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Separation Logic

A logic used in program verification to reason on mutable
data structures (pointers)

Introduced in 2000 (Reynolds, O’Hearn, Ishtiaq, Yang), based
on earlier work by Burstall, O’Hearn and Pym

Now (since about 2009) used in industrial static analyzers
(e.g., Facebook Infer, Microsoft SLAyer etc.)

Facilitate modular reasoning

Express key properties in a more natural and concise way
Enable local reasoning
Separating conjunction : assert disjointness of memory blocks
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Separation Logic : Ingredients

Points-to atoms of the form x 7→ (y1, . . . , yk)

“Location (i.e., memory address) x is the only allocated
location and points to the tuples of locations y1, . . . , yk”

Special atom emp
“The heap is empty (no allocated location)”

A special connective ∗, called separating conjunction ϕ1 ∗ ϕ2
“The heap can be split into two disjoint parts, satisfying
ϕ1 and ϕ2, respectively”

Inductively defined predicates (fixpoint semantics), used to
describe finite structures of unbounded size, e.g., list
segments :

ls(x , y) ⇐ emp ∧ x ≈ y ls(x , y) ⇐ ∃z(x 7→ z ∗ ls(z , y))

Equational atoms, usual connectives
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Automation of Reasoning in SL with Inductive Definitions :
Existing Results

Focus on symbolic heaps

∃x1, . . . , xn [(A1 ∗ · · · ∗ An) ∧ ϕ]

where the A′
i s are atoms, ϕ is a conjunction of equational

literals

Satisfiability is Exptime-complete [Brotherston et al. LICS
14]

Entailment is undecidable

Entailment is 2-Exptime-complete if the inductive definitions
satisfy some conditions [Iosif et al., CADE 13, Katelaan et al.
TACAS 19, Echenim et al. LPAR 20, CSL 21, CADE 22]
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Automation of Reasoning in SL with Inductive Definitions :
Existing Results

Focus on symbolic heaps

or simply : ∃x1, . . . , xn [A1 ∗ · · · ∗ An]

where the A′
i s are atoms or equational literals, assuming

equational literals are satisfied only in empty heaps

Satisfiability is Exptime-complete [Brotherston et al. LICS
14]

Entailment is undecidable

Entailment is 2-Exptime-complete if the inductive definitions
satisfy some conditions [Iosif et al., CADE 13, Katelaan et al.
TACAS 19, Echenim et al. LPAR 20, CSL 21, CADE 22]
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What About Reasoning With More Complex Heap
Models ?

Heaps with Permissions :

Some locations can be “shared” between threads, if the
permissions are compatible [Bornat, POPL 2005]

Points-to atoms of the form : x
z7→ (y1, . . . , yn)

“Location x is allocated with permission z and refers to
y1, . . . , yn”

Non disjoint heaps may be combined if :

They agree on the shared locations
The permissions are compatible

Inductive predicates have parameters denoting permissions
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Permission Model

A set of permissions, e.g., : write, read

A (partial) combination operator ⊕ stating which permissions
can be combined and what is the resulting permission, e.g. :

write⊕ x undefined
read⊕ read read

Another example of permission model

Rational numbers in ]0, . . . , 1]
x ⊕ y = x + y if x + y ≤ 1, undefined otherwise

(optional) Additional predicates on permissions, maximal
permission

Permission terms may be undefined : def (p) true if p is
defined
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Example

Basic Separation Logic

x 7→ (y) ∗ x 7→ (z) is unsatisfiable
x cannot be allocated in disjoint parts of the heap

Separation Logic with Permissions

x
p7→ (y) ∗ x q7→ (z) is satisfiable

entails that y = z and that p and q are compatible (e.g.
p = q = read
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Existing Results on Automated Reasoning in Separation
Logic with Permissions

[Demri et al. FSTTCS 2017] :

Focus on list segments with (a unique) permission

Assuming we have an oracle for the permission theory :

Satisfiability is in Np
Entailment is co-Np

What can be said about generic inductive definitions ?
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Our Contribution

On the negative side : satisfiability is undecidable in general

On the positive side : Exptime-complete for a syntactic
fragment : ∃-restricted h-regular inductive definitions

The fragment is sufficiently expressive to denote many usual
data structures such as lists or trees, but not, e.g., doubly
linked lists
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Two Separating Conjunctions

∗ Weak separating conjunction :

Based on the combination of permissions
Used in input formulas

◦ Strong separating conjunction : disjoint union of heaps

Usual separating conjunction in SL without permissions
Useful in the paper to define the satisfiability testing algorithm
Also useful to define inductive predicates

x
p7→ (y) ◦ x q7→ (z) is unsatisfiable
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Weak Separating Conjunction

Heaps are partial functions mapping locations to pairs (l, p) where
l is a tuple of locations and p is a permission

