
Discovering Closed Frequent Itemsets on Multicore: Parallelizing Computations
and Optimizing Memory Accesses

Benjamin Negrevergne,
Alexandre Termier and
Jean-François Méhaut

Laboratoire d’Informatique de Grenoble
{firstname}.{name}@imag.fr

Takeaki Uno
National Institute of

Informatics
uno@nii.jp

ABSTRACT

The problem of closed frequent itemset discovery is a
fundamental problem of data mining, having applications
in numerous domains. It is thus very important to have
efficient parallel algorithms to solve this probem, capable
of efficiently harnessing the power of multicore proces-
sors that exists in our computers (notebooks as well as
desktops). In this paper we present PLCMQS , a parallel
algorithm based on the LCM algorithm, recognized as
the most efficient algorithm for sequential discovery of
closed frequent itemsets. We also present a simple yet
powerfull parallelism interface based on the concept of
Tuple Space, which allows an efficient dynamic sharing
of the work. Thanks to a detailed experimental study, we
show that PLCMQS is efficient on both on sparse and dense
databases.

KEYWORDS : pattern mining, frequent closed
itemset, multicore, memory accesses

1. INTRODUCTION

Frequent pattern discovery is one of the major
domains of data mining. This domain was pioneered
by the works of Agrawal et al. on the Apriori algorihm
[1] for discovering frequent itemsets. The problem
of discovering frequent itemsets consists, given a
transaction database where each transaction is made
of items and given a minimum support threshold
minsup, in discovering all the itemsets that occur at
least minsup times in the database. This problem
is the simplest in the domain of pattern mining,
where patterns to be mined can also be sequences,
trees or graphs. However, it has many applications,
for example in the analysis of sales data. Moreover,

thanks to its relative simplicity, all the significant
algorithmic improvements to frequent pattern mining
have been discovered first for frequent itemset mining,
before being adapted to more complex patterns. Let
us cite for example the case of closure [2] or algorithms
without candidate generation [3].

In 2003 and 2004, the FIMI workshop [4] confronted
frequent itemset mining algorithms in order to select
the best solutions. The winner of FIMI 2004, LCM2 [5],
combines high level improvements coming from enu-
meration theory and low level improvements optimiz-
ing the tradeoffs between computation time and mem-
ory usage. Since 2004, no sequential algorithm gave
better performances.

However, the sequential algorithms presented at FIMI
in 2004 are not able to exploit the parallelism capa-
bilities of modern processors. Since 2005, processor
design have undergone a radical shift. Physical lim-
its have been reached, preventing further increase of
clock speed and thus sequential performance. In order
to enable a performance increase, chip makers now in-
tegrate several processing cores on a single chip. To
harness the power of these multicore processors, it is
necessary to design parallel algorithms.

Because they set up the main issues of pattern min-
ing, frequent itemset mining algorithms are good can-
didates for parallelization. This paper is an extended
version of [6] where we present a parallel closed frequent
itemset mining algorithm based on LCM and capable
of scaling up efficiently with the number of threads on
multicore processors. We present a new parallelism
environment, Melinda, based on the concept of Tuple
Space. Melinda relies on two simple primitives, but al-
lows to use internally efficient computation distribution
models. We present the PLCM algorithm which uses

this interface to parallelize LCM. In addition to [6], we
present a detailed study and highlight several issues
with the memory accesses of PLCM, coming from its
sequential inheritance. We propose two optimizations
specific to the parallel case, integrated into the algo-
rithm PLCMQS . Experiments show that PLCMQS is
the most efficient and generic solution for parallel min-
ing of closed frequent itemsets.

The outline of the paper is as follows: In section 2,
we briefly define the problem of extracting closed fre-
quent itemsets, and we present the state of the art
in parallel pattern mining on multicore processors. In
section 3, we explain the basics for understanding the
LCM algorithm. We then describe in section 4 the Tu-
ple Space parallel framework and the PLCM algorithm
designed with this framework, as well as the optimiza-
tions leading to PLCMQS . Section 5 gives a detailed
experimental study comparing PLCM and PLCMQS

with the state of the art. Last, in section 6, we con-
clude and give directions for future work.

