INSTITUT POLYTECHNIQUE DE GRENOBLE

THESE

pour obtenir le grade de

DOCTEUR DE L’Institut Polytechnique de Grenoble
Spécialité : Informatique

préparée au Laboratoire Informatique de Grenoble
dans le cadre de ’Ecole Doctorale Mathématiques, Sciences et Technologies de

I'Information, Informatique

présentée et soutnue publiquement

par
MUZAMMIL SHAHBAZ, Muhammad

le 12 décembre 2008

TITRE
Reverse Engineering Enhanced State
Models of Black Box Software Components

to support Integration Testing

DIRECTEUR DE THESE
Roland GROZ, Professeur a I'Institut Polytechnique de Grenoble

JURY

M. Jean-Claude FERNANDEYZ, Professeur a I’Université Joseph Fourier, Président

Mme. Ana CAVALLI, Professeur a Télécom et Management Sud-Paris, Rapporteur

M. Thierry JERON, Directeur de Recherche a P'INRIA Rennes Atlantique, Rapporteur
M. Khaled EL-FAKIH, Professeur & American University of Sharjah (UAE), Examinateur
M. Doron PELED, Professeur a Bar Ilan University (Israel), Examinateur

M. Alexandre PETRENKO, Chercheur Principal au CRIM (Canada), Examinateur

M. Roland GROZ, Professeur I'Institut Polytechnique de Grenoble, Directeur de thése
M. Benoit PARREAUX, Ingénieur de Recherche a Orange Labs Lannion, Co-Encadrant

ii

Acknowledgements

While I remain the only responsible of imprecision and omissions, there are lot of

people to whom I am indebted.

“I would like to thank my PhD advisor” — This sentence is quite common one could
find in acknowledgments. I also tried to write some more appropriate words for the
sake of formality; but honestly, I failed. For a moment, I dabbled into the vast
vocabulary of English, French and even Urdu (my mother tongue). But the words

like Thanks, Merci and Shukria suddenly lost their quality —

Roland Groz, my PhD advisor, deserves the appreciation beyond my capabilities of
expression. He is my mentor, not only for the disciplines of Software Engineering,

but for the disciplines of life. Without his guidance, I would be lost.

Apart from the brainstorming meetings and discussions on the perplexed formal
world of automata learning, I enjoyed with him hiking in summers, skiing in win-
ters and theaters on fine evenings. Above all, I cannot forget those memorable two
weeks which I spent at his home last summer in Lannion. I feel greatly obliged for
the kindness his wife Bénédicte has shown upon me, and for the love of his cheerful
children.

I am grateful to Dr. Keqin Li, SAP Research, with whom I have worked for two
years. His constructive remarks on my work have certainly improved my skills for

writing formal algorithms, proofs and research papers.

I am lucky to receive technical insights from Dr. Alexandre Petrenko, Director
CRIM, with whom I have been in touch on and off during my PhD. His dedication
to research has greatly inspired me, and I am always keen to learn something new

from him. As a remembrance, I shall be keeping the notes in his writing which he

prepared to teach me Reachability Graphs.

I am greatly indebted to the reviewers of my thesis, Prof. Ana Cavalli and Prof.
Thierry Jéron for this painstaking work. Their useful comments and remarks have
certainly improved the quality of the thesis. I am also grateful to Prof. Doron Peled
for the fruitful discussions we had during his visits to Verimag time to time. Also,
I am thankful to Prof. Khaled El-Fakih whose insights introduced me to the appli-

cation of machine learning in specification based testing.

I am warmly thankful to Prof. Yves Ledru, head of Vasco team, Dr. Alexandre
Lefebvre, my manager at Orange Labs, Dr. Benoit Parreaux and Dr. Wei Monin,
my co-supervisors at Orange Labs for their administrative and technical support.
Also, I am grateful to Dr. Yves-Marie Quemener who has provided me various op-

portunities to speak out at Orange Lab’s platform.

I would like to express my deepest gratitude to my parents Mr. & Mrs. Shahbaz,
whose prayers and continuous support is my gospel of encouragement. Its because

of them I have attained this position. I dedicate this thesis to them.

PhD requires lot of energy, especially when one is miles away from his family and
homeland. I received recharging and vitality for this research through the social
aspect of my life. I owe my sincere thanks to my friends Pakistanais and Grenoblois

for their loving support in low and high times.

This research is funded by France Telecom R&D / Orange Labs under the CIFRE
scholarship program. I would like to convey my special thanks to the organization

for its confidence in me.

Abstract

Component based software engineering has gained a strong momentum in software
industry that facilitates the building of complex systems using prefabricated com-
ponents, aka COTS. A challenging issue in this discipline is to deliver quality of
service while integrating COTS from various sources. The system designers require
specifications or models of the components to understand their possible behaviors in
the system. When components come from third-party sources, the specifications are
often absent or insufficient for their formal analysis. Such components are termed

as black boxes in literature.

The thesis addresses the problem of uncovering the behaviors of black box software
components to support testing and analysis of the integrated system composed of
such components. Typically, we propose reverse engineering techniques to infer finite
state models of the components and base the approach of testing and analyzing the

system on the inferred models.

We start by studying the inference of Mealy machine models in the settings of active
learning theory and propose improvements in the existing algorithm to bring down
the learning complexity. Later, we provide a framework for testing and analyzing

the integrated system of black box Mealy components using the inferred models.

The thesis also proposes solutions for learning enhanced state models to cope with
the problem of modeling complex systems. Such systems contain components that
exchange lots of input and output parameters from arbitrary domains. We propose
a parameterized model and an algorithm to infer such models from a black box

component.

We present our tool RALT that implements the reverse engineering techniques and
the integration testing framework. The approach has been validated on various case

studies in the domain of France Telecom that have produced encouraging results.

vi

Contents

1 Introduction dl
1.1 Overview o o e m
1.2 Component Based Software Engineering

1.2.1 Notion of a Component
1.2.2 Challenges in the Integration of COTS 3
1.3 DoCoMo: A Motivational Example in France Telecom 6]
1.4 The Approach of Learning and Testing 6]
1.4.1 Learning Finite State Machines B
1.4.2 Analyzing Integrated Systems using Learning and Testing i8]
1.5 Hypotheses and Scope 10
1.6 Thesis Organization e 14

2 Definitions, Notations and Models

2.1 Finite State Models
2.1.1 Deterministic Finite Automaton
2.1.2 Mealy Machine 1G]
2.1.3 Parameterized Finite State Machine 18]

2.2 Quotient of Finite State Machines 19
2.2.1 Quotients for Mealy Machines 201
2.2.2 Quotient for PEFSM models 211

2.3 General Notations e 21

3 Background and Related Work 23
3.1 Introduction e e e 23
3.2 Passive Automata Learning and Testing 24

3.2.1 Theoretical Results 24]
3.2.2 Applications
3.3 Active Automata Learning and Testing

vii

3.3.1 Theoretical Results
3.3.2 Applications
3.4 Learning Enhanced State Models
3.5 Discussion
3.5.1 Summary
3.5.2 Our Work in Learning and Testing .
3.5.3 Extended Work
3.5.4 Main Contributions

Deterministic Finite Automaton Inference

4.1 Learning Algorithm for DFA

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.2
4.2.1

4.3 Conclusion

Variants of L*

Observation Table
The Algorithm L*

Learning with oracle

Complexity

Example.
Proposition of Rivest & Schapire

Mealy Machine Inference

5.1 Motivation
5.2 Learning Algorithm for Mealy Machines

5.2.1 Observation Table
5.2.2 The Algorithm Lp/*
5.2.3 Example.
5.2.4 Processing Counterexamples in Ljs*
5.2.5 Complexity
526 Example.
5.3 Improvements to Mealy Machine Inference .
5.3.1 Motivation
5.3.2 The Algorithm L™
5.3.3 Processing Counterexamples in L,
5.3.4 Correctness
5.3.5 Complexity
5.3.6 Example.

viii

5.3.7 Discussion e e e 69

5.4 Relation of My, with M (1
5.5 Discussion on Processing Counterexamples in L* [72]
5.5.1 Required Changes in the Observation Table 73l
5.5.2 Complexity e 4
5.6 Application: The HVAC controller
5.6.1 Description e
5.6.2 Inference of the HVAC controller [7G]
5.7 Conclusion 78
Integration Testing [79]
6.1 Motivation 79l
6.2 The Integrated System 30]
6.2.1 System Architecture [0l
6.2.2 Formal Model of a Mealy System [RTl
6.2.3 Product of Mealy Components 82
6.3 The Approach of Learning and Integration Testing B4
6.3.1 Step 1: Learning Components with Restrictive Input Sets 36l
6.3.2 Step 2: Computing and Analyzing the Product [R7
6.3.3 Step 3: Refining the Product 90
6.3.4 Step 4: Finding Discrepancy between the Product and the System [O2]
6.3.5 Step 5: Resolving Discrepancy 93]
6.3.6 Termination Criteria [95]
6.4 Conclusion 6]
Parameterized Machine Inference [99]
7.1 Motivation L [99]
7.2 Learning Algorithm for PFSM models 10
7.2.1 Observation Table
7.2.2 The Algorithm Lp* 10
7.2.3 Processing Counterexamples in Lp* 113
7.2.4 COrrectness v i e e 114
7.2.5 Termination L. 115]
7.2.6 Complexity e 116
7.3 Relationof Mp with P I
7.4 Application: The HVAC Controller, IR

X

7.4.1 Inference of the HVAC Controller 118

7.4.2 Comparison of Mealy and PFSM learning I

7.5 Conclusion e =1

8 Parameter Function Inference in PFSM models 123l
8.1 Motivation e 123
8.2 Approach 124
8.3 The Daikon Invariant Detector 124
8.4 Example e
8.5 Conclusion [127]

9 Tool and Case Studies 129
9.1 RALT: Rich Automata Learning and Testing 129
9.2 Case Studies 133
9.2.1 Edinburgh Concurrency Workbench 34

9.2.2 Air Gourmet 138

9.2.3 Nokia 6131 411

9.24 Domotics 146]

9.3 Conclusion 150

10 Conclusion and Perspectives 151l
10.1 Summary of the Thesis =1
10.2 Note on Publications 153
10.3 Future Directions e
10.3.1 Learning Variable Approximations 155]

10.3.2 Learning Nondeterministic Machines 1506

10.3.3 Test Generation Methods for Model Refinements 156

10.3.4 Integration Framework for PEFSM Components 156

10.3.5 Testing Security Violations @57

10.3.6 Experiments with Complex Systems =7

10.4 Lessons Learned L e 158
10.5 Ending Note L e 159

A Proofs of the PFSM Algorithm 161l
B Models of the Domotics Case Study 167
Bibliography il

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6

Learning and Testing Approach [
Learning and Testing Approach for an Integrated System 1T
Example of a Deterministic Finite Automaton 16l
Example of a Mealy Machine i
Example of a Parameterized Finite State Machine 20
The learning and model checking procedure of Black Box Checking 301
Concept of the Learning Algorithm L* [42]
Example of a Deterministic Finite Automaton 48
The conjecture Mp™) from Table Tp®. 48
The conjecture M p® from Table Tp™. [49]
The conjecture M p® from Table Tp®. 50
Example of a Mealy Machine 60
The conjecture My from Table[5.2] 60
Conceptual view of the method for processing counterexamples in Ly;™ 66l

Example of a DFA for illustrating our method of processing counterexamples in L* [73]

