which we have developed to implement our approach of learning and

testing. We have experimented with four case studies and presented their results in the chapter.

The first case study was Edinburgh Concurrency Workbench that aimed to evaluate the

practical results of our proposed algorithm LM
+ compared to the adapted algorithm LM

∗ for

learning Mealy machines. The results showed that LM+ has outperformed LM
∗.

The second case study was Air Gourmet that aimed to evaluate our approach of learning

and testing of integrated systems. The experiments achieved good results in terms of learning

models of the components and uncovering implementation faults.

The third case study was Nokia 6131 that aimed to evaluate our reverse engineering tech-

niques on the real systems. We conducted experiments on three mobile phones (Nokia 6131,

Nokia N93, Sony Ericsson W300i) and learned the models of their media player component

through the PFSM algorithm LP
∗. The model revealed unspecified behaviors of the component

in Nokia 6131.

The fourth case study is Domotics that aimed to evaluate the application of our approach

of learning structurally complex real systems. Domotics is a home automation system that

consists of various communicating UPnP/X10 devices. We have performed initial experiments

on the system of Light, Media Renderer and TV and learned their interactions. We intend to

further extend this case study with more complex device interactions.

The case studies have produced encouraging results for the application of our approach of

learning and testing. We have conducted experiments on a variety of systems that include small

examples, like a workbench of synthetic finite state machines (CWB) and an open-source java

application (Air Gourmet), as well as comparatively larger and difficult examples, like mobile

phones and Domotics. Moreover, we have applied our approach on real black box systems and

uncovered their unknown behaviors. Nokia 6131 is an example of such claim. This gives us

a confidence that our approach of learning and testing, in general, is applicable in real world

systems. Domotics is an example of such a challenging system because of its heterogeneous

environment. We believe that RALT is capable of dealing with complex systems, however

extensions are needed to cater with domain specific requirements and for writing test drivers

for real systems.

150

Chapter 10

Conclusion and Perspectives

This chapter concludes the work of the thesis. It provides the summary of the work detailed

in the previous chapters. Then, a short note on the publications achieved from this work is

given, the future extensions and on going work are pointed out, followed by some lessons that

are learned from this research.

10.1 Summary of the Thesis

Component Based Software Engineering has gained a strong momentum in many sectors of the

software industry. The main reason of its prevalence is that it reduces the cost of developing

complex systems by reusing Components-Of-The-Shelf (COTS) or third-party components, in-

stead of developing the systems from scratch. However, delivering a quality of service in COTS

is a challenge. The system designers require specifications or models of the components to un-

derstand their possible behaviors in the system. However, the specifications are often absent or

insufficient for their formal analysis. Such components are termed as black boxes in literature.

The thesis addressed the problem of uncovering the behaviors of black box components to

support the testing and the analysis of the integrated system composed of such components.

We surveyed the state of the art in this domain and found that the combination of automata

learning and testing techniques are useful in the behavioral exploration of the components

and for the application of Model Driven Engineering (MDE) techniques. We realized that

the passive learning techniques are less effective than the active learning techniques. In this

vein, Angluin’s algorithm has been considered a remarkable work for active learning finite

state machines in polynomial time. Despite some practical problems (the equivalence check by

assuming an oracle), the algorithm has been applied in many works of learning and testing in

the last decade.

151

We used the building blocks of Angluin’s algorithm and proposed a framework for learning

enhanced state models to support integration testing. The contributions in the thesis can be

summarized as follows.

� We studied the adaptation of Angluin’s algorithm for learning Mealy machines and ob-

served a room for improvements in the algorithm. We have proposed a new method of

processing counterexamples in the algorithm such that the number of queries in the al-

gorithm is significantly reduced when applying our method. The gain over queries is also

confirmed by experimenting the number of examples in the concurrency workbench CWB

[MS04]. (cf. Chapter 5)

� We have proposed a framework to test and analyze the integrated system of black box

Mealy components. The framework consists in learning the components in isolation and

then using the learned models for finding compositional problems and other generic er-

rors, such as system crash, uncaught exceptions, out of memory etc, in the system. The

equivalence check in the algorithm is replaced with a model based testing technique that

comprises of deriving tests from the learned model and stimulate the interactions between

the components such that they visit the parts of components which might have been un-

explored previously. This can benefit in refining the models whenever discrepancies are

found between the behaviors of the learned models and the actual components, and also

in testing the integrated system for potential errors. (cf. Chapter 6)

� The learning of enhanced models has been advocated in many recent works in which real

systems were considered. We have proposed a model, Parameterized Finite State Machine

(PFSM), and an algorithm to learn PFSM models using the original settings of Angluin’s

algorithm. (cf. Chapter 7)

� We have extended the work of inferring PFSM models for learning parameter functions.

The proposal was to use data invariant inference tools to learn functions as invariants over

the observed parameter values. We have used Daikon and studied simple examples. (cf.

Chapter 8)

� We have validated our approach of learning and testing of enhanced state of models

on a number of case studies provided by France Telecom R&D. These applications lie

in different telecom domains, namely cellular phones, web services and domotics. The

experiments were carried out with RALT 4.0 (Rich Automata Learning and Testing), the

tool developed during the thesis that implements our approach of learning and testing.

The experimental results encourage to apply our approach in more sophisticated systems

152

of black box components. RALT is now being deployed on the company’s site where its

designers shall use it for real world applications. (cf. Chapter 9)

10.2 Note on Publications

The number of publications achieved during the course of thesis (duration Nov. 2005 - Oct.

2008) is listed here in chronological order. A short introduction to each publication is given

below.

1. TAIC PART 2006 (Doctoral Symposium):

This paper [Sha06] states the problem globally and provides a sketch of the approach

presented in the thesis.

2. TAIC PART 2006:

This paper [LGS06a] presents the algorithm LM
∗ (Algorithm 2) for learning Mealy ma-

chines. It also proposes an integration testing technique that uses Mealy models and

detects incompatibilities between black box components. The approach was applied on a

small example of hotel reservation system consists of two components.

3. FORTE 2006:

This paper [LGS06b] presents a parameterized model and an algorithm for learning such

model. The model is a simple extension of Mealy machines with parameters. This was

an intermediate step in proposing enhanced models, and therefore, not mentioned in the

thesis.

4. TestCom 2007:

This paper [SLG07a] presents the PFSM model (Definition 4) and the algorithm LP
∗

(Algorithm 4) for learning PFSM models.

5. AFADL 2007:

This paper [GSL07] (en français) presents our works in learning enhanced models. It

includes the learning of DFA, Mealy machines and PFSM models.

6. COMPSAC 2007:

This paper [SLG07b] covers the background of learning PFSM models (Testcom 2007)

and proposes an integration testing framework that uses PFSM models and refines the

models iteratively.

153

7. ICFI 2007:

This paper [SPK07] presents an approach of detecting feature interactions in black box

systems using model inference approach. A mobile phone system that integrates third-

party components was studied and unknown interactions between the components were

detected through the approach. This work was carried out to study an application of our

learning and testing approach for detecting feature interactions. The work is not presented

in the thesis.

8. ISoLA 2007:

This paper [SG07] presents the approach of combining state machine inference with data

invariant inference mechanism. It details the problem of learning output parameter func-

tions in PFSM models, then provides the solution of using data invariant inference and

the experimental results with Daikon.

9. TestCom 2008:

This paper [GLPS08] presents an approach of detecting sporadic errors in a black box

integrated system. Such errors occur due to several interleavings in response to a given

input sequence, if that sequence is applied several times. This happens especially when the

components in the system have multiple outputs that can invoke many other components.

