An Algebraic Graph Transformation Approach for
RDF and SPARQL

D. Duval and R. Echahed and F. Prost

LJK - LIG - CNRS - Université Grenoble Alpes

June 24, 2020

Introduction

» Graph databases are more and more used

W3C Workshop on Web Standardization for Graph Data .

» Today's de facto standard: RDF and SPARQL.

» Graph database queries are graph transformations.

» DB querying from a graph transformation perspective?
» DB querying implicitely involves universal quantification on
matches.

» Motivations:

» SPARQL is heterogeneous (CONSTRUCT and SELECT).
» The SPARQL semantics, as given in W3C recommendations, is
complex.

https://www.w3.org/Data/events/data-ws-2019/

RDF triplestores=graphs

» Triple store: (s, p, o) viewed as labelled arrow s 5o,

» Three kinds of atoms :

» |RI: internationalized Resource ldentifier.
» Litteral: strings of characters, integers.
» Blank nodes.

» Not the usual graphs.
» No isolated atoms.

> Predicates can also be sources (subject) or destinations
(object) of arrows.

RDF triplestore

RDF Triple store

:a name Alice. :a dpt CS.
- :b1l name Bob. - bl dpt CS. - :bl dpt Physics.
~ :b2 name Bob. - :b2 dpt CS. - :b2 dpt Math.
- :c name Charlie. :c dpt Math.
CS zip OX1. Physics zip OX1. Math zip OX2.
Alice Bob
name na e\me\
_:a -:by by
d\it /dpt/ d‘ ' /dpt/ dpt.
(&5} Physics
Zip /Zip/
OX1

0X2

SPARQL Query

SPARQL query language - CONSTRUCT

RDF Triple store

CONSTRUCT {?ninh 7z }

WHERE {?x name 7n.
?x dpt 7d.
?d zip 7z }

Query result

Charlie inh OX2.
Bob inh OX2.
Alice inh OX1.
Bob inh OX1.

_ :a name Alice. _:adpt CS.
- :b1 name Bob. _:bl dpt CS. - :bl dpt Physics.
- :b2 name Bob. ~:b2 dpt CS. - :b2 dpt Maths.
- :c name Charlie. - :c dpt Math.
CS zip OX1. Physics zip OX1. Math zip OX2.

Alice Bob Charlie

inh in inh

OX1 (¢

SPARQL semantics

> Officially defined by the W3C recommendations:
https://www.w3.org/TR/sparqlll-query/

» There are other proposals of SPARQL formal semantics not
based on graph transformation techniques, e.g. [KRU15].

» Specific points:

» Done with SQL in mind (clear from imbalance between
CONSTRUCT and SELECT in W3C recommendations).

» There is no equivalent of the relational algebra for
CONSTRUCT.

https://www.w3.org/TR/sparql11-query/

Algebraic point of view - Categories

Definition
Let A be a set, called the the of attributes.
» A graph on Ais a subset of A3: subjects, predicates and
objects.

» A morphism a: T — T’ is a partial map A — A that
preserves triples.

= This yields the category of graphs on A, denoted G(A).

We say that a morphism a: T — T’ of graphs on A fixes a subset
C of Aif a(x) = x for each x in T N C.

The subcategory of G(A) made of the graphs on A with the
morphisms fixing C is denoted G¢(A).

Data Graphs and Query Graphs Categories

Definition

Let /, B and V be the sets of resource identifiers (IRl and literals),
blanks and variables. Let IB=1UB, IV =1U YV and

IBY =1UBUYV.

» The category of data graphsis D = G(IB)
» The category of query graphs is Q = G(IBV)

» Blanks and variables play a different role.

Definition

A match from a query graph L to a data graph G is a morphism of
query graphs from L to G which fixes /. The set of matches from
L to G is denoted Match(L, G) and the set of all matches from L
to any data graph is denoted Match(L).

Query rules for basic CONSTRUCT Queries

The basic SPARQL query "CONSTRUCT {R} WHERE {L}",
basic meaning that R, L are query graphs, is seen as follows:

Definition

A basic construct query is (L, R) in Qv x Qyy, such that blanks
are different in L and R and every variable in R is in L. The
transformation rule of (L, R) is the cospan

PLr = (L—I> K < R) where K = LUR and [and r are the
inclusions.

PLr = L K=LUR<—S—R

The POIM transformation - single match

1. PO: pushout of / and m in Q.
The cobase change along | is the map
I : Match(L) — Match(K) that maps each m: L — G to
l.(m) : K — D defined from the pushout of / and m in Qy,
2. IM: image factorization.
The image factorization along r is the map
rt . Match(K) — Match(R) that maps each n: K — D to
rt(n) : R — H where H is the image of R in D and r*(n) is
the restriction of n and h: H — D is the inclusion.

()
0y
A
)
A
>
I

The POIM Transformation - Multiple Matches (1)

» Querying a DB involves all eligible matches.

» Two equivalent approaches:
» Low-level: make as many copies of (L, R) as there are matches.
» High-level: make one big match out of small matches.