DFA Conjecture from Table[5.5] 73]
Global diagram of the HVAC system [76]
Mealy Machine conjecture of the HVAC Controller 78
Architecture of the Integrated System of n Components
Example of the Mealy System Sys. B3l
Components M and N of the System Sys in Figure[6.3] R3]
The product Hsys of components M and N R4
Learning and Testing Approach for an Integrated System
The model M® from Tablel6.dl 8]

xi

6.7 The model N from Table El RS

6.8 The product [of the learned models M™ and NV, 90
6.9 The model N® from Tablel6.al 97
6.10 The product H(Q) of the learned models MM and N® 93]
6.11 The model M® from Tablel6.5l 95
6.12 The product H(3) of the learned models M® and N 90]
7.1 Idea of collapsing rows and columns in the Observation Table for PFSM o7
7.2 Tlustration of Property [d L 106!
7.3 TIllustrations of Property [fl and Property[6
7.4 PFSM conjecture of the HVAC Controller 120
8.1 PFSM model of the counter and its conjecture
8.2 Daikon output for the observed counter values recorded in Table[8.1] 126]
9.1 Global Architecture of RALT 4.0 130
9.2 Libraries for Learner and Test Generator 1311
9.3 Settings for learning CWB examples with RALT 135]
9.4 Conceptual view of the Air Gourmet System 139
9.5 Mobile Media Player Life Cycle,
9.6 PFSM model for the Media Player of Nokia N93 and Sony Ericsson W300i . . . [[44]
9.7 Conceptual view of the settings of the Domotics system with RALT [T48]
9.8 Setup of the Domotics System 149
A.1 Explanation of Lemmald|. 1621
A.2 Realization of Lemma[G and Lemmald 164
B.1 Light System (ProSyst) (X10 Device) 167
B.2 Media Renderer Streamium400i (UPnP Device) 168
B.3 Interaction model of the devices in the Domotics System 169

xii

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

5.4

9.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5

Summary of the works in Active Learning and Testing Approach 36l
Example of the Observation Table (Sp, Ep,Tp) - - - « « « v v v v v v v i oot 43
The Observation Table Tp™ 48
The Observation Table Tp@. 48
The Observation Table Tp® 49l
The Observation Table Tp™®. [49]
The Observation Table T D(5) I510)
The Observation Table TD(6) 50
Example of the Observation Table (Sas, Ear, Tar) - - o o o v o oo oo oo e 58]
Closed and Consistent Observation Table (Sar, Ear, Tar) - v v v v oo v oo oo v 60
The Observation Tables (Sys, Ear, Thr) after processing the counterexample using

the adapted method from L* 64]
The Observation Tables (Sys, Ear, Thr) after processing the counterexample using

the improved method 0]
Observation Table for learning the DFA in Figure[54]. 73
Filling the Observation Table with Ap 4
Filling the Observation Table with Ap [74]
Closed (and Consistent) Observation Table for learning a Mealy machine model

of the HVAC controller irdrd|
Closed Observation Table for MM RS
Closed Observation Table for N(V. 88
Closed Observation Table for N& [92]

List of anomalies for automatic checking during the integration testing procedure

Closed Observation Table for M),

xiii

7.1

7.2

7.3

8.1

9.1
9.2
9.3
9.4

Example of the Observation Table for learning a PFSM model of the HVAC

controller

Balanced and Dispute-free Observation Table for learning a PFSM model of the

HVAC controller

Balanced, Dispute-free and Closed Observation Table for learning PFSM model

of HVAC controller

Balanced, Dispute-free and Closed Observation Table for the counter

Comparison of Ly;* with Ly;" on the examples of CWB workbench

Results of the Air Gourmet System
Settings for Media Player Test Driver
The details of the devices in the Domotics prototype

Xiv

List of Algorithms

The Algorithm L*
The Algorithm Lj/*
The Algorithm Las™ 6]
The Algorithm Lp*

= W N =

XV

xvi

List of Definitions

Definition 1
Definition 2
Definition 3
Definition 4
Definition 5
Definition 6
Definition 7
Definition 8
Definition 9
Definition 10
Definition 11
Definition 12
Definition 13
Definition 14
Definition 15
Definition 16
Definition 17
Definition 18
Definition 19
Definition 20
Definition 21

Xvii

xviil

Chapter 1

Introduction

“Before we trust a component, we must be able to determine, reliably and in advance,

how it will behave.” — Computer, IEEE Computer Society Press 1999

1.1 Overview

Component Based Software Engineering has gained a strong momentum in many sectors of the
software industry. The main reason of its prevalence is that it reduces the cost of developing
complex systems by reusing the prefabricated pieces of software, called components-off-the-
shelf (COTS) or third-party components, instead of developing the systems from scratch. As
a consequence, most large-scale systems such as telecom services, web-based applications, data
acquisition modules etc, are now-a-days based on the integration of COTS.

One of the most open challenges in using COTS is to deliver the quality of service. The
system designers require specifications or models of the components to understand their possible
behaviors in the system. Precisely, they want to check the possible interactions between the
components to avoid any unexpected situation in the later run of the integrated system. In
general, Model Driven Engineering (MDE) approaches are applied as a major mode that pro-
vide rigorous techniques for specifying, designing, analyzing, testing and verifying the system.
However, it is a quite common situation that where MDE techniques are desirable, the specifi-
cations or the formal models of those components are not available. Even if they are available,
they do not provide enough information that could be useful to drive formal techniques. More-
over, maintaining the specifications of COTS is unrealistic because they evolve over time that
quickly invalidates the original design sketches. The need of specifications or formal models as
a prerequisite in using COTS is a daunting prospect to the designers of large-scale systems. In
industry, they mostly rely on informal and incomplete information to evaluate the quality of

the overall system.

Our research focuses on devising techniques to uncover the behaviors of components which
lack specifications or formal models, and facilitate the analysis of the integrated system com-
posed of such components. Typically, we extract the finite state models from the components
using (active) learning techniques and provide a framework to test the integrated system using
the extracted models. We also propose solutions of learning enhanced state models to cope with
the problem of modeling complex systems. Our approach is validated on various case studies
provided by France Telecom R&D, that have produced encouraging results.

This chapter is the introduction to the thesis. Section provides the general concepts of
the problem we have addressed. Section presents a motivational example in France Telecom
R&D in the context of the thesis. Section describes the global approach, hypotheses and

scope of the research. Finally, Section [L.6] outlines the organization of the thesis.

1.2 Component Based Software Engineering

The interest in Component Based Software Engineering (CBSE) is increasing in both academia
and industry as witnessed by the escalation of devoted conferences [CPV03|] [SCHS07], journal
issues [Rav03] [CSSWO05], books [Szy02][GTW.J03| and forums [OCA] [OMGI, just to cite a few.
Apart from these research platforms, many new technologies have been established to support
the deployment and execution of component based systems, e.g., Java EE [Mic|, NET [NE],
CCM [CORal, OSGi [All.

CBSE is the process of integrating components and make them interacting as intended. It
promotes rapid system development by facilitating component reuse, but components may need
to be tuned according to the system requirements before they are actually used. In fact, the
components come from different sources and have been developed in different environments.
Therefore, the capability of components to be adapted and configured according to the desired
environments is important for the success of the CBSE approach. In the following, we discuss
the approach in more detail, by first giving the notion of a component and then an overview

over the challenges in the integration of components.

1.2.1 Notion of a Component

It will be interesting to discuss the notion of a software component before understanding the
challenges in the subject. The widely accepted definition of the component comes from Szyperski

Szy02].

et al

“A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies. A component can be deployed indepen-

dently and is subject to composition by third parties.”

This definition covers the different peculiar aspects of a component, i.e., “unit”, “interface”
and “composition”. A component can be plugged into a system as a unit, with its features
accessible via its defined set of interfaces and it communicates with other components in the
composition for its services to the integrated system. The above definition also points to the
component source, i.e., third party. The component is actually deployed by the system inte-
grating organizations different from the developing organizations.

Since the components come from different sources, it is quite normal that they are not pro-
vided with specifications and technical corpora. Even if some documentation is provided, it
is not sufficient for the component users to understand its behaviors completely. The docu-
mentation usually provides a high level description of the component and limited to syntactic
definitions of its interfaces. Moreover, components continuously evolve over time to incorpo-
rate additional requirements. They are inherently difficult to understand and maintain due
to their size and complexity. As long as, their long evolution history hinders in keeping their
specifications up-to-date.

The implementation of a component is typically not exposed, rather only textual abstractions
are attached as its interface specifications so that it can be plugged in the system. The signature
of the interfaces and the basic set of inputs to the components are provided, but the source
code or complete functional behavioral descriptions are often unavailable. The user simply
benefits from the component functionalities without knowing anything about its underlying
implementation details. In literature, the terms black box, gray box and white box are used
with reference to different levels of closure of the component internal essence. In particular,
a black box component does not disclose anything about its internal design, structure and
implementation, whereas its opposite side, a white box component is completely exposed to its
user. In between, there may exist different levels of grey box components depending upon how

much details are available.

1.2.2 Challenges in the Integration of COTS

We discuss some of the challenges in the integration of COTS that are related to our work, di-
rectly or indirectly. We refer to the works [Har00]|[CCCT 02| [GTW.J03] [Ber(7] for comprehensive

discussions on the topic.

Understanding the Component Behaviors

The most common problem in using COTS is the unfamiliarity of their behaviors and functions.
As a first principle, the designers seek for technical corpora for the components and consult
the related documentations and manuals for their understanding. In order to apply more
formal approaches and MDE techniques, they obtain specifications and/or source codes and
then perform activities under white-box framework such as static analysis [ALSUQ6], program
slicing [Tip95], invariant detection [ECGNOI|[HL02], model extraction [NE02][WBHO06], unit
testing [Corb][JUn], validation [GEHO05] and verification [CGP00Q].

Most of these techniques become ineffective when black box components are under consid-
eration. Understanding the behavior and testing of such components is a challenging task, due
to the unavailability of their source codes, updated specifications or formal models. Conse-
quently, the practice of behavior analysis in industry is presently conducted in an ad-hoc way,
either relying on human insights or using heuristic strategies based on incomplete information.
Normally, the designers test the system on few known scenarios and make a judgment about
its quality by observing its global behavior and matching it with their informal requirements
[CI02][GTW.J03].

Analyzing the Component Interactions

When the system is built with several components, it is important to ensure that the components
that are developed separately, work properly together. Since the components are developed
under different environments and may not be specialized for the particular environment where
they would be integrated, there could be many interactions between the components which are
undesirable and which could affect the features of each other. Moreover, the system may suffer
from compositional problems such as deadlocks, livelocks and other behavior incompatibility
and interoperability issues due to the interactions. The consequences of such interactions can
range from minor irritations to complete system failures. At this stage, the designers turn their
focus towards integration testing to analyze interactions in the integrated systems. There is also
a research area, called Feature Interaction [CKMRMO3], that aims to find ways of detecting as
well as resolving feature interactions in the system.

There are several frameworks (e.g., [OHRO1] [Edw01] [WPC01] [WCO03] [MPWO04] [CLW05])
which are proposed to handle the interactions between the components during the integration
phase. The designers use tools (see [BfCE04]) that generate interaction graphs [WPCO1], which
are useful to analyze the interactions with MDE techniques. However, the problem is complex
in the black box context where these techniques are not directly applicable due to unavailability

of source code and specifications. Moreover, the interpretation of each interaction as “good” or

“bad” is not trivial. The interactions can be checked automatically if the expected behaviors
of the system are written formally. When expected behaviors are unspecified or specified in a
way that does not allow automated checking, then the interactions are checked manually which
is notoriously difficult and time-consuming. If some expected i/o behaviors in the system are
given in terms of scenarios in which the designer expresses “should” or “should not” require-
ments [BB98], then the scenarios can be checked on the system through testing and violations
can be detected. When no expected behaviors are available in a formal shape, the designers
often rely on anomalies such as system crashes [MES90] [KKS98|, or uncaught exceptions [CS04]

as symptoms for unexpected behaviors.

Validating the System

The validation of the integrated system requires conformance of the behaviors of the system
according to the requirements. Formally, this phenomenon is referred as Conformance Testing
or Fault Detection Problem in software validation community [LY96]. Ideally, we are given a
complete specification and a system (composed of black box or white box components) and we
test to determine whether the system is a correct implementation of the specification. Other
faces of system validation include evaluating the robustness to stressful load conditions or ma-
licious inputs, or measuring given attributes such as performance or usability, or estimating the
operational reliability, and so on.

The validation of the integrated system is a complex problem because of the quite obvious
fact that testing can never be exact [Dij70]. The challenges of test selection and applying
adequate testing strategies to identify the potential faults in the system are still alive. In
addition to the warning that even though many tests passed, the system can still be faulty,
provides little guidance what we can conclude about the system after having applied those
tests. Going even further, how we can dynamically tune up our testing strategy as we proceed
with accumulating test results, taking into account what we observe from the system in the
result of testing. Especially in the case of black box context, how we could guess that the tests
have explored all the state space of the system and all possible behaviors have been checked.
In theory and practice, we rely on some underlying assumptions, or system approximations, to
conclude that the system is sufficiently tested. If we perform exhaustive testing according to
the approximations, then from successfully completing the test campaign we could justifiably
conclude that the system is correct. That is, we still know that the system could be faulty, but

we also know that we have assumed to be true with respect to the approximations [Ber(7].

