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Natural Deduction

Reminder: Rules

Reminder: “Propositional” rules

Table 3.1

Introduction Elimination
[A]

. . .
B

A⇒B ⇒ I
A A⇒B

B ⇒ E

A B
A∧B ∧I

A∧B
A ∧E1

A∧B
B ∧E2

A
A∨B ∨I1

A∨B A⇒C B⇒C
C ∨E

A
B∨A ∨I2

Ex falso quodlibet
⊥
A Efq

Reductio ad absurdum
¬¬A

A RAA
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Natural Deduction

Reminder: Rules

Summary of the quantification rules: Figure 6.1

A
∀xA ∀I x must be free neither in the proof environ-

ment, nor in the context
∀xA

A<x:=t> ∀E t is free for x in A

A<x:=t>
∃xA ∃I t is free for x in A

∃xA (A⇒B)
B ∃E x must be free neither in the proof environ-

ment, nor in the context, nor in B.

Copy rule
A′
A

copy
if A is equal to A′ up to renaming of bound
variables.

+ Reflexivity and congruence for equality
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Natural Deduction

Contents

Tactics

1. Two proof tactics:
I for the rule ∀I
I for the rule ∃E

2. No tactic for the rules ∀E and ∃I (the ones that make the system
undecidable !)
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Natural Deduction

Contents

Consistency and Completeness

I We will prove the consistency of the rules in our system.
I We will assume without proof that the system is complete.

You’ll find similar proofs of completeness in the following books:

I Peter B.Andrews. An introduction to mathematical logic : to truth
through proof. Academic Press, 1986.

I Herbert B.Enderton. A mathematical Introduction to Logic.
Academic Press, 2001.
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Natural Deduction

Proof tactics

Introduction

1. Two proof tactics for the rules ∀I and ∃E which correspond to
forms of mathematical reasoning:
1.1 Reason forwards with an existence hypothesis,
1.2 Reason backwards to generalize.

2. Application to an example.
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Natural Deduction

Proof tactics

Reason forwards with an existence hypothesis

Let Γ be a set of formulae, x a variable, A and C formulae.

We’re looking for a proof of C under environment Γ,∃xA.

Two distinct cases:

I x is free neither in Γ nor in C.

I x is free either in Γ or C.
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Natural Deduction

Proof tactics

1st case: x is free neither in Γ nor in C

In this case, the proof can be written:

Assume A
proof of C under environment Γ,A
Therefore A⇒ C ⇒I 1,. . .
C ∃E
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Natural Deduction

Proof tactics

2nd case: x is free either in Γ or in C

We choose a variable y :

I “fresh”, i.e. not free in Γ, C

I not occurring in A

then we reduce this case to the previous one, via the copy rule.

The proof is then written:

∃yA < x := y > copy of ∃xA
Assume A < x := y >

proof of C under environment Γ,A < x := y >

Therefore A < x := y >⇒ C ⇒I 1,
C ∃E
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Natural Deduction

Proof tactics

A simple example

Let’s prove ∃xP(x)∧∀x¬P(x)⇒⊥.

1 1 Assume ∃xP(x)∧∀x¬P(x)
1 2 ∃xP(x) ∧E1 1
1 3 ∀x¬P(x) ∧E2 1
1,2 4 Assume P(x)
1,2 5 ¬P(x) ∀E 3 x
1,2 6 ⊥ ⇒E 4,5
1 7 Therefore P(x)⇒⊥
1 8 ⊥ ∃E 2,7

9 Therefore ∃xP(x)∧∀x¬P(x)⇒⊥ ⇒I 1, 8
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Natural Deduction

Proof tactics

Remarks

The search for the initial proof has been reduced to the search for a
proof of the same formula in a simpler environment.

This kind of reasoning is used in maths when we look for a proof of a
formula C under hypothesis ∃xP(x).

It amounts to introducing a “new” constant a such that P(a) holds, and
proving C under hypothesis P(a).
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Natural Deduction

Proof tactics

Reasoning backwards to generalize

We’re looking for a proof of ∀xA under environment Γ.

Two distinct cases:

I x is not free in Γ.

I x is free in Γ.
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Proof tactics
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Natural Deduction

Proof tactics

1st case: x is not free in Γ

proof of A under environment Γ

∀xA ∀I
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Natural Deduction

Proof tactics

2nd case: x is free in Γ

We choose a variable y :

I “fresh”, i.e. not free in Γ

I not occurring in A

then we reduce this case to the previous one, via the copy rule.