The paper proposes to combine inference, testing and reachability analysis to detect such

errors in the systems.

The approach presented in the paper is similar to the iterative approach of learning and

testing presented in Chapter 6. That is, we learn the component models and test the

system using the learned models in an iterative fashion. However, the key points of the

approach presented in the paper which create differences with the approach presented in

the thesis are

� Instead of learning components one by one, we take the integrated system as a whole

and learn its model.

� We use a different model for learning systems, i.e., Input Output Label Transitions

System (IOTS) with multiple outputs.

� We learn the model of a system by inferring its k-quotient. An algorithm for this

purpose is presented in the paper.

� We apply reachability analysis on the learned model to detect errors such as

154

– unspecified receptions, i.e, one component sends an (internal) input but no other

component can consume it.

– compositional livelocks, i.e, there is a loop of internal inputs in the system.

– races, i.e, given an input sequence, there could be several interleavings which

could cause nondeterminism in the system’s behavior.

10. TSI 2008 (Journal Paper):

This paper [GSL08] (en français) is a journal version of the AFADL 2007 paper, with the

extensions of the experimental results on CWB workbench [MS04] and the complexity

discussions covered in the thesis.

11. IS 2008 (Journal Paper) (submitted):

This journal paper [SLG08] covers the learning of enhanced finite state machines (DFA,

Mealy and PFSM algorithms), the approach of learning parameter functions and the

experimental results of the case study CWB [MS04].

10.3 Future Directions

There are many directions we foresee to extend this work. We have already started working on

some of them, and others are still in our wish list. A brief overview of these directions is given

below.

10.3.1 Learning Variable Approximations

The previous studies in the automata learning have concluded that it is unrealistic to assume

that components could be modeled with a perfect abstraction in a finite, compact representation.

However, inferring approximated models of components in a given modular system appears to

be more realistic [HHNS02].

Our learning methods derive approximate models, precisely quotients, of the unknown mod-

els. It is interesting to note that the computational complexity and precision in the algorithms

can be controlled by learning k-quotients (Definition 8). Here, the variable k bounds the explo-

ration of the system such that the states of the quotient are k-equivalent (Definition 7). Thus,

the complexity of learning and the precision of quotients can be controlled by k.

Our recent work [GLPS08] is a step forward towards learning variable approximations. Cur-

rently, the experiments are underway in which we are using IF platform [Boz04] for expressing

automata systems. We have implemented the algorithm for inferring k-quotients. Now, we start

working on case-studies for the practical analysis of the approach.

155

10.3.2 Learning Nondeterministic Machines

We are looking into the problem of learning nondeterministic finite state machines [Yok94].

The difficulty in learning such machines is that they produce multiple outputs on the same

input sequences when applying several times. One possibility to resolve this problem is to make

a complete testing assumption, i.e., by applying a given input sequence ω a finite number of

times to a given non-deterministic black box machine, we exercise all possible transitions of the

machine that can be traversed by ω [FvB92]. This assumption is similar to the one of so-called

“all-weather conditions” for nondeterministic systems of Milner [Mil82]. Then, we can use the

settings of Angluin’s algorithm and record multiple outputs in the cells of the observation table.

This follows the splitting of rows containing multiple outputs in the cells, similar to the PFSM

algorithm LP
∗ (Algorithm 4). Finally, the transitions of the conjecture can be labeled with

nondeterministic choices of outputs recorded in the observation table.

10.3.3 Test Generation Methods for Model Refinements

It has been observed that the equivalence check in Angluin’s algorithm can be replaced by the

application of model based testing techniques [HHNS02] [HNS03]. The essence is to validate

the model if it is equivalent to the target model, as well as analyzing the system in more depth

in our case. We believe that model based techniques, like the one proposed in the thesis, can

exercise the system with respect to revealing maximum interactions of the components. We

require a good experience on deriving tests from the partially learned models such that the

stimulation of interactions could detect discrepancies and may lead to the refinement model

step to start another iteration. A research on devising more efficient technique or proposing

the combination of test generation strategies is included in our work items. This follows the

extension of RALT with the implementation of new testing techniques.

10.3.4 Integration Framework for PFSM Components

We have proposed a framework for analyzing an integrated system of Mealy components. The

framework can be easily adapted for the system of PFSM components. However, it is neces-

sary to evaluate the test generation techniques for PFSM components. So far, our results are

preliminary and selection of parameter values in testing is an issue. By considering hypotheses

such as uniformity and regularity [BGM91] [Pha94], we believe that the issue could be resolved.

156

10.3.5 Testing Security Violations

System security testing includes testing the system to make sure that it behaves correctly in the

presence of malicious attacks [Mcg06]. Typical outcomes of these attacks lead to system crash

or confidentiality violations. We observe an application of our approach for testing the system’s

security and reliability. There are two areas in this context which we have started investigating.

1. The models of the system can be extracted with respect to detecting security violations.

This can be done by designing the input set with invalid inputs and initialize the algorithm

with such inputs. Then the model contains the transitions which are labeled with the

invalid inputs and their corresponding outputs depict the response of the system on those

inputs.

2. The learned models of the system can be used in fuzz testing, which is an effective approach

to uncover security flaws in the system. Fuzz testing consists in finding implementation

errors using malformed or semi-malformed data injection in an automated fashion [OWS].

It is usually conducted in an ad-hoc manner with input selected either randomly or man-

ually. However, generating fuzz tests from the learned models has proven to be more

effective than the traditional technique [SHL08]. The idea is to derive a prefix sequence

from the model which takes the system to a certain state and then replaces the suffix

with a fuzz function that will generate malformed inputs. We intend to collaborate with

Orange Labs to apply this technique on testing WiFi 802.11 drivers.

10.3.6 Experiments with Complex Systems

The experiments with case studies have produced encouraging results and motivated us to apply

our approach in more complex systems. Most of the applications studied in the thesis lie in the

domain of France Telecom. Our dream application is Orange LiveBox that is an ADSL wireless

router and provides telecom and web-based services. As far specifications are concerned, Orange

LiveBox is regarded as a black box system that was purchased by France Telecom with little and

informal information of its underlying features from its providers, i.e., Sagem and Inventel. In

order to uncover its features into formal means and to test the integration with services provided

by France Telecom, we require meticulous details for designing the input sets and choosing the

testing techniques in the integration framework.

157

10.4 Lessons Learned

Here are some lessons taught by this research that may be helpful to others in their work. Many

of the lessons are not new – their successful application has been reflected in other tools and

results – even if they have not always been explicitly stated.

Exact Learning is difficult but not required in most cases: It has been pointed out many

times in the thesis that exact learning is not possible without having very strong assump-

tions on the hidden model. At the same time, it is realized that exact learning is not

required in most cases. Our experiments justify that a reasonable approximation gives

a satisfactory knowledge about the internal working of the components. Moreover, the

interactions of components may not concern in learning complete models as they use a

part of each other functionalities. It is also noted that most severe errors show up on short

sequences, thus the learned models are quite useful in detecting those errors [HHNS02].

Mixing the plausible results of inference with human insights, we conclude that model

learning and testing is indeed feasible in practice. Of course, we must look for other

means of learning closer approximations such that their complexity does not hinder the

practicality of the approach.

