An Algebraic Graph Transformation Approach for RDF and SPARQL

D. Duval and R. Echahed and F. Prost

LJK - LIG - CNRS - Université Grenoble Alpes

June 24, 2020

Introduction

- Graph databases are more and more used
 W3C Workshop on Web Standardization for Graph Data .
- Today's de facto standard: RDF and SPARQL.
- Graph database queries are graph transformations.
 - ▶ DB querying from a graph transformation perspective?
 - DB querying implicitely involves universal quantification on matches.
- Motivations:
 - SPARQL is heterogeneous (CONSTRUCT and SELECT).
 - The SPARQL semantics, as given in W3C recommendations, is complex.

RDF triplestores=graphs

- ► Triple store: (s, p, o) viewed as labelled arrow $s \stackrel{p}{\rightarrow} o$.
- ► Three kinds of atoms :
 - ► IRI: internationalized Resource Identifier.
 - Litteral: strings of characters, integers.
 - Blank nodes.
- Not the usual graphs.
 - No isolated atoms.
 - Predicates can also be sources (subject) or destinations (object) of arrows.

RDF triplestore

RDF Triple store

 - :a name Alice.
 - :a dpt CS.

 - :b1 name Bob.
 - :b1 dpt CS.
 - :b1 dpt Physics.

 - :b2 name Bob.
 - :b2 dpt CS.
 - :b2 dpt Math.

 - :c name Charlie.
 - :c dpt Math.

 CS zip OX1.
 Physics zip OX1.
 Math zip OX2.

SPARQL query language - CONSTRUCT

SPARQL Query

RDF Triple store

_ :a name Alice. _ :a dpt CS. _ :b1 name Bob. _ :b1 dpt CS. _ :b1 dpt Physics. _ :b2 name Bob. _ :b2 dpt CS. _ :b2 dpt Maths. _ :c name Charlie. _ :c dpt Math.

CS zip OX1.

Physics zip OX1. Math zip OX2.

Query result

Charlie inh OX2. Bob inh OX2. Alice inh OX1. Bob inh OX1.

SPARQL semantics

Officially defined by the W3C recommendations:

```
https://www.w3.org/TR/sparql11-query/
```

- ► There are other proposals of SPARQL formal semantics not based on graph transformation techniques, e.g. [KRU15].
- Specific points:
 - Done with SQL in mind (clear from imbalance between CONSTRUCT and SELECT in W3C recommendations).
 - ► There is no equivalent of the relational algebra for CONSTRUCT.

Algebraic point of view - Categories

Definition

Let A be a set, called the the of attributes.

- ▶ A graph on A is a subset of A³: subjects, predicates and objects.
- ▶ A morphism $a: T \to T'$ is a partial map $A \rightharpoonup A$ that preserves triples.
- \implies This yields the *category of graphs on A*, denoted $\mathcal{G}(A)$.

We say that a morphism $a: T \to T'$ of graphs on A fixes a subset C of A if a(x) = x for each x in $T \cap C$.

The subcategory of $\mathcal{G}(A)$ made of the graphs on A with the morphisms fixing C is denoted $\mathcal{G}_{C}(A)$.

Data Graphs and Query Graphs Categories

Definition

Let I, B and V be the sets of resource identifiers (IRI and literals), blanks and variables. Let $IB = I \cup B$, $IV = I \cup V$ and $IBV = I \cup B \cup V$.

- ▶ The category of data graphs is $\mathcal{D} = \mathcal{G}(IB)$
- ▶ The category of query graphs is Q = G(IBV)
- Blanks and variables play a different role.

Definition

A match from a query graph L to a data graph G is a morphism of query graphs from L to G which fixes I. The set of matches from L to G is denoted $\mathcal{M}atch(L,G)$ and the set of all matches from L to any data graph is denoted $\mathcal{M}atch(L)$.

Query rules for basic CONSTRUCT Queries

The basic SPARQL query "CONSTRUCT $\{R\}$ WHERE $\{L\}$ ", basic meaning that R, L are query graphs, is seen as follows:

Definition

A basic construct query is (L,R) in $\mathcal{Q}_{IV} \times \mathcal{Q}_{IV}$, such that blanks are different in L and R and every variable in R is in L. The transformation rule of (L,R) is the cospan

 $P_{L,R} = (L \xrightarrow{l} K \xleftarrow{r} R)$ where $K = L \cup R$ and l and r are the inclusions.

$$P_{L,R} = L \xrightarrow{I} K = L \cup R \xleftarrow{r} R$$

The POIM transformation - single match

- 1. PO: pushout of I and m in Q_I . The cobase change along I is the map $I_*: \mathcal{M}atch(L) \to \mathcal{M}atch(K)$ that maps each $m: L \to G$ to $I_*(m): K \to D$ defined from the pushout of I and m in Q_I ,
- 2. IM: image factorization.

