Natural Deduction: quantifiers, copy and equality

Frédéric Prost

Université Grenoble Alpes

April 2023

F. Prost (UGA)

Motivation

Propositional case

There are algorithms to decide whether a given formula is valid or not.

First-order case

There is no algorithm to decide whether a given formula is valid or not.

Motivation

Propositional case

There are algorithms to decide whether a given formula is valid or not.

First-order case

There is no algorithm to decide whether a given formula is valid or not.

If we assume the equivalence between provable and valid, there is no algorithm that, given a first-order formula, could:

- build a proof
- or warn us that this formula has no proof.

Alonzo Church (1903-1995), american logician

- ► Inventor of the lambda-calculus (1936) $(\lambda x.xy) (\lambda z.z) \rightarrow_{\beta} (\lambda z.z)y$
 - attempt at a universal computational model
 - basis for functional languages (ML, Lisp...)
 - can represent programs as well as proofs
 - one of the first notions of typing

Alonzo Church (1903-1995), american logician

- ► Inventor of the lambda-calculus (1936) $(\lambda x.xy) (\lambda z.z) \rightarrow_{\beta} (\lambda z.z)y$
 - attempt at a universal computational model
 - basis for functional languages (ML, Lisp...)
 - can represent programs as well as proofs
 - one of the first notions of typing

- Proof that first-order logic is algorithmically undecidable (hindering strongly Hilbert's program)
- Independently proved by Turing (1937)

Alonzo Church (1903-1995), american logician

- lnventor of the lambda-calculus (1936) $(\lambda x.xy) (\lambda z.z) \rightarrow_{\beta} (\lambda z.z)y$
 - attempt at a universal computational model
 - basis for functional languages (ML, Lisp...)
 - can represent programs as well as proofs
 - one of the first notions of typing

- Proof that first-order logic is algorithmically undecidable (hindering strongly Hilbert's program)
- Independently proved by Turing (1937)
- Church-Turing's thesis: the λ-calculus or the Turing machine express exactly what a mechanical computation is

Overview

Introduction

Rules and examples

Copy rule

Rules for equality

Conclusion

F. Prost (UGA)

Overview

Introduction

Rules and examples

Copy rule

Rules for equality

Conclusion

F. Prost (UGA)

Reminder: Propositional rules

Table 3.1

Introduction		Elimination			
[A]					
$\frac{B}{A \Rightarrow B}$	$\Rightarrow I$	$\frac{A A \Rightarrow B}{B}$	$\Rightarrow E$		
$\frac{A}{A \wedge B}$	$\wedge I$	$\frac{A \wedge B}{A}$	∧ <i>E</i> 1		
		$\frac{A \wedge B}{B}$	∧ <i>E</i> 2		
$\frac{A}{A \lor B}$	∨ <i>I</i> 1	$\frac{A \lor B \ A \Rightarrow C \ B \Rightarrow C}{C}$	∨E		
$\frac{A}{B \lor A}$	∨ <i>I</i> 2				
Ex falso quodlibet					
$\frac{\perp}{A}$ Elq					
Reductio ad absurdo					
$\frac{\neg \neg A}{A} RAA$					

An extension of propositonal natural deduction

The definitions for proof sketch, environment, context, usable formula remain the same !

An extension of propositonal natural deduction

- The definitions for proof sketch, environment, context, usable formula remain the same !
- ► Still only one rule to remove hypotheses: ⇒ I.

An extension of propositonal natural deduction

- The definitions for proof sketch, environment, context, usable formula remain the same !
- Still only one rule to remove hypotheses: ⇒ I.

Additional rules about

Consistency and completeness

Consistency and completeness

• Consistency : $\Gamma \vdash A$ implies $\Gamma \models A$.

Proved in the next lecture. The main point is to prove that the new rules are consistent.

Consistency and completeness

• Consistency : $\Gamma \vdash A$ implies $\Gamma \models A$.

Proved in the next lecture. The main point is to prove that the new rules are consistent.

• **Completeness** : $\Gamma \models A$ implies $\Gamma \vdash A$. Assumed without proof.

Natural Deduction: quantifiers, copy and equality Rules and examples

Overview

Introduction

Rules and examples

Copy rule

Rules for equality

Conclusion

F. Prost (UGA)

Quantifier rules

An elimination rule and an introduction rule for each quantifier.

- How to use these rules on examples.
- And some mistakes you can make if you don't comply with the use conditions of these rules.

Definition 4.3.34

Let *x* be a variable, *t* a term and *A* a formula.