Designing input sets requires domain knowledge: A tricky point in our approach is to

design an input set of a component to initialize the algorithms. The design of the input set

of a real system is not easy and often requires domain expertise for the correct identification

of the possible inputs. In the case of a parameterized system, designers have to choose

respective parameters which could lead the system to the desirable state. Also considering

the complexity of the algorithm on the number of inputs, it is recommended to consider

only interesting inputs. Dynamic discovery of inputs in the integration framework is also

not so simple. Because we learn components in isolation; sometimes, it requires great deal

of attention to determine that the output produced by one component is indeed an input

to the other component, so that the input can be added in the set of the other component

for its learning.

Matching abstract with concrete data is not trivial: A real system has to be connected

with an abstract environment to perform experiments. The system works on many imple-

mentation details, different timing notions, tags, identifiers and other data fields. One has

to abstract from all these details to deal with the formal world of algorithms. Similarly,

the abstract queries have to be concretized for their execution on real systems. The col-

lection of the system responses in the result of queries is usually handled by observing the

158

displays of the system. The meaning of “display” is quite versatile. Ideally, there should

be provided inspectors, i.e., APIs that return the internal state information or outputs

of the system without making any change. The system might also be equipped with a

screen that displays the information or corresponding outputs of the system. There are

other means, such as LEDs or speakers, that might be enabled or disabled on a particular

query. They also provide valuable observation points and it is necessary to abstract these

observations to provide to the algorithms. It is not trivial to connect with all points such

that the test drivers could automatically gather observations.

RALT can detect errors using (lightweight) specifications: Initially, this work was not

subjected for detecting specification based errors in the system, since such specifications

for checking the system conformance were not assumed. We have been mostly relying

on detecting compositional problems and generic errors in the system. However, we have

noted that our tool RALT can detect errors if some lightweight specifications are provided.

A simple form is writing the expected scenarios of the system [BB98]. A scenario could

be an intuition or a vague idea that the designer tries to accomplish with the system.

The scenarios in terms of inputs and outputs traces are easy to produce, which express

“should” or “should not” requirements. Such scenarios can be written in RALT using the

provided API. The tool can verify the scenarios on the learned models by simply executing

the inputs in the scenarios and matching the corresponding outputs with the model. An

error is produced when there is a mismatch.

Human involvement is unavoidable for best results We have tried to accomplish an au-

tomatic approach for learning and testing. However, we found that human involvement

is unavoidable for producing best results. At different steps of our approach (Chapter 6),

there are choices to opt, where human guidance can ease the situation. For example, the

designer can evaluate whether a newly discovered input during the component learning

phase should be taken into account for learning. At another point, an eye-ball inspec-

tion of the discrepancy between the learned models and the system may help in the easy

identification of a potential error in the system.

10.5 Ending Note

Despite the progress we have made in this research, there are many future directions aiming at

improving the effectiveness of automated software learning and testing. Our experiments were

mainly conducted on real but small-scale problems (even if structurally complex) where no

159

specifications were assumed, and focused on the behavior exploration. The two main directions

that naturally emerge from this research are i) reducing the complexity of learning, and ii)

devising testing techniques for detecting errors and model refinements. There is much room for

improvement from both theoretical and practical aspects in these directions.

“After all these years, I do not know what I may appear to the world, but to

myself, I seem to have been only a boy playing on the sea-shore and diverting

myself in, now and then, finding a smoother pebble or a prettier shell than ordinary

whilst the great ocean of truth lay all undiscovered before me.” — Isaac Newton

160

Appendix A

Proofs of the PFSM Algorithm

Proof of Theorem 6

The theorem can be proved with the help of Lemma 5, 6 and 7 as follows.

Introduction of Lemma 5

In the observation table (SP , R,EP , TP), the information obtained from the functions OS and

OPS is consistent with respect to the information recorded in the table in different cells. This

can be realized in Figure A.1a, where we have two rows s and t and three columns i, e and i · e,
then for the common prefixes of the input parameter value string α · x · γ recorded in the three

different cells of the table, we have common outputs recorded in those cells. Or in other words,

we have OS(s, i · e, α · x · γ) = OS(s, i, α · x) · OS(t, e, α · x · γ) and OPS(s, i · e, α · x · γ) =

OPS(s, i, α·x)·OPS(t, e, α·x·γ). This is formalized in Lemma 5. Figure A.1b illustrates Lemma

5 that for the common prefixes of an input parameter value string, e.g., π(TP (T, T)) = 5 · 15,

π(TP (T ·T, ·T ·T)) = 5 · 15 · 25 · 35 and π(TP (T, T ·T ·T)) = 5 · 15 · 25 · 35 recorded in the table,

we have OS(T, T · T · T, 5 · 15 · 25 · 35) = OS(T, T, 5 · 15) ·OS(T · T, T · T, 5 · 15 · 25 · 35).

Now, we state Lemma 5 formally, followed by its proof.

Lemma 5 In an observation table (SP , R,EP , TP), for all s, t ∈ SP ∪ R, e ∈ EP , i ∈ I such
that IS(t) = IS(s) · i and i · e ∈ EP , then if there exists common input parameter value
strings α · x ∈ π(TP (s, i)), α · x · γ ∈ π(TP (t, e)) and α · x · γ ∈ π(TP (s, i · e)), where |α| =
|IS(s)|, |x| = |i|, |γ| = |e|, then we have the output symbol string and the output parameter
value string for s and i · e as OS(s, i · e, α · x · γ) = OS(s, i, α · x) · OS(t, e, α · x · γ) and
OPS(s, i · e, α · x · γ) = OPS(s, i, α · x) ·OPS(t, e, α · x · γ) respectively. 2

Proof The lemma can be proved by exhibiting Property 4.
Since, we know that

161

e

t

i · e

s

i

(α · x,$1 ⊗ β1) (α · x · γ,$1 ·$2 ⊗ β1 · β2)

(α · x · γ,$2 ⊗ β2)

(a) Realization of Lemma 5. OS(s, i · e, α · x · γ) = OS(s, i, α · x) ·OS(t, e, α · x · γ)

and OPS(s, i · e, α · x · γ) = OPS(s, i, α · x) ·OPS(t, e, α · x · γ)

T · T

T · T

T · T · T

T

T

(5 · 15, S ⊗⊥) (15 · 15 · 25 · 35, S · F · F ⊗⊥ · l · h)

(5 · 15 · 25 · 35, F · F ⊗ l · h)

(b) Illustration of Lemma 5

Figure A.1: Explanation of Lemma 5

λP(q0P, IS(s) · i · e, α · x · γ) = λP(q0P, IS(s), α) ·OS(s, i · e, α · x · γ) (A.1)

also we can write

λP(q0P, IS(s) · i · e, α · x · γ) = λP(q0P, IS(s) · i, α · x) ·

OS(t, e, α · x · γ), since IS(t) = IS(s) · i

which can further be broken down as

λP(q0P, IS(s) · i · e, α · x · γ) = λP(q0P, IS(s), α) ·

OS(s, i, α · x) ·

OS(t, e, α · x · γ) (A.2)

Thus, from equations (A.1) and (A.2), we have

OS(s, i · e, α · x · γ) = OS(s, i, α · x) ·OS(t, e, α · x · γ)

Similarly, the following part of the lemma can be proved as above

OPS(s, i · e, α · x · γ) = OPS(s, i, α · x) ·OPS(t, e, α · x · γ) �

162

Lemma 6 Assume that (SP , R,EP , TP) is a balanced, dispute-free and closed observation table.
For the conjecture MP and for every s ∈ SP ∪ R, e ∈ EP , α · α′ ∈ π(TP (s, e)) such that
|α| = |IS(s)|, we have δP (q0P , IS(s), α) = [(IS(s))α]. 2

Proof The lemma can be proved by the induction on the length of IS(s). If |IS(s)| = 0, i.e.,
IS(s) = s = ε, then we know that [ε] = q0 and ε is associated with no parameters (or ⊥), hence
trivially δP (q0, ε,⊥) = [ε].