The proof can then be written:

proof of A < x := y > under environment Γ

∀yA < x := y > ∀I
∀xA copy of the previous formula
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Natural Deduction

Proof tactics

A simple example

Let us prove ∀xP(x)⇒∀yP(y) without copy.

1 1 Assume ∀xP(x)
1 2 P(y) ∀E 1 y
1 3 ∀yP(y) ∀I 2

4 Therefore ∀xP(x)⇒∀yP(y) ⇒I 1, 4
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Natural Deduction

Proof tactics

Remark

The search for the initial proof has been reduced to the search for a
proof of a simpler formula in the same environment.

This kind of reasoning is used in maths when we’re looking for a proof
of ∀xP(x).

It amounts to introducing a “fresh” variable y and proving the formula
P(y).
Then we conclude: since the choice of y was arbitrary, we have
∀xP(x).

F. Prost (UGA) Natural Deduction April 2023 20 / 46



Natural Deduction

Proof tactics

Remark

The search for the initial proof has been reduced to the search for a
proof of a simpler formula in the same environment.

This kind of reasoning is used in maths when we’re looking for a proof
of ∀xP(x).

It amounts to introducing a “fresh” variable y and proving the formula
P(y).
Then we conclude: since the choice of y was arbitrary, we have
∀xP(x).

F. Prost (UGA) Natural Deduction April 2023 20 / 46



Natural Deduction

Proof tactics

Remark

The search for the initial proof has been reduced to the search for a
proof of a simpler formula in the same environment.

This kind of reasoning is used in maths when we’re looking for a proof
of ∀xP(x).

It amounts to introducing a “fresh” variable y and proving the formula
P(y).
Then we conclude: since the choice of y was arbitrary, we have
∀xP(x).

F. Prost (UGA) Natural Deduction April 2023 20 / 46



Natural Deduction

Proof tactics

An example of tactics application

We define “there exists one x and only one” (briefly noted ∃!x) as:

I ∃!xP(x)
.

= ∃x(P(x)∧∀y(P(y)⇒ x = y))

Expressing separately the existence of x and its uniqueness, we can
define the same notion as:

I ∃!xP(x)
.

= ∃xP(x)∧∀x∀y(P(x)∧P(y)⇒ x = y).

These two definitions are equivalent of course: here we prove formally
that the former implies the latter.

Since the proof is large, we’re going to decompose it.
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Natural Deduction

Proof tactics

6.2.3 Proof overview

∃x(P(x)∧∀y(P(y)⇒ x = y))⇒∃xP(x)∧∀x∀y(P(x)∧P(y)⇒ x = y)

We apply the two following tactics:

I To prove A⇒ B, assume A and deduce B.

I To prove B1∧B2, prove B1 and prove B2.

1 Assume ∃x(P(x)∧∀y(P(y)⇒ x = y))

1 proof of ∃xP(x) under environment 1

1 proof of ∀x∀y(P(x)∧P(y)⇒ x = y) under environment 1

1 ∃xP(x)∧∀x∀y(P(x)∧P(y)⇒ x = y) ∧I

Therefore ∃x(P(x)∧∀y(P(y)⇒ x = y))⇒∃xP(x)∧∀x∀y(P(x)∧P(y)⇒ x = y) ⇒I
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Natural Deduction

Proof tactics

6.2.3 Application of the tactic for using an existence
hypothesis

Proof of ∃xP(x) under environment ∃x(P(x)∧∀y(P(y)⇒ x = y))

context No formula rule
i ∃x(P(x)∧∀y(P(y)⇒ x = y))

1 1 Assume P(x)∧∀y(P(y)⇒ x = y)
1 2 P(x) ∧E1 1
1 3 ∃xP(x) ∃I 2, x

4 Therefore P(x)∧∀y(P(y)⇒ x = y)⇒∃xP(x) ⇒I 1,2
5 ∃xP(x) ∃E i, 4
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Natural Deduction

Proof tactics

6.2.3 Application of the tactic for obtaining a general
conclusion: proof overview

Proof of ∀x∀y(P(x)∧P(y)⇒ x = y)
under environment ∃x(P(x)∧∀y(P(y)⇒ x = y))

We apply the following tactics:

1. “Reason forwards with an existence hypothesis”

2. “Reason backwards to generalize”
(twice)