- A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.
- 2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Definition 4.3.34

Let *x* be a variable, *t* a term and *A* a formula.

- A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.
- 2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Example

$$A = \forall y P(x, y)$$

▶ Is z free for x in A?

Definition 4.3.34

Let *x* be a variable, *t* a term and *A* a formula.

- A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.
- 2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Example

$$A = \forall y P(x, y)$$

- Is z free for x in A? yes
- ls g(y) free for x in A?

Definition 4.3.34

Let *x* be a variable, *t* a term and *A* a formula.

- A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.
- 2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Example

$$A = \forall y P(x, y)$$

- Is z free for x in A? yes
- ls g(y) free for x in A? no
- ls f(x) free for y in A?

Definition 4.3.34

Let *x* be a variable, *t* a term and *A* a formula.

- A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.
- 2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Example

$$A = \forall y P(x, y)$$

- Is z free for x in A? yes
- ls g(y) free for x in A? no
- Is f(x) free for y in A? yes

Natural Deduction: quantifiers, copy and equality Rules and examples

Quantifier rules: $\forall E$

A and B are formulae, x is a variable, t is a term

 \forall Elimination

$$\frac{\forall xA}{A < x := t >} \forall E$$

t must be free for x in A.

Example 6.1.1

Wrong use of the rule $\forall E$: where is the mistake ?

- 1 1 Assume $\forall x \exists y P(x, y)$
- 1 2 $\exists y P(y,y)$

∀*E* 1, *y*

3 Therefore $\forall x \exists y P(x, y) \Rightarrow \exists y P(y, y)$

Example 6.1.1

Wrong use of the rule $\forall E$: where is the mistake ?

- 1 1 Assume $\forall x \exists y P(x, y)$
- 1 2 $\exists y P(y,y)$
 - 3 Therefore $\forall x \exists y P(x, y) \Rightarrow \exists y P(y, y)$

 $\forall E$ 1, y ERROR

On line 2, the use conditions of $\forall E$ are not met because the term *y* isn't free for *x* in the formula $\exists y P(x, y)$.

Example 6.1.1

Wrong use of the rule $\forall E$: where is the mistake ?

I 1 Assume
$$\forall x \exists y P(x, y)$$

3 Therefore $\forall x \exists y P(x, y) \Rightarrow \exists y P(y, y)$

```
\forall E 1, y ERROR
```

On line 2, the use conditions of $\forall E$ are not met because the term *y* isn't free for *x* in the formula $\exists y P(x, y)$.

Let *I* be the interpretation with domain $\{0,1\}$ such that $P_I =$

 $\{(0,1),(1,0)\}$

This interpretation makes the "conclusion" false.

F. Prost (UGA)

Natural Deduction: quantifiers, copy and equality Rules and examples

```
Quantifier rules: \forall I
```

A and B are formulae, x is a variable.

x must be free

- neither in the environment of the proof,
- nor in the context of the premise of the rule.

Rules and examples

1 1 Assume $\forall y P(y) \land \forall y Q(y)$

Remark : When using rule $\forall E$ on lines 4 and 5, we specify that *y* has been replaced with *x*.

Remark : When using rule $\forall E$ on lines 4 and 5, we specify that *y* has been replaced with *x*.

1	1	Assume $\forall y P(y) \land \forall y Q(y)$				
1	2	$\forall y P(y)$	∧ <i>E</i> 1 1			
1	3	$\forall y Q(y)$	∧ <i>E</i> 2 1			
1	4	P(x)	∀ <i>E</i> 2, <i>x</i>			
1	5	Q(x)	∀ <i>E</i> 3, <i>x</i>			
1	6	$P(x) \wedge Q(x)$	∧ <i>I</i> 4, 5			
1	7	$\forall x (P(x) \land Q(x))$	∀/6			
	8	Therefore $\forall y P(y) \land \forall y Q(y) \Rightarrow \forall x (P(x) \land Q(x))$	⇒l 1, 7			
Rem	Remark : When using rule $\forall F$ on lines 4 and 5, we specify that y has					

Remark : When using rule $\forall E$ on lines 4 and 5, we specify that *y* has been replaced with *x*.