If |IS(s)| = 1 and therefore |α| = 1, then there exists i ∈ I such that ε · i = IS(s). If
α · α′ ∈ π(TP (ε · i, e)) then according to Property 5, α ∈ π(TP (ε, i)) also holds, since E ⊇ I.
Then,

δP (q0P , IS(s), α) = δP (q0P , ε · i, α)

= δP (δP (q0P , ε,⊥), i, α)

= δP ([ε], i, α), from above

= [(ε · i)α],by the def. of δP , since α ∈ π(TP (ε, i)) (Property 5)

= [(IS(s))α]

Assume that the equation is true for every s ∈ SP ∪ R where IS(s) is of length k. Let
t ∈ SP ∪ R such that IS(t) = IS(s) · i for some i ∈ I. That means IS(t) is of length k + 1.
Suppose α · x · γ ∈ π(TP (t, e)) for any e ∈ EP and |α| = |IS(s)|, |x| = |i|, |γ| = |e|. From
Property 5, α · x is also in π(TP (s, i)). This can be realized in Figure A.2. Moreover, s must
be in SP , for either t ∈ SP because SP is prefix-closed, or t ∈ R, since the table is closed, and
therefore s ∈ SP . Then,

δP (q0, IS(t), α · x) = δP (q0, IS(s) · i, α · x)

= δP (δP (q0, IS(s), α), i, x)

= δP ([(IS(s))α], i, x),by the ind. hyp.

= [(IS(s) · i)α·x], by the def. of δP , since α · x ∈ π(TP (s, i)) (Property 5)

= [(IS(t))α·x]

�

Lemma 7 Assume that (SP , R,EP , TP) is a balanced, dispute-free and closed observation table.
Then, the conjecture MP is consistent with the finite function TP . That is, for every s ∈ SP ∪
R, e ∈ EP , α·α′ ∈ π(TP (s, e), where |α| = |IS(s)| and |α′| = |e|, then λP (δP (q0P , IS(s), α), e, α′) =
OS(s, e, α · α′) and σP (δP (q0P , IS(s), α), e)(α′) = OPS(s, e, α · α′). 2

163

e

t = s · i

f = i · e

s

i

α · x ∈ π(TP (s, i)) α · x · γ ∈ π(TP (s, f))α · x · γ ∈ π(TP (s, f))

α · x · γ ∈ π(TP (t, e))

Figure A.2: Realization of Lemma 6 and Lemma 7

Proof The lemma can be proved by the induction on the length of e. In fact, |e| > 0, since
EP is initialized by the elements of I. If |e| = 1 and so |α′| = 1, then

λP (δP (q0, IS(s), α), e, α′) = λP ([(IS(s))α], e, α′),by Lemma 6

= OS(s, e, α · α′),by the def. of λP

Assume that the equation is true for all e ∈ EP of length k. Let f ∈ EP of length k+ 1, k >
0. Since, EP is suffix-closed, f = i · e for some i ∈ I and some e ∈ EP of length k. For
s ∈ SP ∪ R,α · α′ ∈ π(TP (s, f)), where |α| = |IS(s)|, |α′| = |f |, we can write α′ = x · γ, where
|x| = |i|, |γ| = |e|. Also, for s and i, let t ∈ SP ∪ R such that IS(t) = IS(s) · i. According to
Property 6, α · x · γ ∈ π(TP (t, e)). This can be realized in Figure A.2. Then,

λP (δP (q0P , IS(s), α), f, α′) = λP (δP (q0P , IS(s), α), i · e, x · γ)

= λP ([(IS(s))α], i · e, x · γ), by Lemma 6

= λP ([(IS(s))α], i, x) · λP ([(IS(s) · i)α·x], e, γ)

= λP ([(IS(s))α], i, x) · λP ([(IS(t))α·x], e, γ)

= OS(s, e, α · x) ·OS(t, e, α · x · γ), by the def. of λP

= OS(s, i · e, α · x · γ),by Lemma 5

= OS(s, f, α · α′)

The proof of σP (δP (q0P , IS(s), α), e)(α′) = OPS(s, e, α · α′) is similar to above. This con-
cludes the proof of Theorem 6, since Lemma 7 shows that MP is consistent with TP . �

Proof of Theorem 7

Proof Let M ′P = {Q′P , I, O,DI , DO,Γ′P , q
′
0P } in which for each state q′ ∈ Q′, i ∈ I, x ∈ DI , the

target state, the output and the output parameter value is determined by δ′P , λ
′
P and σ′P respec-

tively. Note that if M ′P accepts exactly the same parameter values as of MP and is consistent

164

with TP then for all s ∈ SP ∪ R, e ∈ EP , α · γ ∈ π(TP (s, e)), |α| = |IS(s)|, |γ| = |e|, OS(s, e, α ·
γ) = λP (δP (q0P , IS(s), α), e, γ) = λ′P (δ′P (q′0P , IS(s), α), e, γ) holds. Also, OPS(s, e, α · γ) =
σP (δP (q0P , IS(s), α), e)(γ) = σ′P (δ′P (q′0P , IS(s), α), e)(γ) holds.

For all s1, s2 ∈ SP , we know that s1 �ΦP
s2, i.e., there exists e ∈ EP , α1 · γ ∈ π(TP (s1, e)),

α2 · γ ∈ π(TP (s2, e)) such that |α1| = |IS(s1)|, |α2| = |IS(s2)| and |γ| = |e|, and OS(s1, e, α1 ·
γ) 6= OS(s2, e, α2 ·γ). This means δP (q0P , IS(s1), α1) 6= δP (q0P , IS(s2), α2). If M ′P is consistent
with TP , then δ′P (q′0P , IS(s1), α1) 6= δ′P (q′0P , IS(s2), α2) also holds. So for all s ∈ SP , e ∈
EP , α · γ ∈ π(TP (s, e)) such that |α| = |IS(s)| and |γ| = |e|, when s ranges over all of SP ,
δ′P (q′0P , IS(s), α) ranges over all the elements of QP . Hence, M ′P has at least n states, i.e., it
must have exactly n states.

We define a mapping φ : QP → Q′P . That means, for all s ∈ SP or [s] ∈ QP , e ∈ EP

and α · γ ∈ π(TP (s, e)), such that |α| = |IS(s)|, |γ| = |e|, there is a corresponding state
δ′P (q′0P , IS(s), α) = q′P ∈ Q′P such that φ([s]) = q′P . This mapping is bijection. We must verify
that it carries q0P to q′0P , i.e., φ(q0P) = q′0P . This is as follows:

φ(q0P) = φ([ε]),by the def. of q0P

= δ′P (q′0P , ε,⊥),by the def. of φ

= q′0P

For s ∈ SP , i ∈ I, let t ∈ SP ∪ R such that IS(t) = IS(s) · i, for all e ∈ EP , and
α · x · γ ∈ π(TP (t, e) such that |α| = |IS(s)|, |x| = |i| and |γ| = |e|, then according to Property
5, α · x ∈ π(TP (s, i). Then,

φ(δP ([s], i, x)) = φ([(IS(s) · i)α·x]), by the def. of δP

= δ′P (q′0P , IS(s) · i, α · x),by the def. of φ (A.3)

