
A New Instantiation Scheme for Satisfiability Modulo Theories

(Research Report)

Mnacho Echenim and Nicolas Peltier

December 20, 2009

Most formal verification tools rely on procedures that decide the validity or, dually, the satisfiability of
logical formulas. In general, the validity of the formula (or set of clauses) needs only be tested modulo a
background theory T . In formal software verification for example, the background theory can define one or
a combination of data structures such as arrays or lists. These problems are known as T -decision problems
or more comonly, SMT problems, and the tools capable of solving these problems are known as T -decision
procedures, or SMT solvers1.

A lot of research has been devoted to the design of SMT solvers that are both efficient and scalable.
Generally, state-of-the-art SMT solvers rely on algorithms based on the DPLL procedure [10] to deal with
the boolean part of the SMT problems. These solves deal with the theory reasoning by applying methods
ranging from the eager approach, which consists in applying sophisticated techniques to reduce the entire
SMT problem to an equisatisfiable SAT problem, to the lazy approach, which consists in searching for a
conjunction of literals satisfying the boolean part of the formula, and testing whether this conjunction of
literals is satisfiable modulo the background theory. A survey on SMT solvers and the different approaches
can be found in [5].

Quantifier reasoning is meant to tackle the issue of solving SMT problems with formulas involving quan-
tifiers. Most approaches rely on the original work of [13] on the Simplify prover, in which heuristics for
quantifier instantiation are devised. State-of-the-art techniques include [15, 12].

The rewrite-based approach to solving SMT problems, initiated by [2], consists in employing a theorem
prover for first-order logic with equality to solve the SMT problems. This approach is appealing, since
by feeding any finitely axiomatized theory along with a set of gound clauses, one obtains a system that is
refutationally complete. If the theorem prover is guaranteed to terminate on the input set, then it acts as a
decision procedure for the background theory. Thus, much research on this subject is devoted to determining
results on termination for the theorem prover [1, 8, 21, 6]. The main issue with the rewrite-based approach
is that theorem provers are not designed to handle the boolean part of a formula as efficiently as possible.
Therefore, they do not perform well on SMT problems with a large boolean part. A solution to this problem
consists in integrating the theorem prover with a DPLL-based tool, and although this raises new issues, such
an integration was accomplished in, e.g., [23, 24, 11].

Another solution to this problem was invvestigated in [7], which consists in decomposing the SMT problem
into a definitional part, made up of an conjunction of ground literals, and an operational part, containing
the boolean structure of the problem. During the first stage, the theorem prover is fed the definitional part
of the SMT problem along with the background theory, and the saturation process compiles the theory away.
During the second stage, the saturated set generated by the theorem prover is fed to a DPLL-based tool,
along with the operational part of the SMT problem. This approach allows to exploit the full power of the
theorem prover and the DPLL-based tool, without requiring a tight integration between them. However, in
the theory of arrays for example, the set of clauses obtained after compiling the theory away was not ground,
and required an additional instantiation before being fed to the DPLL-based tool.

The goal of this paper is to investigate how the instantiation phases of the saturation process can be singled
out in order to devise a generic instantiation scheme for solving SMT problems. Solving an SMT problem
modulo a background theory for which the instantiation scheme is complete would thus reduce to testing
the satisfiability of a ground formula in first-order logic with equality, with no mention to any background

1SMT stands for Satisfiability Modulo Theories

1

theory. This scheme is meant to be as efficient as possible, i.e., instantiate the non-ground clauses under
consideration as little as possible. This approach is close to that of [9] for the theory of arrays. However,
contrary to that of [9] which is model-theoretic, this one is proof-theoretic, and is not restricted to just one
theory or its extensions. The efficiency requirement comes at the expense of completeness, and contrary to
the schemes of [14, 22, 16], it is not always guaranteed that the original set of clauses and the instantiated
one are equisatisfiable. However, the class of theories for which the scheme is complete is large enough to
capture several theories of interest in the SMT community.

This paper presents the instantiation scheme that was devised, along with two sets syntactic criteria on
clauses, that guarantee the instantiated set of clauses and the original one are equisatisfiable. The first set
of criteria is simpler to implement, and the other is more general. The imposed conditions have a common
characteristic: they are based on the arguments of function symbols. Depending on their positions, the former
may be required to be ground, or to have a limited depth. These conditions come up quite naturally in our
proof-theoretic setting, and are general enough for many theories of data structures from SMT problems to
comply by them. These criteria have been implemented2, and have allowed us to verify automatically that
the instantiation scheme can be applied to several theories such as arrays, records or lists.

1 Preliminaries

1.1 Basic Definitions

In this section we briefly review some usual definitions and notations in Logic and Automated Theorem
Proving. The results in this section are standard and their proofs are omitted; we refer the reader to, e.g.,
[3] for details.

We assume given a set of variables V , a set of function symbols Σ (containing at least a constant symbol)
and an arity function mapping each element of Σ to a natural number. Σn denotes the set of symbols of
arity n in Σ. Throughout this paper, a, b, c always denote constant symbols, f, g, h denote function symbols
and x, y, z denote variables (possibly with indices). The symbol true denotes a special constant symbol used
to encode predicate symbols.

The set of terms, atoms, literals and clauses are defined as usual on Σ and V , using the equality symbol
≃. For every expression (term, clause etc.) e, we denote by V(e) the set of variables occurring in e, and
head(t) denotes the head symbol of the term t. A term is linear if it contains at most one occurrence of each
variable. The notions of interpretations, models and satisfiability are defined as usual. Two sets of clauses
S, S′ are equisatisfiable (written S ≡sat S

′) if either S, S′ are both unsatisfiable or S, S′ are both satisfiable.
A substitution is a function mapping every variable to a term. The set of variables x such that xσ 6= x

is called the domain of σ and denoted by dom(σ). A substitution σ of domain x1, . . . , xn such that xiσ = ti
for i = 1, . . . , n is usually denoted by {xi 7→ ti | i ∈ [1..n]}. As usual, a substitution can be extended into a
homomorphism on terms, atoms, literals and clauses. The image of an expression e by a substitution σ will
be denoted by eσ. If E is a set of expressions, then Eσ denotes the set {tσ | t ∈ E}. The composition of two
substitutions σ and θ is denoted by σθ. A substitution σ is more general than θ if there exists a substitution
η such that θ = ση. The substitution σ is a renaming if it is injective and ∀x ∈ dom(σ), xσ ∈ V , and it is a
unifier of two terms t, s if tσ = sσ. Any unifiable pair of terms (t, s) has a most general unifier, unique up
to a renaming, and denoted by mgu(t, s). A term or clause containing no variable is ground. A substitution
σ is ground if xσ is ground, for every variable x in its domain.

Lemma 1 Let t, s be two unifiable terms and let σ = mgu(t, s) be a flat substitution. Let θ be a flat and ground
substitution such that ∀x ∈ dom(θ), xθ = xσθ. Then tθ and sθ are unifiable. Moreover, if η = mgu(tθ, sθ)
then dom(η) = dom(σ) \ dom(θ) and for all x ∈ dom(η), xη = xσθ.

Proof. A unification problem is a conjunction of equations (or false). If φ, ψ are two unification problems,
then we write φ →unif ψ if ψ is obtained from φ by applying the usual replacement or decomposition rules

[17].
σ is of the form {xi 7→ ui | i ∈ [1..m]}, where x1, . . . , xm are pairwise distinct variables not occurring in

u1, . . . , um. Moreover, there exists a sequence of unification problems (φi)i∈[1..n] such that φ1 = (t =? s),

2http://capp.imag.fr/fish.html

2

∀i ∈ [1..n − 1], φi →unif φi+1 and φn =
∧m

i=1(xi =? ui). We assume that the unification rules are applied

with the following priority: decomposition first, then replacement by terms w such that wθ ∈ T0 and finally
the remaining replacements.

Let k be an index in [1..n]. We shall prove that φkθ →∗
unif φk+1θ.

If φk+1 is obtained from φk by decomposition, then φk, φk+1 are respectively of the form f(~t) =? f(~s)∧ψ
and ~t =? ~s∧ψ. Then φkθ is of the form f(~t)θ =? f(~s)θ∧ψθ, thus the decomposition rule applies and deduces
~tθ =? ~sθ ∧ ψθ i.e. φk+1θ.

If φk+1 is obtained from φk by replacement then φk, φk+1 are respectively of the form x =? w ∧ ψ and
x =? w ∧ ψ{x → w} where x is a variable in x1, . . . , xm and w is a term not containing x. By definition,
x ∈ dom(σ). φkθ is xθ =? wθ ∧ ψθ.

If x 6∈ dom(θ) then xθ = x. x 6∈ V(wθ) (since x 6∈ V(w) and θ is ground). Thus the replacement rule
applies and deduces x =? wθ ∧ ψθ{x→ wθ} i.e. φk+1θ.

Now assume that x ∈ dom(θ). We have, by definition, xσ = wσ, thus xσθ = wσθ and by the above
condition, since x ∈ dom(θ), xθ = wσθ. If w ∈ dom(θ), or if w 6∈ V then we have wσθ = wθ, thus xθ = wθ
and φkθ = φk+1θ. If w ∈ V \ dom(θ) then we must have xσ 6= w (otherwise we would have wθ = xθ
hence w ∈ dom(θ)). This means that w ∈ dom(σ) and w is replaced at some step. Thus there exists in
the unification problem an equation of the form y =? xσ, where y ∈ V . But then, according to the above
strategy, the replacement rule should have been applied first on this equation before x =? w (since xσθ ∈ T0).

Therefore, we have tθ =? sθ →∗
unif

∧m
i=1(xiθ =? uiθ). By the above reasoning, for every i, j ∈ [1..m],

we have either xiθ = xi and xi 6∈ V(ujθ), or xi ∈ dom(θ) and xiθ = uiθ. Thus {xi 7→ uiθ | i ∈ [1..m], xi 6∈
dom(θ)} = mgu(tθ, sθ).

A position is a sequence of natural numbers. ǫ denotes the empty sequence and p.q denotes the concatena-
tion of p and q. p is a position in t if either p = ǫ or p = i.q and t = f(t1, . . . , tn) and q is a position in ti. t|p and
t[s]p respectively denote the subterm at position p in t and the term obtained by replacing the term at position

p by s: t|ǫ
def

= t, f(t1, . . . , tn)|i.q
def

= ti|q, t[s]ǫ
def

= s and f(t1, . . . , tn)[s]i.q
def

= f(t1, . . . , ti−1, ti[s]q, ti+1, . . . , tn).
These notions extend straightforwardly to atoms, literals or clauses.

Flatness

A term is flat if it is a variable or a constant symbol. The set of flat terms is denoted by T0 (T0
def

= V ∪ Σ0).
A non flat term is complex. A clause C is flat if for every literal t ≃ s or t 6≃ s occurring in C, t, s ∈ T0. A
substitution σ is flat if ∀x ∈ V , xσ ∈ T0. A clause C is a flat instance of D if there exists a flat substitution
σ such that C = Dσ (note that C is not necessarily flat). Flat substitutions are stable by composition:

Proposition 2 Let σ and µ be flat substitutions. Then σµ is also flat.

Definition 3 Given a clause C, we denote by C◦ the disjunction of the literals in C that are both ground
and flat and by C• the disjunction of the literals in C that are either non flat or non ground (C = C◦∨C•).♦

Any set of ground clauses can be flattened, by introducing fresh constants that serve as names for complex
terms. This operation produces a set of ground clauses such that the only non-flat clauses are of the form
f(a1, . . . , an) ≃ b, for constants a1, . . . , an, b. For example, S = {f(a) 6≃ f(c) ∨ a ≃ c, f(b) 6≃ f(c) ∨ b ≃ c} is
flattened by introducing the fresh constants a′, b′ and c′, and replacing S by

{f(a) ≃ a′, f(b) ≃ b′, f(c) ≃ c′, a′ 6≃ c′ ∨ a ≃ c, b′ 6≃ c′ ∨ b ≃ c}.

The original set of ground clauses and the flattened one are equisatisfiable.

Quasi-flat and Quasi-closed Terms

We characterize two syntactic classes of terms that will be useful in the following. These classes are defined
by imposing that some of the arguments of function symbols are not variables, and that others have a limited
depth.

3

Definition 4 We associate to every function symbol f of arity n two sets of indices I0(f) and Inv(f) in [1..n]
such that I0(f) ∪ Inv(f) = [1..n].

A term t is:

• quasi-flat if it is not a variable, and for every subterm f(t1, . . . , tn) of t and for every i ∈ I0(f), ti ∈ T0.

• quasi-closed if it is not a variable, and for every subterm f(t1, . . . , tn) of t and for every i ∈ Inv(f),
ti 6∈ V .

A set of clauses S is quasi-flat (resp. quasi-closed) if all terms occurring in S are quasi-flat (resp. quasi-
closed). ♦

Informally (see Definition 4 for details), I0(f) denotes the set of indices of the arguments of f that must
be flat and Inv(f) denotes the set of indices that must be non variables.

Example 5 Let f be a function symbol of arity 3. Assume that I0(f) = {1, 2} and that Inv(f) = {2, 3}.
Then:

• f(x, a, b) and f(a, b, f(a, b, c)) are quasi-closed and quasi-flat,

• f(x, x, a) is quasi-flat but not quasi-closed because of index 2,

• f(f(a, b, c), a, b) is quasi-closed but not quasi-flat because of index 1,

• f(f(a, x, b), a, b) is neither quasi-flat nor quasi-closed because of indices 1 and 2. ♣

1.2 Superposition

We review some basic notions about superposition-based theorem proving [4]. Our presentation is not ex-
actly standard, since in general presentations, clauses are implicitly renamed in derivations. The proofs of
completeness for our instantiation method, on the other hand, require keeping track of variables in deriva-
tions. In the standard setting, this would mean defining equivalence classes of variables, two variables being
equivalent if one is an implicit renaming of the other. We did not find this approach to be practical, and
chose instead to adopt a version of the superposition calculus in which variables are rigid, so that the same
variable can appear throughout a derivation. Most results from standard definitions of the superposition
calculus are straightforwardly transposed to our setting

Selection and Inference

Let < denote a reduction ordering which is substitution-monotonic (i.e. (t < s) ⇒ (tσ < sσ), for every σ).
We assume that if a is a constant and t is a complex term, then a < t. This property on orderings is termed
as the goodness property in [1]. The ordering < is extended to atoms, literals and clauses using multiset
extension. A literal L is maximal in a clause C if for every L′ ∈ C, L 6< L′.

We consider a selection function sel which maps every clause C to a set of selected literals in C. A term
t is eligible in a clause C if t is not a variable and it occurs in a term u, where sel(C) contains a literal of the
form u ≃ v or u 6≃ v with u 6< v.

Definition 6 A clause C is variable-eligible if sel(C) contains a literal of the form x ≃ t (resp. x 6≃ t), where
x ∈ V and x 6< t. ♦

Proposition 7 Every flat clause is either ground or variable-eligible.

We consider the calculus (parameterized by < and sel) of Figure 1.

4

Superposition calculus:

Superposition C ∨ t ≃ s, D ∨ u ≃ v → (C ∨ D ∨ t[v]p ≃ s)σ
if σ = mgu(u, t|p), uσ 6< vσ, tσ 6< sσ, t|p is not a variable,
(t ≃ s)σ ∈ sel([C ∨ t ≃ s]σ), (u ≃ v)σ ∈ sel([D ∨ u ≃ v]σ).

Paramodulation C ∨ t 6≃ s, D ∨ u ≃ v → (C ∨ D ∨ t[v]p 6≃ s)σ
if σ = mgu(u, t|p), uσ 6< vσ, tσ 6< sσ, t|p is not a variable,
(t 6≃ s)σ ∈ sel([C ∨ t 6≃ s]σ), (u ≃ v)σ ∈ sel([D ∨ u ≃ v]σ).

Reflection C ∨ t 6≃ s → Cσ

if σ = mgu(t, s), (t 6≃ s)σ ∈ sel([C ∨ t 6≃ s]σ).

Eq. Factorisation C ∨ t ≃ s ∨ u ≃ v → (C ∨ s 6≃ v ∨ t ≃ s)σ
if σ = mgu(t, u), tσ 6< sσ, uσ 6< vσ, (t ≃ s)σ ∈ sel([C ∨ t ≃ s ∨ u ≃ v]σ).

Figure 1: The superposition calculus

Redundancy

A tautology is a clause containing two complementary literals or a literal of the form t ≃ t. A clause C is
subsumed by a clause D if there exists a substitution σ such that Dσ ⊆ C.

A ground clause C is redundant in S if there exists a set of clauses S′ such that S′ |= C, and for every
D ∈ S′, D is an instance of a clause in S such that D < C. A non ground clause C is redundant if all
its instances are redundant. In particular, every (strictly) subsumed clause and every tautological clause is
redundant.

In practice, one has to use a decidable approximation of this notion of redundancy. We will assume that
a clause C is redundant if it can be reduced by some demodulation steps (i.e. by superposition without
instantiation of the variable in the “into” clause) to either a tautology or to a subsumed clause (it is obvious
that all the clauses satisfying this property are redundant in the previous sense).

We have the following:

Proposition 8 If a clause C is redundant w.r.t. a set of clauses S ∪ {D} and if D is redundant w.r.t. S,
then C is redundant w.r.t. S.

Derivation Relations and Saturated Sets

If S is a set of clauses, we write S →sel
<,σ C when C can be deduced from S in one step by applying one of

the rules of Figure 1, using the m.g.u. σ. We adopt the convention that S contains only the premises of the
rule and the clauses in S are not renamed, for instance:

{f(x) ≃ g(y), f(x) ≃ h(y)} →sel
<,id (h(y) ≃ g(y))

and
{f(x) ≃ a, f(g(x)) ≃ b} 6→sel

<,σ (a ≃ b), for any substitution σ.

We denote by Ssel
< (S) the set of clauses C such that S′ →sel

<,σ C where all the clauses in S′ are pairwise

variable-disjoint renamings of clauses in S. A set of clauses S is saturated if every clause C ∈ Ssel
< (S) is

redundant in S. If S is saturated and if for every clause C ∈ S sel(C) either contains a negative literal, or
contains all the maximal literals in C, then S is satisfiable if � 6∈ S (see [4] for details).

2 An Instantiation-Based Proof Procedure

A close inspection of the instantiation phases of the superposition calculus in the rewrite-based approach to
SMT problems revealed that for the considered background theories, it is sufficient to instantiate the axioms

5

of the theory using only the ground terms appearing in the original problem. The main idea we exploit in our
instantiation scheme is the fact that the flattening operation permits to view constants as names for complex
terms. This is why we focus on instantiations based only on constants.

Let S be a set of clauses whose satisfiability we wish to test by considering a finite set of its ground
instances. A first, intuitive way to instantiate the non-ground clauses in S consists in replacing all variables
by the constants appearing in S in every possible way. A formal definition of the resulting set follows.