Definition

If h1, h2 are heaps, then h1 ⊔ h2 is defined iff for every
ℓ ∈ dom(h1) ∩ dom(h2), if hi (ℓ) = (ℓi1, . . . , ℓ

i
ki
, πi ) (for i = 1, 2)

then :

k1 = k2, ℓ
1
j = ℓ2j holds for all j ∈ {1, . . . , k1}

and π1 ⊕ π2 is defined

Then h1 ⊔ h2 is defined as follows :

If ℓ ∈ dom(hi ) \ dom(hj) with (i , j) ∈ {(1, 2), (2, 1)} then

(h1 ⊔ h2)(ℓ)
def
= hi (ℓ)

If ℓ ∈ dom(h1) ∩ dom(h2) then

(h1 ⊔ h2)(ℓ)
def
= (ℓ11, . . . , ℓ

1
k1
, π1 ⊕ π2)
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Why Do We Need Strong Separating Conjunction ?

Can we define list segment with weak separating conjunction ?

ls(x , y , z) ⇐ x ≈ y

ls(x , y , z) ⇐ ∃u (x z7→ (u) ∗ ls(u, y , z))

Two issues :

Does not fit in with the usual definition of lists [Demri et al.,
2017] :

ls(x , x , z) true on the heap : {x 7→ (x , z)} (good)
but also on any heap of the form

{x 7→ (x , z ⊕ . . .⊕ z)}

(if z ⊕ . . .⊕ z) defined)

Using weak conjunction inside inductive definitions makes the
satisfiability problem undecidable, even for some very simple
structures
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Why Do We Need Strong Separating Conjunction ? (2)

ls should be defined as follows (using strong conjunction) :

ls(x , y , z) ⇐ x ≈ y

ls(x , y , z) ⇐ ∃u (x z7→ (u) ◦ ls(u, y , z))

Weak separating conjunction is useful only in input formulas
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A Restriction on Inductive Rules

Definition

A rule is h-regular if it is of the following form : P(x , y, z) ⇐
∃u1, . . . , un(x

p7→ (v1, . . . , vk) ◦Q1(u1, y1, z1) . . . ◦Qn(un, yn, zn) ◦ϕ)
where

x , y are location variables, zi , z are tuples of permission
variables, p is a permission term

{u1, . . . , un} ⊆ {v1, . . . , vk} and ϕ is purely equational

All the variables in zi , z occur in z

A strictly more restrictive version of the PCE conditions of
[Iosif et al., CADE 2013]

Each existential variable must be allocated at the next
recursive call

Encode regular languages + additional pointers to previously
allocated nodes (or free variables)

No compound permission term in recursive predicate calls
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Necessary But Not Sufficient

As we shall see, these restrictions are insufficient for the
decidability of the satisfiability problem

Additional restrictions are needed on the use of existential
variables
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Satisfiability Testing : Strong Separating Conjunctions

We first describe the last step of the algorithm :

Consider a formula of the form ϕ1 ◦ . . . ◦ϕn, where ϕi are
atoms

Close to separation logic with no permission

It suffices to construct abstractions of models (∼,A, ρ),
where : ∼ is an equivalence relation on free variables denoting
locations (equality relation), A denotes a the set of allocated
free variables, and ρ is a permission formula

Easy to construct by induction on the formulas (with fixpoint
computation)
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Constructing Abstractions

A(ϕ) is a set of heap abstraction defined as follows : as follows
(for all equivalence relations ∼) :

If ϕ = x
p7→ (y1, . . . , yn) then (∼, {y | y ∼ x}, def (p)) ∈ A(ϕ)

If ϕ = x ≈ y with x ∼ y then (∼, ∅,⊤) ∈ A(ϕ).

If ϕ = x ̸≈ y with x ̸∼ y then (∼, ∅,⊤) ∈ A(ϕ).

If ϕ is a permission formula then (∼, ∅, ϕ) ∈ A(ϕ).

If ϕ = ∃x .ψ, (∼,A, ρ) ∈ A(ψ) then
({u, v | u ∼ v , u, v ̸= x},A \ {x}, ρ) ∈ A(ϕ).

If ϕ = ϕ1 ◦ϕ2, (∼,Ai , ρi ) ∈ A(ϕi ) (for all i = 1, 2) with
A1 ∩ A2 = ∅, then (∼,A1 ∪ A2, ρ1 ◦ ρ2) ∈ A(ϕ).

If ϕ = P(x, p) and ϕ⇐R ξ then A(ξ) ⊆ A(ϕ).
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Constructing Abstractions : Properties

Lemma

A(ϕ) is finite (trivial as only a bounded number of free variables
need to be considered, but key point : no existential variable of
type permission)

Lemma

ϕ is satisfiable iff A(ϕ) contains a tuple (∼,A, ρ) such that ρ is
satisfiable
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What About Weak Separating Conjunctions ?