Natural Deduction: quantifiers, copy and equality Rules and examples

Example 6.1.3

Wrong use of the rule $\forall I$

- 1 1 Assume P(x)
- $1 \quad 2 \quad \forall x P(x) \qquad \qquad \forall I \ 1$
 - 3 Therefore $P(x) \Rightarrow \forall x P(x) \Rightarrow 1, 2$
Natural Deduction: quantifiers, copy and equality Rules and examples

Example 6.1.3

Wrong use of the rule $\forall I$

- 1 1 Assume P(x)
- 1 2 $\forall x P(x)$ $\forall I = 1$ ERROR
 - 3 Therefore $P(x) \Rightarrow \forall x P(x) \Rightarrow 1, 2$

On line 2, x is free in the context P(x), which disallows generalisation on x.

Wrong use of the rule $\forall I$

- 1 1 Assume P(x)
- 1 2 $\forall x P(x)$ $\forall I 1$ ERROR
 - 3 Therefore $P(x) \Rightarrow \forall x P(x) \Rightarrow 1, 2$

On line 2, x is free in the context P(x), which disallows generalisation on x.

Let *I* be the interpretation with domain $\{0,1\}$ such that $P_I = \{0\}$. Let *e* be a state where x = 0. The assignment (I, e) makes the "conclusion" false. Natural Deduction: quantifiers, copy and equality Rules and examples

A and B are formulae, x is a variable.

Wrong use of the rule $\exists E$

- Assume $\exists x P(x) \land (P(x) \Rightarrow \forall y Q(y))$ 1 1
- 1 2 $\exists x P(x)$ $\wedge E11$
- 1 3 $P(x) \Rightarrow \forall y Q(y)$ ∧*E*2 1 1
 - 4 $\forall y Q(y)$ $\exists E 2, 3$
 - 5 Therefore $\exists x P(x) \land (P(x) \Rightarrow \forall y Q(y)) \Rightarrow \forall y Q(y) \Rightarrow I 1,4$

Wrong use of the rule $\exists E$

- 1 1 Assume $\exists x P(x) \land (P(x) \Rightarrow \forall y Q(y))$
- 12 $\exists x P(x)$ $\land E1 1$ 13 $P(x) \Rightarrow \forall y Q(y)$ $\land E2 1$
- 1 4 $\forall yQ(y)$ $\exists E 2, 3 \text{ ERROR}$
 - 5 Therefore $\exists x P(x) \land (P(x) \Rightarrow \forall y Q(y)) \Rightarrow \forall y Q(y) \Rightarrow I 1,4$

The context of the premise $P(x) \Rightarrow \forall yQ(y)$ must not depend on *x*.

Wrong use of the rule $\exists E$

1 Assume
$$\exists x P(x) \land (P(x) \Rightarrow \forall y Q(y))$$

$$2 \quad \exists x P(x) \qquad \land E1 \ 1$$

3
$$P(x) \Rightarrow \forall y Q(y)$$

4 $\forall y Q(y)$
 $\exists E 2, 3 \text{ EBBOB}$

5 Therefore
$$\exists x P(x) \land (P(x) \Rightarrow \forall y Q(y)) \Rightarrow \forall y Q(y) \Rightarrow I 1.4$$

The context of the premise $P(x) \Rightarrow \forall yQ(y)$ must not depend on x.

Let *I* be the interpretation with domain $\{0,1\}$ such that $P_I = Q_I = \{0\}$. Let *e* be the state where x = 1. The assignment (I, e) makes this "conclusion" false. Natural Deduction: quantifiers, copy and equality Rules and examples

Example 6.1.5

Wrong use of the rule $\exists E$

- 1 1 Assume $\exists x P(x)$
- 1, 2 2 Assume P(x)
- 1 3 Therefore $P(x) \Rightarrow P(x) \Rightarrow I 2, 2$
- 1 4 P(x) $\exists E 1, 3$
- 1 5 $\forall x P(x)$ $\forall I 4$
 - 6 Therefore $\exists x P(x) \Rightarrow \forall x P(x)$

Wrong use of the rule $\exists E$

1 1 Assume
$$\exists x P(x)$$

1, 2 2 Assume
$$P(x)$$

1 3 Therefore
$$P(x) \Rightarrow P(x)$$

5
$$\forall x P(x)$$

6 Therefore
$$\exists x P(x) \Rightarrow \forall x P(x)$$

$\Rightarrow I 2, 2$ $\exists E 1, 3 \text{ ERROR}$ $\forall I 4$

The conclusion of rule $\exists E$ must not depend on *x*.

Wrong use of the rule $\exists E$

1 1 Assume
$$\exists x P(x)$$

1, 2 2 Assume
$$P(x)$$

1 3 Therefore
$$P(x) \Rightarrow P(x)$$

5
$$\forall x P(x)$$

6 Therefore
$$\exists x P(x) \Rightarrow \forall x P(x)$$

$\Rightarrow I 2, 2$ $\exists E 1, 3 \text{ ERROR}$ $\forall I 4$

The conclusion of rule $\exists E$ must not depend on *x*.