Definition 9 Given a set of clauses S, we let Sc denote the set

Sc = {Cθ | C ∈ S, θ is flat and ground}. ♦

If Sc is unsatisfiable, then so is S; yet, it is clear that in general, Sc may be satisfiable although S is not.
However, it is possible to determine a sufficient condition of the equisatisfiability of Sc and S, based on the
inferences that derive the empty clause starting from S.

Definition 10 Given a set of clauses S, we denote by SF sel
< (S) the set of clauses C ∈ Ssel

< (S) such that the
mgu of the inference that generated C is flat.

A set of clauses S admits a flat refutation if there exists a sequence S0, . . . , Sn such that:

• S0 = S;

• for all i = 1..n, Si = Si−1 ∪ SF sel
< (Si−1);

• � ∈ Sn. ♦

The instantiation of the clauses with all the constants occurring in the original set of clauses is complete
if the latter admits a flat refutation:

Theorem 11 If S admits a flat refutation, then Sc is unsatisfiable.

Proof. Let S′
0, . . . , S

′
n denote the sequence such that:

• S′
0 = Sc;

• for all i = 1..n, S′
i = S′

i−1 ∪ Ssel
< (S′

i−1).

We prove by induction on k that for any flat ground substitution θ and for any clause C ∈ Sk, the clause Cθ
is in S′

k. Thus, if � ∈ Sn, then also, � ∈ S′
n, which proves that Sc is unsatisfiable.

If k = 0 then the result is obvious: C is a clause in S, hence, by construction, Cθ is a clause in Sc. Now
assume the result is true for some k ≥ 0, let C ∈ Sk+1, and consider a flat ground substitution θ. We assume
that C is obtained by a paramodulation from C1 = u ≃ v ∨D into C2 = l[u′] ≃ r ∨D′; the proof in all the
other cases is similar. Here, C = (l[v] ≃ r ∨ D ∨D′)σ, and by hypothesis, σ is flat. Let µ = σθ, then µ is
also a flat ground substitution; therefore, by the induction hypothesis, both C1µ and C2µ are in S′

k. Since
the paramodulation of C1µ into C2µ generates C, the latter is in S′

k+1, which concludes the proof.

The main inconvenience is that ensuring a set of clauses admits a flat refutation is not decidable in
general, and that even if this condition were guaranteed, Sc could be a very large set. We thus define an
instantiation scheme which generates a set of ground clauses potentially much smaller than Sc, while still
restricting ourselves to instantiations based on constants.

6

Definition of the Instantiation Scheme

The basic idea of our instantiation scheme is close to the one of existing instantiation-based methods (see
for instance [20, 14]): namely, to use unification in order to generate relevant instances. For example, from
the clauses f(x) ≃ a, f(b) 6≃ a, we shall generate, by unifying the terms f(x) and f(b), the instance f(b) ≃ a
of the first clause, yielding the ground unsatisfiable set {f(b) ≃ a, f(b) 6≃ a}. More generally, if C is a clause
containing a (non variable) term t and if s is a term occurring in the clause set, we shall derive the instance
Cσ such that σ is a unifier of t and s.

The difference between our approach and existing ones is twofolds. First we restrict ourselves to flat
unifiers, simply by discarding complex subterms. This is possible since the clause sets we consider will always
admit flat refutations. Second, we use a relaxed (pseudo-)unification algorithm, in which decomposition
is only applied at the root position. More precisely, two (proper) subterms of t, s are always taken to be
identical, except if one of them is a variable x and the other is a constant symbol c, in which case we add
the binding x 7→ c into the substitution σ. In particular if two such bindings occur, namely x 7→ a, x 7→ b,
where a 6= b, then the unification algorithm still succeeds, and by convention, the smallest constant symbol
among a, b according to the ordering < is chosen as the value of x. Bindings of the form x 7→ f(t1, . . . , tn)
where n > 0 are simply ignored.

The underlying idea is that we do not want to compute only the unifiers of t and s, but rather all the
unifiers of the terms t′, s′ that can (at least potentially) be obtained from t and s after some superposition
steps behind the root. For instance the clauses f(a, x) ≃ a and f(c, b) ≃ c would yield the instance f(a, b),
although the terms f(a, x) and f(c, b) are not unifiable, because they may become so later in the derivation,
e.g. if a is replaced by c by superposition. Similarly the clauses f(x, x) ≃ a and f(b, c) ≃ c should yield the
instance f(b, b) ≃ a (or f(c, c) ≃ a). On the other hand f(x) and g(y) are still not unifiable, but f(f(x))
and f(g(y)) are, with an empty unifier, since they can be reduced to the same term by superposition, e.g.
f(a) ≃ a, g(b) ≃ a. Similarly f(x, g(x)) and f(g(y), y) have an empty unifier.

The reason for this rather unusual decision is that we cannot use the superposition calculus to compute
an “exact” set of substitutions (as is done in [14]). Indeed, this calculus does not terminate in general on the
classes we consider. We need to reason only on the set of terms already occurring in the original clause set,
using an over-approximation of the set of (flat) unifiers, which as we shall see is sufficient in our context. The
fact that clauses are only instantiated with flat substitutions is not such a limitation since in practice, fresh
constants that serve as names for ground terms can be introduced during the flattening operation. Thus, in
a sense, the only limitation of this scheme is that instantiations only involve ground terms occurring in the
original set of clauses.

Definition 12 Let t = f(t1, . . . , tn) and s = f(s1, . . . , sn) be two terms. We denote by ∼(t,s) the smallest
equivalence relation on T0 for which ti ∼(t,s) si, for all i ∈ [1..n] such that ti, si ∈ T0.

The pseudo-unifier of two terms t, s with the same head symbols is the substitution σ defined as follows:

dom(σ)
def

= {x ∈ V | ∃c ∈ Σ0, x ∼(t,s) c}, and for all x ∈ dom(σ),

xσ
def

= min
<

{c | c ∈ Σ0, x ∼(t,s) c}. ♦

Example 13 Consider the complex terms t = f(g(x), a, x, b, x, z, z′) and s = f(h(y), y, c, d, b, z′, z) and the
ordering a ≺ b ≺ c ≺ d ≺ x ≺ y ≺ z′ ≺ z. Then there are three equivalence classes: a ∼ y, x ∼ c ∼ b ∼ d,
and z ∼ z′. Thus, the pseudo-unifier of t and s is {x 7→ b, y 7→ a}. ♣

The relation ∼(t,s) is preserved by a particular class of substitutions:

Proposition 14 Let t, s be two terms and σ be a substitution that maps every variable in its domain to
another variable. If u ∼(t,s) v then uσ ∼(tσ,sσ) vσ.

Proof. Immediate.

7

Complex terms Involved clauses Instantiated clause
car(x), car(a) (1), (4) cons(car(a), cdr(a)) ≃ a
cdr(x), cdr(b) (1), (6) cons(car(b), cdr(b)) ≃ b

cons(x, y), cons(a, c) (2), (5) car(cons(a, c)) ≃ a
cons(x, y), cons(a, c) (3), (5) cdr(cons(a, c)) ≃ d

Figure 2: Instantiated clauses of Example 16.

Definition 15 The Instantiation Rule (I) is defined as follows:

S → S ∪ {Cσ}

if the following holds:

• C is a clause in S.

• D is a renaming of a clause in S (possibly C), sharing no variable with C.

• σ is the pseudo-unifier of two terms t = f(~t) and s = f(~s) occurring in C,D respectively.

We denote by Ŝ the set of clauses that can be generated from S using the instantiation rule above. ♦

Example 16 Let S denote the set of clauses containing the clauses

1 : cons(car(x), cdr(x)) ≃ x, 2 : car(cons(x, y)) ≃ x, 3 : cdr(cons(x, y)) ≃ y,
4 : car(a) ≃ b, 5 : cons(a, c) ≃ d, 6 : car(cdr(b)) ≃ c.

The clauses other than those in S that are generated by the instantiation scheme are represented in Figure
2. The first column of the table contains the complex terms that are considered for the psuedo-unification,
the second column contains the numbers of the clauses in which these terms occur, and the third column
contains the instantiated clause. ♣

In general the set Ŝ is not ground, since it contains S. We assume that Σ contains a special constant
symbol λ, not occurring in S; all the variables occurring in Ŝ are instantiated with this constant.

Definition 17 Given a set of clauses S, we denote by Sλ the set of clauses obtained by replacing all variables
in S by λ. ♦

If C is a clause in S containing n distinct variables and there are m constant symbols occurring in S,
then there are at most mn pseudo-unifiers that can be applied to C. This entails the following result:

Theorem 18 Given a set of clauses S, let n denote the maximal number of distinct variables appearing in
a clause in S, and m denote the number of constants occurring in S. Then the maximal number of clauses
that can be generated by the instantiation rule is O(|S|mn).

This result is important from a complexity point of view, when considering T -satisfiability problems.
Indeed, suppose theory T is fixed and it is guaranteed that the instantiation scheme is correct for any set of
clauses of the form T ∪ S, where S is a set of ground unit clauses. Then the number of distinct variables
appearing in a clause is a constant, which means that a polynomial set of ground clauses is generated. If T is
Horn, then the generated set of ground clauses is also Horn, and its satisfiability can be tested in polynomial
time. This result shows an advantage of the instantiation scheme compared to the rewrite-based approach:

8

contrary to the latter, this scheme avoids the generation of exponentially many clauses in, e.g., the theory
of arrays (see [1]). For the theory of records with extensionality [1], it generates a polynomial set of ground
Horn clauses, whose satisfiability can be tested in polynomial time, whereas the rewrite-based approach is
an exponential satisfiability procedure for this theory.

Before proving correctness results on the instantiation scheme, we provide (without proof) a list of theories
on which this scheme can be safely applied (see Section 8 for details): Natural numbers, Integer Offset, Lists,
Records, Arrays, Encryption.

The following section is devoted to the definition and properties of various classes of derivation trees,
which will be used in Section 4 to prove the completeness of our instantiation scheme on particular sets of
clauses.

3 Derivation Trees

The main topic of this section is the presentation of so-called derivation trees and their properties. These
derivation trees allow us to keep track of the variables involved in derivations in a simple way, and by
constraining the properties they have to satisfy, we shall be able to devise a sufficient condition guaranteeing
the completeness of our instantiation scheme.

3.1 Basic Definitions

Throughout this section, we shall fix the reduction ordering and the selection function that are employed by
the superposition calculus.

Definition 19 We denote by →σ the relation →sel
<,σ, where < is the strongest reduction ordering3 and sel

denotes the selection function defined as follows:

• sel(C) = C if C is flat.

• Otherwise, sel(C) is the set of literals in C that are either not flat or not ground4. ♦

This relation corresponds to a (partially) unrestricted version of the calculus (in the sense that the
considered ordering is as strong as possible), which is inefficient, but correct.

Definition 20 (Derivation tree) The class of derivation trees for a set of clauses S is the smallest set of
expressions of the form τ = [C, T , σ], such that:

• C is a clause, called the root of the tree and denoted by root(τ);

• T is a (possibly empty) set of pairwise variable-disjoint derivation trees for S;

• σ is a substitution;

• if T = ∅ then C is of the form Dσ, where D ∈ S and σ is a renaming; otherwise root(T) →σ C.

The notation root(T) is defined in a standard way as follows:

root(T)
def

= {root(τ) | τ ∈ T }.

A derivation tree [C, T , σ] is flat if σ is flat and every derivation tree τ ∈ T is flat. A refutation tree is a
derivation tree of root �. ♦

The set of clauses S may remain implicit, in which case we will simply talk about derivation trees.

3i.e., all symbols in Σ are mutually incomparable
4Obviously sel(C) contains all the maximal literals in C.

9

[f(x1) ≃ g(x1), ∅, {x 7→ x1}] [f(x2) ≃ a, ∅, {x 7→ x2}]

[g(x1) ≃ a, •, {x2 7→ x1}] [g(x4) 6≃ a, ∅, {y 7→ x4}]

[a 6≃ a, •, {x1 7→ x4}]

[�, •, id]

{x2 → x1}

{x1 → x4}

id

Figure 3: Derivation tree of Example 21

Example 21 Let S = {f(x) ≃ g(x), f(x) ≃ a, g(y) 6≃ a}. Then starting with the derivation trees

τ1 = [f(x1) ≃ g(x1), ∅, {x 7→ x1}] and τ2 = [f(x2) ≃ a, ∅, {x 7→ x2}],

we may construct the derivation tree τ3 = [g(x1) ≃ a, {τ1, τ2}, σ], where σ = {x2 → x1}.
Consider τ4 = [g(x4) 6≃ a, ∅, {y 7→ x4}] and σ′ = {x1 → x4}, then τ = [a 6≃ a, {τ3, τ4}, σ′] and τ ′ =

[�, {τ}, id] are derivation trees for S, which is unsatisfiable.
A graphical representation of τ ′ is provided in Figure 3. The black dots denote the derivation trees

immediately below. ♣

When clear from the context, we will keep the substitutions implicit in the graphical representations.

Definition 22 The depth of a derivation tree is inductively defined as follows:

depth([C, ∅, σ])
def

= 0, and depth([C, T , σ])
def

= 1 + max
τ∈T

depth(τ).

The set of variables occurring in a derivation tree τ , denoted by V(τ), is the set of variables defined as follows:

V([C, T , σ])
def

= V(C) ∪
⋃

τ ′∈T

V(τ ′).
♦

Example 23 In Example 21, the derivation tree τ ′ is of depth 3, and the set of variables occuring in τ ′ is
V(τ ′) = {x1, x2, x4}. ♣

We also define the composition of the unifiers over a derivation tree.

Definition 24 Given a derivation tree τ , the substitution µτ denotes the composition of the unifiers in τ ,
which is formally defined as follows:

µ[C,∅,σ]
def

= id,

µ[C,T ,σ]
def

= (
⋃

τ∈T

µτ)σ. ♦

10

This notation is well-defined since the trees in T are mutually variable-disjoint. Note that the initial
renamings of clauses are not taken into account in the construction of µτ . Thus, these substitutions only
make sense when applied to the clauses of S that have already been renamed.

Example 25 In Example 21, we have σ = {x2 → x1} and σ′ = {x1 → x4}, hence µτ = σσ′ = {x2 →
x4, x1 → x4}, and µτ ′ = µτ . ♣

We obtain a first result for keeping track of a variable in a derivation tree.

Proposition 26 Let τ = [C, T , σ] be a derivation tree. If x ∈ V(C) then x 6∈ dom(µτ).

Proof. By an immediate induction on the depth of the tree. The variable x cannot occur in dom(σ), since
by definition of the calculus, σ is applied to the clauses in T to generated C, and is idempotent.

We define the notions of instantiated and uninstantiated hypotheses in a derivation tree. These sets re-
spectively represent the clauses occurring in the original set of clauses, in their instantiated and uninstantiated
versions.

Definition 27 Given a derivation tree τ , we denote by hyp(τ) the set of uninstantiated hypotheses of τ , and
by hypinst(τ) the set of instantiated hypotheses of τ . Formally:

hyp([C, ∅, σ])
def

= hypinst([C, ∅, σ])
def

= {Cσ},

hyp([C, T , σ])
def

=
⋃

τ∈T

hyp(τ),

hypinst([C, T , σ])
def

=
⋃

τ∈T

hypinst(τ)σ.

A clause C is a main hypothesis of a flat tree τ if C ∈ hyp(τ) and if for any variable x ∈ V(C) and for any
unifier σ occuring in τ , we have xσ ∈ V(C) ∪ Σ0. ♦

Example 28 Suppose τ = [�, T , {x → a}], where T = {[p(x, b), ∅, id], [¬p(a, y), ∅, id]}. Then hyp(τ) =
{p(x, b),¬p(a, y)} and hypinst(τ) = {p(a, b),¬p(a, b)}. ♣

3.2 Restricted Classes of Derivation Trees

Since the set Ŝ that is obtained by our instantiation scheme only contains flat instances of S, it is obviously
possible for S to be unsatisfiable whereas Ŝ is satisfiable. For example, this is the case if no refutation tree
for S is flat. Even if S admits a flat refutation tree, Ŝλ may be satisfiable, as evidenced by the set of clauses
S = {f(g(x)) ≃ a, g(y) ≃ b, f(z) 6≃ a}. Here, Ŝ = S, and Ŝλ = {f(g(λ)) ≃ a, g(λ) ≃ b, f(λ) 6≃ a} is
satisfiable. But S admits a flat refutation tree:

f(b) ≃ a (superposition, y 7→ x)
a 6≃ a (paramodulation, z 7→ b)
� (reflexivity)

Such a behaviour may occur even if S contains no function symbol, as evidenced by the set of clauses
S = {x 6≃ a, b ≃ a}.

In this section, we introduce a semantic criterion on derivation trees that guarantees equisatisfiability, as
well as other restrictions that will facilitate the transition from a refutation tree for S to one for Ŝ.

11

[f(g(x1)) ≃ a, ∅, id] [g(a) ≃ b, ∅, id]

[f(b) ≃ a, •, {x1 7→ a}] [f(x2) 6≃ a, ∅, id]

[a 6≃ a, •, {x2 7→ b}]

[�, •, id]

{x1 → a}

{x2 → b}

∅

Figure 4: A non-simple derivation tree of root �.

Definition 29 (Simple Derivation Tree) Let S be a set of clauses. A derivation tree τ = [C, T , σ] of S,
where σ is an mgu of two terms t, s, is simple if it satisfies the following conditions:

1. σ is flat.

2. C is quasi-flat (see Section 1.1), and not variable-eligible (see Section 1.2).

3. If there is a position p such that t|p = f(t1, . . . , tn) (resp. s|p = f(t1, . . . , tn)) and ti ∈ V for some
i ∈ Inv(f), then either s|p (resp. t|p) occurs in S or σ = id.

4. If C is obtained using superposition/paramodulation by replacing a term uσ by vσ, then vσ 6∈ V .

5. Every derivation tree in T is simple.

A set of clauses S is simply provable if for all clauses C, if S admits a derivation tree of root C then S also
admits a simple derivation tree of root C. A class of clause sets S is simply provable if every set of clauses
in S is simply provable. ♦

Note that every simple derivation tree is flat, but the converse does not hold. Condition 4 of the definition
prevents replacement of a term by a variable which guarantees that inferences preserve Condition 2. Condition
3 is the less natural one. Intuitively it ensures that a variable is never unified with a constant symbol that
has previously replaced a complex term by superposition. This allows us to discard derivation trees such as
the one in Figure 4. In Figure 4, the term f(x2) is unified with f(b) but since the latter does not occur in
the original set of clauses, we cannot compute the substitution x 7→ b using the Instantiation rule only. For
this purpose, we ensure that the subterms that are not quasi-closed (f(x2) in this example) are unified only
with terms occurring in the original set of clauses.

The main result we shall prove is that if S is simply provable and unsatisfiable, then Ŝλ is unsatisfiable.
We define a subclass of simple derivation trees that will serve as a link between a derivation tree for S and
one for Ŝλ.

