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FO Resolution

Introduction

Idea

Skolemization yields formulae without quantifiers.

Then we must find an insatisfiable set of instances, either by trial and
error or by exhaustive enumeration.

This lecture presents a generalization of resolution to first-order logic:

I Clausal form of skolemized formulae

I Resolution over clauses with variables

I Correctness and completeness of the method
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FO Resolution

Clausal form

Litteral, clause

Definition 5.2.19

A positive litteral is an atomic formula. Eg: P(x ,y)

A negative litteral is the negation of an atomic formula. Eg: ¬Q(a)

A clause is a disjunction of litterals. Eg: P(x ,y)∨¬Q(a)
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FO Resolution

Clausal form

Clausal form of a formula

Definition 5.2.20

The clausal form of a closed formula A is obtained in two steps:

1. Skolemize A (which yields a normal form without quantifiers)

2. Distribute ∨ over ∧ to get a set of clauses Γ

Property 5.2.21

∀(Γ) has a model if and only if A has a model. More precisely:

I A is a consequence of ∀(Γ)

I If A has a model, then ∀(Γ) has a model

Proof: We already know that skolemization preserves satisfiability.
Then, distributivity yields a formula equivalent to the Skolem form.
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FO Resolution

Clausal form

Clausal form of a set of formulae

Definition 5.2.22

Let Γ = A1, . . . ,An be a set of closed formulae.
The clausal form of Γ is the union of the clausal forms of A1, . . . ,An,
paying attention, in the course of skolemization, to use a new symbol
for each eliminated ∃.

Corollary 5.2.23

Let Γ be a set of closed formulae and ∆ its clausal form:

I Γ is a consequence of ∀(∆)

I if Γ has a model then ∀(∆) has a model.
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FO Resolution

Clausal form

Adapting Herbrand’s theorem to clausal forms

Theorem 5.2.24

Let Γ be a set of closed formulae and ∆ its clausal form:

Γ is unsatisfiable

if and only if

there exists a finite unsatisfiable subset of instances of clauses of ∆.

Proof.

I Skolemization preserves satisfiability

I Then we apply Herbrand’s theorem to ∀(∆)

2
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Clausal form

Example 5.2.25

Let A = ∃y∀z(P(z,y)⇔¬∃x(P(z,x)∧P(x ,z))). We compute the clausal form of A.

1-4. The four steps of Skolemzation yield:
(¬P(z,a)∨¬P(z,x)∨¬P(x ,z)) ∧ (P(z, f (z))∧P(f (z),z) ∨ P(z,a))

5. The clausal form is the following set of clauses:

I C1 = ¬P(z,a)∨¬P(z,x)∨¬P(x ,z)
I C2 = P(z, f (z))∨P(z,a)
I C3 = P(f (z),z)∨P(z,a)

We look for a finite unsatisfiable set of instances of C1,C2,C3.
Let’s instantiate:

I C1 with x := a,z := a , we get C′1 = ¬P(a,a)

I C2 with z := a , we get C′2 = P(a, f (a))∨P(a,a)

I C3 with z := a , we get C′3 = P(f (a),a)∨P(a,a)

I C1 with x := a,z := f (a) , we get C′′1 = ¬P(f (a),a)∨¬P(a, f (a))

This set of instances is unsatisfiable, thus A is unsatisfiable !
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FO Resolution

Clausal form

In practice

Let Γ be a set of clauses. We want to prove that ∀(Γ) has no model.

I How do we choose the instances?

I How do we prove their insatisfiability?

We use a formal system of “factorization, copy, binary resolution” to
infer ⊥ from Γ.

Completeness of these rules is based on Herbrand’s Theorem.
Unification is used to find suitable instances of these clauses.
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Unification

John Alan Robinson (1930-2016)

I developed the resolution principle
I unification algorithm (1965)

I makes the search for contradictory
instances efficient

I special case of matching used in
functional programming

I Founder of logic programming

parent(pascal , mathilde).
brother(stephane , pascal).
uncle(X,Y) :- parent(Z,Y),

brother(X,Z).
?- uncle(stephane , mathilde).
true.

(Prolog, Colmerauer & Roussel, 1972)
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Unification

Unification: expression, solution

Definition 5.3.1

I A term or a litteral is an expression.

I A substitution σ is a solution of equation e1 = e2

if e1σ and e2σ are syntactically identical.