1.3 DoCoMo: A Motivational Example in France Telecom

This PhD thesis was proposed by France Telecom R&D due to the known problems in CBSE
which its designers have experienced in the past. We provide here a motivational example which
was recently experienced before the proposal of the thesis was officially triggered.

In 2004, France Telecom acquired a gaming component from NTT DoCoMo Inc., a Japanese
mobile software components maker. The component was integrated into the mobile phones
and distributed in the market. Later, a complaint was reported that the users of the phones
occasionally experience credit loss.

An investigation was carried out by the test engineers who revealed after several experiments
that it was the gaming component that was causing the credit loss. They found a new behavior
in the component which was previously unknown to them. Actually, when a user starts a game
session, the component connects the user to internet and communicates with the Docomo’s
gaming server. At the end of the session, the component uploads the user’s scores to the server.
When the phone is connected to the internet, the user is charged according to the service tariff.

This was a classic black box component integration problem that was emerged due to i) an
unknown behavior of the component, and ii) an underlying interaction with the web service
module of the phone. Since the behavior was unknown to the users, the deduction of credit was
considered an anomaly in the phones. In fact, Docomo has implemented this behavior to keep
record of its international users and their scores history. However, the implementation was not

specified in the documentation provided with the component.
(courtesy: Benoit Parreaux, Orange Labs, Lannion)

There is a similar kind of problem concerning the media player of mobile phones, on which
we have demonstrated how our approach of reverse engineering can tackle such problems. In
the explanation of the case studies in the thesis, we shall discuss the specified problem and the

illustration of the approach on the problem in details.

1.4 The Approach of Learning and Testing

One of the major promising approaches to the problem of understanding the black box com-
ponents is to extract their models from their observations. There are various mechanisms to
collect the observations, either passively, i.e., by monitoring the component while it is running,
or actively, i.e., by stimulating the component through testing. Then, certain machine learning
techniques [KV94] [CW9g| are used to infer the models that are consistent with the observa-

tions. These models are then used in the MDE techniques to generate tests for validating the

components. It is important to note that the application of testing in this context is not only
meant to uncover faults but also to uncover the unknown component behaviors by applying
testing techniques.

The approach of extracting models from observations is not so simple. Although the learning
techniques provide models that are consistent with the observations, they do not always provide
the precise models. In general, it is unknown what amount of observations would be sufficient
to deduce the complete model of the black box component. Normally, several iterations are
required in which tests are generated from the learned model, then the component is tested to
compare its corresponding behaviors with the learned model. When new observations in the
result of testing find a discrepancy in the behavior comparison, then the observations are used
to refine the model, again by using the learning techniques. The general approach is illustrated

in Figure [I.1

Learning Model

observations model

Testing Black Box

Figure 1.1: Learning and Testing Approach

It is a feedback loop between learning and testing in which the tests are generated from the
learned models, then the learning techniques receive feedback from the tests, and then models
are refined based upon new observations. In the next iteration, better tests are generated from
the refined models and the loop starts again. The termination of the feedback loop could be
based on different strategies, e.g., when certain properties on the models and components are
satisfied, or when the assumptions on the model completeness are observed, or when the test
adequacy criteria are achieved etc. Globally, this approach of learning and testing fulfills two
purposes i) understanding of the behaviors of the components by deriving their approximate
formal models (reverse engineering), and ii) analyzing the components by testing them using
their learned models (validation). The main limit of this approach is the complexity of learning
complete models [KV94] [PVY99]. In most cases, the learned model appears to be a partial
representation of the complete behavior spectrum of the black box component. However, the

partial models are generally acceptable to carry out the validation activities in practice [Ber(07].

The rationale behind the feedback loop is that if the tests find discrepancies between the partial
learned models and the actual component, it is likely that the tests exercise a new behavior
of the component that was not uncovered so far [XN0O3|. Therefore, it greatly enhances the
confidence when refined models are used to validate the components.

In our work, we exploit the use of learning and testing approach for component based sys-
tems. We propose solutions in two main directions: i) the components are learned as enhancedﬂ
finite state machines by adapting the existing learning algorithms, ii) the integrated system of
those components is tested and analyzed using their learned models. Thus, we are providing
a framework of testing and analyzing the integrated system of black box components using
enhanced finite state models. In the following, we provide an overview of the two directions.
The different parts of the approach in each direction are explained formally in their dedicated

chapters (see Section for the organization of the thesis).

1.4.1 Learning Finite State Machines

We extract the models of the components as finite state machines which can represent the
precise descriptions of the component behaviors formally, and therefore, can be used in various
MDE techniques. We propose algorithmic solutions of learning finite state machines, based on
the existing works in grammatical inference [KV94], and propose improvements to tackle their
complexity. In fact, the learned models are just the approximations of the real components.
Our focus is to abstract the control part of the component and extract its structural and design
information in a formal representation. We do not envision to deduce complete models of
the components, which is impossible without having some strong assumptions on the hidden
structure, such as knowing the upper bound on the number of states of the black box component
[PVY99]. Apart from the assumptions, it is impossible in practice to find a precise model of
the component which is usually far too large and, as results from the study of the application of
the learning theory indicate [BJLS05], too time-consuming to obtain and to manage. It is also
important to note that we are dealing with the integrated system in which components depend
upon each other for their working. Normally, only some parts of the component functionalities
are exercised in the system. So, we believe that learning complete models is not necessary in
the integration framework. We aim to learn models that are approximate enough to represent
the general behavioral spectrum of the black box components so that the system designer could

depend upon objective data (the known set of observations from the systematic testing of the

!The term “enhanced” refers to a richer structure of Finite State Machines, in which transitions are labeled
with inputs and outputs along with parameter values. The different enhanced models we are dealing with are

presented in Chapter |2|

components) rather than relying only on intuitions and experiences for satisfying their informal
requirement specifications.

The other major focus of this direction is the learning of enhanced state machine models.
Actually, the interactions between components consist of inter-component procedure calls (in
a synchronous environment) or message passing (in an asynchronous environment). In both
cases, the interactions are structured with a type (name of procedure or message) and pa-
rameters exchanged. It is observed that typical interoperability problems in the component
integration framework emerge due to exchange of parameterized data from arbitrarily complex
domains. The modeling of such components with simple finite state machines is inadequate
which cannot capture the fine granularity of the component. Also, such components typically
have formidable size of inputs, but they usually show similar behaviors on a subset of inputs.
Learning such behaviors with fewer inputs and representing them in a compact model can tackle
the complexity of the learning algorithm. Under this view, we propose the inference adapted to
a representation of parameterized interactions of the component. This representation is referred

as a parameterized finite state machine (PFSM) in the thesis.

1.4.2 Analyzing Integrated Systems using Learning and Testing

We use classical divide et impera strategy, i.e., the large and complex integrated system is
disassembled into individual components, where each component is tested separately to learn
its model and then the complete system is taken into account for integration testing using the
learned models of all the components. The different steps of the learning and testing procedure

are described as follows:

Step 1: All the components in the integrated system are learned in isolation so that the finite

state models of each component are extracted.

Step 2: The learned models of each component are composed to make a product that is ana-
lyzed for compositional problems such as deadlocks and livelocks in the system. We can
find a witness to such problems in the product of the learned models through validation

techniques.

Since the product of the learned models is an approximation, the witness of the problem
in the product may not actually exist in the actual system. In other words, it can be just
an artifact due to the partiality of the models. Therefore, we confirm the problem on the
system by simply experimenting the witness. If the experiment produces the problem in

the system then we terminate the procedure by reporting the problem. Otherwise, the

witness is a discrepancy between the product and the actual system. In this case, the

witness is treated as a counterexample for the product.

Step 3: When a counterexample for the product of learned models is found, the counterexample
is broken down for each component to identify the components whose partial models
caused the discrepancy between the product and the actual system. Then, the identified
components will be relearned using their relative counterexamples and their refined models

will create a new product (following step 2).

Step 4: Once the product of the models is obtained that contains no compositional problems,
thanks to the steps 2 and 3, the product serves as an input to MDE techniques for the
purpose of analyzing, testing and validation of the integrated system. In fact, the product
is a finite state machine, so several testing strategies from existing works can easily be
used in our case. The generated tests may find more discrepancies between the product

and the system, since the product may still not be a correct representation of the system.

Step 5: We resolve the discrepancies found in the previous step by classifying it as an error in
the system or an artifact of the learned models. The discrepancies may uncover system
integration faults such as components behavioral compatibility issues, unexpected inter-
actions, system errors due to crash or uncaught exceptions etc. In this case, we terminate
the procedure by reporting the potential faults in the system. Otherwise, the discrepancy
is an artifact, so we proceed for step 3 to refine the product by considering the discrepancy

as a counterexample for the product.

The procedure of integration testing terminates when a compositional problem in the system
is confirmed (step 2), or when the generated tests do not find any discrepancies between the
product and the system (step 4), or when the real errors in the system are found (step 5). The

flow of the procedure is given in Figure [1.2

1.5 Hypotheses and Scope

The hypotheses and the scope of our work are given point wise as follows.

System of communicating components: The integrated system consists of several compo-
nents which communicate with the system’s environment and with each other via matching
input and output symbols. Thus, a component has input/output behaviors, i.e., when re-
ceiving an input it produces the corresponding output to its environment. The input

and output symbols are associated with parameters that represent the values exchanged

10

?

| Black Boxes Components

G_.eaming each Component in isolatiurD

Refining the Product
(by relearning model 5)

Models

Composing & Analyzing
the Product

Problem as
Counterexample

M

[compositional problem] Canfirm Problern

on Systermn

L
=

Finding Discrepancy hetween
the Product & the System

[no discpremary found]

~@

Discrepancy

Resolving Discrepancy

[system error found]

Discrepancy as
Counterexample

Figure 1.2: Learning and Testing Approach for an Integrated System

during the component interactions. The typical examples of such systems are telecom
services (e.g., call center solution), web-based applications, data acquisition modules and
embedded system controllers. As a concrete example, suppose a traveler agent system that
consists of a hotel database component and a user interface component. The database
component receives a city name from the interface component and provides a list of hotels
in the city in response. Then, the city_name is the input symbol and (Paris) is a possible
input parameter value. Similarly, the hotel_list is the corresponding output symbol and

(Hilton, Sheraton, ...) is a possible output parameter value.

System architecture is known: The architecture of the system is known, i.e., we know how
the components are bound together through their interfaces. Moreover, the system can be

disassembled and reintegrated whenever it is required. This assumption is obvious from

11

our context where the designer knows how to integrate third-party components but does
not know the possible interactions between the components and actual ordering of events
etc, once the system is integrated. As an example, the designer knows how to bind the
hotel database component with the user interface component, but unaware of the possible

behaviors on different inputs to the traveler agent system.

Components are black boxes but their inputs are known: The components in the sys-
tem may have different levels of exposure depending upon how much information about
them is available. In our approach, we consider that all components are black boxes, i.e.,
their functional specifications and implementation details are not available. We do not
assume a priori given behavior traces of the components or oracles, often presumed in
traditional model learning. However, we assume that the input/output interfaces of the
components are known and observable. This means we know the basic set of input symbols
that can be given to a component through its input interfaces, and for each input, the
corresponding output of the component can be observed through its output interfaces.
The parameter domains for the input symbols are also known. For example, we know
that the hotel database component receives input symbols such as city_name, room_type,
check-in_date, number_of nights etc. We also know that the parameter domain for
city_name is the name of a city, e.g., Paris, London, ... etc, for room_type is the type
of rooms, e.g., single, double, ... etc, for check-in_date is a value of type date, for

number_of nights is a positive integer.

Invalid inputs may be observed dynamically: According to the previous assumption, we
know the set of possible input symbols to a component. However during the testing proce-
dure, we may be able to observe which inputs are valid to be given at the current step and
which are invalid. For example, the user interface of the travel agent system may consist
of multiple web pages. At the first page, it receives only city_name; then it transfers to
the second page for the next input and so on. In this case, all inputs except city_name
are invalid on the first page. This knowledge can be used during the learning of the

component.