Definition 30 (Pure Derivation Trees) A substitution σ is pure if for every variable x, xσ ∈ V . A
derivation tree τ is pure if it is simple and if µτ is pure (this implies that every subtree of τ is pure). ♦

It will sometimes be useful to replace a subtree in a simple or pure derivation tree by another one. This
operation is harmless. Consider for example a derivation tree τ = [C, T , σ] that is simple (resp. pure),

12

[f(x4) ≃ f ′(x4), ∅] [f ′(x2) ≃ h(x2), ∅]

[f(x2) ≃ h(x2), •] [g(x3) ≃ h(x3), ∅]

[f(x3) ≃ g(x3), •]

[f(x2) ≃ g′(x2), ∅] [h(y1) ≃ g′(y1), ∅]

[f(x2) ≃ h(x2), •] [g(x3) ≃ h(x3), ∅]

[f(x3) ≃ g(x3), •]τ

τ ′

Figure 5: Derivation trees of Example 32 (the substitutions are omitted for the sake of readability)

and let τ ′ ∈ T . Let τ ′′ be a simple (resp. pure) derivation tree with the same root as τ ′, and such
that the only variables τ and τ ′′ have in common are those occurring in root(τ ′′). Then [C, T ′, σ], where
T ′ = (T \ {τ ′}) ∪ {τ ′′}, is a simple (resp. pure) derivation tree with the same root as τ . This result can be
generalized to any subtree of τ :

Proposition 31 Let τ be a simple (resp. pure) derivation tree for a set of clauses S, and τ ′ = [C, T , σ] be
a subtree of τ . Let τ ′′ be a simple (resp. pure) derivation tree for S such that:

• τ ′ and τ ′′ have the same root,

• the only variables τ and τ ′′ have in common are those occurring in C.

Then the derivation tree obtained by replacing τ ′ by τ ′′ in τ is also a simple (resp. pure) derivation tree for
S, with the same root as τ .

If τ and τ ′′ have more variables in common than those in C, then the other variables can of course be
renamed, thus yielding a derivation tree that satisfies all the conditions of Proposition 31.

Example 32 Consider the set of clauses

S = {f(x) ≃ f ′(x), f(x) ≃ g′(x), f ′(x) ≃ h(x), h(x) ≃ g′(x), g(x) ≃ h(x)}.

The derivation trees τ (top) and τ ′ (bottom) of Figure 5 have the same root and are both pure; τ ′ was
obtained from τ by replacing the subtree of root f(x2) ≃ h(x2), with the dashed lines, by the subtree with
the bold lines. Note that these subtrees only have x2 as a common variable. ♣

We now define a last class of derivation trees, the most constrained one, which permits only basic inferences
to be carried out on a set of clauses. This class will allow us to discard the basic inferences in the construction
of a derivation tree.

13

Definition 33 (Elementary Derivation Tree) A derivation tree [C, T , σ] is elementary if T = ∅ or T =
{τ, τ ′}, where τ is elementary and τ ′ is pure and has a ground root. ♦

Note that every elementary tree is pure. We introduce the following measure on derivation trees:

Definition 34 Given a derivation tree τ , δ(τ) is defined inductively by:

• δ(τ)
def

= 0 if τ is elementary.

• δ([C, T , σ])
def

= 1 + maxτ∈T δ(τ) otherwise. ♦

In particular, this measure is unaffected by the adjunction of a flat ground clause to a hypothesis in a
pure derivation trees:

Proposition 35 Let τ = [C, T , σ] be a pure derivation tree for a set of clauses S, D ∈ hyp(τ), and consider
a flat, ground clause E. Then there exists a pure derivation tree τ ′ of root C ∨E for S ∪ {D ∨E}, such that
δ(τ ′) = δ(τ).

Proof. We prove the result by induction on the depth of τ . If T = ∅, then the result is obvious, since
necessarily C = D. Now assume T = {τ1, τ2}, where D1, D2 are the respective roots of τ1, τ2, and w.l.o.g.,
suppose D ∈ hyp(τ1). Then by definition {D1, D2} →σ C, and by the induction hypothesis, there is a pure
derivation tree τ ′1 of root D1∨E for S∪{D∨E}. Since no ordering conditions are considered in the calculus,
the literals in E have no influence on the derivation, and it is clear that {D1 ∨ E,D2} →σ C ∨ E. Thus,
τ ′ = [C ∨ E, {τ ′1, τ2}, σ] is a pure derivation tree for S ∪ {D ∨ E}, and obviously, δ(τ ′) = δ(τ).

3.3 Swapping Variables in Pure Derivation Trees.

Given a pure derivation tree, we will sometimes construct a new derivation tree with the same properties as
the original one, by swapping some of its variables, as in the following example.

Example 36 Let S = {f(x, y) ≃ g(x, y), f(y, y) ≃ h(y)}, and consider the clauses

C1 = f(x1, x2) ≃ g(x1, x2),
C2 = f(y1, y1) ≃ h(y1),
C = g(y1, y1) ≃ h(y1),

and the substitutions

σ1 = {x 7→ x1, y 7→ x2},

σ2 = {y 7→ y1}.

Let τ1 = [C1, ∅, σ1], τ2 = [C2, ∅, σ2], and σ = {x1 → y1, x2 → y1}; then τ = [C, {τ1, τ2}, σ] is a pure derivation
tree for S.

Another pure derivation tree for S with root C can also be constructed by swapping x1 and y1. This tree
is obtained by taking the clauses

C′
1 = f(y1, x2) ≃ g(y1, x2),

C′
2 = f(x1, x1) ≃ h(x1),

the substitutions

σ′
1 = {x 7→ y1, y 7→ x2},

σ′
2 = {y 7→ x1},

and the derivation trees τ ′1 = [C′
1, ∅, σ

′
1] and τ ′2 = [C′

2, ∅, σ
′
2]. Then τ ′ = [C, {τ ′1, τ

′
2}, σ] is also a pure derivation

tree for S, and has the same root as τ . ♣

14

To formalize the intuition of this example, we define the renaming of a derivation tree.

Definition 37 If τ = [C, T , σ] is a derivation tree and π is a renaming, then τπ denotes the derivation tree

defined as follows: τπ
def

= [Cπ, T π, π−1σπ]. ♦

The next lemma shows that τπ is indeed a derivation tree with the same properties as τ . We prove the
result in the case where τ is a pure derivation tree, along with some additional properties on its structure.

Lemma 38 Let τ = [C, T , σ] be a pure derivation tree for S and π be a renaming. Then τπ is a pure
derivation tree τ ′ for S such that root(τ ′) = Cπ, µτ ′ = π−1µτπ, hyp(τ ′) = hyp(τ)π and δ(τ ′) = δ(τ).

Proof. The result is proven by induction on the depth of τ . If τ = [C, ∅, σ], then the result is obvious. Now

assume τ = [C, T , σ]. Let T = {τ1, τ2} (we may have τ1 = τ2) and let τ ′i
def

= τiπ (i = 1, 2). By the induction
hypothesis, τ ′1 and τ ′2 are derivation trees, and we have root(τi) = Ciπ, µτ ′

i
= π−1µτi

π, hyp(τ ′i) = hyp(τi),

δ(τ ′i) = δ(τi) (for i = 1, 2). Then by definition, σ is the mgu of two terms s and t, and σ′ = π−1σπ is an

mgu of sπ and tπ. Thus, if T ′ = {τ ′1, τ
′
2}, then τ ′

def

= [Cπ, T ′, σ′] is a pure derivation tree for S (since π is a
renaming, τ ′1 and τ ′2 do not share any variables). Furthermore, by definition,

µτ ′ = (
⋃

τ ′

i
∈T ′

µτ ′

i
)σ′

= (
⋃

τ ′

i
∈T ′

µτ ′

i
)σ′

= (
⋃

τi∈T

π−1µτi
π)σ′ (by the induction hypothesis)

= π−1(
⋃

τi∈T

µτi
)πσ′

= π−1(
⋃

τi∈T

µτi
)σπ (because σ′ = π−1σπ)

= π−1µτπ

It is simple to verify that δ(τ ′) = δ(τ).

The previous lemma shows how pure derivation trees are preserved by renamings. In the sequel, we will
sometimes want to rename variables in a pure derivation tree, without modifying the root of this derivation
tree. The following lemma provides a sufficient condition for safely performing such an operation.

Lemma 39 Let τ = [C, T , σ] be a pure derivation tree for a set of clauses S, let x ∈ dom(σ) and consider
π = {x → xσ, xσ → x}. Then τ ′ = [C, T π, π−1σ] is a pure derivation tree for S such that root(τ ′) = C,
µτ ′ = π−1µτ , hyp(τ ′) = hyp(τ)π and δ(τ ′) = δ(τ).

Proof. The proof is immediate if T = ∅. By Lemma 38, τ ′′ = [Cπ, T π, π−1σπ] is a pure derivation tree for
S of root Cπ, such that hyp(τ ′′) = hyp(τ)π, µτ ′′ = π−1µτπ, δ(τ ′′) = δ(τ), where π−1σπ is an mgu of two
terms sπ and tπ. But since π is a renaming, (π−1σπ)π−1 = π−1σ is also an mgu of sπ and tπ, and the clause
generated with this mgu is (Cπ)π−1 = C. Thus τ ′ = [C, T π, π−1σ] is a pure derivation tree for S. We have
µτ ′ = µτ ′′π−1 = π−1µτ .

In Example 36, C1 and C2 are hypotheses of τ , but none of them is a main hypothesis. But by swapping
variables x1 and y1, the new derivation tree we obtain is such that C′

1 is a main hypothesis for this tree. We
show that it is possible to generalize this example.

15

Lemma 40 Let τ be a pure derivation tree for a set of clauses S, let D ∈ hyp(τ) and let u denote a term
appearing in D. If θ is a ground substitution such that dom(θ) ⊆ V(u), then there exists a pure derivation
tree τ ′ for S with the same root as τ , a substitution η, a clause D′ = Dη ∈ hyp(τ ′) and a term u′ occurring
in D′ such that:

• D′µτ ′ = Dµτ and u′µτ ′ = uµτ ,

• D′ a main hypothesis,

• the substitution θ′ = η−1θη corresponding to θ is such that dom(θ′)µτ ′ ⊆ dom(θ′).

Proof. Assume that τ,D, u, θ do not satisfy the property above. In particular, η
def

= id, D′ def

= D and u′
def

= u
cannot be a solution, thus there must exist a variable x such that one of the following conditions holds:

• either x ∈ V(D) and xµτ 6∈ V(D) (i.e. D is not a main hypothesis of τ),

• or x ∈ dom(θ) and xµτ 6∈ dom(θ).

We denote by E(τ,D, u, θ) the set of variables x satisfying one of these properties. By definition, for
every x ∈ E(τ,D, u, θ), we have x ∈ dom(µτ), thus there exists a (unique) subtree τx = [C, T , σ] of τ such
that x ∈ dom(σ). Let m(τ,D, u, θ) = {δ(τ) − δ(τx) | x ∈ E(τ,D, u, θ)}. This measure m(τ,D, u, θ) is clearly
well-founded, thus we may assume w.l.o.g. that the tuple (τ,D, u, θ) is the minimal one (according to m)
such that the above property does not hold.

Let x ∈ E(τ,D, u, θ). Let τx = [C, T , σ] and x′ = xσ. We can safely replace τx by the tree obtained as
in Lemma 39. Let τ ′ be the pure derivation tree obtained by replacing τx with this new derivation tree. Let

π = {x 7→ x′, x′ 7→ x} and θ′
def

= π−1θπ. By Lemma 39, hyp(τ ′) contains the clause D′ def

= Dπ. Let u′
def

= uπ.
We have D′µτ ′ = Dπµτ ′ . By Lemma 39, µτ ′ = π−1µτ thus D′µτ ′ = Dµτ and uµτ = u′µτ ′ .

By definition, we have x 6∈ E(τ ′, D′, u′, θ′) (since x does not occur in D′). Let y be a variable occurring
in E(τ ′, D′, u′, θ′) and distinct from x′. We show that y ∈ E(τ,D, u, θ). Since τ ′ is obtained from τ by
swapping x and x′ in some part of the tree and since xσ = x′σ = x′, we have yµτ ′ = yµτ . We assume that
y 6∈ E(τ,D, u, θ) to derive a contradiction. We distinguish two possibilities:

• If y ∈ V(D′) and yµτ ′ 6∈ V(D′), then since y 6= x, x′ we have y ∈ V(D) and yµτ 6∈ V(D′). If yµτ ∈ V(D)
this implies that yµτ = x, which is impossible since xσ = x′.

• If y ∈ dom(θ′) and yµτ ′ 6∈ dom(θ′), then we have y ∈ dom(θ) (since y 6= x, x′) and yµτ 6∈ dom(θ′). If
yµτ ∈ dom(θ), then this implies that yµτ = x′, thus x′ 6∈ dom(θ′), i.e. x 6∈ dom(θ). This means that
both x and x′ occur in D (x occurs in D since it is in E(τ,D, u, θ) by definition and x′ ∈ dom(θ) ⊆
V(D)). Moreover since yµτ = x′ we have x′µτ = x′ and xµτ = x′. Consequently, x and xµτ both occur
in D and xµτ ∈ dom(θ). This contradicts the fact that x ∈ E(τ,D, u, θ).

Consequently, the only variable that may occur in E(τ ′, D′, u′, θ′) but not in E(τ,D, u, θ) is x′. If x′ ∈
E(τ ′, D′, u′, θ′) then δ(τ ′x′) > δ(τx). Thus m(τ ′, D′, u′, θ′) < m(τ,D, u, θ). Since τ is minimal, there exists a
tree τ ′′ a clause D′′ and a term u′′ in D′′ satisfying the desired properties for τ ′, D′, u′. By transitivity, this
also holds for τ,D, u.

3.4 Relations Induced by Derivation trees

We introduce several relations on terms, literals and clauses, along with the properties they satisfy, individ-
ually or combined. We start by characterizing the sets of clauses that are invariant by inferences involving
empty mgus.

Definition 41 A set of clauses S is Σ0-stable if for every subset S′ ∈ S and for any clause C such that
S′ →id C, we have C ∈ S. ♦

16

Definition 42 Let S be a set of clauses and C be a flat, ground clause. We denote by ≡S
C the smallest

reflexive relation on constant symbols such that a ≡S
C b if there exists a clause (a ≃ b)∨D ∈ S where D ⊆ C.

This relation is extended to every expression (term, atoms or clause) as follows: f(t1, . . . , tn) ≡S
C f(s1, . . . , sn)

if for every i ∈ [1..n], ti ≡S
C si (f denotes either a function symbol or a logical symbol).

Given two terms t = f(t1, . . . , tn) and s = f(s1, . . . , sn), we write t �S
C s if for all i ∈ [1..n], if ti ∈ T0 or

si ∈ V , then ti ≡S
C si. ♦

Intuitively, if e and e′ are two ground expressions (terms, literals or clauses) such that e ≡S
C e′, then every

interpretation that satisfies S and falsifies C must interpret e and e′ in exactly the same way.

Lemma 43 Let S be a set of clause and C be a flat ground clause. If S is Σ0-stable then ≡S
C is an equivalence

relation.

Proof. ≡S
C is reflexive by definition. Moreover it is symmetric by the commutativity of ≃. We only have to

show that it is transitive. Assume that a ≡S
D c and c ≡S

D b, for some terms a, b, c. We show that a ≡S
D b. The

proof is by induction on the depth of the terms. If a = c or c = b the proof is trivial. If a = f(a1, . . . , an)
is complex, then by definition c must be of the form f(c1, . . . , cn) where ∀i ∈ [1..n].ai ≡S

D ci. Similarly, we
have b = f(b1, . . . , bn) and ∀i ∈ [1..n].ci ≡S

D bi. By the induction hypothesis, we have ∀i ∈ [1..n].ai ≡S
D bi

hence a ≡S
D b. If a is flat, then we must have a, b, c ∈ Σ0 and S contains two clauses (a ≃ c) ∨ D1 and

(c ≃ b) ∨D2 where D1, D2 ⊆ D. By ground superposition (since the constant are unordered) we can derive
(a ≃ b) ∨ D1 ∨ D2 from (a ≃ c) ∨ D1 and (c ≃ b) ∨ D2. Since S is Σ0-stable, this clause must occur in S.
Therefore, a ≡S

C b.

We prove some simple results on the relation �S
C : this relation is stable by instantiation and inclusion,

and it is transitive.

Proposition 44 Let t, s be terms, C be a flat ground clause, S be a set of clauses and σ be a flat substitution.
If t �S

C s, then tσ �S
C sσ.

Proof. By definition, we have t = f(t1, . . . , tn), s = f(s1, . . . , sn). Let i ∈ [1..n]. By definition of �S
C , one

of the two following conditions holds:

• ti ≡S
C si. By definition of ≡S

C , we have either ti = si and in this case tiσ = siσ or ti, si ∈ Σ0 hence
tiσ = ti, siσ = si and tiσ ≡S

C siσ.

• ti 6∈ T0 and si 6∈ V . Obviously tiσ cannot be flat and siσ cannot be a variable.

Proposition 45 Let t, s be terms, C,D be two ground flat clauses, S be a set of clauses. If t �S
C s and

C ⊆ D, then t �S
D s.

Proof. It suffices to remark that by definition of ≡S
C , we have: u ≡S

C v ⇒ u ≡S
D v. Then the result follows

immediately by definition of �S
C .

Proposition 46 Let C be a flat ground clause and S be a Σ0-stable set of clauses. Then �S
C is transitive.

17

Proof. Assume that t �S
C s �S

C u. By definition of �S
C we have t = f(t1, . . . , tn), s = f(s1, . . . , sn), u =

f(u1, . . . , un). Let i ∈ [1..n]. If ti ≡S
C si and si ≡S

C ui then ti ≡S
C ui by transitivity of ≡S

C . If ti ≡S
C si and

si 6∈ T0 then by definition of ≡S
C we must have ti = si thus ti 6∈ T0. If ti 6∈ T0 and si 6∈ V and si ≡S

C ui then
we have either si = ui and the proof is obvious, of si, ui ∈ Σ0 thus ui 6∈ V .

The relation �S
C provides a link between any complex term occurring in the root of a pure derivation

tree, and the complex terms occurring in the original set of clauses.

Lemma 47 Let S be a set of clauses and S′ be the set of clauses that can be deduced from S using a pure
derivation tree. If τ is a pure derivation tree of root C for S and t is a complex term appearing in C, then
there exists a clause C′ ∈ hypinst(τ) containing a term s such that s �S′

C◦ t.

Proof. The proof is by induction on the depth of τ . If τ = [C, ∅, id], then the result is obvious (by taking
C′ = C and s = t). Now assume that τ = [C, T , σ] and that t = f(t1, . . . , tn) occurs in C. Note that since τ
is pure, σ must be pure. By definition of the calculus, one of the following condition holds:

• either t = t′σ, where t′ occurs in a clause D ∈ root(T) (paramodulation “outside” t′ or replacement by
t′ or equational factoring or reflexivity rule),

• or t = t′[v]pσ, where p 6= ǫ and t′ occurs in a clause D ∈ root(T) (paramodulation “inside” t′).