I A substitution is a solution of a set of equations
if it is a solution of each equation in the set.
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FO Resolution

Unification

Unification: example 5.3.4

The equation P(x , f (y)) = P(g(z),z) has the solution :

x := g(f (y)),z := f (y)

The set of equations x = g(z), f (y) = z has the solution :

x := g(f (y)),z := f (y)
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Unification

Unification: composition of substitutions

Definition 5.3.5

I Let σ and τ be two substitutions, we note στ

the substitution such that for all variable x , xστ = (xσ)τ.

I The substitution στ is an instance of σ.

I Two substitutions are equivalent if each of them is an instance of
the other.
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Unification

Unification: example 5.3.6

Consider substitutions
I σ1 =< x := g(z),y := z >

I σ2 =< x := g(y),z := y >

I σ3 =< x := g(a),y := a,z := a >

We have the following relations between these substitutions:

I σ1 = σ2 < y := z >

I σ2 = σ1 < z := y >

σ1 and σ2 are equivalent.

I σ3 = σ1 < z := a >

I σ3 = σ2 < y := a >

σ3 is an instance of σ1 as well as of σ2, but is equivalent to neither of
them.

F. Prost et al (UGA) FO Resolution March 2023 17 / 49
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Unification

Unification: definition of the most general solution

Definition 5.3.7 (mgu)

A solution of a set of equations is said to be the most general if any
other solution is an instance of it.
Note that two “most general” solutions are equivalent.

Example 5.3.8

Consider the equation f (x ,g(z)) = f (g(y),x).

I σ1 =< x := g(z),y := z >

I σ2 =< x := g(y),z := y >

I σ3 =< x := g(a),y := a,z := a >

are 3 solutions.

σ1 and σ2 are its most general solutions.
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Unification

Unifier

Definition 5.3.2

Let E be a set of expressions and Eσ = {tσ | t ∈ E}.
σ is a unifier of E if and only if the set Eσ has only one element.

If E = {e1, . . .en}, another way of writing this is that

σ is a solution of the set of equations


e1 = e2

. . .
en−1 = en

The notion of most general unifier (or principal unifier) extends to this
definition.

F. Prost et al (UGA) FO Resolution March 2023 19 / 49
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Unification

Unification algorithm: a sketch

The algorithm separates equations into:

I equations to be solved, denoted by =

I solved equations, denoted by :=

Initially, there is no solved equations.

The algorithm transforms a system into an equivalent system and
stops when :

I every equation is solved:
then the list of solved equations is the most general solution

I or when it claims that there is no solution.
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Unification

Unification algorithm: the rules

Choose an equation yet to be solved then:

1. Remove the equation if its 2 sides are identical.

2. Decompose
I ¬A = ¬B becomes A = B
I f (s1, . . . ,sn) = f (t1, . . . , tn) becomes s1 = t1, . . . ,sn = tn.

(nothing if f is a constant)

3. Failure of decomposition
If an equation is of the form f (s1, . . . ,sn) = g(t1, . . . , tp) with f 6= g
then the algorithm claims that there is no solution.
(in particular is the equation is ¬A = B with B a positive litteral)
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FO Resolution

Unification

Unification: algorithm (rules)

4. Orient
If an equation is t = x where t is a (true) term and x is a variable,
then we replace the equation with x = t .

5. Elimination of a variable
If an equation is x = t where x is a variable and t is a term
without any occurrence of x
I remove it from the equations to be solved
I replace x by t in every equation (unsolved and solved)
I add x := t to the solved equations

6. Failure of elimination
If an equation is x = t where x is a variable and t contains x
then the algorithm claims that there is no solution.
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FO Resolution

Unification

Unification: algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

Decomposition x = g(y),g(z) = x
Elimination of x x := g(y),g(z) = g(y)
Decomposition x := g(y),z = y
Elimination of z x := g(y),z := y solution

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

Decomposition x = g(y),x = g(a),a = y
Elimination of x in the 1st equation x := g(y),g(y) = g(a),a = y
Decomposition x := g(y),y = a,a = y
Elimination of y x := g(a),y := a,a = a
Removal x := g(a),y := a solution
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FO Resolution

Unification

Unification: algorithm (example 5.3.11)