2. PRELIMINARIES

In this section, we give the main notations used
throughout the paper and define the problem of
extracting closed frequent itemsets We then review
the state of the art.

2.1. Problem Definition

Let I = {1, ..., n} be a set of items. A transac-
tion database on I is a set T = {t1, ..., tm} such that
each ti is included in I. A ti is called a transaction. A
subset P of I is called an itemset. For an itemset P , a
transaction containing P is called an occurrence of P .
The tid-list of P , denoted by tidlist(P), is the set of all
the occurrences of P . |tidlist(P)| is called the support
or frequency of P , and is denoted by support(P).
For a given minimum support threshold minsup, an
itemset P is frequent if support(P) ≥ minsup. We
denote by F the set of all frequent itemsets. For
any pair of itemsets P and Q, we say that P and
Q are equivalents if tidlist(P) = tidlist(Q). This
relationship induces equivalence classes on itemsets.
Itemsets maximal w.r.t. inclusion in each equivalence
class are called closed itemsets. We denote by C the
set of closed frequent itemsets.

The problem we are interested in is, given a transaction
database T and a minimum support threshold minsup,
to extract all the closed frequent itemsets of T .

2.2. State of the Art

At the end of the 1990s, numerous works have
studied parallel frequent pattern mining for clusters
[7, 8]. These works were interested both on the
capacity to increase the size of the data handled and
on improving performance. We only mention them,
and focus this state of the art on parallel frequent
pattern mining on multicore architectures, whose
characteristics are slighlty different.

Parallel frequent pattern mining on multicore proces-
sors was pioneered by Buehrer et al. [9]. Based on
gSpan [10], they proposed a parallel frequent graph
mining algorithm with excellent scale-up properties.
Their contribution comprises an efficient way to de-
compose work and to explore in a depth-first way the
search space. They also propose a way to exploit tem-
poral locality of the cache.

Lucchese et al. [11] proposent similar strategies for
mining closed frequent itemsets, using as Buehrer et
al. work stealing techniques. When a thread A has a
lot of work and another thread B do not have work, B
can “steal” part of the work of A in order to improve
load balance. The solution of Lucchese et al. contains
optimizations for improving cache usage when creat-
ing conditional databases (called projections in their
paper), a classic technique in closed frequent itemset
mining.

The most recent works are from Tatikonda et al. [12] on
parallel frequent tree mining. Their algorithm scales up
very well with the number of cores, with a quasi-linear
speed-up on a lot of real-world databases. Tatikonda
et al. show in their paper that conversely to tradi-
tional monocore architectures, the problem on multi-
core architectures lies more on memory accesses than
on computations. Memory is a shared resource for all
the cores: if all the cores make numerous simultane-
ous memory accesses, data transfer bus between the
memory and the processor will be saturated and the
latency of memory accesses will drastically increase,
with a high impact on program performances. Indeed,
bandwith of most current multicore processors is not
enough to support numerous and simultaneous memory
accesses from all cores. Thus new algorithmic choices
must be made, that can be opposite to those that gave
good results in the sequential case. Another important
contribution is the importance of reducing bandwidth
pressure. They do so by reducing as much as possible
the working set size of their algorithm, with excellent
results. One of the techniques for reducing working set
size in the cache is to avoid pointer based data struc-

tures, which have a very bad locality in the cache and
thus force the algorithm to make too many memory
accesses.

3. THE LCM ALGORITHM

We describe in this section the basic principles
of the Linear time Closed itemset Miner (LCM) algo-
rithm. Our explanations are based on version 2 of this
algorithm, described in [5]. The main characteristic
of this algorithm is to have a linear complexity in the
number of closed frequent itemsets to find (proved in
[13]). This distinguishes LCM from all other closed
frequent itemset mining algorithms, and allowed it to
win the challenge organized in FIMI’2004.