Goal : transform formulas of the form ϕ1 ∗ · · · ∗ ϕn into
ψ1 ◦ . . . ◦ψm

Three steps :
1 Decompose every spatial atom ϕi into a ◦-conjunction
ψi
1 ◦ . . . ◦ψi

mi
such that every ψi

j allocates exactly one free
variable xj

2 Using the latter property, we may push ∗ below ◦
We get a ◦-conjunction of ∗-conjunctions of atoms
each allocating the same variable xj

3 Merge each ∗-conjunctions of atoms into a single atom (with
new rules)
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Context Predicates −−•

To decompose atoms, we need to synthesize new predicate
symbols and rules

q(y) −−• r(x) : true in a structure that satisfies r(x) after a
disjoint structure satisfying q(y) is added

Similar to the separating implication −−∗, but not exactly
equivalent, because the definition is not purely semantic : it
depends on the unfolding tree

No need to extend the logic : q(y) −−• r(x) may be denoted as
an atom, with rules automatically generated from those of
r(x)
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Context Predicates : Example

Lists :

p(x , y) ⇐ x
y7→ () p(x , y) ⇐ ∃z (x y7→ (z) ◦ p(z , y))

p(y , z) −−• p(x , z) denotes a structure obtained from a list
satisfying p(x , z) by deleting the part corresponding to the
call p(y , z)

p(y , z) −−• p(x , z) denotes a list segment from x to y :
p(y , z) −−• p(x , z) ≡ ls(x , y , z)

p(y , z) −−• p(x , z) is defined by the following rules :

p(y , z) −−• p(x , z) ⇐ x ≈ y

p(y , z) −−• p(x , z) ⇐ ∃u (x z7→ (u) ◦ p(y , z) −−• p(x , z))

These rules can be computed automatically
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Using Context Predicates to Decompose Atoms

For every atom p(y , z) and free variable x , replace p(y , z) by :

Either p′(y , x , z) where the rules of p′ are obtained from those
of p by adding the constraint u ̸≈ x for each points-to atom
u 7→ (. . . )
Cover the case where x is not allocated

Or ∃u [q(x ,u) ◦(q(x ,u) −−• p(y , z))] (for some predicate q)

Cover the case where x is allocated
If x is allocated then (due to the restriction on the rules) there
must be a call to some atom of the form q(x ,u))
q(x ,u) −−• p(y , z) cannot allocate x (more generally each
◦-conjunction contains at most on atom allocating x)
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Decomposition of Atoms : Termination Issue

The previous transformation ensures that every predicate
atom allocates exactly one free variable. . .

. . . but it does not terminate in general :

The transformation must be applied on each variable
New variables u are introduced during the process
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Decomposition of Atoms : Conditions for Termination

Add additional restrictions on the rules :

Easy solution : forbid existential parameters (except at first
position in the atom) : for all p(x , y1, . . . , yn), y1, . . . , yn must
be free
Rather restrictive

More general condition : assume that for all yi that is not free,
there is an atom q(yi , z1, . . . , zn) where z1, . . . , zn are free

Require to compute, for each predicate p, the set of arguments
γ(p) of p that may be instantiated by existential variables
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Decomposition of Atoms : Conditions for Termination (2)

For instance :

p(x , y , z) ⇐ ∃u, v x z7→ (u, v , y) ∗ p(u, v , z) ∗ q(v , z) ok

q(v , z) ⇐ v
z7→ ()

p(x , y , z) ⇐ ∃u, v x z7→ (u, v , y) ∗ p(u, v , z) ∗ p(v , u, z) ko
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Decomposition of Atoms : Conditions for Termination (3)

Rules satisfying the above condition are called ∃-restricted
The condition ensures termination of the previous
decomposition process

Intuitively :

New variables are introduced only when applying the
decomposition on a variable originally occurring in the formula
No new variables are introduced when applying the
decomposition on a variable introduced during the
decomposition process
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Representable Structures

Regular tree languages + additional pointers (as in PCE)

A set of distinguished nodes (free variables)

The additional pointers may refer :

either to distinguished nodes
or to a structure with no additional pointers other than
distinguished nodes
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Second Step : Pushing ∗ below ◦

Lemma

If ψi and ψ
′
i allocates exactly the free variables Vi , and

V1 ∩ V2 = ∅, then : (ψ1 ◦ψ2) ∗ (ψ′
1 ◦ψ′

2) is satisfiable iff
(ψ1 ∗ ψ′

1) ◦(ψ2 ∗ ψ′
2) is satisfiable

Proof

Idea :

(ψ1 ∗ψ′
1) ◦(ψ2 ∗ψ′

2) |= (ψ1 ◦ψ2) ∗ (ψ′
1 ◦ψ′

2) holds if every case

For the converse :