3. To prove A⇒ B, assume A and deduce B
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Natural Deduction

Proof tactics

6.2.3 Application of the tactic for obtaining a general
conclusion: proof

context No formula rule
i ∃x(P(x)∧∀y(P(y)⇒ x = y))

1 1 Assume P(x)∧∀y(P(y)⇒ x = y)
1,2 2 Assume P(u)∧P(y)
1,2 3 ∀y(P(y)⇒ x = y) ∧E2 1
1,2 4 P(u) ∧E1 2
1,2 5 P(u)⇒ x = u ∀E 3, u
1,2 6 x = u ⇒E 4, 5
1,2 7 P(y) ∧E2 2
1,2 8 P(y)⇒ x = y ∀E 3, y
1,2 9 x = y ⇒E 7, 8
1,2 10 u = y

congruence 6, 9

1 11

Therefore

P(u)∧P(y)⇒ u = y

⇒I 2, 10

1 12 ∀y(P(u)∧P(y)⇒ u = y) ∀I 11
1 13 ∀u∀y(P(u)∧P(y)⇒ u = y) ∀I 12
1 14 ∀x∀y(P(x)∧P(y)⇒ x = y)

copy of 13

15 Therefore (P(x)∧∀y(P(y)⇒ x = y))⇒∀x∀y(P(x)∧P(y)⇒ x = y)⇒I 1, 14
16 ∀x∀y(P(x)∧P(y)⇒ x = y) ∃E i, 15

F. Prost (UGA) Natural Deduction April 2023 25 / 46



Natural Deduction

Proof tactics

6.2.3 Application of the tactic for obtaining a general
conclusion: proof

context No formula rule
i ∃x(P(x)∧∀y(P(y)⇒ x = y))

1 1 Assume P(x)∧∀y(P(y)⇒ x = y)

1,2 2 Assume P(u)∧P(y)
1,2 3 ∀y(P(y)⇒ x = y) ∧E2 1
1,2 4 P(u) ∧E1 2
1,2 5 P(u)⇒ x = u ∀E 3, u
1,2 6 x = u ⇒E 4, 5
1,2 7 P(y) ∧E2 2
1,2 8 P(y)⇒ x = y ∀E 3, y
1,2 9 x = y ⇒E 7, 8
1,2 10 u = y

congruence 6, 9

1 11

Therefore

P(u)∧P(y)⇒ u = y

⇒I 2, 10

1 12 ∀y(P(u)∧P(y)⇒ u = y) ∀I 11
1 13 ∀u∀y(P(u)∧P(y)⇒ u = y) ∀I 12

1 14 ∀x∀y(P(x)∧P(y)⇒ x = y)

copy of 13

15 Therefore (P(x)∧∀y(P(y)⇒ x = y))⇒∀x∀y(P(x)∧P(y)⇒ x = y)⇒I 1, 14
16 ∀x∀y(P(x)∧P(y)⇒ x = y) ∃E i, 15

F. Prost (UGA) Natural Deduction April 2023 25 / 46



Natural Deduction

Proof tactics

6.2.3 Application of the tactic for obtaining a general
conclusion: proof

context No formula rule
i ∃x(P(x)∧∀y(P(y)⇒ x = y))

1 1 Assume P(x)∧∀y(P(y)⇒ x = y)

1,2 2 Assume P(u)∧P(y)
1,2 3 ∀y(P(y)⇒ x = y) ∧E2 1
1,2 4 P(u) ∧E1 2
1,2 5 P(u)⇒ x = u ∀E 3, u
1,2 6 x = u ⇒E 4, 5
1,2 7 P(y) ∧E2 2
1,2 8 P(y)⇒ x = y ∀E 3, y
1,2 9 x = y ⇒E 7, 8
1,2 10 u = y

congruence 6, 9

1 11

Therefore

P(u)∧P(y)⇒ u = y

⇒I 2, 10

1 12 ∀y(P(u)∧P(y)⇒ u = y) ∀I 11

1 13 ∀u∀y(P(u)∧P(y)⇒ u = y) ∀I 12
1 14 ∀x∀y(P(x)∧P(y)⇒ x = y) copy of 13

15 Therefore (P(x)∧∀y(P(y)⇒ x = y))⇒∀x∀y(P(x)∧P(y)⇒ x = y)⇒I 1, 14
16 ∀x∀y(P(x)∧P(y)⇒ x = y) ∃E i, 15

F. Prost (UGA) Natural Deduction April 2023 25 / 46



Natural Deduction

Proof tactics

6.2.3 Application of the tactic for obtaining a general
conclusion: proof

context No formula rule
i ∃x(P(x)∧∀y(P(y)⇒ x = y))