Let *I* be the interpretation with domain $\{0,1\}$ such that $P_I = \{0\}$. *I* make the "conclusion" false.

Natural Deduction: quantifiers, copy and equality Rules and examples

Quantifier rules: ∃I

A and B are formulae, x is a variable, t is a term

 $\exists \text{ Introduction}$ $\frac{A < x := t >}{\exists xA} \exists I$ t must be free for x in A.

• On line 4: we use $\neg A = \neg A < x := x > x$

and a variable x is always free for itself in A.

F. Prost (UGA)

• On line 4: we use $\neg A = \neg A < x := x > x$

and a variable x is always free for itself in A.

F. Prost (UGA)

• On line 4: we use $\neg A = \neg A < x := x >$

and a variable x is always free for itself in A.

F. Prost (UGA)

 $\exists I 3, x \\ \Rightarrow E 2, 4 \\ \Rightarrow I 3, 5 \\ Raa 6$

On line 4: we use ¬A = ¬A < x := x > and a variable x is always free for itself in A.

F. Prost (UGA)

1	1	Assume ¬∀ <i>xA</i>	
1, 2	2	Assume $\neg \exists x \neg A$	
1, 2, 3	3	Assume ¬A	
1, 2, 3	4	$\exists x \neg A$	∃ / 3, <i>x</i>
1, 2, 3	5	\perp	\Rightarrow E 2, 4
1, 2	6	Therefore ¬¬A	\Rightarrow / 3, 5
1, 2	7	Α	Raa 6
1, 2	8	$\forall x A$	∀17

• On line 4: we use $\neg A = \neg A < x := x >$ and a variable x is always free for itself in A.

F. Prost (UGA)

Natural Deduction: quantifiers, copy and equality

X 2,4

1	1	Assume ¬∀xA	
1, 2	2	Assume $\neg \exists x \neg A$	
1, 2, 3	3	Assume ¬A	
1, 2, 3	4	$\exists x \neg A$	∃ / 3, <i>x</i>
1, 2, 3	5	\perp	\Rightarrow <i>E</i> 2, 4
1, 2	6	Therefore ¬¬A	\Rightarrow / 3, 5
1, 2	7	Α	Raa 6
1, 2	8	$\forall x A$	∀17
1, 2	9	\perp	$\Rightarrow E 1, 8$

On line 4: we use ¬A = ¬A < x := x > and a variable x is always free for itself in A.

F. Prost (UGA)

1	1	Assume ¬∀ <i>xA</i>	
1, 2	2	Assume $\neg \exists x \neg A$	
1, 2, 3	3	Assume ¬A	
1, 2, 3	4	$\exists x \neg A$	∃ / 3, <i>x</i>
1, 2, 3	5	\perp	\Rightarrow <i>E</i> 2, 4
1, 2	6	Therefore ¬¬A	\Rightarrow <i>I</i> 3, 5
1, 2	7	Α	Raa 6
1, 2	8	$\forall x A$	∀17
1, 2	9	\perp	$\Rightarrow E$ 1, 8
1	10	Therefore $\neg \neg \exists x \neg A$	\Rightarrow I 2, 9

On line 4: we use ¬A = ¬A < x := x > and a variable x is always free for itself in A.

F. Prost (UGA)

1	1	Assume ¬∀ <i>xA</i>	
1, 2	2	Assume ¬∃x¬A	
1, 2, 3	3	Assume ¬A	
1, 2, 3	4	$\exists x \neg A$	∃ / 3, <i>x</i>
1, 2, 3	5	\perp	\Rightarrow <i>E</i> 2, 4
1, 2	6	Therefore ¬¬A	\Rightarrow / 3, 5
1, 2	7	A	Raa 6
1, 2	8	$\forall x A$	∀17
1, 2	9	\perp	$\Rightarrow E$ 1, 8
1	10	Therefore $\neg \neg \exists x \neg A$	\Rightarrow I 2, 9
1	11	$\exists x \neg A$	Raa 10

On line 4: we use ¬A = ¬A < x := x > and a variable x is always free for itself in A.

∃ / 3, <i>x</i>
\Rightarrow <i>E</i> 2, 4
\Rightarrow I 3, 5
Raa 6
∀17
$\Rightarrow E$ 1, 8
\Rightarrow I 2, 9
Raa 10
\Rightarrow I 1, 11

On line 4: we use ¬A = ¬A < x := x > and a variable x is always free for itself in A.