Rename all locations not associated to free variables in the
model of ψ2 ∗ ψ′

2 so that they do not occur in the model of
ψ1 ∗ ψ′

1

The renaming does not affect the model of ψ1 ∗ ψ′
1

As ψ1 and ψ′
2 allocate distinct free variables, this ensures that

the heaps corresponding to ψ1 and ψ′
2 are disjoint (and

similarly for ψ2 and ψ′
1)
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Pushing ∗ below ◦ (2)

By applying repeatedly the previous result we may transform
∗ni=1(ψ

i
1 ◦ . . . ◦ψi

mi
) into :

◦mj=1(ψ
1
j ∗ · · · ∗ ψi

j )

where every formula ψi
j allocates exactly the same variable xj (or is

emp)
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Merging ∗-Conjunctions

Merge p(x , y, z1) ∗ p′(x , y′, z2) into pp′(x , y, y′, z1, z2)

The rules of pp′ are computed by “merging” rules of p and p′,
as for tree automata
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Merging ∗-Conjunctions (2)

Examples :

p(x , y , z) ∗ p′(x , z ′) with

p(x , y , z) ⇐ x
z7→ (u, y) ◦ q(u, z)

p′(x , y ′, z ′) ⇐ x
z ′7→ (u, y ′) ◦ r(u, y ′, z ′)

We get : pp′(x , y , y ′, z , z ′) with

pp′(x , y , y ′, z , z ′) ⇐ x
z⊕z ′7→ (u, y) ◦ qr(u, y ′, z) ◦ y ≈ y ′

The fact that every predicate atom allocates exactly one free
variable ensures that the rules can always be combined
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Summary

The steps described above yield an algorithm for testing the
satisfiability of ∗ conjunctions of atoms defined over regular,
∃-restricted rules

The algorithm has exponential complexity (modulo
satisfiability testing for permission formulas)

The problem is Exptime-hard (by reduction from the halting
problem for alternating Turing machines running in
polynomial space), even with no permissions
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Undecidability Results

The problem is undecidable in both the following cases :

1 If the rules are h-regular, but not ∃-restricted and there are
(not necessarily distinct) permissions π1, π2 such that π1 ⊕ π2
is defined

2 Or, if ∗ is used instead of ◦ in the definition of the rules and
for all n ≥ 0 there is a permission π such that π ⊕ . . .⊕ π︸ ︷︷ ︸

n time

is

defined
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Undecidability Results (1)

If the rules are not ∃-restricted, one may encode the PCP as follows

Let u1, . . . , uN , v1, . . . , vN be words

Construct a heap {yi 7→ (yi+1, ci , ℓi , ℓ
′
i , π) | i = 1, . . . , k}

encoding a potential witness w = w1. . . . .wk with
w = ui1 . . . . .uin = vj1 . . . . .vjm (with n,m > 0)

Add links ℓi , ℓ
′
i to elements of two lists λi1 , . . . , λin and

λ′j1 , . . . , λ
′
jm

denoting the sequences i1 . . . , in and j1 . . . , jm

The lists must be constructed in reverse order to ensure
h-regularity

Add a predicate checking that the two lists denote identical
sequences (constructing a list of tuples (λik , λ

′
jk
), again in

reverse order)
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Undecidability Results (2)

If ∗ is used instead of ◦ then one may encode the PCP as follows :

Construct a circular list representing the potential witness

Since the list is circular one may go through it an arbitrary
number of times (assuming that for all n, there exists a
permission π such that n.π is defined)

Use two parameters x , y denoting the positions of the start of
words uij and vij (initially x = y = 1, then x = |ui1 |+ 1 and
y = |vi1 |+ 1 etc.)

At each step : check that the words starting at position x and
y are identical and compute the start of the next words x ′, y ′

Then repeat the process with x ′, y ′

End with a special word #

To fulfill the ∃-restrictedness condition, x , x ′ cannot refer to
elements of the list

Add instead dummy “marks” associated with every element in
the list and refer to these “marks”

N. Peltier Testing the Satisfiability of Formulas in Separation Logic with Permissions



Future Work

Relax the ∃-restrictedness conditions ?
Identify formal parameters that may only be instantiated by a
bounded number of variables during unfolding
Should be possible, but does not really extend expressive power
(encodings are possible)

Extend to non h-regular case ? (use full PCE conditions of
[Iosif et al. CADE 2013] instead)

∃-restrictedness seems more important for decidability than
h-regularity

Entailment Problem ?

Use the same ideas : decomposition + commutation of ∗ and ◦
+ merge ?
Could be sufficient for quantifier-free entailments ?
Entailments with existential variables may be more difficult

N. Peltier Testing the Satisfiability of Formulas in Separation Logic with Permissions