Components as finite state machines: The component exhibits regular behaviors, i.e., the
component can be modeled as a finite state machine. We intend to learn only the behav-
iors prescribed by the control structure of the finite state model. Moreover, we do not
assume to know the upper bound on the number of states in the components. Instead of
hunting for exact learning, we aim to learn approximate models that are expressive enough

to provide powerful guidance for testing and to enhance the behavior understanding of

12

the components, and thus, of the system. Another important prerequisite for this ap-
proach is the deterministic property of the component for reproducible and unambiguous

interpretation of the test results.

Formal description expected behaviors are unavailable: We do not assume the provi-
sion of formally described expected behaviors by the designers. In practice, expected
behaviors often do not exist for automatically checking the errors in the system. If some
expected i/o behaviors are given in terms of scenarios, then scenarios can be checked
on the learned models, or on the product of the learned models, and violations can be
detected. However, even if scenarios are not available, then we rely on the detection of
anomalies in the system, such as system crash or uncaught exceptions. In practice, such

anomalies can be detected automatically.

Issue of output delays is overlooked: There may be some cases where the system’s reac-
tion to a given input consists of more than one outputs. Those outputs are produced with
some delay and may occur after giving the next input to the system. Usually, functional
testing does not care for exact timings and so delays do not matter much. But it is very
important to identify the correct outputs of the input which triggered them. Thus, it
is a common practice to wait after each input to collect all its corresponding outputs.
Most often, appropriate timeouts are applied to ensure that the system has produced all
outputs and settled in a “stable” state. In our settings, we overlook the issue of adding
the delays in testing. In practice, this is considered as an implementation detail of the
test drivers, which actually send the inputs from the environment to the system (or to the

component) and send the corresponding outputs back to the environment.

Focus on functional aspects: We keep our focus on behavior learning and studying the in-
teractions between the components and their functional aspects in the system. We are
not dealing with other details, for instance, timing, performance and security issues in the
system. However, we shall provide clues in the conclusion (Chapter how to take such

issues into consideration as a possible extension to our approach.

13

1.6 Thesis Organization
The organization of the thesis (excluding this chapter) is given as follows.

State Of The Art

e Chapter [2 provides the basic definitions and notations which are used globally in
the manuscript. It describes the kinds of finite state models and the formal notion of
their approximations, which will be used in the subsequent chapters. The different

finite state models we are dealing with are:

— Deterministic Finite Automata
— Mealy Machines

— Parameterized Finite State Machines

e Chapter [3| overviews the background work and surveys the state-of-the-art in the

domain of learning and testing.
e Chapter [4 is the continuation of the state-of-the-art but dedicated to the inference
of Deterministic Finite Automata.

Contributions

e Chapter [5] discusses the inference of Mealy Machines.

e Chapter [6] provides a framework for testing the integrated systems of Mealy compo-

nents.
e Chapter [7] discusses the inference of Parameterized Finite State Machines.

e Chapter [§ describes the extended work towards learning functions in parameterized

systems.

e Chapter [J] discusses our implemented tool and case studies.
Conclusion

e Chapter[I0]summarizes and concludes the thesis by pointing out the future directions

of the conducted research.

14

Chapter 2

Definitions, Notations and Models

This chapter provides the basic definitions and notations which are used globally in the manuscript.
It describes the kinds of finite state models and the formal notion of their approximations, which

will be used in the subsequent chapters.

2.1 Finite State Models

We are dealing with four kinds of finite state models in our work. The definition and the

example of each model is given in the subsections.

2.1.1 Deterministic Finite Automaton
The formal definition of a Deterministic Finite Automaton is given as follows.

Definition 1 A Deterministic Finite Automaton (DFA) is a quintuple (@, X, 0, F, qo), where

e () is the non-empty finite set of states

Y. is the alphabet, i.e., the finite set of letters

0:Q x X — @ is the transition function.

F C @ is the set of final states

qo € @ is the initial state

A string w = i1 -- -4, € X* is accepted by a DFA if there exists a sequence of transitions,
labeled with each symbols in w, starting from initial state and ending in an accepting state.
We extend the transition function from symbols to strings in the standard way, i.e., §(qo,w) =

5(...9(6(qo,11),42),--.,0x). A string w is accepted if and only if d(qp,w) € F, denoted by the

15

output function A(qo,w) = 1. Otherwise, w is rejected, denoted by A(qo,w) = 0. We define the
complete output function when applying w to DFA as follows: A(go,w) = A(qo,%1) - A(qo, %1 -
i2) -~ A(qo, i1 - ir). An example of a DFA over the alphabet ¥ = {a, b} is shown in Figure

The final states are represented by double lined circles in the figure.

Figure 2.1: Example of a Deterministic Finite Automaton

2.1.2 Mealy Machine

The formal definition of a deterministic Mealy machine is given as follows.

Definition 2 A Mealy Machine is a sextuple (Q, I, 0,4, A, qp), where

e () is the non-empty finite set of states

qo € @ is the initial state

I is the finite set of input symbols

O is the finite set of output symbols

0:Q x I — (@ is the transition function.

A:Q x I — O is the output function O

When a Mealy machine is in the current (source) state ¢ € @ and receives i € I, it moves
to the target state specified by §(q,7) and produces an output given by A(gq,7). We extend the
functions § and A from symbols to strings in the standard way as follows. For a state ¢1 € @,
an input string w = i1 - - - i3 € I* takes the machine to the ending state by traversing each state
gj+1 = 6(gj,ij),1 < j < k, and reaches to the final state gr4+1 = 6(q1,w), and produces an
output string A(q1,w) = o1 --- ok, where 0; = A(gj,7;). We call i1/01...i/0x an i/o trace of

length k in state ¢q;.

16

We consider that the Mealy machines are input—enabledﬂ ie., dom(6) = dom(\) = Q x 1.
For a state where the given input is invalid, we add a loop-back transition on the state and add
a special symbol €2 as the output for that input. So, we add €2 in O. For simplicity, we do not
write €2 in the graphical representation of Mealy machines. We can depict Mealy machines as
directed labeled graphs, where @) is the set of vertices. For each state ¢ € @ and input symbol
i € I, there is an edge from ¢ to §(q,) labeled by “i/0”, where o is an output symbol given by
A(g,%). An example of a Mealy machine over the sets I = {a,b} and O = {z,y} is shown in

Figure

Figure 2.2: Example of a Mealy Machine

Definition 3 For every DFA D = (Qp,%,dp, F,qop), there is an equivalent Mealy Machine
M = (Qum,I1,0,00, A, qoyy), that models the same language. The conversion is defined as

follows:

Qv =Q@Qp
® dopr = qop

o [=X

0= {0,1}
L 5M(Q7Z) :5D(qvl)7vq € QM:Z el

, 1 ,0p(g,i) e F,Vqe Qum,iel
)\M(q72> = O
0 ,otherwise

!This is due to the implication of the learning algorithm to state the well-defined transition function. See
Chapter [5] Section for more on it.

17

2.1.3 Parameterized Finite State Machine
The formal definition of a Parameterized Finite State Machine is given as follows.

Definition 4 A Parameterized Finite State Machine (PFSM)is a septuple (Q, 1,0, Dr, Do, T, qp),

where

e () is the finite set of states

1 is the finite set of input symbols

O is the finite set of output symbols

Dy is the set of finite/infinite input parameter values

Dy is the set of finite/infinite output parameter values

qo is the initial state

T is the set of transitions

A transition ¢ € T is defined as t = (¢,¢,4,0,p, f), where ¢ € Q is a source state, ¢ € Q
is a target state, ¢ € I is an input symbol, o € O is an output symbol, p C Dy is a predicate
on input parameter values and f : p — Dy is an output parameter function. The model is

restricted with the following three properties:

Property 1 (Input Enabled) The model is input enabled, i.e., for all ¢ € Q and i € I, there
exists t € ' such that t = (q,q,i,0,p, f).

Note that the property of input enabled is restrictively defined only on I, and not on I and
D;. That means, the model has an enabled transition for each state and each input symbol; in
which the input symbol is associated with certain input parameter values, but may not be with
all.

In order to make the model input-enabled, we add a loop-back transition on the state where
the given input symbol is invalid and add a symbol 2 as the output. Similarly, there exists
input symbols which do not take input parameter values at all. We add a symbol L with the
input symbol that expresses the absence of a parameter value. We add 2 in O and 1 in Dj.

For simplicity, we do not write these symbols in the graphical representation of PFSM models.

Property 2 (Input Deterministic) The model is input deterministic, i.e., forti,ta € I' such
that t1 = (q1, ¢}, %1, 01, D1, f1), t2 = (g2, G5, 02,02, p2, f2) and t1 # ta, if 1 = g2 and iy = iy then
p1Np2=¢.

18

Property 3 (Observable) The model is observable, i.e., forty,ta € T' such thatt1 = (q1, 4}, 1, 01,1, f1),
ta = (q2, 43, 2,02, P2, f2) and t1 # ta, if @1 = g2 and iy = iy then o1 # 03.

For a given state, input and input parameter value, we determine the target state, output
and output parameter value in a transition with the help of functions §, A and o, respectively.

The functions are defined as follows.

e 0:(Q x1Ix D;— (Q is the transition function
e \:(Q xIxD;— O is the output function

e 0:Qx I — DoP" is the output parameter function. DpoP! is the set of all functions

from D; to Do.

The properties [1| and [2| ensure that § and A are mappings. When a PFSM is in state ¢ € @
and receives an input ¢ € I along with a parameter value x € Dy, then a transition (¢, ¢, 4,0, p, f)
is enabled, in which x € p, and the target state ¢’ = §(q, i, x), the output o = \(q,,x) and the
output parameter value f(z) = o(q,)(z).

For i € I and = € Dy, we write i(x) the association of the input symbol ¢ with the input
parameter value x. For an input symbol string w = 41 - - - i € I" and an input parameter value
string @ = x1-- 2, € D", we define a parameterized input string, i.e., the association of w
and o as w ® o = i1(x1) - - - ig(zk), where |w| = |a|. The association of an output symbol string
and an output parameter value string is defined analogously. Then, for the state ¢; €), when
applying a parameterized input string w ® «, the machine moves successively from ¢; to the
states gj+1 = 6(gj,%5,2j),1 < j < k. We extend the functions to parameterized input strings
when applying w ® a on ¢; as 0(q1,w, @) = qx4+1 to denote the final state, A(q1,w,) = 01 - 0
to denote the complete output symbol string and (g1, w)(c) =y - - - Y to denote the complete
output parameter value string, where each o; = X(g;, %5, 2;) and y; = o(q;,;)(z;).

An example of a PFSM model over the sets I = {a,b}, O = {s,t}, D; = Do = Z, where Z

is the set of integers, is shown in Figure [2.3

2.2 Quotient of Finite State Machines

A quotient of a state machine is an approximation with respect to a certain equivalence relation.
In our learning and testing context, we consider the equivalence relation of states with respect to
the observed traces of the machine, denoted by Z¢. The equivalence relation and the quotients

of Mealy machines and PFSM models are defined in the subsections.

19

Figure 2.3: Example of a Parameterized Finite State Machine

2.2.1 Quotients for Mealy Machines

The state equivalence relation for a Mealy machine is defined as follows.

Definition 5 Let (Q,I,0,6,)\, qp) be a Mealy machine and ® C I* be a set of input strings,
then the states ¢, ¢ € Q are ®-equivalent, denoted by ¢ ¢ ¢/, if and only if A\(q,w) = A(¢,w),
for all w € ®. O

A quotient of a Mealy machine is defined as follows.

Definition 6 Let M = (Qu,1,0,0m, i, qopr) and M = (Qz7, 1, 0, 657, A\57, q037) be two
Mealy machines and ® C I* be a set of input strings. Then, M is a ®-quotient of M if and
only if

1. Qg C 2@M such that qo,, € qoj; and if s € g37 and t € q’ﬁ, for qy7, q’M € Q7 then
anr = 47 if and only if s =g ¢.

2. For all ¢35 € Q37 there exists s € g7 such that for all w € ®,

)\M(S> w) = Aﬁ(‘]ﬁa w)' O

If @ is the set of all the strings from I of certain length k, then the state equivalence
relation for Mealy machines is called k-equivalence, and a quotient defined on such & is called

k-quotient. The definitions are given as follows.

Definition 7 Let (Q,I,0,6,), qo) be a Mealy machine and ® = I* be the set of all the input
strings from I of length k, then the states q,¢' € @ are k-equivalent if and only if A\(¢,w) =
AM¢',w), for all w € P. o

A k-quotient of a Mealy machine is defined as follows.