Also,

δ′P (φ([s]), i, x) = δ′P (δ′P (q′0P , IS(s), α), i, x),by the def. of φ

= δ′P (q′0P , IS(s) · i, α · x) (A.4)

From equations A.3 and A.4, we conclude that φ(δP ([s], i, x)) = δ′P (φ([s]), i, x). We also need
to check that for all s ∈ SP , i ∈ I, α ·x ∈ π(TP (s, i)), |α| = |IS(s)|, λP ([s], i, x) = λ′P (φ([s]), i, x).
But we know that φ([s]) = δ′P (q′0P , IS(s), α). Since, M ′P is consistent with TP , then for all i ∈ I,

λ′P (δ′P (q′0P , IS(s), α), i, x) = λ′P (φ([s]), i, x) = OS(s, i, α · x) (A.5)

165

Also, according to the definition,

λP ([s], i, x) = OS(s, i, α · x) (A.6)

From equations A.5 and A.6, we have λP ([s], i, x) = λ′P (φ([s]), i, x). Similarly, for σP and
σ′P , we must check that σP ([s], i)(x) = σ′P (φ([s]), i)(x). This is analogy to that of λP and λ′P .

This concludes the proof of Theorem 7, since any other PFSM M ′P that accepts exactly
the same parameter values and is consistent with TP must have at least n states. If M ′P is
inequivalent to MP than it trivially has more states. �

166

Appendix B

Models of the Domotics Case Study

The Mealy machine models of the devices has been generated by RALT 4.0 in JFLAP [JFL]

format.

Model of the Light System (ProSyst)

Figure B.1: Light System (ProSyst) (X10 Device)

167

Model of the Media Renderer (Philips Streamium400i)

Figure B.2: Media Renderer Streamium400i (UPnP Device)

168

Model of the Domotics System

Figure B.3 is the interaction model of the devices in the Domotics system given in Figure 9.8.

The devices in the system are: Light System (ProSyst), Media Renderer (Philips Streamium400i)

and TV (Acer AT3705-MGW).

Figure B.3: Interaction model of the devices in the Domotics System

169

170

Bibliography

[ABL02] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In

Symposium on Principles of Programming Languages, pages 4–16, 2002. 25

[All] OSGi Alliance. OSGi Service Platform. http://www.osgi.org. 2, 147

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison Wesley, August 2006. 4

[Ang81] Dana Angluin. A note on the number of queries needed to identify regular lan-

guages. Information and Control, 51(1):76–87, 1981. 28

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-

mation and Computation, 2:87–106, 1987. 27, 28, 35, 41, 44, 53

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,

1988. 41

[AO00] Aynur Abdurazik and A. Jefferson Offutt. Using uml collaboration diagrams for

static checking and test generation. In UML, pages 383–395, 2000. 23

[Apa] Apache. Apache Felix. http://felix.apache.org. 147

[AS83] D. Angluin and C.H. Smith. Inductive inference: Theory and methods. ACM

Computing Surveys (CSUR), 15(3):237–269, 1983. 25

[BB98] P. Bengtsson and J. Bosch. Scenario-based software architecture reengineering.

Proceedings of Fifth International Conference on Software Reuse, pages 308–317,

1998. 5, 159

[BDG97] Jose L. Balcazar, Josep Diaz, and Ricard Gavalda. Algorithms for learning finite

automata from queries: A unified view. In Advances in Algorithms, Languages,

and Complexity, pages 53–72, 1997. 53, 65

171

[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges, dreams.

In FOSE ’07: 2007 Future of Software Engineering, pages 85–103. IEEE Com-

puter Society, 2007. 3, 5, 7, 37

[BF72] A. Biermann and J. Feldman. On the synthesis of finite state machines from

samples of their behavior. IEEE Transactions on Computers, 21(6):592–597, 1972.

35

[BfCE04] Mireille Blay-fornarino, Anis Charfi, and David Emsellem. Software interactions.

Journal of Object Technology, 3(10), 2004. 4

[BGJ+05] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt,

and Bernhard Steffen. On the correspondence between conformance testing and

regular inference. In FASE, pages 175–189, 2005. 56

[BGM91] Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. A formal approach to

software testing. In AMAST, pages 243–253, 1991. 100, 156

[BJLS05] Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank Saksena. Insights to

angluin’s learning. Electr. Notes Theor. Comput. Sci., 118:3–18, 2005. 8, 29, 36,

37, 51, 134

[BJR06] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state ma-

chines with parameters. In FASE, volume 3922 of LNCS, pages 107–121. Springer,

2006. 34, 35, 36, 38

[BMP06] Antonia Bertolino, Henry Muccini, and Andrea Polini. Architectural verification

of black-box component-based systems. In RISE, pages 98–113, 2006. 26

[BO05] Miguel Bugalho and Arlindo L. Oliveira. Inference of regular languages using state

merging algorithms with search. Pattern Recognition, 38(9):1457–1467, 2005. 25

[Boz04] The IF Toolset, volume 3185 of LNCS. Springer, 2004. 155

[BR05] Therese Berg and Harald Raffelt. Model checking. In Model-Based Testing of

Reactive Systems, volume 3472 of LNCS, pages 557–603. Springer, 2005. 53

[BRH04] James F. Bowring, James M. Rehg, and Mary Jean Harrold. Active learning for

automatic classification of software behavior. In ISSTA ’04: Proceedings of the

2004 ACM SIGSOFT international symposium on Software testing and analysis,

pages 195–205. ACM, 2004. 25

172

[Büc62] J. Richard Büchi. On a decision method in restricted second order arithmetic.

Proc. Int. Congress on Logic, Methodology and Philosophy of Science 1960, pages

1–11, 1962. 26

[CCC+02] Ivica Crnkovic, Ivica Crnkovic, Ivica Crnkovic, Magnus Larsson, and Magnus

Larsson. Challenges of component-based development. Journal of Systems and

Software, 61:201–212, 2002. 3

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The

MIT Press, 2000. 4

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE

Trans. on Software Engineeing, 4(3):178–187, 1978. 28, 92, 131

[CJ02] Rick D. Craig and Stefan P. Jaskiel. Systematic Software Testing. Artech House,

Inc., Norwood, MA, USA, 2002. 4

[CKMRM03] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.

Feature interaction: a critical review and considered forecast. Comput. Netw.,

41(1):115–141, 2003. 4

[CLW05] X. Cai, M.R. Lyu, , and K.F. Wong. A generic environment for cots testing and

quality prediction. Testing Commercial-off-the-shelf Components and Systems,

pages 315–347, 2005. 4

[CORa] CORBA Component Model. www.omg.org/technology/documents/formal/components.htm.

2

[Corb] ParaSoft Corporation. JTest. http://www.parasoft.com/. 4

[CPV03] Alejandra Cechich, Mario Piattini, and Antonio Vallecillo, editors. Component-

Based Software Quality - Methods and Techniques, volume 2693 of LNCS.

Springer, 2003. 2

[CS04] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic robustness

tester for java. Softw. Pract. Exper., 34(11):1025–1050, 2004. 5

[CSSW05] Ivica Crnkovic, Heinz W. Schmidt, Judith A. Stafford, and Kurt C. Wallnau. Au-

tomated component-based software engineering. Journal of Systems and Software,

74(1):1–3, 2005. 2

173

[CW98] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software pro-

cesses from event-based data. ACM Trans. Softw. Eng. Methodol., 7(3):215–249,

1998. 6, 25

[Dij70] Edsger W. Dijkstra. Notes on Structured Programming. circulated privately,

1970. 5

[DLD+08] P. Dupont, B. Lambeau, C. Damas, A. Van Lamsweerde, and Place Sainte Barbe.