LCM is an algorithm from the family of backtracking
algorithms. These algorithms are based on the follow-
ing recursive structure, given for the simple case of fre-
quent itemsets:

1. The algorithm receives a previous solution as in-
put, i.e. a frequent itemset P

2. This solution is outputed as a result.

3. For each item e that is greater than the greatest
item of P , the algorithm generates an itemset P ∪
{e} and tests its frequency

• If P∪{e} is frequent then the algorithm make
a recursive call on P ∪ {e}

This kind of algorithm generates a covering tree on
the frequent itemsets. In the case of LCM, each recur-
sive iteration receives a closed frequent itemset P as
input. LCM computes all the closed frequent itemset
proceeding directly from P . We thus obtain a cover-
ing tree structure on all the closed frequent itemsets,
which allows to enumerate them without duplication.
LCM thus does not need to keep in memory informa-
tions on the closed frequent itemsets it has previously
generated.

This closed frequent itemset enumeration is optimal,
but further optimizations are needed in order to im-
prove the efficiency of the algorithm by reducing com-
putations time and memory requirements.
Database reduction: To compute frequency and clo-
sure, the algorithm makes numerous accesses to the
database. It is thus especially interesting to reduce
significantly the size of the database. The technique
used is to:

• eliminate infrequent items

• eliminate items included in all transactions (and
store them in a separate place)

• merge all identical transactions after all these elim-
inations, and give a weight to the unique result-
ing transaction in order to have correct frequency
computations. The merging is performed after
sorting transactions with a radix sort.

This technique can be used at each iteration in order to
have reduced databases, that will be processed faster.
These databases are called conditional databases, be-
cause they are also restricted to the transactions sup-
porting the closed frequent itemset given as input of
the recursive call.
Occurrence deliver: Frequency counting step is one of
the most costly steps of (closed) frequent itemset min-
ing. Uno et al. proposed a technique called occurrence
deliver, which allows to compute the occurrences of all
the extensions P ∪ {e} of the closed frequent itemset
given as input of the recursive call, in a single pass over
the database.
Frequent items reordering: The LCM algorithms re-
names the items so that each item has a number corre-
sponding to its rank in decreasing frequency order. By
exploring the branches from the less frequents items,
LCM is thus assured to have the best database reduc-
tion.

We will not give more details on the LCM algorithm
and its optimizations. We highly recommend the inter-
ested reader to read [13], which describes in depth the
algorithm and gives all the theoretical material neces-
sary to its understanding, as well as their proofs.

4. PLCM : PARALLEL LCM FOR MULTI-
CORE PROCESSORS

In this section’s first part, we present Melinda, a
parallel execution model based on work sharing.
Melinda is a simple paradigm that can easily be
adopted by programmers with no skills in parallel
programming. We then describe our PLCM algorithm
implemented with Melinda.

4.1. Melinda: a Work Sharing Model

The Melinda execution model is based on the
idea that the computation work must be shared
between processors and cores. It directly derives
from the Linda model defined by D. Gelernter[14]. In
Melinda, the work is dropped in a global space (the
Tuple Space) by the threads. When threads are idle
they can extract work as Tuples from the Tuple Space
and process them. The insertion primitive (put) adds
a tuple in the Tuple Space. The extraction primitive
(get) extracts a tuple from the Tuple Space. The get
primitive may be blocking if the Tuple Space is empty.

The application completes when the Tuple Space is
empty and all threads are blocked trying to get a
Tuple.

Melinda hides low-level details of data sharing and syn-
chronization thous suits programmers with no experi-
ence with parallel programming.

Melinda is implemented on SMP machines with mul-
ticore processors. The memory for the Tuple Space is
allocated in the shared memory. To reduce the syn-
chronization cost and improve data locality, the Tuple
Space is composed of several memory banks. We count
the total number of tuples in the tuple space with a sin-
gle integer that can be incremented and decremented
with atomic operations available in modern processors.
No other global synchronization is needed. Each bank
is individually synchronized with mutex, but there is
generally no contention. A memory bank is attached
to one thread. Each thread put and get its tuples in
its bank thus the data is not migrated from one core
to another, unless it is needed to balance the work.

4.2. Parallelization of LCM

In the case of PLCM, a Melinda tuple contains
the parameters of a recursive call. The parallelization
is thus done on the tree formed by the recursive
calls. However, the creation of a tuple by node of the
recursive calls tree can generate a lot of tuples, a lot
of which will have very few work associated. Creating
and managing tuples comes with some overheads,
tuples number must not be too high. We chose to
restrict the creation of tuples to the first depth levels
of the recursive calls tree. The recursive calls tree
having usually a high breadth factor and a small
depth, this technique gives good results.