3. Solve f (x ,x ,x) = f (g(y),g(a),y).

Decomposition x = g(y),x = g(a),x = y

Elimination of x x := g(y),g(y) = g(a),g(y) = y
Orienting x := g(y),g(y) = g(a),y = g(y)
Elimination failure there is no solution

Remark: correctness and termination proofs for unification algorithm
are in the handout course notes.
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First-Order Resolution

Plan

Introduction

Clausal form
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Completeness

Conclusion

F. Prost et al (UGA) FO Resolution March 2023 25 / 49



FO Resolution

First-Order Resolution

Three rules (examples)

1. Factorization

P(x ,x)∨P(y ,a)∨Q(y)

P(a,a)∨Q(a)

unification

2. Copy

P(x ,y)

P(u,v)

3. Binary resolution

Q(x)∨P(x ,a) ¬P(b,y)∨R(f (y))

Q(b)∨R(f (a))

unification
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FO Resolution

First-Order Resolution

Factorization

Definition 5.4.2

The clause C′ is a factor of clause C if:

I either C′ = C
I or C′ = Cσ

where σ is the most general unifier of at least two literals in C.

Example 5.4.3

The clause P(x)∨Q(g(x ,y))∨P(f (a)) has two factors :

I itself
I P(f (a))∨Q(g(f (a),y)) obtained by applying x := f (a)

Property 5.4.4

Let C′ be a factor of C: then ∀(C) |= ∀(C′).
Proof: Actually ∀(A) |= ∀(Aσ) for any formula A and any substitution σ.
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First-Order Resolution

Copy

Definition 5.4.5

Let σ be a substitution which:

I changes only variables into variables

I is a bijection

The clause Cσ is a copy of the clause C.

We also say that σ is a renaming of C.

Example 5.4.7

Let σ = < x := u,y := v >.
The litteral P(u,v) is a copy of P(x ,y).

Note that P(x ,y) is also a copy of P(u,v)
by the renaming τ = < u := x ,v := y >, the inverse of the renaming σ.
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FO Resolution

First-Order Resolution

Copy

Property 5.4.8

If σ is a renaming of C, then C is also a copy of Cσ.

Proof.

It is easy to prove that σ−1 is a renaming of Cσ. 2

Property 5.4.9

If C and C′ are copies of each other, then ∀(C)≡ ∀(C′).

Proof.

C and C′ are instances of each other.
Thus ∀(C)≡ ∀(C′) and conversely. 2
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First-Order Resolution

Binary resolvent

Definition 5.4.10

Let C and D be two clauses without common variables.
If there are two litterals:

I L ∈ C

I M ∈ D

I such that L and Mc are unifiable

I σ is the most general solution of the equation L = Mc

then E = ((C−{L})∪ (D−{M}))σ is a binary resolvent of C and D.
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First-Order Resolution

Binary resolvent

Example 5.4.11

Let C = P(x ,y)∨P(y ,k(z)) and D = ¬P(a, f (a,y1)).

< x := a,y := f (a,y1) > is the most general solution of
P(x ,y) = P(a, f (a,y1))
The (only) binary resolvent is P(f (a,y1),k(z)).

Property 5.4.12

Let E be a resolvent binary of clauses C and D : ∀(C),∀(D) |= ∀(E).
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First-Order Resolution

Resolution:

Definition 5.4.13

A proof of C from Γ is a sequence of clauses where each clause is:

I a member of Γ,

I or a factor of a previous clause in the proof,

I or a copy of a previous clause in the proof,

I or a binary resolvent of 2 previous clauses in the proof.

terminated by C.

C is first-order inferred from Γ, denoted by Γ `1fcb C.

Property 5.4.14: consistency

If Γ `1fcb C then ∀(Γ) |= ∀(C)

By induction, using the consistency of the three rules.

F. Prost et al (UGA) FO Resolution March 2023 32 / 49



FO Resolution

First-Order Resolution

Resolution:

Definition 5.4.13

A proof of C from Γ is a sequence of clauses where each clause is:

I a member of Γ,

I or a factor of a previous clause in the proof,

I or a copy of a previous clause in the proof,

I or a binary resolvent of 2 previous clauses in the proof.

terminated by C.

C is first-order inferred from Γ, denoted by Γ `1fcb C.