The qsm algorithm and its application to software behavior model induction.

Applied Artificial Intelligence, 22:77–115, 2008. 32

[dlH05] Colin de la Higuera. A bibliographical study of grammatical inference. Pattern

Recognition, 38(9):1332–1348, 2005. 24

[Dup94] Pierre Dupont. Regular grammatical inference from positive and negative samples

by genetic search: The GIG Method. In ICGI ’94: Proceedings of the Second

International Colloquium on Grammatical Inference and Applications, pages 236–

245, London, UK, 1994. Springer-Verlag. 25

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-

namically discovering likely program invariants to support program evolution.

IEEE Transactions on Software Engineering, 27(2):99–123, Feb 2001. 4, 23, 26,

38, 122, 124

[Edw01] Stephen H. Edwards. A framework for practical, automated black-box testing of

component-based software. Softw. Test., Verif. Reliab., 11(2):97–111, 2001. 4

[EGPQ06] Edith Elkind, Blaise Genest, Doron Peled, and Hongyang Qu. Grey-box checking.

In FORTE, pages 420–435, 2006. 30, 36

[Eme90] E. Allen Emerson. Temporal and modal logic. MIT Press, Cambridge, MA, USA,

1990. 27

[FBK+91] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test

selection based on finite state models. IEEE Transactions on Software Engineer-

ing, 17:591–603, 1991. 28, 32, 131

[FvB92] Susumu Fujiwara and Gregor von Bochmann. Testing non-deterministic state

machines with fault coverage. In Proceedings of the IFIP TC6/WG6.1 Fourth In-

ternational Workshop on Protocol Test Systems IV, pages 267–280. North-Holland

Publishing Co., 1992. 156

174

[GEH05] Jerry Gao, Raquel Espinoza, and Jingsha He. Testing coverage analysis for soft-

ware component validation. In COMPSAC ’05: Proceedings of the 29th Annual

International Computer Software and Applications Conference, volume 1, pages

463–470. IEEE Computer Society, 2005. 4

[GLPS08] Roland Groz, Keqin Li, Alexandre Petrenko, and Muzammil Shahbaz. Modu-

lar system verification by inference, testing and reachability analysis. In Test-

Com/FATES, pages 216–233, 2008. 90, 154, 155

[GMC+92] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee. Learning

and extracting finite state automata with second-order recurrent neural networks.

Neural Computation, 4(3):393–405, 1992. 24

[Gol72] E. Gold. System identification via state characterization. Automatica, 8:621–636,

1972. 24, 27

[Gol78] E. Gold. Complexity of automaton identification from given data. Information

and Control, 37:302–320, 1978. 24

[GPY02] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive model checking. In

Tools and Algorithms for Construction and Analysis of Systems, pages 357–370,

2002. 30, 36

[Gr08] L. Grgen. State of the art of sensor data management. ACSE Project, WP2-

Architecture. Technical report, Orange Labs, France Telecom Group, 2008. 146

[Gra] Graphviz - Graph Visualization Software. http://www.graphviz.org. 132

[GSL07] Roland Groz, Muzammil Shahbaz, and Keqin Li. Une approche incrémentale de

test par extraction de modèles. In AFADL, June 2007. 153

[GSL08] Roland Groz, Muzammil Shahbaz, and Keqin Li. Extraction de modèles

paramétrés au cours du test de composants logiciels. Technique et science in-

formatiques, 27(8):977–1006, 2008. 155

[GTWJ03] Jerry Zayu Gao, Jacob Tsao, Ye Wu, and Taso H.-S. Jacob. Testing and Quality

Assurance for Component-Based Software. Artech House, Inc., Norwood, MA,

USA, 2003. 2, 3, 4, 79

[Har00] Mary Jean Harrold. Testing: A Roadmap. In ICSE ’00: Proceedings of the

Conference on The Future of Software Engineering, pages 61–72. ACM, 2000. 3

175

[HG94] Bill G. Horne and C. Lee Giles. An experimental comparison of recurrent neural

networks. In NIPS, pages 697–704, 1994. 25

[HHNS02] Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen. Model

generation by moderated regular extrapolation. In Fundamental Approaches to

Software Engineering, pages 80–95, 2002. 155, 156, 158

[HL02] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using

automatic anomaly detection. In ICSE ’02: Proceedings of the 24th International

Conference on Software Engineering, pages 291–301. ACM, 2002. 4

[HLW94] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting 0,1-functions on

randomly drawn points. Inf. Comput., 115(2):248–292, 1994. 24

[HMS03] Hardi Hungar, Tiziana Margaria, and Bernhard Steffen. Test-based model gen-

eration for legacy systems. In ITC, pages 971–980, 2003. 28, 33, 34, 36

[HNS03] Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-specific optimization

in automata learning. In CAV, volume 2725 of LNCS, pages 315–327. Springer,

2003. 28, 33, 34, 36, 51, 55, 156

[Hol03] Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.

Addison-Wesley Professional, September 2003. 26

[HU90] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory,

Languages, And Computation. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1990. 135

[IMP05] Paola Inverardi, Henry Muccini, and Patrizio Pelliccione. Charmy: an exten-

sible tool for architectural analysis. In ESEC/FSE-13: Proceedings of the 10th

European software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 111–114.

ACM, 2005. 26

[JFL] JFLAP. http://www.cs.duke.edu/csed/jflap/. 132, 167

[JUn] JUnit.org. JUnit. http://www.junit.org/. 4

[KKS98] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek. Automated robustness testing

of off-the-shelf software components. In FTCS ’98, page 230. IEEE Computer

Society, 1998. 5

176

[Kor99] Bogdan Korel. Black-box understanding of cots components. In IWPC ’99: Pro-

ceedings of the 7th International Workshop on Program Comprehension, page 92.

IEEE Computer Society, 1999. 38, 101

[KV94] Michael J. Kearns and Umesh V. Vazirani. An introduction to computational

learning theory. MIT Press, Cambridge, MA, USA, 1994. 6, 7, 8, 27, 51

[LCJ06] Zhifeng Lai, S. C. Cheung, and Yunfei Jiang. Dynamic model learning using ge-

netic algorithm under adaptive model checking framework. In QSIC ’06: Proceed-

ings of the Sixth International Conference on Quality Software, pages 410–417,

Washington, DC, USA, 2006. IEEE Computer Society. 25

[LGS06a] Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing of compo-

nents guided by incremental state machine learning. In TAIC PART, pages 59–70.