4.3. Optimizations

Table 1 gives preliminary results for the PLCM
algorithm described above. The machine is a quad-
socket Intel Xeon 7460 at 2.66 GHz, with 6 cores
per socket, for a total of 24 cores. There are 64 GB
of RAM. The databases used are connect, a dense
database, and T40I10D100K, a sparse database (see
section 5 for a detailed description of the databases).
The second column of the table gives the mining time
when only one thread is used (sequential time), and
the next columns give the speedup obtained when
using more threads. These figures confirm that using
parallelism allows to have a smaller mining time.
However the algorithm performance do not scale well
with the number of cores.

Table 1. Speedups for Initial Version of PLCM
Database/#cores 1 4 8 16 24
connect@4.4% 127s 3.48 5.22 5.41 5.66

T40I10D100K@0.8% 128s 3.7 5.6 6.1 6.4

Running a profiler on the code shows that most of
the mining time is spent during the database reduc-
tion. The database reduction drastically reduce the
size of the transactions by sorting the transactions
with a radix sort, processing a prefix intersection(cf.
[15]), and merging the transactions that became the
same. We isolated the database reduction in a test
program. This test program spawns N threads, where
each thread executes the same code for the database
reduction, and is given the same input data. On a
perfect architecture the running time, should stay the
same whether N is equal to 1 or to the number of cores.
We give below the steps of the test program:

1. load the database

2. make a “warm up” sequential sort on the database

3. perform NS database reductions, and get and av-
erage time

4. spawn N threads, make a “warm up” database
reduction on each thread

5. perform NS database reduction on each thread,
and get an average time

We executed the test program in the Intel VTune per-
formance analyzer. VTune is a very powerfull pro-
filing tool, which allows to access a wealth of infor-
mation for the program to profile. One of its most
interesting feature is the easy access to the proces-
sor performance counters. Figure 1 shows the chrono-
gram for the INST RETIRED.ANY counter, which
counts the number of instructions completely executed
per sample of time, with a sample time set to 1ms.
There are 12 threads running. The steps of the test
program are indicated in the figure. The X-axis repre-
sents time. On the Y-axis, there is one line per thread.
For each thread, one histogram bar represents the num-
ber of instructions retired per sample of time. Higher
bar means more instructions retired.

Step 3 gives the reference time for the database re-
duction test: 200 ms. The time of the tests made in
parallel, given by the duration of step 5, is 800 ms. So
it was 4 times longer to make the sequential sorting
done in step 3 when 12 processors are doing it simul-
taneously. This surprising result cannot be explained
by a problem of load balance or computation granular-
ity: the same code is executed, and the threads finish
almost together as confirmed by Figure 1.

Figure 1. Instruction Retired for Database Reduction
(radix sort), 12 Simultnateous Instances

A better hypothesis is that the threads are making
a heavy usage of the cache, and are either pollut-
ing each others cache or making too many memory
accesses, causing high bandwidth pressure. The in-
creasing number of cache misses at the Last Level
Cache (LLC) shows a bad cache usage, and implies
a heavy bandwidth pressure when a large number of
cores (for instance 24) are performing database re-
duction simultaneously. As a consequence, the la-
tency of the memory accesses increases dramatically,
which explains the degradation of performances when
the number of threads increases. This can be further
confirmed by running the test program on an Intel
Core i7 920 with 4 cores. This recent processor con-
tains a lot of performance monitoring events. Some of
these events, for instance MEM INST RETIRED.-
LATENCY ABOV E THRESHOLD X, can record
the latency of the memory instructions performed. We
thus recorded the memory latencies for the sequential
sorting test (step 3), and for the parallel sortings with
2,3 and 4 cores (step 5). The results are reported in
Figure 2. The X-axis represents the number of threads,
and the Y-axis represents the percentages of memory
accesses having a given latency in a cumulative way.
For example in the case of 1 thread, 67% of all mem-
ory accesses have a latency of 16 cycles or less, 87%
of all memory accesses have a latency of 32 cycles or
less, and so on. This figure clearly shows that as the
number of threads increase, the proportion of memory
accesses with low latencies (less or equal to 32 cycles)
diminishes, while the proportion of accesses with high
latencies (more or equal to 64 cycles) increases.