In both cases, since σ is pure, t′ must be of the form f(t′1, . . . , t
′
n). Consider the derivation tree τ ′ =

[D, T ′, µ] ∈ T ; since τ ′ is pure, by the induction hypothesis, hypinst(τ ′) contains a term s = f(s1, . . . , sn)
such that s �S′

D◦ t′. By definition, sσ ∈ hypinst(τ), and sσ �S′

D◦ t′σ by Proposition 44. The clause D cannot
be flat since it contains s, thus sel(D) ∩D◦ = ∅ and the literals in D◦ are not affected by the inference step.
This implies that D◦ ⊆ C◦, and by Proposition 45, sσ �S′

C◦ t′σ.
In Case 1, t = t′σ and the result is immediate. In Case 2, if position p is of length strictly greater

than 1, then the flat arguments of t′σ are not affected by the inference step and it is simple to check that
t′σ �S′

C◦ t; by Proposition 46, sσ �S′

C◦ t (since S′ is obviously Σ0-stable). Otherwise, p = i for some i ∈ [1..n],
root(τ) contains a clause (u ≃ v) ∨E, and t is obtained from f(t′1, . . . , t

′
n)σ by replacing t′iσ = uσ by vσ. By

Condition 4 in Definition 29, vσ cannot be a variable.

• If uσ is a complex term, then t′i must also be a complex term since σ is flat. Since t′i /∈ T0, si must also
be complex, and the proof is complete.

• Otherwise, since u is eligible, u and v must be constant symbols, and E must be flat. Since (u ≃ v)∨E
is not variable eligible, E must be ground. By definition of the calculus, E ⊆ C◦, hence u ≡S′

C◦ v and

sσ �S′

C◦ t.

Given a simple derivation tree τ of root C and a substitution θ, we provide a characterization based on
the main hypotheses of τ that guarantees the existence of another simple derivation tree whose root is Cθ.

Lemma 48 Let S be a set of clauses and τ = [C, T , σ] be a simple derivation tree for S of root C. Consider
a clause D that is a main hypothesis of τ and a flat and ground substitution θ such that dom(θ) ⊆ V(D) and
for all variables x ∈ dom(θ), xθ = xµτθ. Assume further that there exists a variable x0 ∈ V(D) such that
x0µτ ∈ V(C). Then there exists a simple derivation tree τ ′ for S ∪ {Dθ}, of root Cθ, such that δ(τ ′) ≤ δ(τ).

Proof. Let S′ = S ∪ {Dθ}, we will prove the result by induction on the depth of τ .

If T = ∅, necessarily, C = D, and Cθ ∈ S′. Thus τ ′
def

= [Cθ, ∅, id] satisfies the requirements. Now assume
that T = {τ1, τ2}, where root(τ1) = C1 = (t1 ≃ v) ∨ C′

1 and root(τ2) = C2[t2]p, and suppose that C is
generated by superposition or paramodulation from C1 into C2, i.e., σ = mgu(t1, t2) and C = (C′

1 ∨C2[v]p)σ.

18

By definition, there exists an i ∈ {1, 2} such that D ∈ hyp(τi). Moreover, x0µτi
must occur in the root of τi

(since x0µτ = x0µτi
σ ∈ V(C) by hypothesis, and V(C) ⊆ V(C1σ) ⊎ V(C2σ)).

Let θ′ be the restriction of σθ to the variables in D; note that θ and θ′ coincide on all the variables not
occurring in dom(σ). We check that we can apply the induction hypothesis on the derivation tree τi and
the substitution θ′. First, it is clear that D is a main hypothesis of τi, since τi is a subtree of τ . Now let
x be a variable occurring in dom(θ′), we show that xθ′ = xµτi

θ′. If xµτi
= x, then the proof is obvious. If

xµτi
is a constant, then x cannot belong to dom(σ) and of course, xµτi

θ′ = xµτi
. Hence x ∈ dom(θ), and by

hypothesis, xθ = xµτθ, which entails that

xθ′ = xσθ = xθ = xµτθ = xµτi
σθ = xµτi

.

Now assume xµτi
is a variable other than x, and let y = xµτi

6= x. Note that y ∈ V(D) since D is a
main hypothesis of τ . Since y 6= x, necessarily, x 6∈ dom(σ) (by Proposition 26, because x ∈ dom(µτi

)).
Furthermore, by definition, xµτ = yσ, thus:

xθ′ = xσθ = xθ = xµτθ = yσθ = yθ′ = xµτi
θ′.

Therefore, we may apply the induction hypothesis on τi and θ′: there exists a simple derivation tree τ ′i for
S′, of root Ciθ

′, where δ(τ ′i) ≤ δ(τi).
Let j = 3− i, and let τ ′j = τjη be a renaming of τj that contains no variable occurring in τi or τ ′i . Then of

course, C′
j = Cjη is the root of τ ′j . Since σ is a unifier of t1, t2 which are variable-disjoint, the substitution σ′

such that ∀x ∈ V(Ci), xσ
′ def

= xσ and ∀x ∈ V(C′
j), xσ

′ def

= xη−1σ is well-defined, flat, and is an mgu of ti, tjη.
We now prove that tiθ and tjηθ are unifiable by verifying that the application conditions of Lemma 1 are
satisfied for ti, tjη and θ. By hypothesis, θ is flat and ground, and ∀x ∈ dom(θ), xθ = xµτθ. Furthermore,
for all x ∈ V(ti), we have xµτ = xσ, and since σ and σ′ are identical on V(ti), xµτ = xσ′. Thus, for all
x ∈ dom(θ), xθ = xσ′θ. Consequently, we can apply Lemma 1: tiθ and tjηθ are unifiable, and have an m.g.u.
γ such that dom(γ) = dom(σ′) \ dom(θ) and xγ = xσ′θ for all x ∈ dom(γ).

Since dom(θ) ⊆ V(D) and D is a main hypothesis, for all x ∈ V(ti)∩ dom(θ), xσ ∈ V(D) and xσθ = xθ′.
Hence,

tjηθ = tjη, and

tiθ = tiσθ = tiθ
′.

Therefore, γ is a flat, ground mgu of tiθ
′ and tjη, and the paramodulation rule is applicable on the clauses

Ciθ
′ and Cjη.
We now prove that the generated clause is Cθ. To this aim, it suffices to show that Ciθ

′γ = Ciσθ and
Cjηγ = Cjσθ (since we use the unordered version of the calculus the inference step are stable by instantiation).

Let x ∈ V(Ci). If x ∈ V(D) then xθ′ = xσθ. By definition of γ, this implies that xθ′γ = xσθ. If
x 6∈ V(D), then xθ′ = xθ = x, hence xθ′γ = xγ = xσ′θ′. By definition of σ′, we have xσ′ = xσ. Furthemore,
xσθ′ = xσθ.

Now, let x ∈ V(Cj). By definition x 6∈ dom(θ), hence xθ = x. If xη 6∈ dom(σ′), then xηγ = x. Moreover,
this implies that x 6∈ dom(σ) thus xσθ = xθ = x, and the proof is completed. Otherwise, by definition of γ,
xηγ = xσθ.

Thus {Ciθ
′, Cjη} →γ Cθ and the derivation tree τ ′ = [Cθ, {τ ′1, τ

′
2}, γ] satisfies the desired result. This

derivation tree is simple since it is obtained by instantiating simple derivation trees by a flat substitution (it
is easy to verify that all the conditions in Definition 29 are satisfied).

If τ is nonelementary then δ(τ) = 1 + max(δ(τ1), δ(τ2)) ≥ 1 + max(δ(τ ′1), δ(τ
′
2)) = δ(τ ′). Otherwise,

since the root of τi cannot be ground (since it contains the variable x0µτi
), τi must be elementary. Since

δ(τ ′i) ≤ δ(τi), necessarily, τ ′i is elementary. Furthermore, τj must be pure and have a ground root, hence, τ ′j
is also pure and has a ground root. Therefore, τ ′ is elementary and δ(τ) = δ(τ ′) = 0.

The proof is similar if C is deduced using a unary inference step (reflection or equational factorisation).

Lemma 49 provides a link between the relations ≡S
C , �S

C , and the relation employed to define pseudo-
unifiers (see Definition 12).

19

Lemma 49 Let S be a Σ0-stable set of clauses, C be a ground clause, and consider the terms s, t, u and v
such that:

• u �S
C t and v �S

C s,

• t and s are unifiable, with flat unifier σ.

For all terms s′, t′ ∈ T0 such that s′ ∼(u,v) t
′, we have s′σ ≡S

C t′σ.

Proof. By definition of �S
C , s, t, u and v are respectively of the form f(s1, . . . , sn), f(t1, . . . , tn), f(u1, . . . , un)

and f(v1, . . . , vn). We prove the result on induction on ∼(u,v).

• Suppose t′ = uj and s′ = vj for some j ∈ [1..n]. Then uj, vj ∈ T0, and since σ is flat, ujσ, vjσ ∈ T0.
Since u �S

C and v �S
C , by Proposition 44, uσ �S

C tσ and vσ �S
C sσ, hence ujσ ≡S

C tjσ and vjσ ≡S
C sj .

Since tjσ = sjσ, we have the result by transitivity (Lemma 43).

• Suppose t′ ∼(u,v) t
′′ and t′′ ∼(u,v) for some t′′ ∈ T0. Then by the induction hypothesis, t′σ ≡S

C t′′σ and
t′′σ ≡S

C s′σ; by transitivity, t′σ ≡S
C s′σ.

4 Completeness of the Instantiation Scheme

This short section is devoted to the proof that if S is simply provable, then S and Ŝλ are equisatisfiable. It
is clear that if Ŝλ is unsatisfiable, then so is S, thus all we need to prove is that the other implication holds
too. We prove a stronger result for simple derivation trees:

Theorem 50 If τ is a simple derivation tree for a set of clauses S, then there exists a pure derivation tree
for Ŝ with the same root as τ .

Proof. Let τ = [C, T , σ] be a simple derivation tree for S. We shall prove by induction on δ(τ) that there
exists a pure derivation tree τ ′ for Ŝ, with root C, and such that δ(τ ′) ≤ δ(τ). If τ is elementary then it is
also pure, and there is nothing to prove. Otherwise, C must be deduced from (at most) two clauses D1, D2

(we may take D1 = D2 in case the rule is unary) and we have {D1, D2} →σ C. Moreover the two simple
derivation trees τ1, τ2 for S, of respective roots D1, D2 are such that δ(τi) < δ(τ) (i = 1, 2).

By the induction hypothesis, there exist two pure derivation trees τ ′1 and τ ′2 of respective roots D1 and
D2, such that δ(τ ′i) ≤ δ(τi) (i = 1, 2). In particular, D1, D2 ∈ S′. By definition of the calculus, σ is the mgu
of two terms s, t occurring in D1, D2 respectively. If σ is pure then the proof is obvious, since [C, {τ ′1, τ

′
2}, σ]

is a pure derivation tree for Ŝ and δ([C, {τ ′1, τ
′
2}, σ]) ≤ δ(τ). We now assume that σ is not pure, which implies

that there exists a position p such that exactly one of the two terms t|p, s|p is a variable. We consider the
case where t|p is a variable, the other case is symmetrical. W.l.o.g. we suppose that D1, D2 are the clauses
with a minimal number of variables such that {D1, D2} →σ C and there exist pure derivation trees τ ′1, τ

′
2 for

Ŝ of roots D1, D2 with δ(τ ′i) ≤ δ(τi) (i = 1, 2).
The proof proceeds as follows. We show that p is of the form q.i, and by applying Lemma 47, we identify

terms u′, v′ appearing in S such that u′µτ ′

1
�S′

C◦ t|q and v′µτ ′

2
�S′

C◦ s|q. Then we consider a substitution θ′

based on the pseudo-unifier of u′ and v′, and apply Lemma 48 and the induction hypothesis to determine a
pure derivation tree for Ŝ of root D1θ

′ ∨ E, where E ⊆ C◦. Finally, we will see that {D1θ
′ ∨ E,D2} →σ C,

thus exhibiting a contradiction with the fact that the number of variables in D1 is minimal.

20

Determination of u′ and v′. Since σ is flat, s|p must be a constant symbol. Furthermore, t, s cannot be
variables, because D1, D2 are not variable-eligible (by Point 2 in Definition 29), and paramodulation
into variables is forbidden by definition of the calculus. Thus p = q.i, and the terms t|q and s|q are of
the form f(t1, . . . , tm) and f(s1, . . . , sm) respectively, with ti ∈ V and si ∈ Σ0.

By Lemma 47, hypinst(τ ′1) and hypinst(τ ′2) contain two clauses C1, C2 respectively containing terms of the
form u = f(u1, . . . , um) and v = f(v1, . . . , vm) such that u �S′

D◦

1

f(t1, . . . , tm) and v �S′

D◦

2

f(s1, . . . , sm).
In particular, note that ui = ti. By definition of the selection function sel, since D1, D2 are not flat,
D◦

1 ∩ sel(D1) = D◦
2 ∩ sel(D2) = ∅, and the literals in D◦

1 and D◦
2 are not affected by the inference step

yielding C. Thus, D◦
1 , D

◦
2 ⊆ C◦, and by Proposition 45, we conclude that u �S′

C◦ f(t1, . . . , tm) and

v �S′

C◦ f(s1, . . . , sm).

Since τ ′1 and τ ′2 are pure, there exist clauses C′
1 and C′

2 in Ŝ such that for i ∈ {1, 2}, C′
iµi = Ci, where

µi = µτ ′

i
is a pure substitution; let u′ = f(u′1, . . . , u

′
m) and v′ = f(v′1, . . . , v

′
m) be the terms in C′

1, C
′
2

such that u′µ1 = u and v′µ2 = v, then u′µ1 �S′

C◦ t|q and v′µ2 �S′

C◦ s|q. Let θ be the restriction of the
pseudo unifier of u′ and v′ to the variables in u′, and θ′ be the restriction of µσ to dom(θ). By Lemma
40, up to swapping some variables in τ ′1, we may assume that C′

1 is a main hypothesis of τ ′1, and that
dom(θ′)µτ ′

1
⊆ dom(θ′).

A pure derivation tree of root D1θ
′. We assume that C′

1, C
′
2 share no variable and denote by µ the

substitution µ = µτ ′

1
∪ µτ ′

2
. If x ∈ dom(θ), then xθ is a constant such that x ∼(u′,v′) xθ. Thus by

Proposition 14, xµ ∼(u,v) xθ because µ is pure, and since S′ is Σ0-stable, by Lemma 49,

xµσ ≡S′

C◦ xθ. (⋆)

By (⋆), C′
1θ

′ is obtained from C′
1θ by replacing some constant symbols c1, . . . , cl by constant symbols

c′1, . . . , c
′
l such that ∀j ∈ [1..l], cj ≡S′

C◦ c′j . By definition of ≡S′

C◦ , for all j ∈ [1..l], S′ contains a clause of
the form cj ≃ c′j ∨ Ej , for some Ej ⊆ C◦. Clearly, there exists a flat ground clause E ⊆ C◦ such that
the clause C′

1θ
′ ∨E is obtained by l applications of the (propositional, unordered) paramodulation rule

into C′
1θ from cj ≃ c′j ∨ Ej (1 ≤ j ≤ l). By definition of Ŝ, since C′

1, C
′
2 ∈ Ŝ and Ŝ is closed for the

Instantiation rule, C′
1θ ∈ Ŝ. Thus S′ also contains a clause C′

1θ
′ ∨ E.

Since τ ′1 is a pure derivation tree for S′ of rootD1 and C′
1 ∈ hyp(τ ′1), by Proposition 35, there also exists a

pure derivation tree for S′∪{C′
1∨E} of rootD1∨E, with the same measure δ(τ ′1). Furthermore, since we

assumed that C′
1 is a main hypothesis of τ ′1, we conclude that C′

1∨E is a main hypothesis of this new tree.
We now check that the application conditions of Lemma 48 are satisfied for D1∨E, with substitution θ′

and main hypothesis C′
1 ∨E. By definition, θ′ is flat and ground, and dom(θ′) ⊆ dom(θ) ⊆ V(C′

1 ∨E).
Moreover, C′

1 ∨ E contains the variable u′i, which is such that u′iµ = ui = ti occurs in D1. Now, let
x ∈ dom(θ′), we show that xµτ ′

1
θ′ = xθ′. We assumed that dom(θ′)µτ ′

1
⊆ dom(θ′), which entails that

xµτ ′

1
= xµ is also in dom(θ′), thus, xµτ ′

1
θ′ = xµθ′ = xµµσ = xµσ = xθ′ (because µ is idempotent).

Therefore, we may apply Lemma 48: there exists a simple derivation tree τ ′′1 for S′ ∪ {C′
1θ

′ ∨ E} = S′

of root D1θ
′ ∨E, and such that δ(τ ′′1) ≤ δ(τ ′1) < δ(τ). By the induction hypothesis, D1θ

′ ∨E admits a
pure derivation tree τp for Ŝ such that δ(τp) ≤ δ(τ ′′1) < δ(τ).

Exhibiting the contradiction. Let x be a variable in D1, then by Proposition 26, x 6∈ dom(µ) (since
µ = µτ1

∪ µτ2
). By definition, θ′ is the restriction of µσ to dom(θ); hence, if x ∈ dom(θ) then

xθ′ = xµσ = xσ, and xθ′σ = xσσ = xσ, since σ is idempotent. If x 6∈ dom(θ) then xθ′ = x, and
xθ′σ = xσ. Thus {D1θ

′ ∨ E,D2} →σ C (since E ⊆ C◦).

Since v �S′

C◦ f(s1, . . . , sm), by definition, if vi ∈ T0, then vi ≡S′

C◦ si. Thus, if vi ∈ T0, then it must be
a constant, since si is a constant. If vi 6∈ T0, then, since every clause occurring in τ is quasi-flat by
Condition 2 of Definition 29, index i cannot be in I0(f). Thus, this index is necessarily in Inv(f). Since
ti ∈ V and σ 6= id, by Condition 3 of Definition 29, s must occur in the initial clause set S, and we can
safely replace C′

2 with the clause containing s. Hence, we may assume w.l.o.g. that vi is a constant,
and therefore that v′i, which is such that vi = v′iµτ ′

2
, is also a constant.

Since ti ∈ V and u �S′

C◦ f(t1, . . . , tm), we have ui = ti, i.e., u′iµ = ti. In particular, u′i is a variable,

and since v′i is a constant, by definition of a pseudo-unifier, u′iθ ∈ Σ0. Now, by (⋆), u′iµσ ≡S′

C◦ u′iθ,

21

which means that u′iµσ = u′iθ
′ is a constant. Since µ is idempotent, u′iθ

′ = u′iµσ = u′iµµσ = tiθ
′, hence

tiθ
′ ∈ Σ0. Consequently, D1θ

′ is a strict instance of D1, which contradicts the fact that the number of
variables in D1 is minimal.