IEEE Computer Society, 2006. 153

[LGS06b] Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing of distributed

components based on learning parameterized i/o models. In FORTE, volume 4229

of LNCS, pages 436–450. Springer, 2006. 153

[Lit87] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm. Machine Learning, 2(4):285–318, 1987. 24

[LMP06] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Inferring state-based

behavior models. In WODA ’06: Proceedings of the 2006 international workshop

on Dynamic systems analysis, pages 25–32. ACM Press, 2006. 35, 37, 38

[LY96] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines

- A survey. In Proceedings of the IEEE, volume 84, pages 1090–1126, 1996. 5, 28,

35, 38, 51

[Man07] Mantis bug tracker. http://www.mantisbt.org/, June 2007. 32

[Mcg06] Gary Mcgraw. Software Security: Building Security In. Addison-Wesley Profes-

sional, 2006. 157

[MFS90] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the

reliability of unix utilities. Commun. ACM, 33(12):32–44, 1990. 5

[Mic] Sun Microsystems. Java Platform, Enterprise Edition.

http://java.sun.com/javaee/. 2

177

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1982. 156

[MNRS04] T. Margaria, O. Niese, H. Raffelt, and B. Steffen. Efficient test-based model gen-

eration for legacy reactive systems. In HLDVT ’04: Proceedings of the High-Level

Design Validation and Test Workshop, pages 95–100. IEEE Computer Society,

2004. 34, 36, 37, 55, 56

[MNTW01] B.A. Miller, T. Nixon, C. Tai, and M.D. Wood. Home networking with universal

plug and play. Communications Magazine, IEEE, 39(12):104–109, Dec 2001. 146

[MP05] Leonardo Mariani and Mauro Pezzè. Behavior capture and test: Automated

analysis of component integration. ICECCS, 0:292–301, 2005. 26

[MPW04] Leonardo Mariani, Mauro Pezzè, and David Willmor. Generation of integration

tests for self-testing components. In FORTE Workshops, pages 337–350, 2004. 4

[MS01a] Erkki Makinen and Tarja Systa. Mas - an interactive synthesizer to support

behavioral modelling in uml. In ICSE ’01: Proceedings of the 23rd International

Conference on Software Engineering, pages 15–24, Washington, DC, USA, 2001.

IEEE Computer Society. 28

[MS01b] Erkki Mäkinen and Tarja Systä. Mas - an interactive synthesizer to support

behavioral modelling in uml. In ICSE ’01: Proceedings of the 23rd International

Conference on Software Engineering, pages 15–24. IEEE Computer Society, 2001.

55

[MS04] Faron Moller and Perdita Stevens. Edinburgh Concurrency

Workbench User Manual (Version 7.1), 2004. Available from

http://homepages.inf.ed.ac.uk/perdita/cwb/. 71, 134, 152, 155

[MSBT04] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The Art

of Software Testing, Second Edition. Wiley, June 2004. 38

[.NE] Microsoft .NET Framework 3.0. http://netfx3.com/. 2

[NE02] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of program

specifications. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT interna-

tional symposium on Software testing and analysis, pages 229–239, New York,

NY, USA, 2002. ACM Press. 4

178

[Nei03] Oliver Neise. An Integrated Approach to Testing Complex Systems. PhD thesis,

University of Dortmund, 2003. 55, 56, 59

[NS08] Phong Thien Nguyen and Muzammil Shahbaz. Reverse Engineering Real Devices.

Domotics – A Case Study. Technical report, Orange Labs, France, 2008. 129, 149

[OCA] Open Communications Architecture Forum (OCAF) Focus Group.

http://www.itu.int/ITU-T/ocaf/. 2

[OHR01] Alessandro Orso, Mary Jean Harrold, and David S. Rosenblum. Component

metadata for software engineering tasks. In EDO ’00: Revised Papers from the

Second International Workshop on Engineering Distributed Objects, pages 129–

144. Springer-Verlag, 2001. 4

[OMG] The Object Management Group (OMG). http://www.omg.org/. 2

[OWS] Open Web Application Security Project. http://www.owasp.org. 157

[Pac05] Technica Pacifica. Easy X10 Projects for Creating a Smart Home. Indy-Tech

Publishing, 2005. 147

[Pha94] Marc Phalippou. Relations d’implantation et hypothèses de test sur des automates

à entrées et sorties. PhD thesis, Université de Bordeaux 1, 1994. 100, 156

[Pit89] Leonard Pitt. Inductive inference, dfas, and computational complexity. In AII ’89:

Proceedings of the International Workshop on Analogical and Inductive Inference,

pages 18–44, London, UK, 1989. Springer-Verlag. 25

[PO99] Jorge M. Pena and Arlindo L. Oliveira. A new algorithm for exact reduction of

incompletely specified finite state machines. IEEE Trans. on CAD of Integrated

Circuits and Systems, 18(11):1619–1632, 1999. 56

[Pol91] Jordan B. Pollack. The induction of dynamical recognizers. Mach. Learn., 7(2-

3):227–252, 1991. 24

[Pro] Java Community Process. Java Specification Requests. http://jcp.org/en/jsr/all.

141

[PvBY96] A. Petrenko, G. v. Bochmann, and M. Yao. On fault coverage of tests for finite

state specifications. Comput. Netw. ISDN Syst., 29(1):81–106, 1996. 92

179

[PVY99] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In Proceedings

of FORTE’99, Beijing, China, 1999. 7, 8, 28, 29, 30, 31, 35, 36, 88, 92

[PW89] L. Pitt and M. K. Warmuth. The minimum consistent dfa problem cannot be

approximated within any polynomial. In STOC: Proceedings of the twenty-first

annual ACM symposium on Theory of computing, pages 421–432. ACM Press,

1989. 27

[Rav03] T. Ravichandran. Special issue on component-based software development. SIG-

MIS Database, 34(4):45–46, 2003. 2

[RF07] O.R. Ribeiro and J.M. Fernandes. Validation of reactive software from scenario-

based models. QUATIC: International Conference on Quality of Information and

Communications Technology, pages 213–217, 2007. 94

[RG99] J. Ryser and M. Glinz. A scenario-based approach to validating and testing

software systems using statecharts. Proceedings of 12th International Conference

on Software and Systems Engineering and their Applications, 1999. 94

[Rod06] Susan Rodger. JFLAP-an Interactive Formal Languages and Automata Package.

Jones and Bartlett, Boston, 2006. 132

[RP97] A. Raman and J. Patrick. The sk-strings method for inferring pfsa, 1997. 25

[RS93] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using

homing sequences. In Machine Learning: From Theory to Applications, pages

51–73, 1993. 28, 51, 53, 56, 65

[RSM07] Harald Raffelt, Bernhard Steffen, and Tiziana Margaria. Dynamic testing via

automata learning. In Haifa Verification Conference, pages 136–152, 2007. 28,

32, 34, 36, 37

[Sch01] Stephen R. Schach. Object-Oriented and Classical Software Engineering.

McGraw-Hill Pub. Co., 2001. 138

[SCHS07] Heinz W. Schmidt, Ivica Crnkovic, George T. Heineman, and Judith A. Stafford,

editors. Component-Based Software Engineering, 10th International Symposium,

CBSE 2007, Medford, MA, USA, July 9-11, 2007, Proceedings, volume 4608 of

LNCS. Springer, 2007. 2

180

[SG07] Muzammil Shahbaz and Roland Groz. Using invariant detection mechanism in

black box inference. In ISoLA Workshop on Leveraging Applications of Formal

Methods, 2007. 154

[Sha06] Muzammil Shahbaz. Incremental inference of black-box components to support

integration testing. In TAIC PART, pages 71–74, 2006. 153

[SHL08] Guoqiang Shu, Yating Hsu, and David Lee. Detecting communication protocol

security flaws by formal fuzz testing and machine learning. In FORTE, pages

299–304, 2008. 28, 36, 92, 157

[SL07] Guoqiang Shu and David Lee. Testing security properties of protocol implemen-

tations - a machine learning based approach. In ICDCS ’07: Proceedings of the

27th International Conference on Distributed Computing Systems, page 25, Wash-

ington, DC, USA, 2007. IEEE Computer Society. 28, 31, 34, 35, 36, 37, 56, 57,

92

[SLG07a] Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning and integration of

parameterized components through testing. In TestCom/FATES, pages 319–334,

2007. 153

[SLG07b] Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning parameterized state