The previous experiments have allowed to isolate the
problem with database reduction: it makes too many
cache misses, quickly saturating the bus when there
are a lot of threads. Bus saturation conducts to higher

threads

%
 o

f
m

e
m

o
ry

 o
p

e
ra

ti
o

n
s

Latencies
(cycles)

512

256

128

64

32

16

 1
 60

 65

 70

 75

 80

 85

 90

 95

 100

 2 3 4

Figure 2. Latencies of Database Reduction, Core i7

memory access latencies and ultimately longer execu-
tion times. Analyzing the code for database reduction
is necessary to understand this behavior. Internal algo-
rithm like radix sort for sorting transactions has been
carefully selected by the authors of LCM because it
is the fastest sequential algorithm for sorting transac-
tions. This speed is obtained by using a lot of addi-
tional memory during the execution of radix sort. In
facts, the transaction database to sort is entirely rebuilt
in a temporary structure, in a vertical format (for each
item, lists of transaction ids are stored). The memory
traffic thus comprises : reads in the original database,
writes in the temporary vertical database, and reads in
the temporary vertical database. When a lot of radix
sort algorithms operate in parallel, the total amount
of memory traffic generated by these operations is too
heavy for current processor’s bandwidth, as we have
demonstrated before.

In the parallel case, when a lot of threads are running,
a more “bandwidth-friendly” algorithm must be used.
We thus replaced radix sort with quicksort. Quicksort
can use some stack memory for its variables, but it
does not use any byte in the heap, contrarily to radix
sort. We present in Figure 3 the VTune graph when
replacing radix sort with quicksort in the test program.
This time, execution time for step 3 (sequential) and
step 5 (parallel) are almost identical, confirming that
quicksort makes a better usage of the cache.

However the running time for quicksort is much higher
than the running time of radix sort, and our testings
shown that the run times for PLCM with this version
of quicksort were not lower than with radix sort, even
if there were better scale up properties. The reason is
that radix sort is tighly integrated with one of the most
important optimizations of LCM for reducing run time.
One of our contributions is thus a modified quicksort
algorithm completely integrated with suffix intersec-
tion, without using extra heap space compared to a
standard quicksort.

Using this new version of quicksort improves the scale

Figure 3. Instruction Retired for Database Reduction
(quick sort), 12 Simultaneous Instances

up capabilities of PLCM. However we quickly realized
that when databases to sort become too large, even
when running in parallel, there are not enough proces-
sors to absorb the execution time penalty coming from
the higher complexity of quicksort. We thus need an
other algorithmic improvement to keep the size of the
databases low. Our solution was to extend the item
reordering strategy explained in section 3, in order to
perform it at each recursive iteration (instead of only
at load time in original LCM). In sequential LCM, this
operation is too costly to bring benefit. But in the par-
allel case, the additional database reduction obtained
by this optimization greatly helps quicksort which per-
forms better on small databases.

We call PLCMQS the final algorithm obtained by in-
tegrating the previous optimizations into PLCM. The
next section will give detailed comparisons between
PLCM and PLCMQS .

5. EXPERIMENTS

We compare in this section PLCM, PLCMQS ,
and MT Closed [11], which is the only other parallel
approach for mining closed frequent itemsets. The
MT Closed implementation is the original C++
implementation. It is designed to be efficient on dense
datasets.

The implementations of PLCM and PLCMQS are our
C++ implementations. They do not share code with
the original C implementation of LCM: they have been
rewritten from scratch, using Tuple Spaces for paral-
lelism management. The Tuple Spaces API is imple-
mented in C++ and Posix Threads.

The experiments are conducted on a quad-socket Intel

Xeon at 2.66 GHz, each socket having 6 cores, for a
total of 24 cores. There are 64 GB of RAM. Databases
are the well known databases of the FIMI workshop,
available on the website of the worksop [4]. These
databases can be divided into four categories, each cat-
egory giving similar results:

• Very sparse databases: BMS-WebView1, BMS-
WebView2, T10I4D100K and retail.