Property 5.4.14: consistency

If Γ `1fcb C then ∀(Γ) |= ∀(C)

By induction, using the consistency of the three rules.
F. Prost et al (UGA) FO Resolution March 2023 32 / 49



FO Resolution

First-Order Resolution

Resolution: Example 5.4.15

Given the two clauses

1. C1 = P(x ,y)∨P(y ,x)

2. C2 = ¬P(u,z)∨¬P(z,u)

Show by resolution that ∀(C1,C2) has no model.

1. P(x ,y)∨P(y ,x) Hyp C1

2. P(y ,y) Factor of 1 < x := y >
3. ¬P(u,z)∨¬P(z,u) Hyp C2

4. ¬P(z,z) Factor of 3 < u := z >
5. ⊥ Binary Resolvent 2, 4 < y := z >

This example shows, a contrario, that binary resolution alone is
incomplete: without factorization, the empty clause cannot be inferred.
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incomplete: without factorization, the empty clause cannot be inferred.
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Resolution: Example 5.4.16

1. C1 = ¬P(z,a)∨¬P(z,x)∨¬P(x ,z)

2. C2 = P(z, f (z))∨P(z,a)

3. C3 = P(f (z),z)∨P(z,a)

1. ¬P(z,a)∨¬P(z,x)∨¬P(x ,z) Hyp C1

2. P(z, f (z))∨P(z,a) Hyp C2

3. P(v , f (v))∨P(v ,a) Copy 2 < z := v >
4. ¬P(f (v),a)∨¬P(f (v),v)∨P(v ,a) BR 1(3), 3(1) <z:=f (v) ; x :=v >
5. ¬P(f (a),a)∨P(a,a) Fact 4 < v := a >
6. P(f (z),z)∨P(z,a) Hyp C3

7. P(a,a) BR 5(1), 6(1) < z := a >
8. ¬P(a,a) Fact 1 < x := a;z := a >
9. ⊥ BR 7, 8
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Completeness

First-Order resolution

We define a new system with only one rule, first-order resolution,
which is a combination of factorization, copy and binary resolution.

Definition 5.4.17

The clause E is a first-order resolvent of clauses C and D if:

I E is a binary resolvent of C′ and D′, where

I C′ is a factor of C

I D′ is a copy of a factor of D without any common variable with C′

C D

E
is called first-order resolution.
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Completeness

Example 5.4.18

Let C = ¬P(z,a)∨¬P(z,x)∨¬P(x ,z)
and D = P(z, f (z))∨P(z,a).

I C′ = ¬P(a,a) is a factor of C

I D is a factor of itself (without any common variable with C′)

I P(a, f (a)) is a binary resolvent of C′ and of D

Thus it is a first-order resolvent of C and D.
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Completeness

Three notions of proof by resolution

Let Γ be a set of clauses and C a clause.

Notations

1. Γ `p C : proof of C from Γ by propositional resolution (without
substitution).

2. Γ `1r C : proof of C from Γ obtained by first-order resolution.

3. Γ `1fcb C : proof of C from Γ by factorization, copy and binary
resolution.

By definition we have : Γ `1r C implies Γ `1fcb C
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Completeness

Lifting theorem (1/3)

Theorem 5.4.19

Let C′ and D′ be instances of C and D.
Let E ′ be a propositional resolvent of C′ and D′.

Then E ′ is an instance of a first-order resolvent E of C and D.

Example 5.4.20

Let C = P(x)∨P(y)∨R(y) and D = ¬Q(x)∨P(x)∨¬R(x)∨P(y).

I C′ = P(a)∨R(a) and D′ = ¬Q(a)∨P(a)∨¬R(a) are instances of C and D.

I E ′ = P(a)∨¬Q(a) is a propositional resolvent of C′ and D′.

I E = P(x)∨¬Q(x) is a first-order resolvent of C and D having E ′ as an
instance.
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Lifting theorem (2/3)

Theorem 5.4.21

Let ∆ be a set of instances of clauses from Γ.
Let C1, . . . ,Cn be a proof by propositional resolution from ∆.

There exists a proof D1, . . . ,Dn by first-order resolution from Γ such that each Ci is an
instance of Di .

Proof.

By induction on n.

Let C1, . . . ,Cn,Cn+1 be a proof by propositional resolution starting
with ∆. By induction, there exists a proof D1, . . . ,Dn by first-order resolution.