Definition 8 Let M = (Qu,1,0,0um, A, qop) and M = (Q37, 1, 0, 657, A\g7, q037) be two
Mealy machines and ® = I* be the set of all the input strings from I of length k. Then, M is
a k-quotient of M if and only if

20

1. Q7 C 29 such that qoy; € qoj7 and if s € gg7 and ¢ € a5 for azr, a5y € Qpr then
a7 = q’M if and only if s and t are k-equivalent.

2. For all ¢35 € Q37 there exists s € g7 such that for all w € ®,

A (8, w) = Agpagz, w)- O

2.2.2 Quotient for PFSM models
The state equivalence relation for a PFSM model is defined as follows.

Definition 9 Let (Q,I,0,D;,Do,T,qy) be the PFSM model and ® C {w ® a|w € I*,a €

Dr*, |w| = |a|} be a set of parameterized input strings, then the states q, ¢’ € Q are ®-equivalent,

denoted by g =g ¢/, if and only if M(q,w,a) = A(¢,w, @) and o(q,w)(a) = o(¢',w)(a), for all

wRaed. m
The quotient of a PFSM model is defined as follows.

Definition 10 Let P = (Qp, I, O, D[p, DOP» Fp, qOP) and F = (Qﬁ’ I, O, Dlﬁa DO?, Fﬁ, QOﬁ)
be two PFSM models. Let Dy € Dip, Dop € Dop and ® C {w ® a|lw € I*,a € D15, |w| =
||} be a set of parameterized input strings. Then, P is a ®-quotient of P if and only if

1. Q@5 C 297 such that qop € gop and if s € gp and t € 5, for ¢p, ¢5 € Qp then ¢p = ¢ if
and only if s &g t.

2. For all g5 € Q5 there exists s € g such that for all w ® a € @,

Ap(s,w,a) = A\p(gp,w,a) and op(s,w)(a) = op(gp,w)(a).

2.3 General Notations

Some of the general notations which are used in the manuscript are listed below.

L(D) denotes the language of the DFA D.

® associates a string from one set with a string of another set. Let {a, b, c} and {1,2,3} be two
sets, then the string a - b - ¢ is associated with the string 1-2-3 asa-b-c®1-2-3, which
is equal to (a,1) - (b,2) - (¢,3). See Definition

Q) denotes the absence of the output. If a finite state machine does not produce any output to

a particular input, then the output to the input is 2. See Definitions 2] and [4]

1 denotes the absence of the parameter value. In PFSM model, if an input symbol ¢ does not

take any input parameter, then ¢ is associated with L, i.e., i ® L. See Definition

21

® denotes a finite set of strings. See Definitions [}, [7] and [0

>~ denotes the equivalence relation of the states of the finite state machines with respect to ®.
Let @ be the set of input strings, then two states are equivalent with respect to ® if they
produce same output strings for all the input strings in ®. See Definitions and [9]

pref¥(w) denotes the prefix of the string w of length k. Let w = a-b-c...z be a string, then
pref(w) =a-b-c.

suff¥(w) denotes the suffix of the string w of length k. Let w =a-b...z-y- 2z be a string, then
sufff(w) =2 -y - 2.

IS(v) denotes the input symbol string from a (parameterized) input string v. This function is
used in PFSM models. Let I = {a,b,c} and Dy ={1,2,3}. fv=a-b-c®1-2-3,1ie.,a
parameterized input string, then IS(v) =a-b-c. f v =a-b- ¢, i.e., a non-parameterized

input string, then IS(v) =a-b-c.

22

Chapter 3

Background and Related Work

This chapter overviews the background work and surveys the state-of-the-art in the domain of
automata learning and testing. It presents the notable works in passive learning and testing,
active learning and testing and learning enhanced state models. It finally discusses the potential

subareas that are addressed in the thesis.

3.1 Introduction

The research in the behavior inference of software systems has extensive body of literature. Most
of the works is related to program understanding in the case of the availability of source code. For
example, Ernst et al. [ECGNOI] developed a tool, called Daikon, to infer program invariants over
a set of monitoring variables in the running program. Walkinshaw et al. [WBHO06] developed a
method to extract state transitions from source code and identify the statements which trigger
specific transitions. When source code is not available, researchers look for partial specifications
and build their understanding on the inference of component interactions by applying tests on
the system that are derived from the specifications. For example, Abdurazik and Offutt [AO00]
used UML collaboration diagrams for generating test suites that cover the interaction patterns
in the system. Wu et al. [WPCO1] derived Component Interaction Graph (CIG) that captures
interactions and dependencies among components by probing their interfaces and consulting
available information. When considering the black box components where no source code and
formal specifications are available, most approaches rely on inference from the system execution
and deriving the formal models from the observations. A promising approach for the behavioral
inference of such systems is applying the automata learning techniques and combining it with
automata based testing techniques. Our work mainly focuses on this approach and we survey

the significant works in automata learning and testing domain in this chapter.

23

The theoretical research in automata learning has been vibrant for decades, but there are
not many studies with respect to its practical orientation, even in its general context. Only in
the past few years, there are some efforts for providing a framework for combining automata
learning and testing techniques and dealing with real applications. This research is generally
divided into two wide categories, i.e., passive and active. In passive learning, there is no control
over the observations we receive to learn the model. In active learning, there is a liberty to
experiment or query the black box machine to collect observations and then learn the model. In
the following sections, we discuss the concepts and some notable works under these categories,

and later we point out the potential subareas that are addressed in the thesis.

3.2 Passive Automata Learning and Testing

The concept of passive learning is to learn the model from a given set of observations. The
essence of this concept is that we are bound to learn from what we are given. The observations
could be randomly collected from the black box machine and then we can build an algorithm to
estimate a model from these observations. In the following, we present the theoretical results of
passive automata learning and then applications of this concept in learning and testing of the

black box systems.

3.2.1 Theoretical Results

The research in automata learning finds its roots in the grammatical inference works. Gold
[Gol72] was the first who laid down the theoretical framework for analyzing the grammatical
inference problem. The problem can roughly be stated as to infer a grammar that represents
an unknown regular language from a given set of samples. The samples are the strings from the
alphabet which are the words of the language, called positive samples, and possibly not in the
language, called negative samples. Such a grammar can be represented as a regular expression
or as a Deterministic Finite Automaton (DFA). Therefore, the problem has been referred as a
regular inference or an automata learning problem [dIH05]. Gold |Gol78] showed that finding a
minimum DFA from a set of positive and negative samples is NP-Complete. The research was
continued to find methods for approximate learnability that could learn concepts with a high
probability but in low complexity. The variety of models like Probably Approximately Correct
(PAC) model [Val84] and the mistake-bound models [Lit87], [HLW94] were proposed. But the
results imply the hardness of the problem.

Other techniques have been proposed for the inference of finite state automata, some of

them based on recurrent neural network architectures [Pol91] [GMCT92] and Markov models

24

IBRHO4]. Although these methods may exhibit, from a conceptual standpoint, some advantages;
the results [HG94] [CW98] show that they are not competitive in inference problems.

3.2.2 Applications

The above approaches were based on passive learning that relies on the given information to learn
a model. There is much work on describing the computational complexities of various passive
learning models (see surveys [AS83],[Pit89]). In the following years, the research evolved from
studying the theoretical complexities to evaluating the practical performance of the learning
methods. In the passive learning context, several algorithms based upon the state merging
approach (see survey [BO05]) and the genetic algorithms (e.g., [Dup94],[LCJ06]) were proposed
which were experimented on the standard DFA benchmarks. Cook and Wolf [CW98] compared
the algorithmic and statistical methods of passive learning to infer the software processes from
event based data. Despite the discouraging theoretical results of passive learning approach, there
exists applications of this approach in the behavior inference of black box systems by mixing it
with testing techniques. The intuition was to apply inference techniques on application domains
and assess their practicality. In the following, we discuss some of the recent works under this

context.

Mining Specifications

Ammons et al. [ABL02| proposed mining specifications approach for discovering the formal
models of the black box systems. They observe the system execution and concisely summarize
the frequent interaction patterns of components in the system as state machines that capture
both temporal and data dependencies. The inferred models can be used to increase system
understanding and can be applied for verification and debugging.

The mining approach consists of four parts: tracer, flow dependence annotator, scenario
extractor and automaton learner. The tracer records the interactions of components how they
interact with an Application Programming Interface (API) or Abstract Data Type (ADT) of
each other. The tracer records only function calls and returns, although depending on the
API/ADT, it allows tracing other events such as network messages in the system. The flow
dependence annotates the traces with constraints how the interactions may be reordered and
identify related interactions that could form scenarios. The scenario extractor extracts the
scenarios, i.e., a small set of interdependent interactions from annotated traces, and prepares
them for the automaton learner. The automaton learner analyzes the extracted scenarios and
infers a probabilistic finite state automaton (PFSA) using a passive learning algorithm, called

sk-string method [RP97]. A PFSA is a nondeterministic finite automaton (NFA) in which each

25

edge is labeled by an abstract interaction and weighted by how often the edge is traced generated
or accepting scenarios. Rarely-used edges correspond to infrequent behaviors, which are later

on removed in post processing along with all weights, leaving a NFA.

Detecting Differences in System Versions

Mariani and Pezz [MPO05] proposed a behavior capture and testing approach for detecting the
differences in two system versions. The approach consists in first collecting the observations
about component interactions during testing and field execution, and then monitoring the inter-
actions for new component versions or for existing components in the new software system, to
detect differences with respect to the previously observed behaviors. The observed differences
provide information about both new behaviors that may correspond to new requirements, and
misbehaviors that may correspond to unexpected erroneous interactions.

The observations are collected through object-flattening technique, which consists of iden-
tifying the set of methods (or APIs) to extract state information semi-automatically. Those
observations are used to calculate two classes of invariants , i.e., I/O invariants and interaction
invariants. I/O invariants describe the relation between data exchanged among components and
are computed with Daikon [ECGNOI]. Interaction invariants describe the interactions among
components, and are computed by synthesizing finite state machines. They provide a passive
learning algorithm to learn the state machine using the collected observations. The calculated
invariants are then checked at runtime in the new system. The invariant violations are inter-

preted by the designers to analyze the behaviors of the new system.

System Verification

Bertolino et al. [BMPO06] proposed an approach of verifying system architecture specifications
(which describes the components, connectors, interfaces and ports) with the collected obser-
vations of the system (which specify the actual behaviors of the components). The approach
works by first capturing the traces of executions and transferring the traces into a formal model.
The model is then checked for compliance with the system architecture specifications, using a
model checker.

The specifications of the system architecture are realized in terms of stereotyped UML
2.0 component diagrams. The observations are collected by instrumenting the middleware
and monitoring the component interactions in the running system. The interactions are then
realized into Message Sequence Charts (MSC). The verification is done by applying a tool,
called Charmy [IMP05]. Charmy translates the specifications into Promela (language of the
model checker SPIN) [Hol03]. Then, it translates the MSCs into Biichi Automata [Biic62]

26

(the automata representation for temporal formula [Eme90|, which describe properties to be
verified). Finally, SPIN evaluates the properties validity with respect to the Promela code. If

counterexamples are produced, an error is reported.

3.3 Active Automata Learning and Testing

The concept of active learning is to collect observations by asking queries and receiving re-
sponses. It then learns a model based upon those observations. This is different from passive
learning in which the model is learned only based upon the given observations. In active
learning, the ability to ask queries helps to elucidate conflicts in the inference results. In the
following, we present the theoretical results of active automata learning and then applications

of this concept in learning and testing of the black box systems.

3.3.1 Theoretical Results

Pitt and Warmuth [PW89] have shown that although passive learning approach is apparently
intractable, the combination of active and passive learning is feasible. Kearns and Vazirani
[KV94] is a good reference to have an overview on the computational complexities of the pas-
sive and active learning approaches. Active learning is considerably a better approach in which
the black box system is explored (in a systematic way) in finite time and then an inference is
done based on the observations from the system with interesting properties. In this framework,
Angluin [Ang87], elaborated on the algorithm of Gold |Gol72], proved that if a learning algo-
rithm uses queries to collect observations and obtains clues for the target model, then finite
automata can be learned in polynomial time. In the settings of grammatical inference, An-
gluin provided an efficient algorithm to learn a minimum DFA that models an unknown regular
language. Angluin’s algorithm plays an important role in our work. We shall describe the
complete algorithm with its complexity analysis in Chapter [4 Here we provide a brief sketch
of the algorithm.