• Sparse databases: mushroom, BMS-POS, kosarak,
Webdoc and T40I10D100K.

• Structured dense databases: connect, chess,
pumsdb and pumsdb-star.

• Dense database : accidents.

In our experiments the four categories are repre-
sented the following datasets, respectively : retail,
T40I10D100K, connect and accidents. Experiments
with other datasets can be found on our website1

We give in Figure 4 the mining times and speedups
w.r.t. mining times for the representative databases.
The mining time does not take into account loading of
input data and writing of final results to disk. This
is the metric which is currently used in the state of
the art ([9, 11, 12]). However the final user will be
happy to learn that PLCM can output one pattern as
soon as it is found. Therefore the time needed to write
outputs can be covered with computations. Thanks to
this, the wall clock time for a total execution of PLCM
is slightly the same than the mining time.

Dense datasets: As expected, MT Closed exhibits the
best mining times and speedups for the dense datasets.
MT Closed however uses bitmaps representations and
SIMD instructions to be efficient on such datasets
whereas PLCM uses a generic approach. The opti-
mizations of PLCMQS allow it to exihibit better per-
formances than PLCM, and to have near identical re-
sults with MT Closed on accidents, which is a complex
real world dataset.

Sparse datasets: The optimizations in PLCMQS give
good results on the T40I10D100K dataset, allowing it
to have the best performances of all three algorithms.
For the retail dataset, PLCM and PLCMQS have simi-
lar results, with speedups slighly better for PLCM for a
high number of threads. Retail is a very sparse dataset
with very few solutions and thus a small search space
tree. Hence the additional computations made at each
recursive iteration by PLCMQS does not pay off in this
case. Notice that for retail no results are reported for
MT Closed, because all the runs timed out.

1http://membres-liglab.imag.fr/negrevergne/HPPDDM10/

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 1 4 8 12 16 20 24

tim
e

(s
)

threads

accidents@5.8%

MT-Closed
PLCM

PLCM_QS

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 1 4 8 12 16 20 24

sp
ee

du
p

threads

accidents@5.8%

MT-Closed
PLCM

PLCM_QS

 0

 20

 40

 60

 80

 100

 120

 140

 1 4 8 12 16 20 24

tim
e

(s
)

threads

connect@4.4

MT-Closed
PLCM

PLCM_QS

 2

 4

 6

 8

 10

 12

 14

 1 4 8 12 16 20 24
sp

ee
du

p
threads

connect@4.4%

MT-Closed
PLCM
PLCM_QS

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1 4 8 12 16 20 24

tim
e

(s
)

threads

T40I10D100K@0.8%

MT-Closed
PLCM

PLCM_QS

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 4 8 12 16 20 24

sp
ee

du
p

threads

T40I10D100K@0.8%

MT-Closed
PLCM
PLCM_QS

 0

 20

 40

 60

 80

 100

 120

 140

 1 4 8 12 16 20 24

tim
e

(s
)

threads

retail@0.001%

PLCM
PLCM_QS

 1

 2

 3

 4

 5

 6

 7

 8

 1 4 8 12 16 20 24

sp
ee

du
p

threads

retail@0.001%

PLCM
PLCM_QS

Figure 4. Comparative Experiments Results for Mining Times

Discussion: These experiments have shown that our
PLCMQS algorithm could obtain good performances
both on sparse datasets and dense datasets. It is
thus a generic approach for the parallel mining of
closed frequent itemsets, which is an improvement over
MT Closed which is specialized on dense datasets.

Parallel mining of closed frequent itemsets is a chal-
lenging topic. Basic operations done on each data
loaded into the cores are often very simple, especially
when compared to tree or graph mining. As a result,
computation time for a single data is roughly similar
to the time needed for loading this data. Data loading
being serialized by the bus, it is very difficult to ob-
tain good scale up properties, even more with highly
optimized algorithms like LCM. Our optimizations to
reduce memory usage at the expense of more compu-
tations are an effort to improve parallel performances,
and our conclusions meet those found by Tatikonda et
al. [12] in their study of parallel frequent tree mining.