We may therefore prove the completeness of the instantiation scheme for the class of simply provable sets
of clauses:

Corollary 51 If S is a simply provable and unsatisfiable set of clauses then Ŝλ is unsatisfiable.

Proof. This is a simple consequence of Theorem 50: since S is simply provable and unsatisfiable, it admits
a simple derivation tree τ with root �. By Theorem 50, Ŝ admits a pure derivation tree τ ′ with the same
root, and by instantiating all the variables in τ ′ by λ, we obtain a refutation tree for the set Ŝλ which is
therefore unsatisfiable.

Although we have proved the completeness of the scheme for the class of simply provable sets of clauses,
there remains the issue of being able to detect such sets of clauses, since this condition is semantic. The
following two sections are devoted to the description of syntactic conditions that will guarantee this condition.

5 Syntactic Characterization of Simply Provable Clause Sets

The goal of this section is to introduce a first syntactic characterization of simply provable clause sets. This
characterization is obtained by defining the class of variable-preserving sets of clauses, that cannot generate
any variable-eligible clause, and the subclass of controlled sets of clauses, that are always simply provable.

In order to determine syntactic conditions that are general enough to be satisfied by several theories of
interest, we need to restrain the potential inferences that can take place in a derivation tree. This is done by
considering a selection function that is more restricted than that of Definition 19.

In this section and the following one, we consider a selection function satisfying the following properties:

Definition 52 We consider a selection fuction sel such that:

1. For every clause C and every literal L in C, L ∈ sel(C) if there exists a ground substitution σ of the
variables in C such that Lσ ∈ sel(Cσ).

2. If L is a positive literal in C and if L′ is a literal in C such that L < L′ then L is not in sel(C).

3. If L is flat and ground and C is not flat and ground, then L 6∈ sel(C).

4. I will need the selection function (or the ordering?) to guarantee that if the maximal terms in the
literals are constants, then the clauses are flat and ground. ♦

Note that this selection function is not intended to be employed in practice: in this context, it is used to
show the existence of simple derivation trees

5.1 Preservation of Quasi-flatness and Quasi-closedness

Recall from Definition 4 that some of the arguments of a quasi-flat term must have a limited depth, and
that some of the arguments of a quasi-closed term cannot be variables. We prove that quasi-flatness and
quasi-closedness are preserved by flat substitutions and by replacements.

Lemma 53 Let σ be a flat substitution. If t is a quasi-flat (resp. quasi-closed) term then tσ is quasi-flat
(resp. quasi-closed).

22

Proof. Since σ is flat, any complex subterm in tσ is of the form f(t1, . . . , tn)σ, where f(t1, . . . , tn) occurs
in t. Moreover, we have obviously ti ∈ T0 ⇒ tiσ ∈ T0 (since σ is flat) and ti 6∈ V ⇒ tiσ 6∈ V . Thus the
conditions of Definition 4 are preserved by substitution.

Lemma 54 Let t, s be two non variable terms and let p be a position in t such that t|p ∈ Σ0 ⇒ s ∈ Σ0. If
t, s are quasi-flat (resp. quasi-closed) then t[s]p is quasi-flat (resp. quasi-closed).

Proof. We prove the result by induction on the length of p. If p = ε, then the result is obvious, since
t[s]p = s. Otherwise, p = i.q, which means that t = f(t1, . . . , tn) and t[s]p = f(t1, . . . , ti−1, ti[s]q, ti+1, . . . , tn).
Since t is quasi-flat (resp. quasi-closed), so is ti; furthermore, t|p ∈ Σ0 ⇒ ti|q ∈ ΣO. We can therefore apply
the induction hypothesis: ti[s]q is quasi-flat (resp. quasi-closed), and so is t[s]p.

The next lemma states that the m.g.u. of two quasi-closed and quasi-flat terms is necessarily flat.

Lemma 55 Let s and t be two quasi-flat and quasi-closed terms that are unifiable, and let σ be an m.g.u. of
s and t. Then σ is flat.

Proof. By definition, neither s nor t can be a variable, and if they are both constants then the result is
obvious. Now assume that s = f(s1, . . . , sn), and t = f(t1, . . . , tn), we prove the result by induction on the
size of s.

Let θ0 = ∅, and for i ∈ {1, . . . , n}, let µi be an m.g.u. of {siθi−1 =? tiθi−1} and θi = θi−1µi. Obviously,
θn is an m.g.u. of {s =? t}. We prove that for all i ∈ {1, . . . , n}, µi is flat. Since θ0 is trivially flat, a simple
induction using Proposition 2 shows that every θi is also quasi-flat. Suppose θi−1 is flat. Then by Lemma
53 sθi−1 and tθi−1 are both quasi-flat and quasi-closed, and there are two cases to consider.

• If siθi−1 is of the form g(u1, . . . , um), where m ≥ 1, then i cannot be in I0(f) since sθi−1 is quasi-flat.
Thus i ∈ Inv(f), since I0(f) ∪ Inv(f) = [1..n] (see Definition 4). Since tθi−1 is quasi-closed, this implies
that tiθi−1 is not a variable, thus it is also of the form g(v1, . . . , vm). Since the size of siθi−1 is strictly
smaller than that of s, by the induction hypothesis, µi is quasi-flat.

• If siθi−1 is a variable, then i ∈ I0(f), since sθi−1 is quasi-closed. Since tθi−1 is quasi-flat tiθi−1 is either
a variable or a constant. Thus, µi = {siθi−1 7→ tiθi−1} is flat. The case where tiθi−1 is a variable is
similar. Finally, if tiθi−1 and siθi−1 are both constant symbols then µi = id and θi = θi−1.

5.2 Variable-Preserving Clause Sets

In the previous section, we assumed that no clause occurring in a derivation tree was variable-eligible. We
introduce a set of syntactic criteria that ensure this property is satisfied. Other approaches ensuring the
absence of variable-eligible clauses in derivations include [1, 19, 21]. Our approach consists in defining
syntactic conditions that are tested on the original set of clauses, to guarantee the required property. This
is done by defining variables that are instantiable in a clause, a condition that depends on the positions of
their occurrences in the clause. Intuitively, no matter the inference, an instantiable variable cannot cause the
generated clause to be variable-eligible.

Definition 56 We associate to each function symbol f of arity n a set of indices Inst(f) in [1..n]. A variable
x is instantiable in a term t if t is of the form f(t1, . . . , tn) and there exists an i ∈ [1..n] such that:

23

• either i ∈ Inst(f) and ti = x,

• or x is instantiable in ti.

A variable x is instantiable in a literal L if L is of the form t ≃ s or t 6≃ s and x is instantiable in t or in s.
A variable is instantiable in a clause C if it is instantiable in at least one literal in C. If e is an expression
(term, literal, or clause), we denote by IV(e) the set of variables that are instantiable in e. ♦

Example 57 Let Σ = {f, g}, where f is of arity 2 and g of arity 1, and suppose Inst(f) = Inst(g) = {1}. If
C = x ≃ y ∨ f(g(x), y) ≃ f(g(x), x), then x is instantiable in C and y is not. ♣

In particular, if for all n ∈ N and for all f ∈ Σn we have Inst(f) = [1..n], and if e is a nonvariable
expression, then IV(e) = V(e). If Inst(f) = ∅ for all f ∈ Σ, then IV (e) = ∅.

Proposition 58 If s is a subterm of t, then IV(s) ⊆ IV(t).

Lemma 59 Let t be a term and σ be a flat substitution. Then IV (tσ) = IV (t)σ ∩ V.

Proof. We prove the result by induction on the depth of t. Note that t and tσ must have the same depth,
since σ is flat. If t is a variable or a constant, then by Definition 56, IV(t) = ∅. Moreover tσ is also flat, thus
IV (tσ) = ∅.

If t = f(t1, . . . , tn) then IV (t)
def

= {ti | i ∈ Inst(f), ti ∈ V} ∪
⋃n

i=1 IV(ti), and IV(tσ)
def

= {tiσ | i ∈
Inst(f), tiσ ∈ V} ∪

⋃n
i=1 IV(tiσ). If tiσ is a variable, then so is ti, thus {tiσ | i ∈ Inst(f), tiσ ∈ V} = {ti | i ∈

Inst(f), ti ∈ V}σ ∩ V . Also, by the induction hypothesis, for i ∈ [1..n], IV (tiσ) = IV (ti)σ ∩ V . Consequently
IV (tσ) = IV (t)σ ∩ V .

We obtain as a simple consequence:

Corollary 60 Let t, s be two terms such that IV (t) = IV(s) and let σ be a flat substitution. Then IV(tσ) =
IV (sσ).

The sets of variable-preserving literals and clauses are defined by imposing constraints that ensure in-
stantiable variables remain so.

Definition 61 A literal L is variable-preserving in a clause C = L ∨D if:

1. L is a negative literal t 6≃ s, and one of the following conditions is satisfied:

(a) s (resp. t) is a variable occurring in IV(t) (resp. IV(s));

(b) IV(t) = ∅ or IV(s) = ∅;

(c) IV(t) ∪ IV(s) ⊆ IV (D);

2. L is a positive literal t ≃ s, and one of the following conditions is satisfied:

(a) t, s 6∈ V and IV(t) = IV (s);

(b) {t, s} ⊆ T0 and {t, s} ∩ V ⊆ IV (D).

A clause C is variable-preserving if every literal L ∈ C is variable-preserving in C, and a set of clauses S is
variable-preserving if every clause in S is variable-preserving. ♦

24

This notion is close to that of a variable-inactive clause, which is defined in [1], since it is meant to prevent
clauses from being variable-eligible. However, it is more general than the latter, as evidenced by the following
example inspired from [21]:

Example 62 Consider the clause C = f(x) ≃ g(x) ∨ x ≃ y ∨ f(y) ≃ g(y). This clause is not variable-
inactive because of the literal x ≃ y. Let Inst(f) = Inst(g) = {1}, then IV(f(x)) = IV (g(x)) = {x} and
IV (f(y)) = IV(g(y)) = {y}. The first and third literal of C satisfy Condition (2a), and the second literal
satisfies Condition (2b). This clause is therefore variable-preserving. ♣

The main property of interest satisfied by variable-preserving clauses is the following:

Proposition 63 All variable-preserving clauses are non-variable-eligible.

Proof. Let C be a variable-preserving clause. Assume that C is of the form x ≃ t∨D, where x is a variable
such that x 6< t, and assume that x ≃ t is an eligible literal. Then by Definition 61, one of Conditions (2a)
or (2b) must hold. However, x is a variable, hence Condition (2a) cannot hold. Thus, Condition (2b) holds,
t ∈ T0 and x ∈ IV(D). Furthermore, if t is a variable, then t ∈ IV(D).

Since x ≃ t ∈ sel(D), there exists a ground substitution σ such that ∀L ∈ D, xσ ≃ tσ 6< Lσ by Condition
1 of the selection function, see Definition 52). Now since x ∈ IV(D), there exists a term of the form
f(t1, . . . , tn) occurring in D such that ti = x. Thus, xσ < f(t1, . . . , tn)σ and necessarily, tσ 6< f(t1, . . . , tn)σ
(and xσ < tσ). This implies that tσ cannot be a constant, and since t ∈ T0, we must have t ∈ V . But in this
case, t must also be in IV (D), which means that t occurs at a non-root position in a literal L′ ∈ D. But then
(x ≃ t)σ < L′σ, which is impossible.

The following lemmata provide exhibit conditions that guarantee variable-perservtion is maintained by
operations such as disjunctions, instantiations and replacements.

Proposition 64 Let C,D be two variable-preserving clauses. Then C ∨D is variable-preserving.

Definition 65 A literal L is dominated in a clause L ∨ C if IV (L) ⊆ IV (C). ♦

Lemma 66 If L is dominated in a clause L∨C and L∨C is variable-preserving, then C is variable-preserving.

Proof. Assume that C is not variable-preserving. Then there exists a literal L′ ∈ C that is not variable-
preserving in C. Since L′ is variable-preserving in L∨C, this implies by Definition 61 that one of Conditions
(1c) or (2b) does not hold for the clause C. Hence, there exists a variable x occurring in IV(L) but not in
IV (C). But this is impossible since L is dominated.

Lemma 67 Let C be a variable-preserving clause and let σ be a flat substitution. Then Cσ is also variable-
preserving.

Proof. We have to show that for all L ∈ C, Lσ is variable-preserving in Cσ. Let C = L ∨ D. Since C is
variable-preserving, L is variable-preserving in C, thus one of the following conditions holds:

25

• L is of the form t 6≃ x (or x 6≃ t), where x ∈ IV(t). Since σ is flat, xσ is either a variable or a
constant symbol. If xσ ∈ V then by Lemma 59, xσ ∈ IV(tσ) thus tσ 6≃ xσ is variable-preserving in Cσ.
Otherwise xσ is ground hence IV(xσ) = ∅ and tσ 6≃ xσ is also variable-preserving by Condition (1b).

• L is of the form t 6≃ s, where IV(t) = ∅ or IV(s) = ∅. Say IV(t) = ∅. Then by Lemma 59 we have
IV(tσ) = ∅, hence Lσ is variable-preserving in Cσ by Condition (1b).

• L is of the form t 6≃ s, where IV (t) ∪ IV(s) ⊆ IV(D). Let y be a variable in IV (tσ) ∪ IV(sσ). By
Lemma 59, y = xσ for some x ∈ IV (t) ∪ IV(s). Then x ∈ IV (D) by hypothesis, and by Lemma 59,
xσ = y ∈ IV(Dσ). Thus Condition (1c) holds and Lσ is variable-preserving in Cσ.

• L is of the form t ≃ s, where t, s /∈ V and IV(t) = IV (s). By Corollary 60, IV(tσ) = IV (sσ). Moreover
since t, s 6∈ V , necessarily, tσ, sσ 6∈ V Therefore Lσ is variable-preserving in Cσ.

• If L is of the form t ≃ s, where t, s ∈ T0 and {t, s} ∩ V ⊆ IV(D). Then since σ is flat, tσ, sσ ∈ T0. Let
x ∈ {tσ, sσ} ∩ V . Obviously, x is of the form yσ for some y ∈ {t, s}, and y ∈ IV(D) by hypothesis.
Hence, x ∈ IV(Dσ) by Lemma 59.

We show that the sets IV(t) are stable by replacement.

Lemma 68 Let t, s be two terms, p be a position in t, and assume that t|p and s are not variables. If
IV (s) = IV(t|p) then IV(t[s]p) = IV(t).

Proof. We prove the result by induction on the length of p. Note that since t|p is not a variable, t cannot
be a variable.

If p = ǫ, then t|p = t and t[s]p = s. Thus we have IV(t) = IV(t[s]p) = IV(s).
If p = i.q, then t is of the form f(t1, . . . , tn), thus t|p = ti|q and t[s]p = f(t1, . . . , ti−1, ti[s]q, ti+1, . . . , tn).

Since t|p and s are not variables, ti and ti[s]q cannot be variables. By the induction hypothesis IV (ti[s]q) =
IV (ti), hence by Definition 56,

IV(t[s]p) = {tj | j ∈ Inst(f), tj ∈ V} ∪
⋃

j∈[1..n]\{i}

IV(tj) ∪ IV(ti[s]p)

= {tj | j ∈ Inst(f), tj ∈ V} ∪
⋃

j∈[1..n]

IV (tj)

= IV(t).

Lemma 68 implies that variable-preserving clauses are also stable by replacement:

Lemma 69 Let C be a variable-preserving clause, u = C|p be a non-variable term occurring in C and v be
a non-variable term such that:

• IV(u) = IV(v),

• if u ∈ Σ0 then v ∈ Σ0.

Then C[v]p is variable-preserving.

Proof. Let L be the literal containing the term t such that u = t|q for some position q. By Lemma
68, IV(t) = IV(t[v]p), and since u and v are not variables, it is simple to check that if L satisfies one of
Conditions (1a)-(2a), then so does the literal obtained after replacing u by v. If L satisfies Condition (2b),
then necessarily u is a constant, hence by hypothesis, so is v. Again, the literal obtained after replacing u by
v satisfies Condition (2b).

26

The previous results allow us to prove the stability of variable-preserving clauses for the calculus.

Theorem 70 Let S be a variable-preserving clause set. Assume that S′ →sel
<,σ C, where all the clauses

in S′ are pairwise variable-disjoint renamings of clauses in S, and suppose that σ is flat. Then C is also
variable-preserving.

Proof. We distinguish several cases according to the rule used to derive C. Note that in all cases, by
Proposition 63, none of the premisses of the inference step are variable-eligible.

C is generated by the superposition or paramodulation rule. This means that C is of the form
D1[v]pσ ∨ D′

2σ, where D1 and D2 = u ≃ v ∨ D′
2 are clauses in S′, t = D1|p, and σ = mgu(t, u).

Since D1 and D2 are variable-preserving, by Lemma 67, D1σ and D2σ are also variable-preserving.
Since there is no superposition/paramodulation into variables, D1|p 6∈ V , and since u ≃ v ∨D′

2 is not
variable-eligible, u 6∈ V . Since D2 is variable-preserving, one of Conditions (2a) or (2b) must hold for
literal u ≃ v.

• If Condition (2a) holds, then IV(u) = IV(v), and v cannot be a variable. By definition of the
ordering, if uσ is a constant, then vσ must also be a constant (since constants are strictly smaller
than complex terms).

• If Condition (2b) holds, then u is necessarily a constant. If v were a variable, then we would have
v ∈ IV(D′). Thus, D′ would contain a term f(t1, . . . , tn) of which v is a subterm, and we would
have u < f(t1, . . . , tn), contradicting the fact that u ≃ v is a maximal literal in D2. Thus, v must
be a constant, and IV (u) = IV (v) = ∅.

By Lemma 67, D1σ is variable-preserving. Since σ is an mgu of u and t, we have IV(tσ) = IV (uσ),
and by Corollary 60, IV (tσ) = IV (vσ). Therefore, by Lemma 69, D1[v]pσ is variable-preserving, and
by Proposition 64, D1[v]pσ ∨D2σ is also variable-preserving.

Since IV (uσ) = IV(vσ) and vσ occurs in D1[v]pσ, by Proposition 58, (u ≃ v)σ is dominated in D1[v]pσ∨
D2σ. By Lemma 66, D1[v]pσ ∨D′

2σ is variable-preserving.

C is generated by the reflection rule. C is of the form Dσ, where S′ contains a clause of the form
t 6≃ s∨D and σ = mgu(t, s). By Lemma 67, (t 6≃ s ∨D)σ is variable-preserving, we show that tσ 6≃ sσ
is dominated in (t 6≃ s ∨D)σ.

Let x ∈ IV (tσ) ∪ IV(sσ); by Lemma 59, x = yσ, where y ∈ IV (t) ∪ IV (s). Since t 6≃ s is variable-
preserving in t 6≃ s ∨D, one of Conditions (1a)-(1c) must hold.

