
An Algebraic Graph Transformation Approach for
RDF and SPARQL

D. Duval and R. Echahed and F. Prost

LJK - LIG - CNRS - Université Grenoble Alpes

June 24, 2020



Introduction

I Graph databases are more and more used

W3C Workshop on Web Standardization for Graph Data .

I Today’s de facto standard: RDF and SPARQL.

I Graph database queries are graph transformations.
I DB querying from a graph transformation perspective?
I DB querying implicitely involves universal quantification on

matches.

I Motivations:
I SPARQL is heterogeneous (CONSTRUCT and SELECT).
I The SPARQL semantics, as given in W3C recommendations, is

complex.

https://www.w3.org/Data/events/data-ws-2019/


RDF triplestores=graphs

I Triple store: (s, p, o) viewed as labelled arrow s
p→ o.

I Three kinds of atoms :
I IRI: internationalized Resource Identifier.
I Litteral: strings of characters, integers.
I Blank nodes.

I Not the usual graphs.
I No isolated atoms.
I Predicates can also be sources (subject) or destinations

(object) of arrows.



RDF triplestore

RDF Triple store

:a name Alice. :a dpt CS.
:b1 name Bob. :b1 dpt CS. :b1 dpt Physics.
:b2 name Bob. :b2 dpt CS. :b2 dpt Math.
:c name Charlie. :c dpt Math.

CS zip OX1. Physics zip OX1. Math zip OX2.

Alice Bob Charlie

:a

name

OO

dpt

��

:b1

name

OO

dpt

��
dpt

ww

:b2

name

gg

dpt

ww
dpt

''

: c

dpt

��

name

OO

CS

zip

��

Physics

zip

ww

Math

zip

��
OX1 OX2



SPARQL query language - CONSTRUCT

SPARQL Query

CONSTRUCT {?n inh ?z }
WHERE {?x name ?n.

?x dpt ?d.
?d zip ?z }

RDF Triple store

:a name Alice. :a dpt CS.
:b1 name Bob. :b1 dpt CS. :b1 dpt Physics.
:b2 name Bob. :b2 dpt CS. :b2 dpt Maths.
:c name Charlie. :c dpt Math.

CS zip OX1. Physics zip OX1. Math zip OX2.

Query result

Charlie inh OX2.
Bob inh OX2.
Alice inh OX1.
Bob inh OX1.

Alice Bob Charlie

OX1
��

inh

��

inh

OX2
��

inh

��

inh



SPARQL semantics

I Officially defined by the W3C recommendations:

https://www.w3.org/TR/sparql11-query/

I There are other proposals of SPARQL formal semantics not
based on graph transformation techniques, e.g. [KRU15].

I Specific points:

I Done with SQL in mind (clear from imbalance between
CONSTRUCT and SELECT in W3C recommendations).

I There is no equivalent of the relational algebra for
CONSTRUCT.

https://www.w3.org/TR/sparql11-query/


Algebraic point of view - Categories

Definition
Let A be a set, called the the of attributes.

I A graph on A is a subset of A3: subjects, predicates and
objects.

I A morphism a : T → T ′ is a partial map A ⇀ A that
preserves triples.

=⇒ This yields the category of graphs on A, denoted G(A).

We say that a morphism a : T → T ′ of graphs on A fixes a subset
C of A if a(x) = x for each x in T ∩ C .

The subcategory of G(A) made of the graphs on A with the
morphisms fixing C is denoted GC (A).



Data Graphs and Query Graphs Categories

Definition
Let I , B and V be the sets of resource identifiers (IRI and literals),
blanks and variables. Let IB = I ∪ B, IV = I ∪ V and
IBV = I ∪ B ∪ V .

I The category of data graphs is D = G(IB)

I The category of query graphs is Q = G(IBV )

I Blanks and variables play a different role.

Definition
A match from a query graph L to a data graph G is a morphism of
query graphs from L to G which fixes I . The set of matches from
L to G is denoted Match(L,G ) and the set of all matches from L
to any data graph is denoted Match(L).



Query rules for basic CONSTRUCT Queries

The basic SPARQL query ”CONSTRUCT {R} WHERE {L}”,
basic meaning that R, L are query graphs, is seen as follows:

Definition
A basic construct query is (L,R) in QIV ×QIV , such that blanks
are different in L and R and every variable in R is in L. The
transformation rule of (L,R) is the cospan

PL,R = (L
l−→ K

r←− R) where K = L ∪ R and l and r are the
inclusions.

PL,R = L
l

⊆
// K = L ∪ R R

r

⊇
oo



The POIM transformation - single match

1. PO: pushout of l and m in QI .
The cobase change along l is the map
l∗ :Match(L)→Match(K ) that maps each m : L→ G to
l∗(m) : K → D defined from the pushout of l and m in QI ,

2. IM: image factorization.
The image factorization along r is the map
r+ :Match(K )→Match(R) that maps each n : K → D to
r+(n) : R → H where H is the image of R in D and r+(n) is
the restriction of n and h : H → D is the inclusion.