6. CONCLUSION AND PERSPECTIVES

We have presented in this paper a simple work
sharing interface, and we have used it to parallelize
the well known LCM algorithm, giving the PLCM
algorithm. Based on a thorough study of parallel
memory accesses of PLCM, we have proposed several
algorithmic optimizations aimed at reducing memory
footprint and bandwidth pressure. We have integrated
these optimizations into the PLCMQS algorithm.

A detailed experimental study has demonstrated that
these optimizations allowed to have a better speedup
and assured PLCMQS to have the lowest execution
times in most cases. PLCMQS is thus the only generic
algorithm for parallel mining of closed frequent pat-
terns, being adapted as well for sparse and dense
databases. This extends the state of the art.

We have several perspectives for future works. One
of them is to find efficient heuristics for switching on
or off dynamically memory-saving optimizations. In
some cases, these optimizations are too costly and do
not bring benefit. Another perspective is to integrate
some bitmap techniques into our algorithm in order
to further improve performances on dense datasets.
We would also like to investigate the solutions we de-
velopped in PLCMQS for other algorithms similar to
LCM, such as CLOATT [16] or the more general frame-
work described in [17].

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for min-
ing association rules,” in VLDB, 1994, pp. 487–499.

[2] N. Pasquier, Yves, Y. Bastide, R. Taouil, and
L. Lakhal, “Efficient mining of association rules using
closed itemset lattices,” Information Systems, vol. 24, pp.
25–46, 1999.

[3] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns
without candidate generation,” in The International
Conference on Management of Data, SIGMOD, 2000,
pp. 1–12.

[4] B. Goethals, “Fimi repository website,” http://fimi.cs.
helsinki.fi/, 2003-2004.

[5] T. Uno, M. Kiyomi, and H. Arimura, “Lcm ver. 2: Ef-
ficient mining algorithms for frequent/closed/maximal
itemsets,” in FIMI, 2004.

[6] B. Negrevergne, A. Termier, J.-F. Méhaut, and
T. Uno, “Découverte d’itemsets fréquents fermés sur
architecture multicœurs,” in Extraction et Gestion de
Connaissances, EGC, 2010.

[7] R. Agrawal and J. C. Shafer, “Parallel mining of as-
sociation rules,” IEEE Trans. Knowl. Data Eng., vol. 8,
no. 6, pp. 962–969, 1996.

[8] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li,
“Parallel algorithms for discovery of association rules,”
Data Min. Knowl. Discov., vol. 1, no. 4, pp. 343–373,
1997.

[9] G. Buehrer, S. Parthasarathy, and Y.-K. Chen, “Adap-
tive parallel graph mining for cmp architectures,” in
ICDM’06, 2006, pp. 97–106.

[10] X. Yan and J. Han, “gspan: Graph-based substructure
pattern mining,” in ICDM, 2002, p. 721.

[11] C. Lucchese, S. Orlando, and R. Perego, “Parallel min-
ing of frequent closed patterns: Harnessing modern
computer architectures,” in ICDM, 2007, pp. 242–251.

[12] S. Tatikonda and S. Parthasarathy, “Mining tree-
structured data on multicore systems,” in VLDB,
2009.

[13] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An
efficient algorithm for enumerating closed patterns in
transaction databases,” in Discovery Science, 2004, pp.
16–31.

[14] D. Gelernter, “Generative communication in Linda,”
ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 7, no. 1, pp. 80–112, 1985.

[15] T. Uno, “Lcm ver. 3: Collaboration of array, bitmap
and prefix tree for frequent itemset mining,” in Open
Source Data Mining Workshop on Frequent Pattern
Mining Implementations, SIGKDD, 2005, pp. 77–86.

[16] H. Arimura and T. Uno, “An output-polynomial time
algorithm for mining frequent closed attribute trees,”
in ILP, 2005, pp. 1–19.

[17] Arimura and T. Uno, “A polynomial space and poly-
nomial delay algorithm for enumeration of maximal
motifs in a sequence,” Algorithms and Computation, pp.
724–737, 2009.