1 1 Assume P(x)∧∀y(P(y)⇒ x = y)

1,2 2 Assume P(u)∧P(y)
1,2 3 ∀y(P(y)⇒ x = y) ∧E2 1
1,2 4 P(u) ∧E1 2
1,2 5 P(u)⇒ x = u ∀E 3, u
1,2 6 x = u ⇒E 4, 5
1,2 7 P(y) ∧E2 2
1,2 8 P(y)⇒ x = y ∀E 3, y
1,2 9 x = y ⇒E 7, 8
1,2 10 u = y
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1 11
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16 ∀x∀y(P(x)∧P(y)⇒ x = y) ∃E i, 15
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Natural Deduction

Proof tactics

Conclusion

The hard points in looking for proofs are the rules ∀E and ∃I :

I in forward reasoning, for formulae beginning with ∀, we need to
find suitable instances of the bound variables

I in backward reasoning, we need to find suitable instances for
proving formulae beginning with ∃
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Natural Deduction

Properties

Reminder

We are going to use (again) two results about substitution:

Theorem 4.3.36

If t is a free term for the variable x in A, then

[A < x := t >](I,e) = [A](I,e[x=d]) where d = JtK(I,e)

Corollary 4.3.38

If t is a free term for x in A, then

I � ∀xA⇒ A < x := t >

I � A < x := t >⇒∃xA

F. Prost (UGA) Natural Deduction April 2023 28 / 46



Natural Deduction

Properties

Properties of consequence

Property 6.3.1

If x is not free in Γ, then

Γ |= A if and only if Γ |= ∀xA
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Natural Deduction

Properties

Proof of the property 6.3.1

⇒ Assume that Γ |= A.

Let (I,e) be a model of Γ.

Since x is not free in Γ, for every d ∈ D:
(I,e[x = d]) and (I,e) give the same value to the formulae in Γ
hence (I,e[x = d]) is model of Γ.

Therefore, (I,e[x = d]) is a model of A for any d ∈ D,
so (I,e) is a model of ∀xA.

⇐ Assume that Γ |= ∀xA.
Since the formula ∀xA⇒ A is valid (corollary with t = x),
we have Γ |= A.
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Natural Deduction

Properties

Properties of consequence

Property 6.3.2

If x is free neither in Γ, nor in B, then we have:

Γ |= A⇒ B if and only if Γ |= (∃xA)⇒ B
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Natural Deduction

Properties

Proof of property 6.3.2

⇒ Assume that Γ |= A⇒ B. Actually we prove that Γ,∃xA |= B

Let (I,e) be a model of Γ.

Assume also that (I,e) is a model of ∃xA.

This means that (I,e[x = d]) is a model of A for some d ∈ D.

Because x is not free in Γ, the assignments (I,e[x = d]) and (I,e) give
the same value to the formulae in Γ.

Hence (I,e[x = d]) is a model of A⇒ B.

Since (I,e[x = d]) is a model of A too, it must be a model of B.

Finally, since x is not free in B, (I,e) and (I,e[x = d]) give the same
value to B.

⇐ Assume that Γ |= (∃xA)⇒ B, i.e. Γ,∃A |= B.

Since the formula A⇒ (∃xA) is valid (corollary with x = t),

we have Γ,A |= Γ,∃xA |= B, thus Γ |= A⇒ B.
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Natural Deduction

Consistency of the system

Consistency of deduction

Theorem 6.3.3

If Γ ` A (by a proof in natural deduction) then Γ |= A.
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Natural Deduction

Consistency of the system

Consistency proof overview

Let Γ be a set of formulae. Let P be a proof of A under Γ.
Let Ci be the conclusion and Hi the context of the i-th line in proof P.

Induction Hypothesis:
Assume that for every i where 0 < i < k , we have Γ,Hi |= Ci .

Let us prove that Γ,Hk |= Ck .

The cases where Ck has been obtained by a propositional rule has
already been checked.
We only deal with the new rules.
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Natural Deduction

Consistency of the system

The rule ∀E

Assume that Ck = A < x := t > was deduced by rule ∀E.

By induction hypothesis, there is an i < k such that Γ,Hi |= ∀xA.