Angluin’s algorithm asks membership queries over the known alphabet ¥ of the language to
check whether certain strings from >* are accepted or rejected by the language. The result of
each such query is recorded as an observation. These queries are asked iteratively until some
conditions are satisfied on the collective observations. The algorithm estimates a DFA, called
conjecture, based on the recorded observations. It then asks an equivalence query to a so called
oracle, that knows the unknown language, to verify whether the conjecture is equivalent to
the target DFA. The oracle validates the conjecture if it is correct or replies with a counterex-

ample otherwise. The algorithm uses this counterexample to perform another run of asking

27

membership queries until it constructs a “better” conjecture. It iterates in this fashion until
it produces a correct conjecture that is isomorphic to the target DFA. Let || be the size of
the alphabet X, n be the total number of states in the target DFA and m be the length of
the longest counterexample provided by the oracle, then the worst case complexity of Angluin’s
algorithm is O(|Z|mn?).

Note that there is no polynomial time algorithm if we allow only membership queries and
require that the target DFA be exactly learned [Ang81]. In other words, we must have a
mechanism to check the equivalence of the conjecture and the target model. Angluin [Ang87]
used the concept of the oracle that resolves this equivalence check. The oracle is a theoretical
construction to make an idealization of a potentially hard problem, in order to provide a clean
setup in regular inference. In reality, there exists no such oracle. The alternatives of the oracle
assumption demand a compromise on precision and cost. There are several testing techniques
that can be applied to check this equivalence and obtain counterexamples if the conjectured
model is different from the target model. For example, one can perform a random walk over
the strings of alphabet and test each string on the conjecture and on the black box to detect
the differences [RS93] [SLO7] [SHLO8]. But this may provide long counterexamples that can
influence the complexity of the algorithm negatively. Moreover, random testing does not provide
a guarantee on the exact learning. Another way is to use the methods from conformance testing
ILY96] that can provide a systematic way of achieving the answer of an equivalence query. Let
d be the number of states in the conjecture and assume that we know some upper bound !
on the number of states in the black box such that [> d, then by applying the tests in a
conformance test suite by Vasilevskii and Chow algorithm (aka VC-algorithm or W-method
[Vas73][Cho78]) to the black box, we shall find at least one test that can detect its difference
with the conjecture. This test constitutes a counterexample as the answer of an equivalence
query. The worst case complexity of this method is O(d?l|S|'~%+1), that is, exponential in the
difference between the upper bound on the number of states of the black box and the conjecture.
The other conformance testing techniques that can also be used are Wp [FBK'91| and Z [LY96]

methods, which use a smaller test suite compared to W-method.

3.3.2 Applications

Despite some practical problems in Angluin’s algorithm, this is considered a remarkable work
and has been applied in various domains, for instance, map learning [RS93|, behavior modeling
IMSO01a] [HMS03|] [RSMO7], model checking [PVY99] [SLO7], testing [HNS03] [SHLOS| etc. The

applications of Angluin’s algorithm in real black box learning and testing problems, combined

28

with its improvements and statistical analysis [BJLS05], paves the way toward reverse engineer-
ing complex software systems. In the following, we discuss some of the recent and significant

works under this context.

Black Box Checking

Peled with other researchers has produced a series of papers that provide a solution of model
checking black box systems. Black Box Checking (BBC) [PVY99] is the first and the pioneer-
ing paper, according to our knowledge, which proposed to combine active learning and model
checking under one framework. The problem which is addressed is: a prerequisite for model
checking is the provision of a model, which black box system does not provide. BBC proposes to
learn the model first, then perform model checking on the learned model. The algorithm used
for learning is Angluin’s algorithm, and the equivalence check is performed by VC-algorithm.
Therefore, it is assumed that the upper bound [on the number of states in the system is known.

BBC is an iterative procedure which is described as follows. First, the model of the system
is learned through Angluin’s algorithm. Once a model is learned, it is provided to a model

checker for verifying the given property. This yields one of the following two possibilities.

1. If the model checker produces a counterexample, i.e., the model does not satisfy the prop-
erty, then the counterexample is confirmed on the system if it is indeed a counterexample
for the system. Recall that the model checking is performed on the approximation of the

system, and not on the system directly.

e If the system confirms the counterexample, i.e., the system does not satisfy the

property, then the counterexample is reported and the procedure terminates.

e If the system refutes the counterexample, then the counterexample is given to the

learning algorithm to refine the model.

2. If the model checker does not produce a counterexample, i.e., the learned model satisfies
the property, then the model is checked for equivalence with the system. For this purpose,
VC-algorithm is applied to look for discrepancy between the current approximation and

the system.

e [f VC-algorithm finds such a sequence that can distinguish the system with the
current model, then the sequence is a counterexample for the model, which is refined

by giving the counterexample to the learning algorithm.

29

+

Incremental Learning

discrepancy found | (Angluin's Algorithm) counterexample
¢ refuted
Model Checking
w.r.t

current model

No counterezy Werexample found

| | Check Equivalency Confirm counterexample
(VC-algorithm) on system
no discrepancy counterexample
between confirmed
system and model
A 4 A 4
Report no error found Report counterexample

Figure 3.1: The learning and model checking procedure of Black Box Checking

e If VC-algorithm finds no counterexample, i.e., the model is completely learned and

trivially the system satisfies the property, then the procedure terminates.

The BBC procedure is summarized in Figure [3.1] The worst case of this procedure arrives
when the system satisfies the property and the model is completely learned. Assuming that the
total number of states in the system is n (unknown but smaller than the known upper bound
1), then the worst case complexity of the BBC procedure is given as O(n?|X|" + n2|2|="+1).
Note that if we do not know the bound [, then the learning algorithm can run until time permits
[PVY99].

The next paper of the same series is Adaptive Model Checking (AMC) [GPY02], in which
the authors assume an existing model that may be inaccurate but not completely obsolete.
The experiments of AMC showed that initializing the learning algorithm with the existing
information expedite the performance of the algorithm. The last paper of this series is Grey
Box Checking (GBC) [EGPQO6], in which the authors assume that some components in the
system are known (white boxes), and the rest are unknown (black boxes), giving rise to a grey
box system. The experiments of GBC showed that the speedup over BBC can be up to two order
of magnitude. The experiments of AMC and GBC concluded that the average case complexity
for model checking real systems can be improved depending upon how much information about
the system is available. However, the exponential time complexity cannot be avoided in the

worst case.

30

Protocol Learning and Testing

Shu and Lee [SLO7| used active learning techniques to validate the security properties of the
protocol whose implementation is unknown. Their work is inspired by the Black Box Checking
work [PVY99] in which the model is learned through Angluin’s algorithm, then the property
is checked on the learned model, followed by applying a conformance testing method for the
equivalence check. They assume that the protocol specification is given from which the security
properties can be extracted and checked against the unknown implementation. However, the
implementation may contain more behaviors than the given specification. Therefore, they also
intend to learn the implementation in the iterative procedure and check the security property
on the incrementally learned models. The protocol specification is modeled as a Symbolic Pa-
rameterized Finite State Machine (SP-EFSM) that is a compact representation of an equivalent
Mealy machine. They modify Angluin’s algorithm to learn directly the Mealy machine instead
of a DFA model. For equivalence check, they implement a method that generates random check-
ing sequences of the given length up to ¢ times. We explain their learning and testing procedure
as follows.

First, the black box protocol implementation is learned through Angluin’s algorithm. Once
a model is learned, it is checked for security violations against the specification. As in the BBC

procedure, this yields one of the following two possibilities.

1. If a violation is found, i.e., there is a counterexample that leads the model to violation,

then the counterexample is confirmed on the black box.

e If the black box confirms the counterexample then the procedure terminates with

result “FAIL”.

e If the black box refutes the counterexample, then the counterexample is given to the

learning algorithm to refine the model.

2. If no violation is found, then the learned model is checked for equivalence using their

method of generating random checking sequences.

e [f the equivalence method finds such a sequence that can distinguish the model with
the black box, then the sequence is a counterexample for the model, which is refined

by giving the counterexample to the learning algorithm.

e If the equivalence method finds no counterexample, then the procedure terminates

with result “PASS”. Note that in this case, it does not necessarily mean that the last

31

learned model is equivalent to the black box; instead it means no further discrepancies

can be found between the model and the black box by their equivalence check method.

Let |I] be the size of the input set of the Mealy machine, n be the total number of states in
the machine and ¢ be the number of times random checking sequences are generated, then the
total complexity of their protocol learning and testing procedure is O(|I|n*+tn?+|I|n3+nf(d)),

where f(d) is the cost of validating the security for a conjecture with d states.

Web Application Exploration

Raffelt et al. [RSMOQT7] used learning and testing approach in the exploration of a web application.
They studied Mantis [Man07], an open-source online bug tracking system, and analyzed the user
authentication module of the application. Their approach is very similar to the works described
above, with a difference is that they do not check any property on the system; rather their
intention is to understand the working of the web application. They learned how the application
behaves if a user enters without login and what parts of the application are accessible if the
user is authenticated.

They adapted Angluin’s algorithm to learn Mealy machines of the system. Initially, the
input set of the system is manually provided to the learning algorithm, but new inputs may
be discovered during the learning process (in terms of links, forms, web pages etc). Therefore,
they dynamically enhance the input set whenever new inputs are discovered, and relearn the
model with the new input set. When no more inputs are discovered, then the equivalence check
is performed on the last learned model by applying the Wp-method [FBK™91]. If the learned
model does not conform to the real system, a counterexample is returned, and thereafter, the
model is refined and the iterative procedure starts again. The procedure terminates when the
equivalence check does not provide a counterexample, which means that the model is completely

learned.

Reverse Engineering by combining Passive and Active Approaches

Walkinshaw et al. [WBHS07] used a combination of passive and active learning approaches for
reverse engineering state models. Their technique is based upon Dupont’s Query-driven State
Merging (QSM) inference algorithm [DLD™08|, which espouses the features of both approaches.
The working of QSM algorithm is sketched as follows.

The QSM algorithm accepts a set of positive and negative samples as input. Then, it
represents the samples as a prefix tree automaton, in which each state is either accepting or

rejecting depending upon the corresponding sample. Then, it searches for candidate states

32

to merge, followed by merging those states. The resulting automaton is actually a conjecture
which may accept or reject more strings that are not handled by the previous automaton
(initially the tree automaton). Therefore, the algorithm generates membership queries from the
conjecture to check the validity of those strings. If all queries are validated, then the conjecture
is returned, otherwise the samples are updated with the strings that are not validated and the
QSM procedure is called again. The algorithm runs until no queries are generated.

The authors applied QSM technique in learning an open-source Java drawing tool, called
JHotDmuB The samples is this case are the traces of method invocations that are accepted
or rejected by the application. First, they develop a set of mappings from the sequences of
method invocations in the traces to abstract functions, such that, a low level dynamic trace can
be lifted to a series of high-level functions. Then, each trace is made into a string of abstract
functions and fed into the QSM algorithm. If the algorithm generates queries, they are asked
to the application. For the queries which are not validated, their corresponding traces are fed

back into the QSM algorithm and the process repeats until no further queries are generated.

Domain Specific Optimizations

Hungar et al. [HNSO03][HMSO03] studied the domain specific applications of Angluin’s algorithm
and evaluated its practicality. They noticed that Angluin’s algorithm can be optimized if it
learns prefix-closed languages. A language L is prefix-closed if for every string w in L, all
prefixes of w are in L. A DFA is called prefix-closed if its language is prefix-closed. So they
proposed improvements in the algorithm for the problems that can be modeled as prefix-closed
DFAs.

The optimizations are realized in terms of filters that parse the membership queries of
Angluin’s algorithm before asking to the real system. The filters select few queries among the
generated queries to ask to the system. The rest of the queries can be answered automatically
according to the result of the asked queries. For example, a prefix of an accepted string w
will always be accepted in a prefix-closed language. So, it does not need to ask the prefixes;
instead asking w is sufficient. Another example is of a string that is rejected by the language.
So the suffixes of such a string will always be rejected. In this way, the number of membership
queries can be reduced in the case of prefix-closed DFAs. Their experiments with the randomly
generated prefix-closed DFAs achieved 20 % reduction of membership queries compared to the
basic algorithm.