• If Condition (1a) holds, then we have, say, s ∈ IV (t). By Definition 56, this implies that s is a
strict subterm of t, which is impossible since t, s are unifiable.

• If Condition (1b) holds, then IV(t) = ∅ or IV(s) = ∅, say IV(t) = ∅. By Lemma 59 IV(tσ) = ∅, and
since tσ = sσ, we conclude that IV(sσ) = ∅. This contradicts the fact that x ∈ IV (tσ) ∪ IV(sσ).

• If Condition (1c) holds, then y ∈ IV(L′), for some L′ ∈ D. But in this case, by Lemma 59,
x = yσ ∈ IV (L′σ) ⊆ IV (Dσ).

Thus tσ 6≃ sσ is dominated in (t 6≃ s ∨D)σ and by Lemma 66, Dσ is variable-preserving.

C is generated by the equational factorisation rule. C is of the form (D ∨ s 6≃ v ∨ t ≃ s)σ, where S′

contains a clause of the form (D ∨ u ≃ v ∨ t ≃ s), and σ = mgu(u, t).

By definition, since D ∨ u ≃ v ∨ t ≃ s is variable-preserving, we have IV(t) = IV (s) and IV(u) = IV(v),
regardless of which of Conditions (2a) or (2b) holds. Thus IV (vσ) = IV (uσ) by Corollary 60, and since
σ is a unifier of u and t, we deduce that IV (vσ) = IV (tσ) and IV (sσ) ∪ IV(vσ) ⊆ IV(sσ) ∪ IV(tσ).
Therefore, (s 6≃ v)σ satisfies Condition (1c), and is variable-preserving in C.

27

We now show that (D ∨ t ≃ s)σ is variable-preserving. By Lemma 67, (D ∨ u ≃ v ∨ t ≃ s)σ is variable-
preserving. But since IV (uσ) = IV(vσ) and uσ = tσ, we conclude that IV((u ≃ v)σ) ⊆ IV((s ≃ t)σ),
which means that (u ≃ v)σ is dominated in (D∨u ≃ v∨t ≃ s)σ, thus (D∨t ≃ s)σ is variable-preserving,
by Lemma 66. We conclude that C is variable-preserving.

5.3 Controlled Sets of Clauses

We have shown that every variable-preserving set of clauses S is stable by the inference system, thus guar-
anteeing that all clauses appearing in a derivation tree for S are non variable-eligible. We now investigate
how to guarantee that a set of clauses is simply refutable by introducing the class of controlled clauses.

Definition 71 A clause C is controlled if:

• C is variable-preserving,

• the non-flat literals in C are quasi-flat and quasi-closed.

A set of clauses is controlled if all the clauses it contains are controlled. ♦

We provide conditions guaranteeing the stability of controlled clauses under certain conditions.

Lemma 72 The following properties hold:

1. Every flat and ground clause is controlled.

2. If C and D are controlled, then so is C ∨D.

3. If σ is a flat substitution and C is a controlled clause, then so is Cσ.

Proof. Item 1 is obvious, and item 2 is an immediate consequence of Proposition 64. For item 3, we verify
that the conditions of Definition 71 are preserved:

• The clause Cσ remains variable-preserving by Lemma 67.

• By Lemma 53, quasi-flatness and quasi-closedness are preserved by instantiation. Thus, all controlled
literals remain controlled after instantiation.

We also show that controlled clauses remain so after particular replacement operations, and that particular
inference steps are guaranteed to generate such clauses.

Lemma 73 Let C be a clause and let t, s be two non variable terms. Assume that:

• s is quasi-flat and quasi-closed;

• IV(s) = IV(t);

• if t ∈ Σ0, then s ∈ Σ0.

If C[t]p is controlled, then C[s]p is controlled.

Proof. By Lemma 69, C is variable-preserving, and by Lemma 54, all its non-flat literals are quasi-flat and
quasi-closed.

28

Lemma 74 Let D1, D2 denote (not necessarily distinct) controlled clauses. If {D1, D2} →sel
<,σ C, then σ is

flat and C is controlled.

Proof. Since D1 and D2 are variable-preserving, by Theorem 70, C is variable-preserving. We distinguish
three cases, according to the rule used to derive C.

C is generated by the superposition or paramodulation rule. This means that D1 is of the form
L[t]p ∨D′

1, D2 of the form u ≃ v ∨D′
2, and C is of the form (L[v]p ∨D′

1 ∨D
′
2)σ, where σ = mgu(t, u).

By hypothesis, t and u are quasi-flat and quasi-closed, and by Lemma 55, σ must be flat. By applying
Lemma 72 (3), we deduce that (L[t]p ∨ D′

1)σ and (u ≃ v ∨ D′
2)σ are both controlled. Since D2 is

variable-preserving, one of the conditions of Definition 61 must hold. If Condition 2a holds, then v
cannot be a variable. If Condition 2b holds, then v cannot be a variable either, since u ≃ v is selected.
Furthermore, if u is a constant, the head symbol of v cannot be a function symbol, since otherwise, we
would have v > u. Therefore, we have u ∈ Σ0 ⇒ v ∈ Σ0, and by Lemma 73, (L[v]p∨D′

1)σ is controlled.
By Theorem 70, C = (L[v]p∨D′

1∨D
′
2)σ is variable-preserving, and it is simple to verify that C satisfies

the quasi-flatness and quasi-closedness conditions.

C is generated by the reflection rule. This means that C is of the form D′
1σ, where D1 = (t 6≃ s) ∨D′

1

and σ = mgu(t, s). If t ≃ s is flat, then σ is obviously flat. Otherwise, since D1 is controlled, t and s
must be quasi-flat and quasi-closed, thus, σ must be flat by Lemma 55. By Theorem 70, C = D′

1σ is
variable-preserving, and it is controlled by Lemma 72 (3).

C is generated by the equational factorisation rule. This means that C = (D′
1 ∨ s 6≃ v ∨ t ≃ s)σ,

where D1 = (D′
1 ∨ u ≃ v ∨ t ≃ s), the selected literal is t ≃ s, and σ = mgu(t, u). Since t ≃ s is

variable-preserving, one of Conditions 2a or 2b of Definition 61 must hold. First assume that Condition
2a holds, so that t is not a variable. If u is a variable, then it must occur in a complex term in D′

1∨t ≃ s,
which would prevent tσ from being an elligible term. If u is a constant, then t must also be a constant,
and σ = id is flat. Otherwise, t and u must both be quasi-flat and quasi-closed since D1 is controlled,
and again, σ must be flat by Lemma 55. Now assume that Condition 2b holds. Then t cannot be a
variable since literal t ≃ s is selected, and D1 must be flat and ground by Condition 3 of Definition 52.
Thus, necessarily, σ = id is flat. Therefore, C is variable-preserving by Theorem 70, and controlled by
Lemma 72 (3).

We obtain the main result of this section:

Theorem 75 Every set of clauses that is controlled is simply provable.

Proof. We prove that all derivation trees for S are simple and have a controlled root, by induction on their
depth. Let τ = [C, T , σ], and assume all the derivation trees in T are simple with controlled roots. Then by
Lemma 74, C is controlled, and we now verify that τ satisfies the conditions of Definition 29.

1. The clauses occurring in T are controlled, hence by Lemma 74, σ is flat.

2. Since C is controlled, it is variable-preserving, and by Proposition 63, it is not variable-eligible. Fur-
thermore, every controlled clause is quasi-flat by definition.

3. Since C is controlled, every term it contains is quasi-closed, which means that Condition (3) trivially
holds.

29

4. Suppose C is generated by the superposition/paramodulation of D1 = u ≃ v ∨ D′
1 into a clause D2,

with the term uσ being replaced by the term vσ. Then by hypothesis, D1 is variable-preserving, and
one of Conditions (2a) or (2b) of Definition 61 must hold. If Condition (2a) holds, then neither v nor
vσ is a variable. If Condition (2b) holds, both u and v are flat, and if they are variables, then they
must appear in IV (D′

1). Thus, the only way for u ≃ v to be maximal in D1 is for u and v to both be
constants, hence vσ cannot be a variable.

5. By the induction hypothesis, every derivation tree in T is simple.

Therefore, τ is simple, which completes the proof.

Theorem 75 makes the class of controlled clause sets a good candidate for applying the instantiation
method described in Section 2. Unfortunately, several theories of interest are non controlled. For instance,
the theory of arrays, with the axiom i ≃ j ∨ select(store(t, i, v), j) ≃ select(t, j), is non controlled.
Indeed, either 1 ∈ I0(select) and in this case select(store(t, i, v), j) is non quasi-flat, or 1 ∈ Inv(select)
and select(t, j) is non quasi-closed.

In order to overcome this problem, we introduce a slightly more general class that allows us to handle
such theories. The idea is that non controlled clause sets may be transformed into controlled ones using
superposition from C-equations. For instance, in the above theory, by applying the superposition rule on the
term store(t, i, v) we shall ensure that the variable t is instantiated by a constant symbol, thus select(t, j)
becomes quasi-closed.

6 C-controllable Sets of Clauses

Intuitively, the more general class of C-controllable sets of clauses is obtained by relaxing the quasi-flatness
and quasi-closedness conditions on some of the terms that occur in the clauses. The terms for which the
conditions can be relaxed are those that contain distinguished function symbols of Σ.

Definition 76 We denote by C a subset of Σ containing no constant symbol. ♦

Of course, if the clauses that contain symbols in C are not controlled, then some restrictions must be
imposed on the inferences they are involved in. This is done by constraining form of controlled clauses
containing symbols in C.

6.1 C-equations

We begin by introducing the class of C-equations, along with some of the properties they satisfy.

Definition 77 A clause C is a C-equation if it is of the form f(a1, . . . , an) ≃ b ∨ D, where a1, . . . , an, b ∈
Σ0, f ∈ C and D is flat and ground.

The clause C is strongly controlled if it is controlled and contains no occurrence of symbols in C. ♦

We prove some closure properties on C-equations and strongly controlled clauses. First, we show that
C-equations are closed for the relation defined in Definition 42:

Proposition 78 Let C be a clause and E be a C-equation. For all sets of clauses S and all flat and ground
clauses D, if C ≡S

D E, then C is also a C-equation.

Proof. Since C ≡S
D E, by definition, C is obtained by replacing some constants in E by other constants,

and the result is obvious.

30

The results of Section 5.3 on controlled clauses can be transposed to C-equations and stronlgy controlled
clauses:

Lemma 79 Let C and D be clauses, and σ denote a substitution:

1. If C is flat and ground then C is strongly controlled.

2. If C and D are strongly controlled, then so is C ∨D.

3. If σ is flat and C is a C-equation (resp. a strongly controlled clause), then so is Cσ.

Proof. Item 1 results from the fact that C only contains function symbols, and Item 2 is an immediate
consequence of Lemma 72 (2). For Item 3, if C is a C-equation then the result is obvious, since C is ground.
Otherwise, the result is a direct consequence of Lemma 72 (3), since C only contains function symbols, and
σ is a flat substitution.

Lemma 80 Let C be a clause and let t, s be two non variable terms such that:

• s is quasi-flat, quasi-closed, and contains no symbol in C;

• IV(s) = IV(t);

• if t ∈ Σ0, then s ∈ Σ0.

If C[t]p is either a C-equation or a strongly controlled clause, then so is C[s]p.

Proof. First assume that C[t]p is a C-equation, and is therefore of the form f(a1, . . . , an) ≃ b ∨ C′, where
a1, . . . , an, b ∈ T0, and C′ is flat and ground. Necessarily, t is either a constant, or the term f(a1, . . . , an). If
t is a constant, then s ∈ Σ0 by hypothesis and C[s]p is also C-equation. Otherwise, t = f(a1, . . . , an), thus
C[s]p = s ≃ b ∨ C′, and since s ≃ b is controlled (because s is quasi-flat and quasi-closed), this clause is
strongly controlled.

Now assume that C is a strongly controlled clause. Then by Lemma 73, C[s]p is controlled, and since s
contains no symbol in C by hypothesis, C[s]p is strongly controlled.

Lemma 81 Let D1, D2 denote (not necessarily distinct) clauses that are either C-equations or strongly con-
trolled clauses. If {D1, D2} →sel

<,σ C, then C is either a C-equation or a strongly controlled clause. Further-
more, if neither D1 nor D2 is flat and ground, then C is strongly controlled.

Proof. If C is generated by a unary inference rule, then D1 can obviously not be a C-equation, hence C is
strongly controlled by Lemma 74. Still by Lemma 74, if neither D1 nor D2 is a C-equation, then again C
is strongly controlled. Now assume that C is generated by the superposition or paramodulation rule, where
D1 or D2, possibly both, is a C-equation. This means that D1 is of the form L[t]p ∨ D′

1, D2 of the form
u ≃ v ∨D′

2, and C is of the form (L[v]p ∨D′
1 ∨D

′
2)σ, where σ = mgu(t, u).

If D2 is a C-equation, then necessarily, u is of the form f(a1, . . . , an) where f ∈ C, v is a constant, and
D′

2 is flat and ground. By hypothesis, D1 is either a C-equation or contains no symbols in C. Thus, since u
and t are unifiable, it must be a C-equation of the form u ≃ s∨D′

1, where s ∈ Σ0, and D′
1 is flat and ground.

Therefore, in this case, C = s ≃ v ∨D′
1 ∨D

′
2 is strongly controlled.

If D1 is a C-equation and D2 is not, then L must be the literal of the form f(c1 . . . , cn) ≃ d, and t must
be a subterm of f(c1, . . . , cn). We cannot have t = f(c1, . . . , cn) since otherwise u would have to contain
a symbol in C, thus t is a constant. Since D2 is strongly controlled, it is also variable-preserving, and by
Proposition 63, it is not variable-eligible. Thus, u is necessarily a constant, and D2 must be flat and ground
by Condition 3 of Definition 52 for the selection function. In this case, C is also a C-equation.

31

6.2 C-Restricted Terms

Our first goal is to control the inferences that can be performed on a given (non controlled) clause C, in
order to ensure that the following conditions hold: (i) Superposition from a C-equation is possible, in order
to transform C into a controlled clause; and (ii) No inference is possible between C and a controlled clause
D that is not a C-equation.

In order to guarantee that (i) holds, it suffices to assume that every eligible term t contains a term of the
form f(t1, . . . , tn) where f ∈ C, and t1, . . . , tn ∈ T0. For (ii), we exploit the fact that the term s in D that
is unified with t is necessarily quasi-closed (since D is controlled), thus there are some positions in s along
which variables cannot occur (see Definition 4). We shall assume that the term f(t1, . . . , tn) occurs in t at
such a position. Since D is not a C-equation, it does not contain f , thus t cannot be unified with s (since t
contains an occurrence of f at a position in which no variable occur in s). This implies that no inference is
possible between C and D.

This yields the following definition (recall that Inv(f) denotes the set of indices of f that must not be
variables).

Definition 82 A term t is C-restricted if it is of the form f(t1, . . . , tn) where one of the following conditions
holds:

• f ∈ C, and f(t1, . . . , tn) is of depth 1 and linear.

• There exists at least an i ∈ Inv(f) such that ti is C-restricted, and for every j ∈ [1..n], if j ∈ Inv(f) then
either tj ∈ Σ0 or tj is C-restricted. ♦

The fact that i is in Inv(f) ensures that no inference is possible with a controlled term except with a
C-equation (see Lemma 85). The second subcondition in Point 2 ensures the term will become quasi-closed
after all symbols in C have been eliminated by superposition. The fact that f(t1, . . . , tn) is linear is not
really restrictive and useful for technical reasons (see the proof of Theorem 102): informally it ensures that
superposition into f(t1, . . . , tn) can be restricted to the equations already occurring in the initial clause set
(the replacement of constant symbols by ground flat superposition can be postponed after the application of
the superposition rule into f(t1, . . . , tn)). This is useful to ensure that the derivation tree satisfies Condition
3 in Definition 29.

Example 83 Assume that C = {f, g} and that Inv(h) = {1}. Then:

• f(x), h(f(x), a), h(f(x), g(x)) and h(h(g(x), y), x) are C-restricted.

• h(x, a) and h(h(x, y), f(x)) are not. ♣

The following proposition provides a sufficient condition that guarantees the occurrence of a constructor
in a C-restricted term.

Proposition 84 Let t be a quasi-flat and C-restricted term, and let s = f(s1, . . . , sn) be a subterm of t. If
si ∈ V for some i ∈ Inv(f), then f ∈ C and s1, . . . , sn ∈ T0.

Proof. The proof is by induction on the size of t. If t = s then since we have i ∈ Inv(f) and si ∈ V , the
second item in Definition 82 cannot hold. Thus we have f ∈ C and t is of depth 1 which completes the proof.

Otherwise, t = g(t1, . . . , tm) where s is a subterm of tj , for some j ∈ [1..m]. Since s is a subterm of tj ,
the latter cannot be in T0, and since t is quasi-flat, j 6∈ I0(g). Since I0(g) ∪ Inv(g) = [1..m], we deduce that
j ∈ Inv(g). By hypothesis t is C-restricted, hence tj must be either a constant symbol or a C-restricted term.
Since s is a subterm of tj , the latter cannot be a constant symbol, and is therefore a C-restricted term. Since
t is quasi-flat, so is tj , thus we can apply the induction hypothesis to obtain the result.

32

The following lemma allows to control the inferences that can be performed on restricted terms.

Lemma 85 Let t /∈ V be a quasi-closed term such that for every position p in t distinct from ǫ, we have
head(t|p) 6∈ C. Let s be a C-restricted term of depth at least 2. Then t and s are not unifiable.

Proof. The proof is by induction on the size of s. By definition s must be of the form f(s1, . . . , sn). Since
t is not a variable, we may assume that t is of the form f(t1, . . . , tn), otherwise t and s are obviously not
unifiable. Since the depth of s is strictly greater than 1, the subterms s1, . . . , sn cannot all be flat. Thus by
the second item of Definition 82, there exists an i ∈ Inv(f) such that si is C-restricted; necessarily, si is of
depth at least 1. Assume that si is of depth 1. In this case, it must satisfy the conditions of the first item
of Definition 82, thus its head symbol must be in C. Since i ∈ Inv(f) and t is quasi-closed, ti cannot be a
variable; furthermore, by hypothesis, the head symbol of ti does not belong to C, hence ti and si are not
unifiable. If si is of depth strictly greater than 1, then since ti is quasi-closed, we may apply the induction
hypothesis and conclude that si and ti cannot be unifiable. Hence the result.

6.3 C-controllable clauses

We introduce the more general class of C-controllable clauses. Informally, a clause set S will be C-controllable
if every non controlled clause in S can be transformed into a controlled clause by a sequence of superposi-
tion inferences from C-equations. Such inference steps are always simple, thus this property, together with
Theorem 75, will ensure the existence of a simple refutation tree for every unsatisfiable clause, provided the
only inferences that can be performed on non controlled clause sets are superpositions from C-equations. This
means that one has to check that the clause set is partially saturated: no inference is possible between two non
controlled clauses, neither between a non controlled clause and a controlled clause that is not a C-equation.
Designing (sufficiently general) decidable conditions ensuring these properties is the purpose of the following
sections (this is not trivial since the considered clause sets are infinite in general).