L

(PO)

l //

m

��

K

l∗(m)=n

��
(IM)

R
roo

r+(n)=p
=PoImL,R(m)
��

G
g // D H

hoo



The POIM Transformation - Multiple Matches (1)

I Querying a DB involves all eligible matches.

I Two equivalent approaches:
I Low-level: make as many copies of (L,R) as there are matches.
I High-level: make one big match out of small matches.

Definition (Low-level)

Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G . For each i = 1, ..., k let Hi

be the result of applying the POIM transformation POIML,R to the
match mi : L→ G . It is the datagraph obtained from R by
replacing each variable x in R by mi (x) and each blank in R by a
fresh blank.
The query result of applying the basic construct query (L,R) to
the data graph G is the data graph H = H1 ∪ ... ∪ Hk .



The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G . Consider the basic
construct query (k L, k R). Let m be the match from k L to G that
coincides with mi on the i-th component of k L. The high-level
query result of (L,R) against G is the result Hhigh of applying the
POIM transformation PoImk L,k R to the match m : k L→ G .

Proposition

Let (L,R) be a basic construct query and G a data graph. The
low-level query result of (L,R) against G is isomorphic, in the
category DI , to the high-level query result of (L,R) against G.



The POIM Transformation - Multiple Matches (2)

Definition (High-level)

Let (L,R) be a basic construct query and G a data graph. Let
m1, ...,mk be the matches from L to G . Consider the basic
construct query (k L, k R). Let m be the match from k L to G that
coincides with mi on the i-th component of k L. The high-level
query result of (L,R) against G is the result Hhigh of applying the
POIM transformation PoImk L,k R to the match m : k L→ G .

Proposition

Let (L,R) be a basic construct query and G a data graph. The
low-level query result of (L,R) against G is isomorphic, in the
category DI , to the high-level query result of (L,R) against G.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.

m=(m1,m2)

��

:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.

m=(m1,m2)

��
n

��

:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.

g //

:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.
:a name :n1.
:b name :n2.



Example - High-Level

I Consider the query :

CONSTRUCT {?x name :n} WHERE { ?x name ?name }

?x1 name ?name1.
?x2 name ?name2.

l //
?x1 name ?name1.
?x1 np :n1.
?x2 name ?name2.
?x2 np :n1.

roo ?x1 name :n1.
?x2 name :n2.

m=(m1,m2)

��
n

��
p

��

:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.

g //

:a name Alice.
:a nick Lissie.
:b name Bob.
:c nick Charlie.
:a name :n1.
:b name :n2.

hoo :a name :n1.
:b name :n2.



Conclusion

I SELECT queries can be considered as special cases of
CONSTRUCT queries.

I Related works:

I Formal semantics not based on graph transformations
[KRU15].

I Approach to RDF graph transformation MPOC-PO in [BB08].
I Ontologies as categories [AJK15].
I Non-local transformations [CDE+19]

I Ongoing work:
I Extend the kernel of SPARQL.
I Extend subqueries.
I Updates.



Conclusion

I SELECT queries can be considered as special cases of
CONSTRUCT queries.

I Related works:

I Formal semantics not based on graph transformations
[KRU15].

I Approach to RDF graph transformation MPOC-PO in [BB08].
I Ontologies as categories [AJK15].
I Non-local transformations [CDE+19]

I Ongoing work:
I Extend the kernel of SPARQL.
I Extend subqueries.
I Updates.



Conclusion

I SELECT queries can be considered as special cases of
CONSTRUCT queries.

I Related works:

I Formal semantics not based on graph transformations
[KRU15].

I Approach to RDF graph transformation MPOC-PO in [BB08].
I Ontologies as categories [AJK15].
I Non-local transformations [CDE+19]

I Ongoing work:
I Extend the kernel of SPARQL.
I Extend subqueries.
I Updates.



Bibliography

S. Aliyu, S.B. Junaidu, and A. F. Donfack Kana.
A category theoretic model of RDF ontology.
International Journal of Web & Semantic Technology
(IJWesT), 2015.

Benjamin Braatz and Christoph Brandt.
Graph transformations for the resource description framework.
ECEASST, 10, 2008.

Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric
Prost, and Leila Ribeiro.
The PBPO graph transformation approach.
J. Log. Algebraic Methods Program., 103:213–231, 2019.

Egor V. Kostylev, Juan L. Reutter, and Mart́ın Ugarte.
CONSTRUCT queries in SPARQL.
In 18th International Conference on Database Theory, ICDT
2015, March 23-27, 2015, Brussels, Belgium, pages 212–229,
2015.