1. If Cn+1 ∈∆, then Cn+1 is an instance of a clause in Γ: it is Dn+1.

2. If Cn+1 is a propositional resolvent of Cj and Ck , we use the first-order
resolvent of Dj and Dk from the previous theorem.

2
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There exists a proof D1, . . . ,Dn by first-order resolution from Γ such that each Ci is an
instance of Di .

Proof.

By induction on n. Let C1, . . . ,Cn,Cn+1 be a proof by propositional resolution starting
with ∆. By induction, there exists a proof D1, . . . ,Dn by first-order resolution.

1. If Cn+1 ∈∆, then Cn+1 is an instance of a clause in Γ: it is Dn+1.

2. If Cn+1 is a propositional resolvent of Cj and Ck , we use the first-order
resolvent of Dj and Dk from the previous theorem.
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Lifting theorem (3/3)

Corollary 5.4.22

Let Γ be a set of clauses
and ∆ a set of instances of clauses of Γ.

Suppose that ∆ `p C.

There exists D such that:

I Γ `1r D

I C is an instance of D.

The proof of C from ∆ has been lifted to a first-order proof.
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Example 5.4.23

Γ = {P(f (x))∨P(u),¬P(x)∨Q(z),¬Q(x)∨¬Q(y)}.
∀(Γ) is unsatisfiable and we prove it in three different ways.

1. By instanciation on the Herbrand universe a, f (a), f (f (a)), . . .:

P(f (x))∨P(u) is instanciated to P(f (a))
¬P(x)∨Q(z) is instanciated to ¬P(f (a))∨Q(a)
¬Q(x)∨¬Q(y) is instanciated to ¬Q(a)

These 3 instances together are unsatisfiable, as shown below by
propositional resolution :

P(f (a)) ¬P(f (a))∨Q(a)

Q(a)
¬Q(a)

⊥
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Example 5.4.23

P(f (x))∨P(u), ¬P(x)∨Q(z), ¬Q(x)∨¬Q(y)

2. This proof by propositional resolution is lifted to a proof by
first-order resolution :

P(f (x))∨P(u) ¬P(x)∨Q(z)

Q(z)
¬Q(x)∨¬Q(y)

⊥

3. Each first-order resolution rule is decomposed into factorization,
copy and binary resolution:

P(f (x))∨P(u)

P(f (x))
fact

¬P(x)∨Q(z)

¬P(y)∨Q(z)
copy

Q(z)
br
¬Q(x)∨¬Q(y)

¬Q(x)
fact

⊥
br
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Refutational completeness of first-order resolution

Theorem 5.4.24

The three propositions

1. Γ `1r ⊥
2. Γ `1fcb ⊥
3. ∀(Γ) |=⊥

are equivalent.

Proof.

I (1⇒ 2) because first-order resolution is a combinaison of factorization, copy
and binary resolution.

I (2⇒ 3) because factorization, copy and binary resolution are consistent.

I (3⇒ 1). Suppose that ∀(Γ) is unsatisfiable.

By Herbrand’s theorem, there is a finite unsatisfiable set ∆ of instances.

By completeness of propositional resolution, we have ∆ `p ⊥.

By lifting, Γ `1r D where ⊥ is an instance of D; hence D =⊥.

2
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Automated proofs

To produce automated proofs in binary resolution, one can use the
software (working similarly to complete strategy):

http://teachinglogic.univ-grenoble-alpes.fr/ResBinSc/

If the set of clauses is unsatisfiable, then the software can theoretically
dedeuce the empty clause (given an unlimited amount of time).

What can we conclude ?
I if the software states that it has deduced the empty clause:

I the clauses are unsatisfiable indeed
I it provides a proof

I if the software states that it cannot prove the empty clause, or if it
runs out of time:
I nothing can be concluded
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Today

I Unification is an effective way of finding suitable instances of
clauses with variables

I First-order resolution integrates in a single deductive system both
the search for unsatisfiable instances and the proof of
unsatisfiability of a set of clauses

I First-order resolution is consistent and complete, and one way
to build a first-order proof is by lifting a propositional proof.
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Overview of the Semester

I Propositional logic

I Propositional resolution

I Natural deduction for propositional logic

MIDTERM EXAM

I First order logic

I First-order resolution *

I First-order natural deduction

EXAM
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Next lecture

First-order Natural Deduction

I Rules

I Examples
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