Definition (Low-level)

Let (L, R) be a basic construct query and G a data graph. Let

my, ..., my be the matches from L to G. Foreach i =1,.... k let H;
be the result of applying the POIM transformation POIM| g to the
match m; : L — G. It is the datagraph obtained from R by
replacing each variable x in R by m;(x) and each blank in R by a
fresh blank.

The query result of applying the basic construct query (L, R) to
the data graph G is the data graph H = H; U ... U H,.

The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L, R) be a basic construct query and G a data graph. Let
my, ..., m, be the matches from L to G. Consider the basic
construct query (k L, k R). Let m be the match from kL to G that
coincides with m; on the i-th component of k L. The high-level
query result of (L, R) against G is the result Hpjg of applying the
POIM transformation Polmy | xr to the match m: kL — G.

The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L, R) be a basic construct query and G a data graph. Let
my, ..., m, be the matches from L to G. Consider the basic
construct query (k L, k R). Let m be the match from kL to G that
coincides with m; on the i-th component of k L. The high-level
query result of (L, R) against G is the result Hpjg of applying the
POIM transformation Polmy | xr to the match m: kL — G.

Proposition

Let (L, R) be a basic construct query and G a data graph. The
low-level query result of (L, R) against G is isomorphic, in the
category D, to the high-level query result of (L, R) against G.

Example - High-Level

» Consider the query :
CONSTRUCT {?x name _:n} WHERE { 7x name ?name }

Example - High-Level

» Consider the query :

CONSTRUCT {?x name _:n} WHERE { 7x name ?name }

7x1 name ?namel. /
? ? —
?x2 name ?name2.

7x1 name ?namel.
?x1 np - :nl.
7x2 name ?name2.
?x2 np - :nl.

?x1 name _ :nl.
?x2 name _ :n2.

Example - High-Level

» Consider the query :

7x1 name ?namel.
7x2 name ?name2.

CONSTRUCT {?x name _:n} WHERE { 7x name ?name }

lm(ml,mZ)

~:a name Alice.

:a nick Lissie.
:b name Bob.

_ :c nick Charlie.

1
—_—

7x1 name ?namel.

?x1 np - :nl.
7x2 name ?name2.
?x2 np - :nl.

?x1 name _ :nl.
?x2 name _ :n2.

Example - High-Level

» Consider the query :
CONSTRUCT {?x name _:n} WHERE { 7x name ?name }

7x1 name ?namel.

7x1 name ?namel. ! ?x1 np - :nl. r ?x1 name - :nl.
7x2 name ?name2. 7x2 name ?name2. ?x2 name _ :n2.

?x2 np - :nl.

lm(ml,mZ) ln

- :a name Alice.

~:a name Alice. - :a nick Lissie.
- :a nick Lissie. & - :b name Bob.
- :b name Bob. - :c nick Charlie.
_ :c nick Charlie. -:aname _:nl.

_:b name _:n2.

Example - High-Level

» Consider the query :
CONSTRUCT {?x name _:n} WHERE { 7x name ?name }

7x1 name ?namel.

7x1 name ?namel. ! ?x1 np - :nl. r ?x1 name - :nl.
7x2 name ?name2. 7x2 name ?name2. ?x2 name _ :n2.

?x2 np - :nl.

l(> l l

- :a name Alice.

~:a name Alice. - :a nick Lissie.
- :a nick Lissie. & - :b name Bob. h .
- :b name Bob. - :c nick Charlie. _:b name _ :n2.
_ :c nick Charlie. -:aname _:nl.

_:b name _:n2.

Conclusion

» SELECT queries can be considered as special cases of
CONSTRUCT queries.

Conclusion

» SELECT queries can be considered as special cases of
CONSTRUCT queries.

> Related works:

» Formal semantics not based on graph transformations
[KRU15].

» Approach to RDF graph transformation MPOC-PO in [BBO08].

» Ontologies as categories [AJK15].

» Non-local transformations [CDE*19]

Conclusion

» SELECT queries can be considered as special cases of
CONSTRUCT queries.

> Related works:

» Formal semantics not based on graph transformations
[KRU15].

» Approach to RDF graph transformation MPOC-PO in [BBO08].

» Ontologies as categories [AJK15].

» Non-local transformations [CDE*19]

» Ongoing work:
> Extend the kernel of SPARQL.

» Extend subqueries.
» Updates.

Bibliography

@ S. Aliyu, S.B. Junaidu, and A. F. Donfack Kana.
A category theoretic model of RDF ontology.
International Journal of Web & Semantic Technology
(IJWesT), 2015.

B Benjamin Braatz and Christoph Brandt.
Graph transformations for the resource description framework.
ECEASST, 10, 2008.

@ Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric
Prost, and Leila Ribeiro.
The PBPO graph transformation approach.
J. Log. Algebraic Methods Program., 103:213-231, 20109.

[§ Egor V. Kostylev, Juan L. Reutter, and Martin Ugarte.
CONSTRUCT queries in SPARQL.
In 18th International Conference on Database Theory, ICDT
2015, March 23-27, 2015, Brussels, Belgium, pages 212-229,
2015.