Quantifier rules	recap	Figure 6.1]
4	ā ∀/	x must be free		
$\frac{A}{\forall xA}$		 neither in the environmen proof, 	it of the	
		nor in the context of the p	oremise	
$\frac{\forall xA}{A < x := t >}$	∀ E	t must be free for x in A		
$\frac{A < x := t >}{\exists x A}$	37	t must be free for x in A		
$\frac{\exists xA \qquad (A \Rightarrow B)}{B}$	∃ <i>E</i>	 x must be free neither in the environment nor in B, nor in the context of A ⇒ 	ıt B	
F. Prost (UGA)	Natural Ded	uction: quantifiers, copy and equality	April 2023	22 / 37

Overview

Introduction

Rules and examples

Copy rule

Rules for equality

Conclusion

F. Prost (UGA)

Definition

The copy rule consists in deducing, from a given formula, another formula which is equal up to renaming bound variables.

 $\frac{A'}{A}$ copy

Reminders : Renaming of bound variables (1/3)

Two formulae are α -equivalent if one can be transformed into the other by replacing subformulae such as Qx A with Qy A < x := y >where Q is a quantifier and y does not appear in Qx A.

Reminders : Renaming of bound variables (1/3)

Two formulae are α -equivalent if one can be transformed into the other by replacing subformulae such as Qx A with Qy A < x := y >where Q is a quantifier and y does not appear in Qx A.

Example 4.4.4

$$\forall x \ p(x,z) =_{\alpha} \forall y \ p(y,z)$$

 $\blacktriangleright \forall x \ p(x,z) \neq_{\alpha} \forall z \ p(z,z).$

Definition 4.4.5

Two formulae are equal up to renaming of bound variables if we can obtain one starting from the other by replacements such as 1

 $Qx A \equiv Qy A < x := y >$ where y is a variable not appearing in Qx A

The two formulae are said to be:

α-equivalent

- or a copy of each other
- denoted $A =_{\alpha} B$

Theorem 4.4.6

If two formulae are equal up to renaming of bound variables then they are equivalent.

Example 4.4.7

Let us show that $\forall x \exists y P(x, y)$ and $\forall y \exists x P(y, x)$ are equivalent.

Theorem 4.4.6

If two formulae are equal up to renaming of bound variables then they are equivalent.

Example 4.4.7

Let us show that $\forall x \exists y P(x, y)$ and $\forall y \exists x P(y, x)$ are equivalent.

 $\forall x \exists y P(x, y)$

Theorem 4.4.6

If two formulae are equal up to renaming of bound variables then they are equivalent.

Example 4.4.7

Let us show that $\forall x \exists y P(x, y)$ and $\forall y \exists x P(y, x)$ are equivalent.

 $\forall \mathbf{x} \exists \mathbf{y} \mathcal{P}(\mathbf{x}, \mathbf{y}) \\ =_{\alpha} \quad \forall \mathbf{u} \exists \mathbf{y} \mathcal{P}(\mathbf{u}, \mathbf{y})$

Theorem 4.4.6

If two formulae are equal up to renaming of bound variables then they are equivalent.

Example 4.4.7

Let us show that $\forall x \exists y P(x, y)$ and $\forall y \exists x P(y, x)$ are equivalent.

 $\forall x \exists y P(x, y)$ $=_{\alpha} \forall u \exists y P(u, y)$ $=_{\alpha} \forall u \exists x P(u, x)$

Theorem 4.4.6

If two formulae are equal up to renaming of bound variables then they are equivalent.

Example 4.4.7

Let us show that $\forall x \exists y P(x, y)$ and $\forall y \exists x P(y, x)$ are equivalent.

	$\forall x \exists y P(x, y)$
$=_{\alpha}$	$\forall u \exists y P(u, y)$
$=_{\alpha}$	∀ u ∃xP(u ,x)
$=_{\alpha}$	$\forall y \exists x P(y, x)$

α -equivalence howto

Technique

Draw lines between each quantifier and the variables that it binds.

Erase the name of bound variables.

If after this transformation, the two formulae become identical, then they are α -equivalent.

Example 4.4.8

With the two formulae $\forall x \exists y P(y, x)$ and $\forall y \exists x P(x, y)$:

$$\forall x \exists y P(y, x)$$

α -equivalence howto

Technique

Draw lines between each quantifier and the variables that it binds.

Erase the name of bound variables.