The authors also applied their improvements in the testing of a call center system. They were

mostly concerned with the inference of the behaviors of the system on different call scenarios.

"http://www.jhotdraw.org

33

Originally, they modeled their problem as a Mealy machine but then transformed it into an
equivalent prefix-closed DFA, so that Angluin’s algorithm could be applied, incorporating their
optimizations.

In the continuation of the same work, Margaria et al. [MNRS04] proposed to learn Mealy
machines directly by adapting Angluin’s algorithm and compared the results of the previous
work of prefix-closed DFA learning with direct Mealy machine learning. Their results showed a
further reduction in the membership queries when learning Mealy machines directly, compared
to the previous results. The authors commented that this is due to the fact that Mealy machines
model more naturally the i/o behavior of the system, which DFAs do not support the structure
directly. DFAs require an encoding in terms of artificial transitory states which increases the
model size in terms of the number of states. Since, the complexity of Angluin’s algorithm is
polynomial on the number of states, Mealy machine learning experiences quite less number of

queries due to its reduced state size compared to the equivalent DFA.

3.4 Learning Enhanced State Models

The domain specific studies and the applications of Angluin’s algorithm, for example in the
learning and testing of telecom systems [HNS03] [HMS03] [MNRS04], in the exploration of web
applications [RSMQ7] and in constructing the models of protocols [SLO7| [BJROG], advocate
for learning more enhanced state machine models than simple DFAs. The main reasons are:
i) Basic DFA models do not capture the fine granularity of a complex system. They can be
used in the context of model checking because it builds reachability graphs akin to DFA. On the
other hand, when considering complex systems which have input and output behaviors or which
are composed of components that exchange lots of parameterized data values from arbitrary
domains (like protocol data unit), DFA modeling could result in a combinatorial blow up on the
transition level. There is a need of rich structure that is more expressive and capable of modeling
such systems without losing generality. ii) In order to mitigate the computational complexity of
the algorithm, it is useful to enclose the (possibly infinite) domains of data values of the system
into some sort of parameterized structure. The number of queries in the learning algorithm
grows with the size of the data values. But usually such systems show similar behaviors on a
subset of those values. If some values are irrelevant or never used, the learning algorithm may
still work without taking them into account.

There have been several trials of learning enhanced models using the settings of Angluin’s
algorithm. The best part of this algorithm is that it can be easily adapted to learn Mealy ma-
chines. This adaptation has been successfully applied in many works, e.g., [MNRS04] [RSMOT]

34

[SLO7]. Actually, learning Mealy machines is an intermediary level between learning naive mod-
els and expressive models like Extended Finite State Machines (EFSM) [LY96]. For example,
Shu and Lee [SLO7] modeled their protocol specifications as SP-EFSM, but they rely on learning
its equivalent Mealy machine. Recently, Berg et al. [BJRO6] proposed a parameterized model
which can be learned directly from a black box component using the original settings of An-
gluin’s algorithm. This model preserves all the properties of DFA, plus incorporates parameters
and predicates associated with the labels on transitions. However, the model does not contain
outputs and output parameters. Also, it assumes only boolean space for the parameter values
associated with the labels. Lorenzoli et al. [LMPOG] proposed to learn Finite State Automata
with Parameters (FSAP), which is similar to the model of Berg et al. [BJR0OG]. But this is in
passive learning settings in which they assume the provision of a given set of traces through
which they can learn FSAP by applying a state merging algorithm, called k-tail [BE72]. The
algorithm allows merging states in the traces which have same k future, i.e., that are followed

by the same behaviors up to a depth of k steps.

3.5 Discussion

We have laid out the background for the research developed in this thesis. We summarize the
bibliographic study of the domain and point out the potential subareas that are addressed in

the thesis.

3.5.1 Summary

The problem of behavior inference is in general difficult. Many techniques have been proposed
to derive formal models of the system behaviors under different contexts. When source code is
available, the models are extracted by directly deeming into the implementation. When (partial)
specifications are available, the interactions of the real components are modeled by deriving tests
from the specifications. When considering the behavioral inference of the black box systems,
the problem becomes quite challenging. Previously, passive learning approaches have been used
for the purpose of inferring models and testing the properties on the systems. However, it is
observed that active learning approaches provide quite better results than the passive ones. In
this vein, Angluin’s algorithm [Ang87] has been considered a remarkable work which has been
applied to various domains for learning and testing real applications. It is evident that the
theoretical complexity of Angluin’s algorithm with the alternatives of its oracle assumption is
still intractable [PVY99]. On the contrary, the experimental results of the application of the

learning and testing approach using Angluin’s settings evidence encouraging results where the

35

Works Objective Original Model Learned Model
Peled et al. [PVY99) Model Checking DFA DFA

Shu and Lee [SLO7] Inference and Testing | SP-EFSM Mealy Machine

Raffelt et al. [RSMOT] Inference Mealy Machine Mealy Machine
Walkinshaw et al. [WBHS07| | Inference DFA DFA

Hungar et al. [HNSO03] Inference and Testing | Mealy Machine DFA

Margaria et al. [MNRS04] Inference Mealy Machine Mealy Machine

Berg et al. [BJROG] Inference Parameterized Machine | Parameterized Machine

Table 3.1: Summary of the works in Active Learning and Testing Approach

real world systems have been considered [HNS03] [HMS03] [BJLS05] [RSMO7] [SLO7] [SHLOS].
Table provides the list of works in the active learning and testing approach, in the order of
their appearance in the chapter. The first column labels the works, the second column mentions
the objective of the works, the third column mentions the original model in which the authors

modeled their problem, the fourth column mentions the model which they actually learned.

3.5.2 Our Work in Learning and Testing

Our work is complementary to the active learning and testing approach that has been addressed
previously, notably in black box checking [PVY99]. In fact, we consider a system of black box
components that are communicating with each other, and then analyze the whole system using
the learned models of the individual components. However, instead of applying system verifi-
cation techniques to check the given user-defined properties, we test the system for finding the
compositional problems such as deadlock and livelock. In the absence of formal requirements,
we look for generic errors in the system that can cause failures during its execution. Moreover,
the availability of observations before starting the learning procedure, as in [GPY02] [EGPQ06]
[WBHSO07], is not assumed in our work.

We exploit the use of Angluin’s algorithm to learn each component in isolation and later
compute the product of the learned models. However different from other approaches [PVY99]
[SLO7] [RSMO7], we do not assume the upper bound on the number of states in the system to
apply conformance testing methods as a replacement of the equivalence check. The accurate
estimation of such a bound in the real system is hard which can explode the complexity of the
learning procedure when applying conformance testing method for the equivalence check. In
our work, we take benefit of the product of the learned models to derive tests for the equivalence
check of the integrated system. These tests from the product most likely visit the unexplored
parts of the components, since the product represents an approximation of the whole system, and

therefore these tests can stimulate interactions between the components. This means the tests

36

from the product can exercise those parts of the components which are relevant to the integrated
system and might not be explored during their unit learning. We argue that this approach can
alleviate the oracle problem, since the same product of models from which the tests are generated
can act as an oracle. The problem is the partiality of the models which may not fully describe
the internal structure of the components. However, partial models are accepted as a viable
solution to oracle automation in the black box testing framework [BerQ7]. Weyuker [Wey82]
calls such models “pseudo-oracles” and notes that it is sometimes much easier to distinguish
plausible from implausible results than to precisely distinguish correct from incorrect results.
The challenge is to find the best trade off between precision and cost. In any case, the model
learned from the component is an approximation of the real model. It is necessary to state
the formal relation between what we learn from the component and what is the reality. In the
case of state machines, we show that the approximated model can be described as a quotz’emﬂ
of the real model, which is defined according to some equivalence relation on states. So, we
propose a framework of leaning and testing the integrated system of black box components, by
learning the quotients of the components, and then deriving tests from the quotients to test the

integrated system.

Learning Enhanced State Models

The other important area we addressed is the learning of enhanced state models. As discussed
before, it is quite desirable to devise learning methods for such models. This problem is still not
addressed adequately and needs more attention in terms of both theory and practice. In our
work, we propose enhanced models and the algorithms for learning such models directly from
the black box components.

First, we consider the adaptation of Angluin’s algorithm for learning Mealy machines (like
Margaria et al. [MNRS04] did for the comparison of DFA and Mealy machine learning). How-
ever, we have observed that even the adapted algorithm can be further improved such that the
complexity of learning is significantly reduced. We propose our improvements and show with
the help of complexity calculations and experiments that our improvements has a gain over the
direct adaptation.

Later, we propose a Parameterized Finite State Machine (PFSM) model and the algorithm
for learning such models. PFSM is more expressive compared to the models proposed in the
previous works of automata inference (e.g., [BJLS05] [LMP06] [RSMO7] [SLO7]) in terms of
parameterized inputs/outputs, infinite domain of parameter values, predicates on input param-

eters and observable nondeterminism when interacting with input parameter values. Compared

!See Chapter [2| for the definitions of quotients

37

to the usual EFSM model [LY96], we stop short of including variables in the model, because
when we learn a black box, we cannot distinguish in its internal structure what would be en-
coded as (control) state and what would be encoded in variables. All state information in our
model is encoded in the state machine structure.

Following the discussion on PFSM learning, it is important to mention how to select param-
eter values for testing during the learning procedure. DFA and Mealy machines have a finite set
of inputs and the learning algorithm considers all inputs for their learning. The parameterized
model of Berg et. al. [BJROG] consists of boolean parameters and therefore selecting the values
is not a problem. In the FSAP model of Lorenzoli et al. [LMPOG], the possible parameter values
are already included in the given traces. In the case of PFSM models, the domain of parameter
values can be infinite. Therefore, the selection of parameter values during the learning of a
PFSM model is an issue. We assume to know only parameter types but it is unknown what
concrete values the components must be given for its learning. This leads to a classic problem
of test data selection in black box testing [Kor99]. There is an enormous body of literature
on this specific problem and we do not refer to any specific strategy for parameter value selec-
tion. In our work, selecting the values is mostly intuitive or relies on simple techniques, e.g.,
random testing, bounded exhaustive testing, equivalence partitioning, boundary value analysis
[MSBT04], to name a few.

3.5.3 Extended Work

We extend the work of learning PFSM models towards learning functions. In fact, the active
learning of PFSM models involves in testing certain input parameter values and observing
the corresponding output parameter values. Finally, it outputs a PFSM conjecture in which
transitions are labeled with input/output parameter value pairs. However, it is possible that
instead of labeling with just pairs, we learn meaningful relationships over the observed values and
then label the transitions with those relations. Those relations are actually an approximations
of the output parameter functions in the PFSM model. We extend the work of PFSM inference
in this direction. In our first attempt, we propose to learn such relations as data invariants.
We exploit the use of Daikon (the invariant detector) [ECGNOI|] by providing it the set of
observations on the input/output parameter values and then inferring the data invariants over

the values.

3.5.4 Main Contributions

In the light of the above discussion, we summarize the main contributions in the thesis in the

order of their presentation in the manuscript.

38

We have improved the Mealy machine adaptation of Angluin’s algorithm and proved
that our method has significantly reduced the complexity of the learning algorithm. The

theoretical results are also verified on a workbench of finite state machines.

We have proposed a framework of learning and testing integrated systems of black box

components.

We have proposed a Parameterized Finite State Machine model that can be learned using

the original settings of Angluin’s algorithm.

We have extended the work of PFSM inference towards learning functions. We have
proposed a method to infer output parameter functions in the PFSM model using the

data invariant inference mechanism.

We have validated our approach on the case studies from the industry in which real systems

have been considered.

39

40

Chapter 4

Deterministic Finite Automaton

Inference

This chapter is a continuation of the state-of-the-art, but dedicated to the inference of Determin-
istic Finite Automata through the active learning approach. It describes Angluin’s algorithm,

its complexity and its variants proposed in other works.