As previously explained, one has to ensure that two non controlled clauses cannot interfere with each
other (i.e. no inference is possible). We have to check that this property holds not only for the clauses
occurring in S, but also for all clauses that can be derived by superposition. This is done by computing
all the clauses that can be derived from S by superposition from C-equations and from ground flat clauses
(this process – although terminating – is obviously inefficient but as we shall see we do not need to compute
explicitly all these clauses). Such a set will be denoted by [S]. This set is finite, thus it is easy to check that
it is saturated.

The equations used during the superposition process will be collected and explicitly added as “constraints”
to the clause. This provides additional useful information and allows us to discard some possible inferences
from non controlled clauses if they are redundant with the C-equations previously used to derive these
clauses. The following example illustrates this point. Let S = {cons(car(x), cdr(x)) ≃ x, car(cons(x, y)) ≃
x, cdr(cons(x, y)) = y}, the well-known theory of lists. The reader can check that S is non controlled. We
try to show that S is C-controllable. Using the C-equation car(a) ≃ b one get cons(b, cdr(a)) ≃ a. The
obtained clause is still non controlled. Unfortunately it interferes with the clause car(cons(x, y)) = x, which
contradicts the previous property (no inference within non controlled clauses). Fortunately, the obtained
clause is car(a) ≃ b which is redundant with (actually identical in this case) the clause used to derive
cons(b, cdr(a)) ≃ a.

In order to formalize this idea, we introduce the notion of e-clauses.

Definition 86 An e-clause is a pair [C | φ] where C is a clause and φ is a set (or conjunction) of equations.♦

The conjunction of equations φ in an e-clause [C | φ] intuitively denotes a set of literals that have been
paramodulated into a clause that is not necessarily controlled, to generated the clause C. The set φ will
be used to harness the inferences that admit C as a premice. Note that e-clauses are similar to constrained
clauses (see, e.g., [18]) but the equations in φ do more than constrain the variables appearing in C.

33

The following relation computes new e-clauses by superposition and simultaneous adds the corresponding
equations in the constraint part.

Definition 87 We denote by the smallest reflexive and transitive relation on e-clauses satisfying the
following condition: For all e-clauses [C | φ] and for all terms f(t1, . . . , tn) occurring at a position p in C, if
f ∈ C ∪ Σ0 and t1, . . . , tn ∈ T0 then

[C | φ] [C[c]p | φ ∪ {t ≃ c}]θ,

where c ∈ Σ0 and θ is a substitution mapping every variable in t to constant symbols. ♦

The relation permits to generate e-clauses containing fewer symbols in C. This relation resembles the
flattening operation described previously, but is not applied to all the function symbols in the signature; it
also serves as a renaming operation for constants. Among the clauses that are generated by the relation, it
will not be necessary to constrain those that are controlled. The whole set of e-clauses that can be deduced
in this way (omitting controlled clauses) is denoted by [S].

Definition 88 If S is a set of clauses, we denote by [S] the smallest set of e-clauses such that the following
conditions hold:

• If C ∈ S and C is not controlled then [C | ∅] ∈ [S].

• If [C | φ] ∈ [S], [C | φ] [D | ψ] and D is not strongly controlled, then [D | ψ] ∈ [S]. ♦

Example 89 Let S = {cons(car(x), cdr(x)) ≃ x}. Assume that car, cdr, cons ∈ C. The reader can check
that [S] consists of the following clauses:

1 [cons(car(x),cdr(x)) ≃ x | ∅] % the clause in S

2 [cons(b, cdr(a)) ≃ a | car(a) ≃ b] % from E-Clause 1
3 [cons(car(a), b) ≃ a | cdr(a) ≃ b] % from E-Clause 1
4 [cons(b, c) ≃ a | car(a) ≃ b, cdr(a) ≃ c] % from E-Clause 2
5 [cons(a, cdr(a)) ≃ a | car(a) ≃ b, b ≃ a] % from E-Clause 2
6 [cons(car(a), a) ≃ a | cdr(a) ≃ a, b ≃ a] % from E-Clause 3
7 [cons(b, b) ≃ a | car(a) ≃ b, cdr(a) ≃ c, c ≃ b] % from E-Clause 4
8 [cons(b, b) ≃ b | car(a) ≃ b, cdr(a) ≃ c, c ≃ b, a ≃ b] % from E-Clause 7

The remaining e-clauses are equivalent to the ones above (or subsumed), modulo a renaming of constant
symbols. For instance, one could generate [cons(c, b) ≃ a | cdr(a) ≃ b, car(a) ≃ c] using E-Clause 3 and
car(a) ≃ c, but this e-clause is equivalent to E-Clause 4 (up to a renaming of constant symbols). Notice that
the e-clause [d ≃ a | car(a) ≃ b, cdr(a) ≃ c, cons(b, c) ≃ d] that can be generated from E-Clause 4 (replacing
cons(b, c) by d) does not occur in [S] because it is strongly controlled. ♣

We provide a link between the relations ≡S
C of Definition 42 and .

Proposition 90 Let [C | φ] be an e-clause. If C ≡S
D C′ then [C | φ] [C′ | φ ∨ ψ], where ∀e ∈ ψ, e ∨D is

redundant w.r.t. S.

Proof. This follows immediately from Definitions 42 and 87. Indeed, since C ≡S
D C′, this means several

terms occurring in C are replaced to yield C′, and if a term t is replaced by s, then there is a clause D′ ⊆ D
such that t ≃ s ∨D′ occurs in S. The equation t ≃ s occurs in ψ, and obviously, t ≃ s ∨D is subsumed by
t ≃ s ∨D′.

34

Proposition 91 [S ∪ S′] = [S] ∪ [S′].

We now define the class of C-controllable sets of clauses, which, as we shall prove, are simply provable.

Definition 92 A set of clauses S is C-controllable if:

1. S is quasi-flat.

2. The controlled clauses in S that contain symbols in C are C-equations.

3. If [C | φ] ∈ [S] then C is not variable-eligible.

4. If [C | φ] ∈ [S] then every eligible term in C that is not a constant is C-restricted.

5. If [C | φ] and [D | ψ] are two (variable-disjoint renamings of) e-clauses in [S] and if {C,D} →sel
<,σ E,

then:

• either E is redundant w.r.t. φ ∪ ψ ∪ S,

• or σ = id and E is strongly controlled. ♦

Condition 3 ensures that the clauses are non variable-eligible which is necessary to guarantee that a
simple derivation tree exists. Condition 4 ensures that the only possible inferences are superpositions from
C-equations (as explained in Section 6.2). Condition 5 ensures that no (non trivial) inference is possible inside
the set. We make a useful exception (second item) for inferences yielding a clause that is controlled and that
is not a C-equation, provided they are ground. This is possible because ground inferences are always simple.
This exception is useful for some theories because [S] may contain C-equations generated by superposition
from non controlled sets and interfering with each others. For instance for the theory of lists, on get generate
equations car(a) ≃ b and car(a) ≃ c. These two equations interfere, yielding b ≃ c. However: (i) the result
is strongly controlled (ii) the inference is ground. Relaxing the condition to allow non ground inferences (e.g.
flat) would be incorrect as the following example shows. Let S = {p(x, f(x), y),¬p(u, u, f(v)), f(a) ≃ a}
where f ∈ C. The reader can check that our instantiation scheme replaces the variables x, u, v by a, but not
the variable y. On the other hand the only clause that can be generated from clauses in [S] is � (which is
obviously strongly controlled).

The conditions in Definition 92 are obviously decidable if S and Σ0 are finite since [S] is finite in this case.
However, [S] can be very large if there are many constant symbols, thus it would be inefficient in practice to
generate this set explicitly. Instead, [S] should be computed in a symbolic way, replacing constant symbols by
special variables, and the conditions should be checked directly on this abstract representation of [S] rather
than on [S] itself, taking into account the fact that the constants can be renamed arbitrarily. This affects
both the unification algorithm (constant symbols are allowed to be substituted by other constant symbols)
and the selection function (one has to check that a term is eligible modulo a renaming of constant symbols).

The class of C-controllable sets of clause contains the class of controlled sets of clauses:

Proposition 93 A set of clauses is controlled if and only if it is ∅-controllable.

Proof. Let S denote a set of clauses, and assume S is ∅-controllable. Then in particular, Condition 4 must
hold for S. Thus, if there is an e-clause [C | φ] in [S], then all the eligible terms in C must be C-restricted.
This is impossible since C is empty, thus, [S] must be empty, and every clause in S must be controlled.

Conversely, if S is controlled, then [S] is empty and Conditions 2, 3, 4 and 5 trivially hold. By hypothesis,
S is quasi-flat, and we have the result.

35

6.4 Completeness for C-controllable sets of clauses

In this section, we prove that every C-controllable set of clauses is simply provable. In order to do so, we first
introduce a class of clause sets that interact in a particular way with C-controllable sets of clauses.

The set of clauses that can be generated by the superposition calculus, starting from a C-controllable set
of clauses may be infinite and is not controlled in general. However, all these clauses satisfy some interesting
property: either they are strongly controlled, or they are obtained from C-equations in S or clauses occurring
in [S] by ground flat superposition. We define the clauses satisfying these conditions as S-contained :

Definition 94 Let S be a set of clauses. A set of clauses S′ is S-contained if for all C ∈ S′ such that C is
not strongly controlled, C is of the form C1 ∨ C2 where C2 is flat and ground, and there exists a clause D
such that D ≡S′

C2
C1 (see Definition 42) and:

1. either D is a C-equation in S,

2. or [S] contains an e-clause [D | φ] such that for every equation (t ≃ s) ∈ φ, the clause t ≃ s ∨ C2 is
redundant w.r.t. S′. ♦

If Point 1 holds, this obviously implies that C is a C-equation. Case 2 does not cover case 1 because
[D | ∅] does not occur in [S] if D ∈ S and D is controlled.

The following propositions state some useful properties of S-contained clause sets.

Proposition 95 If S1 and S2 are two sets of clauses that are S-contained, then so is S1 ∪ S2.

Proposition 96 Let S, S′ be two sets of clauses. Suppose that S is C-controllable and that S′ is S-contained.
If C is a clause in S′ that is not strongly controlled, then every eligible term t in C is either a constant or
C-restricted.

Proof. By hypothesis, C is of the form C1 ∨ C2, where C2 is flat and ground, and there exists a clause D
such that D ≡S′

C2
C1. If D is a C-equation then so is C, hence t must be of the form f(c1, . . . , cn) where f ∈ C

and c1, . . . , cn ∈ Σ0, and the proof is obvious. Otherwise, by Point 2 of Definition 94, there exists a set of
equations φ such that [D | φ] ∈ [S]. By Proposition 90, [D | φ] [C1 | φ ∨ ψ] for some set of equations ψ.
Since D is not strongly controlled, it must contain a symbol in C, hence, so must C1, which is not strongly
controlled either. Thus by definition of [S], the e-clause [C1 | φ ∨ ψ] is in [S]. If t occurs in C2 then C1 be
strictly flat and strongly controlled. Otherwise, t is eligible in C1 hence must be C-restricted by Point 4 of
Definition 92, since S is C-controllable by hypothesis.

Proposition 97 Let S, S′ be two sets of clauses. Suppose that S is quasi-flat and that S′ is S-contained.
Then every clause in S′ is quasi-flat.

Proof. Let C ∈ S′. If C is strongly controlled then all its non-flat literals are controlled, hence quasi-flat by
Definition 71. Otherwise, C is obtained from a quasi-flat clause by adding literals that are flat and ground,
by instantiating some variables by constant symbols and by replacing some subterms by constant symbols.
Obviously, the obtained clause is still quasi-flat.

Proposition 98 Let S, S′ be two sets of clauses. Suppose that S is C-controllable and that S′ is S-contained.
Then the clauses in S′ are not variable-eligible.

36

Proof. Let C ∈ S′. We consider the conditions that may be satisfied by C:

• If C is controlled, then it is variable-preserving by Definition 71, and by Proposition 63, it is not
variable-eligible.

• Otherwise C is of the form C1 ∨ C2, where C2 is flat ground and ∃[D | φ] ∈ [S] such that D ≡S′

C2
C1.

By Point (3) of Definition 92, D is not variable-eligible, thus neither are C1 and C.

The next lemma shows that the application of an inference rule between two clauses satisfying Condition
2 of Definition 94 generates a clause satisfying strong properties.

Lemma 99 Let S, S′ be two sets of clauses. Suppose that S is C-controllable and that S′ is S-contained.
Let D1, D2 ∈ S′ be two clauses that satisfy Condition 2 of Definition 94, and are not flat and ground. If
{D1, D2} →sel

<,σ C, then one of the following conditions holds:

• C is redundant in S ∪ S′;

• C is strongly controlled and σ = id;

Proof. By Point (2) of Definition 94 for i = 1, 2, Di is of the form D′
i ∨D

′′
i where D′′

i is flat and ground,

and there exists an e-clause [Ei | φi] ∈ [S] such that Ei ≡S′

D′′

i

D′
i, and ∀e ∈ φi, e ∨D′′

i is redundant in S′. By

definition of [S], neither E1 nor E2 can be strongly controlled.
The flat and ground literals in D1, D2 cannot be selected, otherwise the clause would be flat and ground.

Therefore C must be of the form C′ ∨ D′′
1 ∨ D′′

2 , where {D′
1, D

′
2} →sel

<,σ C′. By Proposition 90, [Ei | φi]
[D′

i | φi ∪ ψi], where ∀e ∈ ψi, e ∨ D′′
i is redundant w.r.t. S′. Since E1 and E2 are not strongly controlled,

neither are D′
1 and D′

2, thus for i = 1, 2, the e-clause [D′
i | φi ∪ ψi] is in [S].

Since S is C-controllable, by Point (5) of Definition 92, one of the following conditions holds:

• C′ is redundant in φ1∪φ2∪ψ1∪ψ2∪S. In this case, C′∨D′′
1 ∨D

′′
2 must be redundant in {e∨D′′

1∨D
′′
2 |e ∈

φ1 ∪ ψ1 ∪ φ2 ∪ ψ2} ∪ S. But for all e ∈ φ1 ∪ ψ1 ∪ φ2 ∪ ψ2, e ∨D′′
1 ∨D′′

2 is redundant in S′, hence C is
redundant in S ∪ S′ (by Proposition 8).

• C′ is strongly controlled and σ = id. Then C is also strongly controlled and satisfies the second
condition of the lemma.

The following proposition states that S-contained clause sets are stable by ground flat superposition.

Proposition 100 Let S and S′ be sets of clauses such that S is C-controllable and S′ is S-contained. If
D1, D2 ∈ S′, D2 is flat and ground, and {D1, D2} →sel

<,σ C, then σ is flat and S′ ∪ {C} is S-contained.

Proof. Assume that D1 is flat. By Proposition 98 it cannot be variable-eligible, thus it must be ground
by Proposition 7. Hence both D1 and D2 are ground and flat and so is C, thus C is strongly controlled by
Lemma 79 (1). Therefore, S′ ∪ {C} is S-contained.

Now assume that D1 is not flat. Then D1 6= D2 hence C is deduced by superposition. Note that since D1

is not variable-eligible, the selected literal in D1 cannot be of the form x ≃ t with x 6 t. This selected literal
cannot be of the form a ≃ b with a, b constant symbols either, since such a literal cannot be maximal in D1

by definition of the ordering <.
If the superposition rule is applied from D1 into D2, then since D2 is flat and ground, the selected

term in D1 must also be flat. But we have just seen that this case is impossible. Therefore, C is deduced by
superposition from D2 into D1, and since there is no superposition into variables, C is of the form D1[b]p∨D′

2,
where D1|p = a and D2 = a ≃ b ∨D′

2. If D1 is strongly controlled, then C is also strongly controlled. We

37

now assume that D1 is of the form D′
1 ∨D

′′
1 where D′′

1 is flat ground and D′
1 ≡S′

D′′

1

E. Necessarily, p must be

a position in D′
1: indeed, D1 is not flat, hence the literals in D′′

1 cannot be selected. Thus C is of the form
(D′

1[b]q ∨D
′′
1 ∨D′

2).

D′
1[b]q ≡S′

D′

2

D1[a]q ≡S′

D′′

1

E,

thus D′
1[b]q ≡S′

D′′

1
∨D′

2

E. Furthermore, D′′
1 ∨D′

2 is flat and ground, and if e ∨D′′
1 is redundant w.r.t. S′ so is

e ∨D′′
1 ∨D′

2. This completes the proof.

We now prove that S-contained clause sets are stable by superposition, and that all the inferences corre-
spond to flat substitutions.

Lemma 101 Let S and S′ be sets of clauses such that S is C-controllable and S′ is S-contained. Let S′′

denote a set of pairwise variable-disjoint renamings of clauses in S′. If S′′ →sel
<,σ C and if C is not redundant

in S ∪ S′, then σ is flat and S′ ∪ {C} is S-contained.

Proof. We assume that no clause in S′′ is flat and ground (otherwise the proof follows by Proposition 100).
If all the clauses in S′′ are controlled, then by Lemma 81, σ is flat and C is strongly controlled; hence S′∪{C}
is S-contained. If the clauses in S′′ are not controlled, then they must satisfy Condition 1 of Definition 94,
hence C is strongly controlled and σ is flat by Lemma 99 (because C is not redundant by hypothesis).

We now further assume that one clause in S′′ is controlled, and the other is not. Thus, S′′ contains two
clauses of the form L[t]p ∨D and u ≃ v ∨ D′, and C is of the form (L[v]p ∨D ∨D′)σ, where σ is the mgu
of t and u. Since no clause in S′ is variable-eligible by Proposition 98, u is not a variable, and by definition
of the calculus, neither is t. Furthermore, u cannot be a constant since, by definition of the ordering, that
would imply u ≃ v∨D is flat and ground. Thus t and u are terms of the form f(t1, . . . , tn) and f(u1, . . . , un)
respectively. We distinguish two cases, depending of which of the clauses in S′′ is controlled.

The clause L ∨D is controlled, but u ≃ v ∨D′ is not. We assume that either L is negative, or p is not
a root position (otherwise the rôles of L∨D and u ≃ v ∨D′ can be swaped and the proof follows from
the next point). By Definition 71, this implies that t is bothe quasi-flat and quasi-closed, and that it
cannot contain any symbol in C. By Proposition 96, u must be C-restricted. If u is of depth 1 then
f ∈ C, which is impossible since t contains no symbol in C. Thus u is of depth at least 2 and by Lemma
85, t and u cannot be unifiable, and we obtain a contradiction.

u ≃ v ∨D′ is controlled but not L ∨D. Since S′ is S-contained, by Definition 94, L ∨D must be of the
form E1 ∨ E2, where E2 is flat and ground, and there exists a clause E such that E1 ≡S′

E2
E. Since

L∨D is not a C-equation, neither is E, thus, there exists an e-clause [E | φ] ∈ [S] such that E1 ≡S′

E2
E,

and for all e ∈ φ, e ∨ E2 is redundant w.r.t. S′. Obviously, L must occur in E1, since L contains t
which is not flat. Therefore, L∨D is of the form L∨D1∨E2, where E1 = L∨D1. Consequently, since
E1 ≡S′

E2
E, the latter is of the form L′ ∨D′

1, where L ≡S′

E2
L′, and D1 ≡S′

E2
D′

1.