If after this transformation, the two formulae become identical, then they are α -equivalent.

Example 4.4.8

With the two formulae $\forall x \exists y P(y, x)$ and $\forall y \exists x P(x, y)$:

$$\forall x \exists y P(y, x)$$
α -equivalence howto

Technique

Draw lines between each quantifier and the variables that it binds.

Erase the name of bound variables.

If after this transformation, the two formulae become identical, then they are α -equivalent.

Example 4.4.8

With the two formulae $\forall x \exists y P(y, x)$ and $\forall y \exists x P(x, y)$:

$$\exists P(,)$$

Exercise

Compute the transformation for

$$\blacktriangleright A = \forall x \forall y \ R(x, y, y)$$

$$\blacktriangleright B = \forall x \forall y \ R(x, x, y)$$

Are A and $B \alpha$ -equivalent?

Natural Deduction: quantifiers, copy and equality Copy rule

Proof without the copy rule

In the environment (i) $\exists x P(x)$:

Natural Deduction: quantifiers, copy and equality Copy rule

Proof without the copy rule

In the environment (*i*) $\exists x P(x)$:

1 1 Assume P(x)

Natural Deduction: quantifiers, copy and equality Copy rule

Proof without the copy rule

In the environment (i) $\exists x P(x)$:

1 1 Assume
$$P(x)$$

1 2 $\exists y P(y)$

∃I 1, *x*

Proof without the copy rule

In the environment (i) $\exists x P(x)$:

1 1 Assume
$$P(x)$$

$$1 \quad 2 \quad \exists y P(y) \qquad \qquad \exists I \ 1, x$$

3 Therefore
$$P(x) \Rightarrow \exists y P(y) \Rightarrow 1, 2$$

Proof without the copy rule

In the environment (i) $\exists x P(x)$:

- 1 1 Assume P(x)1 2 $\exists y P(y)$
 - 3 Therefore $P(x) \Rightarrow \exists y P(y) \Rightarrow I$

4
$$\exists y P(y)$$

 $\exists I 1, x$

Proof without the copy rule

In the environment (i) $\exists x P(x)$:

1 1 Assume P(x)1 2 $\exists y P(y)$ $\exists I 1, x$ 3 Therefore $P(x) \Rightarrow \exists y P(y)$ $\Rightarrow I 1, 2$ 4 $\exists y P(y)$ $\exists E i, 3$

Theorem (assumed)

Let A and A' be two formulae which are copies of one another. Then there exists a proof of A in the environment A'.

The copy rule is a derivable rule: its use can always be replaced by a (possibly long) proof.

It is the only derivable rule we will allow.

F. Prost (UGA)

Natural Deduction: quantifiers, copy and equality

Overview

Introduction

Rules and examples

Copy rule

Rules for equality

Conclusion

F. Prost (UGA)

Natural Deduction: quantifiers, copy and equality

Reflexivity and congruence

Equality is characterized by two rules:

- every term is equal to itself
- ▶ if two terms are equal, then one can be replaced with the other.

Reflexivity and congruence

Equality is characterized by two rules:

- every term is equal to itself
- ▶ if two terms are equal, then one can be replaced with the other.

t=t	reflexivity	<i>t</i> is a term
$\frac{s=t}{A < x := s >}$	congruence	s and t are two terms free for the variable x in the formula A

Let us prove that $s = t \Rightarrow t = s$ (symmetry)

F. Prost (UGA)

Natural Deduction: quantifiers, copy and equality

Example 6.1.8

Example 6.1.8

Let us prove that $s = t \land t = u \Rightarrow s = u$ (transitivity)

1 1 Assume $s = t \land t = u$

Example 6.1.8

1 1 Assume
$$s = t \land t = u$$

1 2
$$s = t$$
 $\wedge E11$

Example 6.1.8

Example 6.1.8

Example 6.1.8

1	1	Assume $s = t \wedge t = u$	
1	2	s = t	∧E1 1
1	3	t = u	∧E2 1
1	4	<i>s</i> = <u><i>u</i></u>	congruence 3, 2
	5	Therefore $s = t \land t = u \Rightarrow s = u$	⇒l 1, 4

Overview

Introduction

Rules and examples

Copy rule

Rules for equality

Conclusion

Natural Deduction: quantifiers, copy and equality Conclusion

Today

- First-order resolution is complete, and one way to build a first-order proof is by lifting a propositional proof.
- First-order Natural Deduction
 - New rules for introducing and eliminating the quantifiers.
 - Copy, equality

Next lecture

Consistency of the system