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Introduction

I Graph databases are more and more used

W3C Workshop on Web Standardization for Graph Data .

I Today’s de facto standard: RDF and SPARQL.

I Graph database queries are graph transformations.
I DB querying from a graph transformation perspective?
I DB querying implicitely involves universal quantification on

matches.

I Motivations:
I SPARQL is heterogeneous (CONSTRUCT and SELECT).
I The SPARQL semantics, as given in W3C recommendations, is

complex.

https://www.w3.org/Data/events/data-ws-2019/


RDF triplestores=graphs

I Triple store: (s, p, o) viewed as labelled arrow s
p→ o.

I Three kinds of atoms :
I IRI: internationalized Resource Identifier.
I Litteral: strings of characters, integers.
I Blank nodes.

I Not the usual graphs.
I No isolated atoms.
I Predicates can also be sources (subject) or destinations

(object) of arrows.



RDF triplestore

RDF Triple store

:a name Alice. :a dpt CS.
:b1 name Bob. :b1 dpt CS. :b1 dpt Physics.
:b2 name Bob. :b2 dpt CS. :b2 dpt Math.
:c name Charlie. :c dpt Math.

CS zip OX1. Physics zip OX1. Math zip OX2.
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SPARQL query language - CONSTRUCT

SPARQL Query

CONSTRUCT {?n inh ?z }
WHERE {?x name ?n.

?x dpt ?d.
?d zip ?z }

RDF Triple store

:a name Alice. :a dpt CS.
:b1 name Bob. :b1 dpt CS. :b1 dpt Physics.
:b2 name Bob. :b2 dpt CS. :b2 dpt Maths.
:c name Charlie. :c dpt Math.

CS zip OX1. Physics zip OX1. Math zip OX2.

Query result

Charlie inh OX2.
Bob inh OX2.
Alice inh OX1.
Bob inh OX1.
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SPARQL semantics

I Officially defined by the W3C recommendations:

https://www.w3.org/TR/sparql11-query/

I There are other proposals of SPARQL formal semantics not
based on graph transformation techniques, e.g. [KRU15].

I Specific points:

I Done with SQL in mind (clear from imbalance between
CONSTRUCT and SELECT in W3C recommendations).

I There is no equivalent of the relational algebra for
CONSTRUCT.

https://www.w3.org/TR/sparql11-query/


Algebraic point of view - Categories

Definition
Let A be a set, called the the of attributes.

I A graph on A is a subset of A3: subjects, predicates and
objects.

I A morphism a : T → T ′ is a partial map A ⇀ A that
preserves triples.

=⇒ This yields the category of graphs on A, denoted G(A).

We say that a morphism a : T → T ′ of graphs on A fixes a subset
C of A if a(x) = x for each x in T ∩ C .

The subcategory of G(A) made of the graphs on A with the
morphisms fixing C is denoted GC (A).



Data Graphs and Query Graphs Categories

Definition
Let I , B and V be the sets of resource identifiers (IRI and literals),
blanks and variables. Let IB = I ∪ B, IV = I ∪ V and
IBV = I ∪ B ∪ V .

I The category of data graphs is D = G(IB)

I The category of query graphs is Q = G(IBV )

I Blanks and variables play a different role.

Definition
A match from a query graph L to a data graph G is a morphism of
query graphs from L to G which fixes I . The set of matches from
L to G is denoted Match(L,G ) and the set of all matches from L
to any data graph is denoted Match(L).



Query rules for basic CONSTRUCT Queries

The basic SPARQL query ”CONSTRUCT {R} WHERE {L}”,
basic meaning that R, L are query graphs, is seen as follows:

Definition
A basic construct query is (L,R) in QIV ×QIV , such that blanks
are different in L and R and every variable in R is in L. The
transformation rule of (L,R) is the cospan

PL,R = (L
l−→ K

r←− R) where K = L ∪ R and l and r are the
inclusions.

PL,R = L
l

⊆
// K = L ∪ R R

r

⊇
oo



The POIM transformation - single match

1. PO: pushout of l and m in QI .
The cobase change along l is the map
l∗ :Match(L)→Match(K ) that maps each m : L→ G to
l∗(m) : K → D defined from the pushout of l and m in QI ,

2. IM: image factorization.
The image factorization along r is the map
r+ :Match(K )→Match(R) that maps each n : K → D to
r+(n) : R → H where H is the image of R in D and r+(n) is
the restriction of n and h : H → D is the inclusion.

L

(PO)

l //

m

��

K

l∗(m)=n

��
(IM)

R
roo

r+(n)=p
=PoImL,R(m)
��

G
g // D H

hoo



The POIM Transformation - Multiple Matches (1)

I Querying a DB involves all eligible matches.

I Two equivalent approaches:
I Low-level: make as many copies of (L,R) as there are matches.
I High-level: make one big match out of small matches.

Definition (Low-level)

Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G . For each i = 1, ..., k let Hi

be the result of applying the POIM transformation POIML,R to the
match mi : L→ G . It is the datagraph obtained from R by
replacing each variable x in R by mi (x) and each blank in R by a
fresh blank.
The query result of applying the basic construct query (L,R) to
the data graph G is the data graph H = H1 ∪ ... ∪ Hk .



The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G . Consider the basic
construct query (k L, k R). Let m be the match from k L to G that
coincides with mi on the i-th component of k L. The high-level
query result of (L,R) against G is the result Hhigh of applying the
POIM transformation PoImk L,k R to the match m : k L→ G .

Proposition

Let (L,R) be a basic construct query and G a data graph. The
low-level query result of (L,R) against G is isomorphic, in the
category DI , to the high-level query result of (L,R) against G.



The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G . Consider the basic
construct query (k L, k R). Let m be the match from k L to G that
coincides with mi on the i-th component of k L. The high-level
query result of (L,R) against G is the result Hhigh of applying the
POIM transformation PoImk L,k R to the match m : k L→ G .

Proposition

Let (L,R) be a basic construct query and G a data graph. The
low-level query result of (L,R) against G is isomorphic, in the
category DI , to the high-level query result of (L,R) against G.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.
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Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.

m=(m1,m2)
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:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.

m=(m1,m2)
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n
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:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.

g //

:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.
:a name :n1.
:b name :n2.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.

m=(m1,m2)
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:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.

g //

:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.
:a name :n1.
:b name :n2.

hoo :a name :n1.
:b name :n2.



Conclusion

I SELECT queries can be considered as special cases of
CONSTRUCT queries.

I Related works:

I Formal semantics not based on graph transformations
[KRU15].

I Approach to RDF graph transformation MPOC-PO in [BB08].
I Ontologies as categories [AJK15].
I Non-local transformations [CDE+19]

I Ongoing work:
I Extend the kernel of SPARQL.
I Extend subqueries.
I Updates.
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