Since u ≃ v∨D′ is controlled, u contains no symbol in C, except possibly at its root position if u ≃ v∨D′

is a C-equation. By Point (4) of Definition 92, every eligible term in E that is not a constant is C-
restricted; thus, in particular, t must be C-restricted. Since t and u are unifiable, t must be of depth
1 by Lemma 85, and therefore, f ∈ C. By Definition 71, this implies that u ≃ v ∨D′ is a C-equation.
Thus D′ is ground and flat and v ∈ Σ0. Moreover, u is of the form f(u1, . . . , un) where u1, . . . , un ∈ Σ0.
Consequently, σ must be flat, and xσ ∈ Σ0 for every variable x occurring in t.

Since L′ ∨D′
1 ≡S′

E2
L ∨D1, by Proposition 90 [L′ ∨D′

1 | φ] [L ∨D1 | φ ∪ ψ], where ∀e ∈ ψ, e ∨ E2 is
redundant in S′. Moreover, [L ∨ D1 | φ ∪ ψ] [L[v]p ∨ D1 | φ ∪ ψ ∪ {t ≃ v}]σ. By definition of [S],
since [L′ ∨D′ | φ] ∈ [S], either [L[v]p ∨D1 | φ ∪ ψ ∪ {t ≃ v}]σ is strongly controlled, in which case C is
also strongly controlled, or it is in [S]. Since tσ = u, the clause (tσ ≃ v)∨D′ is in S′. Furthermore, for
every e ∈ φ ∪ ψ, e ∨ E2 is redundant in S′ (this follows immediately from the definition of φ and ψ),
hence C = L[v]p ∨D1 ∨ E2 ∨D

′ satisfies Condition 2 in Definition 94.

38

We are now in a position to prove the main result of this section:

Theorem 102 If S is a C-controllable set of clauses, then S is simply provable.

Proof. Let τ be a derivation tree for S, and let Sτ denote the set of clauses occurring in τ . We prove by
induction on τ that there exists a simple derivation tree τ ′ for S such that:

• τ and τ ′ have the same root,

• Sτ ′ is S-contained.

Let C denote the root of τ . If C ∈ S then the proof is immediate: it suffices to take τ = τ ′. Assume now
that C is deduced by applying an inference rule between two clauses D1, D2 (with possibly D1 = D2) using
the substitution σ = mgu(t, s), where t, s are terms occurring respectively in D1 and D2. Let τ1, τ2 be the
derivation trees of roots D1, D2, and let S′ = Sτ1

∪ Sτ2
. We assume that C is not redundant w.r.t. S ∪ S′

(otherwise the inference is useless).
By the induction hypothesis, we may assume that τ1, τ2 are simple, and that Sτ1

and Sτ2
are both S-

contained. This implies that S′ is S-contained by Proposition 95. By Lemma 101, σ is flat and S′ ∪ {C} is
S-contained; thus Sτ = S′ ∪ {C} is also S-contained. By Proposition 98, C is not variable-eligible, and by
Proposition 97, C is quasi-flat. Hence Conditions 1 and 2 of Definition 29 hold for τ . Furthermore, since the
subtrees of τ1 and τ2 are all simple, Condition 5 of Definition 29 also holds for τ .

Assume that Condition 4 does not hold, i.e., a superposition rule is applied from a clause of the form
D2 = u ≃ v ∨D′

2 ∈ S′, where v is a variable. In this case, u ≃ v ∨D′
2 cannot be variable-preserving, hence is

non controlled. But we have seen in the proof of Lemma 101 that superposition from a non controlled clause
is impossible.

There remains to prove that Condition 3 of Definition 29 is satisfied. This is actually not the case for τ
in general. When this is not the case, we show how to construct another derivation tree τ ′ with the same
root as τ , and such that Condition 3 holds for τ ′.

Assume that t|p = f(t1, . . . , tn), where ti ∈ V , for some i ∈ Inv(f); the other case is symmetrical. This
implies that t is not quasi-closed, i.e., D1 is not controlled; by Proposition 96, t is therefore C-restricted.
Furthermore, since S′ is S-contained, necessarily, D1 must satisfy Point 2 of Definition 94. If D2 satisfies
Point 2 of Definition 94, then by Lemma 99, we must have σ = id, since C is not redundant in S ∪S′. Thus,
Condition 3 of Definition 29 holds for τ which is simple. We now assume that D2 does not satisfy Point 2 of
Definition 94; this implies that D2 is controlled.

By Proposition 84, since t is C-restricted and quasi-flat, t|p must be of depth 1 and f must belong to
C. Since D2 is controlled, s cannot be variable-eligiblein D2, and the symbol f must occur in s. Thus,
since f ∈ C occurs in D2, the latter must be a C-equation, and be of the form f(s1, . . . , sn) ≃ c ∨ E, where
s = f(s1, . . . , sn). Therefore, C must be of the form (D1[c]q ∨ E)σ. Furthermore, since S′ is S-contained,
D2 satisfies Point (1) of Definition 94, so that S contains a clause D′

2 = f(s′1, . . . , s
′
n) ≃ c′ ∨ E′ such that

D′
2 ≡S′

E D2. In particular, for all j ∈ [1..n], sj ≡S′

E s′j , hence sj ≃ s′j ∨ E is redundant w.r.t. S′. For all
j ∈ [1..n], if tj ∈ Σ0, then we must have sj = tj (since t, s are unifiable, and s1, . . . , sn ∈ Σ0). If tj 6= s′j , then,
by (unordered) superposition from the clause sj ≃ s′j ∨ E, we can replace ti by s′i. We obtain a term that
is necessarily unifiable with f(s′1, . . . , s

′
n), since t is linear by Definition 82. Consequently, we can apply the

superposition rule between D1 and the resulting clause, to obtain a clause that subsumes (D1[c
′]q ∨E ∨E′)σ.

Using the superposition rule again on constant symbols, we can transform E′ into E, since E ≡S′

E E′, and

c′ into c, since c ≡S′

E c′. Thus, the derivation tree τ thus constructed admits C as a root. In this derivation
tree, t is unified with the term f(s′1, . . . , s

′
n) that occurs in S. Thus Condition 3 holds for this inference.

The additional inference steps are ground, thus trivially satisfy the desired conditions. This proves that the
obtained derivation tree τ ′ is simple, and of course Sτ ′ is S-controlled (since the clauses in Sτ ′ are obtained
from clauses in Sτ by replacing constant symbols by other constant symbols).

Theorem 102 provides an instantiation-based decision procedure for the class of C-controllable clause sets.

39

7 Combinations of theories.

We now investigate the case where the background theory of SMT problem to solve is a combination of simpler
theories. The problem that needs to be solved is under what conditions it is guaranteed that the instantiation
scheme can be applied to the combination of theories, provided it can be applied on the individual theories.

Theorem 103 Given a signature Σ, let C1, C2 ⊆ Σ, such that C1 ∩ C2 = ∅. Let S1 and S2 denote sets of
clauses such that:

• S1 is C1-controllable and S2 is C2-controllable;

• the controlled clauses in S1 (resp. S2) that contain symbols in C2 (resp. C1) are C2-equations (resp.
C1-equations);

• [S1] and [S2] have no function symbols in common.

Then S1 ∪ S2 is (C1 ∪ C2)-controllable.

Proof. We prove that S = S1 ∪ S2 satisfy the conditions of Definition 92 for the set C = C1 ∪ C2. Since
S1 and S2 are quasi-flat, so is S; by hypothesis, the controlled clauses in S that contain symbols in C are
C-equations. Thus, Conditions 1 and 2 hold. By Proposition 91, [S] = [S1] ∪ [S2], thus Conditions 3 and 4
are trivially satisfied.

Assume [C | φ] ∈ [S1] and [D | ψ] ∈ [S2]; it is simple to verify that Condition 5 holds in all the other cases.
If {C,D} →sel

<,σ E, then we may assume without loss of generality that E is generated by a paramodulation
of C = u ≃ v ∨C′ into D[t]p, and that σ is the mgu of u and t. Since C is not strongly controlled, u cannot
be flat; and since there is no paramodulation into variables, t is also of depth at least 1. But u and t cannot
have any function symbol in common by hypothesis, therefore, they are not unifiable. Hence, Condition 5 is
trivially satisfied in this case.

Although the second and third conditions may seem restrictive, they are trivially satisfied by theories that
are axiomatized over disjoint signatures. Theorem 103 also shows that, thanks to the flattening operation,
the addition of any set of ground clauses to a C-controllable set is harmless:

Corollary 104 If S is C-controllable and S′ only consists of Σ-equations and flat ground clauses, then S∪S′

is C-controllable.

In particular, since any set of ground clauses can be flattened into a set of Σ-equations, if the instantiation
scheme is correct for a set of clauses, then it is also correct for the latter, augmented with a set of ground
clauses. This result permits us to consider applying the instantiation scheme in two ways: it can be applied
eagerly, by instantiating the entire original problem, or it can be applied lazily, in a more DPLL(T)-like
manner, on a conjunction of unit clauses that is a candidate model for the problem. It would be worthwhile
to investigate which of the two manners is the more efficient.

8 Examples

Here are some examples of theories that are C-controllable. This is not obvious since one must fix the set
of indexes I0(f), Inv(f), Inst(f) for every symbol f , to compute the set [S] and to check that it satisfies the
Conditions of Definition 92. The syntactic criteria have been implemented and checked automatically. Our
decision procedure applies to all these theories.

40

Natural Numbers

(n1) 0 6≃ succ(x)
(n2) x ≃ y ∨ succ(x) 6≃ succ(y)
(n3) 0 < succ(x)
(n4) x 6< y ∨ succ(x) < succ(y)

Integer Offsets

(i1) p(s(x)) ≃ x
(i2) s(p(x)) ≃ x
(i3) sn−i(x) 6≃ pi(x) n > 0

The theory of Integer Offsets Modulo k can also be handled.

Ordering

(o1) x 6≺ y ∨ y 6≺ z ∨ x ≺ z
(o2) x 6≺ y ∨ y 6≺ x

Arrays

(a1) select(store(t, i, v), i) ≃ v
(a2) i ≃ j ∨ select(store(t, i, v), j) ≃ select(t, j)
(a3) symmetric(t) 6≃ true ∨ select(select(t, i), j) ≃ select(select(t, j), i)
(a4) injective(t) 6≃ true∨ i ≃ j ∨ select(t, i) 6≃ select(t, j)

The theory of records can be handled in a similar way. The literals symmetric(t) 6≃ true and
injective(t) 6≃ true must be selected in the clauses above.

Encryption

(e1) dec(enc(x, y), y) = x
(e2) enc(dec(x, y), y) = x

These axioms encode encryption and decryption with a symmetric key. The encryption operation takes
a clear-text and a key and produces a cipher-text. The decryption operation inverses the encryption by
extracting a clear-text from a cipher-text using the same key.

(Possibly Empty) Lists

(l1) car(cons(x, y)) ≃ x
(l2) cdr(cons(x, y)) ≃ y
(l3) x ≃ nil ∨ cons(car(x), cdr(x)) ≃ x
(l4) cons(x, y) 6≃ nil

41

(Possibly Empty) Doubly Linked Lists

(ll1) x = nil ∨ next(x) = nil ∨ prev(next(x)) = x
(ll2) x = nil ∨ prev(x) = nil ∨ next(prev(x)) = x
(ll3) prev(x) ≃ nil ∨ prev(y) ≃ nil ∨ x ≃ y ∨ x ≃ nil ∨ y ≃ nil

∨prev(x) 6≃ prev(y)
(ll4) next(x) ≃ nil ∨ next(y) ≃ nil ∨ x ≃ y ∨ x ≃ nil ∨ y ≃ nil

next(x) 6≃ next(y)

ll3 and ll4 are logical consequence of ll1, ll2, but it is necessary to include these axioms explicitly in order
to satisfy the conditions of Definition 92.

Other recursive data-structures can be handled in a similar way.

Others

The union of these theories is also C-controllable. Furthermore, if a theory T is C-controllable, and if S is
a set of clauses containing only C-equations and ground flat clauses, then T ∪ S is also C-controllable (this
follows immediately from Definition 92). This property is essential in practice, because one only has to check
the controllability condition on T .

One last interesting point is that the superposition calculus does not necessarily terminate on C-
controllable clause sets. For instance, g(x) ≃ f(g(y)) is obviously C-controllable (even controlled), but
the superposition calculus deduces an infinite number of clauses of the form g(x) ≃ fn(g(y)). This shows
evidence of the interest of the instantiation method introduced in Section 2.

Limitations

The following theory, together with the previous axioms (a1), (a2) for the theory of arrays, is non C-
controllable.

(cst) ¬cst(a, v) ∨ select(a, x) ≃ v

cst(a, v) expresses the fact that the array a only contains the value v. The theory cannot be controlled:
since the equation i ≃ j occurs in (a2), j must occur in IV(select(store(t, i, v), j) ≃ select(t, j)) (according
to Definition 61). But then j must be in Inst(select), hence the clause select(a, x) ≃ v cannot be variable-
preserving (since x ∈ IV(select(a, x)) but x does not occur in the term v).

The theory is also non C-controllable, since it would imply that select ∈ C (so that (a2) or (cst) can
be reduced into a controlled clause by superposition from a C-equation, by Point 3 in Definition 92). But
obviously, in this case new C-equations can be derived (e.g. by superposition into the term store(t, i, v) in
(a1)). These C-equations are non strongly controlled, which is explicitly forbidden by Point 3 in Definition
92.

The next example shows that the instantiation scheme does not work on this theory:

Example 105 We consider the theory (a1), (a2), (cst) with the following ground equations:

1 cst(a, 0)
2 cst(b, 1)
3 b ≃ store(a, 0, 1)
4 0 6≃ 1

The obtained clause set is unsatisfiable. Indeed, clauses 1 and 2 imply that select(a, 1) = 0,
select(b, 1) = 1. But since b = store(a, 0, 1) and 0 6= 1 we have by (a2): select(b, 1) = select(a, 1) = 0 6=
1. Unfortunately, it is easy to check that the instantiation scheme cannot instantiate the variable j in (a2)
by 1 (this is obvious, since 1 does not occur on the scope of a function symbol select).

Thus the clause set obtained by instantiation is satisfiable. ♣

42

References

[1] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-based satisfiability
procedures, 2006. To appear in ACM Transactions on Computational Logic.

[2] A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability procedures. Infor-
mation and Computation, 183(2):140–164, 2003.

[3] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume I, chapter 8, pages 445–532. Elsevier Science, 2001.

[4] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and simplifi-
cation. Journal of Logic and Computation, 3(4):217–247, 1994.

[5] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere, M. J. H.
Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, chapter 26, pages 825–885. IOS Press, February 2009.

[6] M. P. Bonacina and M. Echenim. On variable-inactivity and polynomial T-satisfiability procedures. J.
of Logic and Computation, 18(1):77–96, 2008.

[7] M. P. Bonacina and M. Echenim. Theory decision by decomposition. Journal of Symbolic Computation,
pages 1–42, To appear.

[8] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decidability and undecidability
results for Nelson-Oppen and rewrite-based decision procedures. In U. Furbach and N. Shankar, editors,
Proc. IJCAR-3, volume 4130 of LNAI, pages 513–527. Springer, 2006.

[9] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In E. A. Emerson and
K. S. Namjoshi, editors, Proc. VMCAI-7, volume 3855 of LNCS, pages 427–442. Springer, 2006.

[10] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. Journal of the ACM,
7(3):201–215, July 1960.

[11] L. de Moura and N. Bjørner. Engineering DPLL(T) + saturation. In A. Armando, P. Baumgartner,
and G. Dowek, editors, Proc. IJCAR-4, volume 5195 of LNAI, pages 475–490. Springer, 2008.

[12] L. M. de Moura and N. Bjørner. Efficient e-matching for smt solvers. In F. Pfenning, editor, Automated
Deduction - CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July
17-20, 2007, Proceedings, volume 4603 of Lecture Notes in Computer Science, pages 183–198. Springer,
2007.

[13] D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

[14] H. Ganzinger and K. Korovin. Integrating equational reasoning into instantiation-based theorem proving.
In Computer Science Logic (CSL’04), volume 3210 of Lecture Notes in Computer Science, pages 71–84.
Springer, 2004.

[15] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using satisfiability modulo
theories. Annals of Mathematics and Artificial Intelligence, 2008. (Accepted for publication).

[16] S. Jacobs. Incremental instance generation in local reasoning. In F. Baader, S. Ghilardi, M. Hermann,
U. Sattler, and V. Sofronie-Stokkermans, editors, Notes 1st CEDAR Workshop, IJCAR 2008, pages
47–62, 2008.

[17] J. Jouannaud and C. Kirchner. Solving equations in abstract algebras: a rule based survey of unification.
In J.-L. Lassez and G. Plotkin, editors, Essays in Honor of Alan Robinson, pages 91–99. The MIT-Press,
1991.

43

[18] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. Revue Française
d’Intelligence Artificielle, 4(3):9–52, 1990.

[19] H. Kirchner, S. Ranise, C. Ringeissen, and D.-K. Tran. Automatic combinability of rewriting-based
satisfiability procedures. In M. Hermann and A. Voronkov, editors, Proc. LPAR-13, volume 4246 of
LNCS, pages 542–556. Springer, 2006.

[20] S. Lee and D. A. Plaisted. Eliminating duplication with the hyper-linking strategy. Journal of Automated
Reasoning, 9:25–42, 1992.

[21] C. Lynch and D.-K. Tran. Automatic decidability and combinability revisited. In F. Pfenning, editor,
Proc. CADE-21, volume 4603 of LNAI, pages 328–344. Springer, 2007.

[22] D. A. Plaisted and Y. Zhu. Ordered semantic hyper-linking. J. Autom. Reasoning, 25(3):167–217, 2000.

[23] S. Ranise and D. Deharbe. Applying light-weight theorem proving to debugging and verifying pointer
programs. In Proc. of the 4th Workshop on First-Order Theorem Proving (FTP’03), volume 86 of
Electronic Notes in Theoretical Computer Science, 2003.

[24] U. Waldmann and V. Prevosto. SPASS+T. In G. Sutcliffe, R. Schmidt, and S. Schulz, editors, Proc.
ESCoR Workshop, FLoc 2006, volume 192 of CEUR Workshop Proceedings, pages 18–33, 2006.

44