The image factorization along r is the map $r^+: \mathcal{M}atch(K) \to \mathcal{M}atch(R)$ that maps each $n: K \to D$ to $r^+(n): R \to H$ where H is the image of R in D and $r^+(n)$ is the restriction of n and $h: H \to D$ is the inclusion.

The POIM Transformation - Multiple Matches (1)

- Querying a DB involves all eligible matches.
- ► Two equivalent approaches:
 - ▶ Low-level: make as many copies of (L, R) as there are matches.
 - High-level: make one big match out of small matches.

Definition (Low-level)

Let (L,R) be a basic construct query and G a data graph. Let $m_1,...,m_k$ be the matches from L to G. For each i=1,...,k let H_i be the result of applying the POIM transformation $POIM_{L,R}$ to the match $m_i:L\to G$. It is the datagraph obtained from R by replacing each variable x in R by $m_i(x)$ and each blank in R by a fresh blank.

The *query result* of applying the basic construct query (L, R) to the data graph G is the data graph $H = H_1 \cup ... \cup H_k$.

The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L,R) be a basic construct query and G a data graph. Let $m_1,...,m_k$ be the matches from L to G. Consider the basic construct query $(k\ L,k\ R)$. Let m be the match from $k\ L$ to G that coincides with m_i on the i-th component of $k\ L$. The high-level query result of (L,R) against G is the result H_{high} of applying the POIM transformation $PoIm_{k\ L,k\ R}$ to the match $m:k\ L\to G$.

The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L,R) be a basic construct query and G a data graph. Let $m_1,...,m_k$ be the matches from L to G. Consider the basic construct query $(k\ L,k\ R)$. Let m be the match from $k\ L$ to G that coincides with m_i on the i-th component of $k\ L$. The high-level query result of (L,R) against G is the result H_{high} of applying the POIM transformation $PoIm_{k\ L,k\ R}$ to the match $m:k\ L\to G$.

Proposition

Let (L,R) be a basic construct query and G a data graph. The low-level query result of (L,R) against G is isomorphic, in the category \mathcal{D}_1 , to the high-level query result of (L,R) against G.

► Consider the query :

CONSTRUCT $\{?x \text{ name } _:n\}$ WHERE $\{?x \text{ name } ?name \}$

Consider the query :

CONSTRUCT {?x name _ :n} WHERE { ?x name ?name }

 ?x1 name ?name1.
 ?x1 name ?name1.

 ?x2 name ?name2.
 ?x2 name ?name2.

 ?x2 name ?name2.
 ?x2 name ?name2.

 ?x2 name ?name2.
 ?x2 name .:n2.

► Consider the query :

CONSTRUCT {?x name _ :n} WHERE { ?x name ?name }

► Consider the query :

CONSTRUCT {?x name _ :n} WHERE { ?x name ?name }

► Consider the query :

CONSTRUCT {?x name _ :n} WHERE { ?x name ?name }

Conclusion

SELECT queries can be considered as special cases of CONSTRUCT queries.

Conclusion

- SELECT queries can be considered as special cases of CONSTRUCT queries.
- Related works:
 - Formal semantics not based on graph transformations [KRU15].
 - Approach to RDF graph transformation MPOC-PO in [BB08].
 - Ontologies as categories [AJK15].
 - ► Non-local transformations [CDE⁺19]

Conclusion

- SELECT queries can be considered as special cases of CONSTRUCT queries.
- Related works:
 - Formal semantics not based on graph transformations [KRU15].
 - Approach to RDF graph transformation MPOC-PO in [BB08].
 - Ontologies as categories [AJK15].
 - ► Non-local transformations [CDE⁺19]
- Ongoing work:
 - Extend the kernel of SPARQL.
 - Extend subqueries.
 - Updates.

Bibliography

- S. Aliyu, S.B. Junaidu, and A. F. Donfack Kana. A category theoretic model of RDF ontology. *International Journal of Web & Semantic Technology* (IJWesT), 2015.
- Benjamin Braatz and Christoph Brandt.
 Graph transformations for the resource description framework.

 ECEASST, 10, 2008.
- Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric Prost, and Leila Ribeiro.

 The PBPO graph transformation approach.
 - J. Log. Algebraic Methods Program., 103:213–231, 2019.
- Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte. CONSTRUCT queries in SPARQL.
 - In 18th International Conference on Database Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium, pages 212–229, 2015.