According to the application conditions of rule ∀E ,
the term t is free for x in A.
Hence, according to corollary 4.3.38, the formula
∀xA⇒ A < x := t > is valid and therefore Γ,Hi |= A < x := t >.

Since line i is usable, Hi is a prefix of Hk , hence Γ,Hk |= Ck .
2
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Natural Deduction

Consistency of the system

The rule ∃I

Assume that Ck = ∃xA was deduced by rule ∃I.

By induction hypothesis, there is an i < k such that
Γ,Hi |= A < x := t >

According to the application conditions of rule ∃I, t is free for the
variable x in A.
Hence, according to the corollary 4.3.38, the formula
A < x := t >⇒∃xA is valid and so Γ,Hi |= ∃xA.

Since line i is usable, Hi is a prefix of Hk , hence Γ,Hk |= Ck .
2
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Natural Deduction

Consistency of the system

The rule ∀I

Assume that Ck = ∀xA was deduced by the rule ∀I.

Either A = Ci with i < k , by induction hypothesis we have Γ,Hi |= A.
Or A ∈ Γ and then Γ |= A.

According to the application conditions of rule ∀I,
x is not free in Γ,Hi .
Hence, according to property 6.3.1, we also have Γ,Hi |= ∀xA.

Since line i is usable, Hi is a prefix of Hk , hence Γ,Hk |= Ck .
2
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Natural Deduction

Consistency of the system

The rule ∃E

Assume that Ck = B was deduced by rule ∃E, from formulae ∃xA and
A⇒ B.

By induction hypothesis, there are some i < k and j < k such that
Γ,Hi |= ∃xA and Γ,Hj |= A⇒ B.

According to the application conditions of rule ∃E , x is free neither
in Γ,Hj , nor in B.
Hence (property 6.3.2), we also have Γ,Hj |= (∃xA)⇒ B.

Since lines i and j are usable, Hi and Hj are prefixes of Hk , hence
Γ,Hk |= ∃xA and Γ,Hk |= (∃xA)⇒ B.
Consequently Γ,Hk |= Ck .
2
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Natural Deduction

Consistency of the system

The copy rule

Assume that Ck = A′ was deduced by copy from formula A.

By induction hypothesis, there exists an i < k such that Γ,Hi |= A.

We know that if A =α A′, then A≡ A′, hence Γ,Hi |= A′.

Since line i is usable, Hi is a prefix of Hk , hence Γ,Hk |= Ck .
2
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Natural Deduction

Consistency of the system

Reflexivity

Assume that Ck is the formula t = t .

Let us recall that equality is always interpreted as {(d ,d) | d ∈ D}, so
in particular =I always contains (JtKI ,JtKI).

Thus, the formula Ck is valid, and Γ,Hk |= Ck .
2
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Natural Deduction

Consistency of the system

Congruence

Assume that Ck = A < x := t > was deduced by the congruence rule.

By induction hypothesis, there exist some i < k and j < k such that
Γ,Hi |= (s = t) and Γ,Hj |= A < x := s >.

Since lines i and j are usable, Hi and Hj are prefixes of Hk ,
hence Γ,Hk |= (s = t) and Γ,Hk |= A < x := s >.

The use conditions of the rule ensure that s and t are free for x in A.
Hence we can use:

I [A < x := s >](I,e) = [A](I,e[x=d]) where d = JsK(I,e)
I [A < x := t >](I,e) = [A](I,e[x=d ′]) where d ′ = JtK(I,e)

Furthermore, equality ensures that if (I,e) is a model of s = t then d
and d ′ are the same member of D.
Hence s = t,A < x := s >|= A < x := t >, so Γ,Hk |= Ck . 2
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Natural Deduction

Consistency of the system

Kurt Gödel (1906-1978) and his incompleteness
theorems

First incompleteness theorem (1931)

Every logical system in which we can formalize
arithmetics also allows to state:

“This statement is unprovable”.

I either this statement is false; thus it is provable, and our system is
inconsistent

I or this statement is true; thus it is unprovable, and our system is
incomplete

Second incompleteness theorem

No logical system can prove its own consistency.
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Natural Deduction

Conclusion

Overview of the Semester

I Propositional logic

I Propositional resolution

I Propositional natural deduction

MID-TERM EXAM

I First-order logic

I Basis for the automated deduction (“first-order resolution”)

I First-order natural deduction
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