machine model for integration testing. In COMPSAC, pages 755–760, 2007. 153

[SLG08] Muzammil Shahbaz, Keqin Li, and Roland Groz. Reverse engineering enhanced

state machine models for black box software. Information Sciences. Special issue

on Computational Intelligence and Machine Learning, 2008. Submitted. 155

[SPK07] Muzammil Shahbaz, Benôıt Parreaux, and Francis Klay. Model inference ap-

proach for detecting feature interactions in integrated systems. In ICFI, pages

161–171, 2007. 154

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002. 2

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of Programming

Languages, 3:121–189, 1995. 4

[UPn] UPnP Forum. http://www.upnp.org. 147

181

[Val84] L. G. Valiant. A theory of the learnable. In STOC ’84: Proceedings of the sixteenth

annual ACM symposium on Theory of computing, pages 436–445, New York, NY,

USA, 1984. ACM Press. 24

[Vas73] M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics and Systems Anal-

ysis, 9:653–665, 1973. 28, 92, 131

[Wat94] Osamu Watanabe. A framework for polynomial-time query learnability. Math.

Syst. Theory, 27(3):211–229, 1994. 41

[WBH06] Neil Walkinshaw, Kirill Bogdanov, and Mike Holcombe. Identifying state tran-

sitions and their functions in source code. In TAIC PART, pages 49–58. IEEE

Computer Society, 2006. 4, 23

[WBHS07] Neil Walkinshaw, Kirill Bogdanov, Mike Holcombe, and Sarah Salahuddin. Re-

verse engineering state machines by interactive grammar inference. In WCRE

’07: Proceedings of the 14th Working Conference on Reverse Engineering, pages

209–218. IEEE Computer Society, 2007. 32, 36

[WCO03] Ye Wu, Mei-Hwa Chen, and Jeff Offutt. Uml-based integration testing for

component-based software. In ICCBSS ’03: Proceedings of the Second Inter-

national Conference on COTS-Based Software Systems, pages 251–260, London,

UK, 2003. Springer-Verlag. 4

[Wey82] Elaine J. Weyuker. On testing non-testable programs. Comput. J., 25(4):465–470,

1982. 37

[WPC01] Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques for testing component-based

software. iceccs, 00:0222, 2001. 4, 23

[XN03] Tao Xie and David Notkin. Exploiting synergy between testing and inferred

partial specifications. In In WODA, pages 17–20, 2003. 8

[Yok94] T. Yokomori. Learning non-deterministic finite automata from queries and coun-

terexamples. In Machine Intelligence, pages 169–189. Oxford University Press,

Inc., 1994. 156

182

	1 Introduction
	1.1 Overview
	1.2 Component Based Software Engineering
	1.2.1 Notion of a Component
	1.2.2 Challenges in the Integration of COTS

	1.3 DoCoMo: A Motivational Example in France Telecom
	1.4 The Approach of Learning and Testing
	1.4.1 Learning Finite State Machines
	1.4.2 Analyzing Integrated Systems using Learning and Testing

	1.5 Hypotheses and Scope
	1.6 Thesis Organization

	2 Definitions, Notations and Models
	2.1 Finite State Models
	2.1.1 Deterministic Finite Automaton
	2.1.2 Mealy Machine
	2.1.3 Parameterized Finite State Machine

	2.2 Quotient of Finite State Machines
	2.2.1 Quotients for Mealy Machines
	2.2.2 Quotient for PFSM models

	2.3 General Notations

	3 Background and Related Work
	3.1 Introduction
	3.2 Passive Automata Learning and Testing
	3.2.1 Theoretical Results
	3.2.2 Applications

	3.3 Active Automata Learning and Testing
	3.3.1 Theoretical Results
	3.3.2 Applications

	3.4 Learning Enhanced State Models
	3.5 Discussion
	3.5.1 Summary
	3.5.2 Our Work in Learning and Testing
	3.5.3 Extended Work
	3.5.4 Main Contributions

	4 Deterministic Finite Automaton Inference
	4.1 Learning Algorithm for DFA
	4.1.1 Observation Table
	4.1.2 The Algorithm L*
	4.1.3 Learning with oracle
	4.1.4 Complexity
	4.1.5 Example

	4.2 Variants of L*
	4.2.1 Proposition of Rivest & Schapire

	4.3 Conclusion

	5 Mealy Machine Inference
	5.1 Motivation
	5.2 Learning Algorithm for Mealy Machines
	5.2.1 Observation Table
	5.2.2 The Algorithm LM*
	5.2.3 Example
	5.2.4 Processing Counterexamples in LM*
	5.2.5 Complexity
	5.2.6 Example

	5.3 Improvements to Mealy Machine Inference
	5.3.1 Motivation
	5.3.2 The Algorithm LM+
	5.3.3 Processing Counterexamples in LM+
	5.3.4 Correctness
	5.3.5 Complexity
	5.3.6 Example
	5.3.7 Discussion

	5.4 Relation of MM with M
	5.5 Discussion on Processing Counterexamples in L*
	5.5.1 Required Changes in the Observation Table
	5.5.2 Complexity

	5.6 Application: The HVAC controller
	5.6.1 Description
	5.6.2 Inference of the HVAC controller

	5.7 Conclusion

	6 Integration Testing
	6.1 Motivation
	6.2 The Integrated System
	6.2.1 System Architecture
	6.2.2 Formal Model of a Mealy System
	6.2.3 Product of Mealy Components

	6.3 The Approach of Learning and Integration Testing
	6.3.1 Step 1: Learning Components with Restrictive Input Sets
	6.3.2 Step 2: Computing and Analyzing the Product
	6.3.3 Step 3: Refining the Product
	6.3.4 Step 4: Finding Discrepancy between the Product and the System
	6.3.5 Step 5: Resolving Discrepancy
	6.3.6 Termination Criteria

	6.4 Conclusion

	7 Parameterized Machine Inference
	7.1 Motivation
	7.2 Learning Algorithm for PFSM models
	7.2.1 Observation Table
	7.2.2 The Algorithm LP*
	7.2.3 Processing Counterexamples in LP*
	7.2.4 Correctness
	7.2.5 Termination
	7.2.6 Complexity

	7.3 Relation of MP with P
	7.4 Application: The HVAC Controller
	7.4.1 Inference of the HVAC Controller
	7.4.2 Comparison of Mealy and PFSM learning

	7.5 Conclusion

	8 Parameter Function Inference in PFSM models
	8.1 Motivation
	8.2 Approach
	8.3 The Daikon Invariant Detector
	8.4 Example
	8.5 Conclusion

	9 Tool and Case Studies
	9.1 RALT: Rich Automata Learning and Testing
	9.2 Case Studies
	9.2.1 Edinburgh Concurrency Workbench
	9.2.2 Air Gourmet
	9.2.3 Nokia 6131
	9.2.4 Domotics

	9.3 Conclusion

	10 Conclusion and Perspectives
	10.1 Summary of the Thesis
	10.2 Note on Publications
	10.3 Future Directions
	10.3.1 Learning Variable Approximations
	10.3.2 Learning Nondeterministic Machines
	10.3.3 Test Generation Methods for Model Refinements
	10.3.4 Integration Framework for PFSM Components
	10.3.5 Testing Security Violations
	10.3.6 Experiments with Complex Systems

	10.4 Lessons Learned
	10.5 Ending Note

	A Proofs of the PFSM Algorithm
	B Models of the Domotics Case Study
	Bibliography