4.1 Learning Algorithm for DFA

A finite regular language is a subset of ¥X*, i.e., the set of finite strings of letters. A regular
language can be modeled as a DFA (Definition (1), which accepts the strings from ¥* those are
included in the language and rejects all others. The regular inference problem can be seen as
identifying the regular language modeled as a DFA. There are several frameworks for inferring a
DFA from a black box machine which accepts a regular language. The most well-known in active
learning approach, roughly called “learning from queries”, was introduced by Angluin [Ang87].
She presented an algorithm, called L*, for learning a minimum target DFA in polynomial time.
The basic idea of the algorithm is to explore the system systematically by asking queries and
collect the observations in the result of queries to build an automaton. The concept of learning
from queries and a full literature on different types of queries is given by her continuation
paper [Ang88], and the later framework paper by Watanabe [Wat94]. However, the two main

assumptions in the concept that are also required by the algorithm L* are as follows:

1. The basic alphabet ¥ is known

2. The machine can be reset before each query

41

The algorithm asks two types of queries. A membership query is asked to test whether a
string from >* is contained in the target language. The result of each such query in terms of
1 (accepted) or 0 (rejected) is recorded as an observation. These queries are asked iteratively
until some conditions are satisfied on the collective observations. L* estimates the target DFA,
called conjecture, based upon the recorded observations. It then asks an equivalence query to
a so called oracle to verify the hypothetical conjecture. The oracle validates the conjecture if
it is correct or replies with a counterexample otherwise. A counterexample is a string which is
accepted by the target DFA but not by the conjecture, or vice versa. L* uses this counterexample
to perform another run of asking membership queries until it constructs a “better” conjecture.
L* iterates in this fashion until it produces a correct conjecture that is isomorphic to the target

DFA. The basic set-up of the learning algorithm is presented in Figure

membership queries equivalence queries
»-|[he Algorithm L* <
accept/reject correct/
counterexample

Black Box Machine Oracle

Figure 4.1: Concept of the Learning Algorithm L*

We describe the complete algorithm L* and its complexity in the following sections. We
denote by D = (Qp, 2, dp, Fp, qop) the target unknown DFA that has a minimum number of
states. The output function and the complete output function for D are denoted by Ap and

Ap, respectively.

4.1.1 Observation Table

The algorithm L* maintains a data structure, called observation table OTp, to record the results
of the queries. To describe the structure of the table, let Sp and Ep be the non-empty finite
sets of finite strings over X. Sp is a prefix-closed set and Ep is a suffix-closed set of strings.
Let Tp be a finite function that maps (Sp U Sp - ¥) x Ep to {0,1}. An observation table
(Sp, Ep,Tp) can be visualized as a two-dimensional array with rows labeled by the elements of
SpUSp Y and columns labeled by the elements of Fp, with the entry for a row s € SpUSp-%
and a column e € Fp equals to Tp(s, e). Suppose s,t € Sp U Sp - ¥ are two rows, then s and ¢
are equivalent, denoted by s =g, ¢, if and only if Tp(s,e) = Tp(t, e), for all e € Ep. We denote

by [s] the equivalence class of rows that also includes s.

42

Initially, Sp and Ep contain an empty string ¢ and augment as the algorithm runs. The
membership queries are constructed from the table, where each s € Sp is a prefix and each
e € Ep is a suffix of the queries. The interpretation of T is that Tp(s,e) is 1 if s- e is accepted
by D, otherwise it is 0. Thus, Tp(s,e) = Ap(qop, s - e).

The algorithm L* eventually uses the observation table to build a DFA conjecture. The
strings or prefixes in Sp are the potential states of the conjecture. So, they are called “access”
strings as they allow to access the states of the target DFA. The strings or suffixes in Ep
distinguish these states from each other. So, they are called “distinguishing” strings. The
strings in Sp U Sp - % are used to construct the transition function, such that for every state
s € Sp there is a transition for each i € ¥.. An example of the observation table (Sp, Ep,Tp)
for learning the DFA in Figure is given in Table where 3 = {a, b}.

Ep

€

Sp € 1
a 0

So-2 1

Table 4.1: Example of the Observation Table (Sp, Fp,Tp)

To build a valid DFA conjecture from the observations, the table must satisfy two conditions.
The first condition is that the table must be closed, that is, for each t € Sp - X, there exists an
s € Sp such that s =g, t. If it is not closed, then there is a state s € Sp and ¢ € ¥ such that
the transition function cannot be defined for s and i (see the definition of dp below).

The second condition is that the table must be consistent, that is, for each s,t € Sp such
that s =g, t, it holds that s-i =g, t -4, for all i € ¥. If it is not consistent then two seemingly
equivalent states may point to different target states for the same letter in X.

When the observation table (Sp, Ep,Tp) is closed and consistent, then a DFA conjecture

can be constructed as follows:

Definition 11 Let (Sp, Ep,Tp) be a closed and consistent observation table, then the DFA
conjecture Mp = (Qp,%,0p, Fp,qop) is defined, where

e Qp ={[s]|s € Sp}
* qop =|e
e 6p([s],i) =[s-i],Vs € Sp,i € &

o Fp={[s]|]se€ Sp ANTp(s,e) =1}

43

Angluin proved that this conjecture is well defined with respect to the observations recorded

in the table (Sp, Ep,Tp). Theorem [I| claims the correctness of the conjecture.

Theorem 1 If (Sp,Ep,Tp) is a closed and consistent observation table, then the DFA con-
jecture Mp is consistent with the finite function Tp. Any other DFA consistent with Tp but

mequivalent to Mp must have more states. O

PRrROOF (SKETCH) The following three lemmas further illustrate the theorem. We provide a
sketch of the proof here and refer to the original paper [Ang87] for details.

Lemma 1 Assume that (Sp, Ep,Tp) is a closed and consistent observation table and Mp is

the conjecture from the table, then for every s € SpUSp -3, 0p(qop,s) = [s]. o

This is proved by induction on the length of s. It is clearly true when the length is 0, i.e.,
s = ¢, since qop = [¢]. Assuming that this is true for every s € Sp U Sp - X of length &, let
te SpUSp-% oflength k+1, i.e., t = s-i for some ¢ € .. Since, Sp is prefix-closed, s must
be in Sp, for either ¢ is in Sp or ¢ is in Sp - ¥. Then, by the induction hypothesis, we have
50(d0pst) = Op(3p(dop» 5),1) = p([s],3) = [s - 1] = [1].

Lemma 2 Assume that (Sp, Ep,Tp) is a closed and consistent observation table, then the
conjecture Mp is consistent with the function Tp. That is, for every s € Sp U Sp - % and
e € Ep, 6p(qop,s-e) isin F if and only if Tp(s,e) = 1. o

This is proved by induction on the length of e. When e = ¢, then for s € Sp U Sp - X,
we know that dp(qop,s) = [s], by Lemma [I} By the definition of F, [s] is in F' if and only if
Tp(s,e) = 1. Assuming that this is true for every e € Ep of length k, let f € Ep of length
k+1. Since, Ep is suffix-closed, f =i-e for some i € 3. Let s € Sp -, then since the table is
closed, there exists t € Sp such that s =g, t. Then, we have dp(gop,s-f) = dp(qop.t-i-e). By
the induction hypothesis on e, dp(gop,t-i-e) isin F if and only if Tp(¢,i-e) = 1. Since, s =g, t
and f=1i-e, Tp(t,i-e) =Tp(s, f). Hence, dp(qop,s- f) isin F if and only if Tp(s, f) =1 is

claimed.

Lemma 3 Assume that (Sp, Ep,Tp) is a closed and consistent observation table and the con-
jecture Mp has n states. Suppose M}, = (Q, %', 8, F)),q4p) is another DFA consistent with
Tp that has n or fewer states, then M}, is isomorphic to Mp. 0

Since M7, is consistent with T, then for each s € SpUSp-X and e € Ep, §,(qyp, 5-€) is in
F" if and only if Th(s, e) = 1, which means 07,(6', (¢,), €) is in F’ if and only if Tp(s,e) = 1.
So 8 (g6, s) is equal to the row s in Sp U Sp - X. Hence, as s ranges over all of Sp, 6},(q)p, 5)
ranges over all the elements of @, so M}, must have at least n states, i.e., it must have exactly
n states. To complete isomorphism, Angluin also proved that for each s € Sp, there is a unique
¢' € @', such that (¢}, s) = [s].

44

This concludes the proof of Theorem |1}, since Lemma [2] shows that Mp is consistent with
Tp and Lemma (3| shows that any other DFA consistent with Tp is either isomorphic to Mp
or contains at least one more state. Thus, Mp is uniquely the minimum DFA consistent with

Tp. n

4.1.2 The Algorithm L*

The algorithm L* starts by initializing the observation table (Sp, Ep,Tp) by Sp = Ep =
{€e}. To determine Tp, L* asks membership queries constructed from the table. For each
s € SpUSp - ¥ and e € Ep, a membership query is constructed as s - e. The result of each
query is recorded in the table accordingly. After filling the table with the results of the queries,
L* checks if (Sp, Ep,Tp) is closed and consistent.

If (Sp, Ep,Tp) is not closed, then L* finds t € Sp - ¥ such that t Zg, s, for all s € Sp.
Then, it moves t to Sp and extends Sp - ¥ accordingly. The algorithm then asks membership
queries for the new rows in the table.

If (Sp,Ep,Tp) is not consistent, then L* finds s,t € Sp,e € Ep and i € ¥ such that
s =g, tbut Tp(s-i,e) # Tp(t-i,e). Then, it adds the string i - e to Ep and extends the table
by asking membership queries for the missing elements.

These two operations are repeated until (Sp, Fp,Tp) is closed and consistent. Finally, L*

makes a DFA conjecture Mp from the table according to Definition

4.1.3 Learning with oracle

The learning of the unknown DFA D by asking queries is an iterative step. A conjecture from
a closed and consistent table after a run of the algorithm may still contain less number of
states than the minimum D. This is because the conjecture is an approximation drawn after
finite number of experiments, which may not have explored all the states of the hidden model.
Therefore, there must be some counterexample that can distinguish the conjecture and the
hidden model to start another iteration of the learning algorithm with a quest to learn a better
approximation.

Angluin uses a concept of an oracle that presumably knows the target language. L* presents
the conjecture to the oracle that acknowledges whether the conjecture is correct. This correct-
ness check is called asking an equivalence query for the conjecture. The oracle replies either
yes, signifying that the conjecture is correct, or with a counterexample. If the oracle replies
yes, then L* terminates by giving a final conjecture from a closed and consistent observation

table. If the oracle replies with a counterexample, then L* processes the counterexample in the

45

observation table to refine the conjecture. The method of processing counterexample is given
as follows.

Let v € 7 be a counterexample, then L* processes v in (Sp, Ep,Tp) by adding all the
prefixes of v in Sp. Then, the table is extended accordingly and the missing elements of the
table are filled by asking membership queries. The algorithm then makes the table closed and
consistent, and outputs the new conjecture.

This follows the asking of another equivalence query for the new conjecture. The process
continues until the oracle accepts the conjecture and the algorithm terminates. Algorithm

summarizes the complete method for inferring the exact DFA of the unknown language.

Input: The alphabet X
Output: DFA conjecture Mp

1 begin
2 initialize the observation table (Sp, Ep,Tp) with the sets
3 SDZEDZ{E},SD~2={€-i},ViEE;
4 ask the membership queries from (Sp, Ep,Tp) ;
5 update (Sp, Ep,Tp) with the results of the queries ;
6 repeat
7 while (Sp, Ep,Tp) is not closed or not consistent do
8 if (Sp, Ep,Tp) is not closed then
9 find t € Sp - ¥ such that ¢t g, s, for all s € Sp ;
10 move t to Sp ;
11 ask membership queries for the extended table ;
12 end
13 if (Sp, Ep,Tp) is not consistent then
14 find s,t € Sp,e € Ep,i € ¥ such that s =g, t,
15 but Tp(s-i,e) # Tp(t-i,e) ;
16 add i-eto Ep ;
17 ask membership queries for the extended table ;
18 end
19 end
20 make the conjecture Mp from (Sp, Ep,Tp) ;
21 ask the equivalence query for Mp ;
22 if oracle replies with a counterexample v then
23 add all the prefixes of v to Sp ;
24 ask membership queries for the extended table ;
25 end
26 until oracle replies yes to the conjecture Mp ;
27 return the conjecture Mp from (Sp, Ep,Tp) ;

28 end
Algorithm 1: The Algorithm L*

46

4.1.4 Complexity

Angluin proved that the conjecture from a closed and consistent (Sp, Ep,Tp) can be constructed

in polynomial time of factors
e |X|, i.e., the size of ¥
e 1, i.e., the number of states of the minimum DFA D
e m, i.e., the maximum length of any counterexample provided by the oracle

Initially, Sp contains one element. Each