First Order Natural Deduction : Tactics and Consistency

Frédéric Prost
Université Grenoble Alpes

April 2023

Overview

Reminder: Rules

Contents

Proof tactics

Properties

Consistency of the system

Conclusion

Overview

Reminder: Rules

Contents

Proof tactics

Properties

Consistency of the system

Conclusion

Reminder: "Propositional" rules

Table 3.1

Summary of the quantification rules: Figure 6.1

$\frac{A}{\forall x A}$	$\forall I$	x must be free neither in the proof environ- ment, nor in the context
$\frac{\forall x A}{A<x:=t>}$	$\forall E$	t is free for x in A
$\frac{A<x:=t>}{\exists x A}$	$\exists I$	t is free for x in A
$\frac{\exists x A}{} \quad(A \Rightarrow B)$		
B	$\exists E$	x must be free neither in the proof environ- ment, nor in the context, nor in B.

Copy rule

| $\frac{A^{\prime}}{A}$ | copy |
| :--- | :--- | | if A is equal to A^{\prime} up to renaming of bound |
| :--- |
| variables. |

+ Reflexivity and congruence for equality

Contents

Overview

Reminder: Rules

Contents

Tactics

1. Two proof tactics:

- for the rule $\forall I$
- for the rule $\exists E$

Tactics

1. Two proof tactics:

- for the rule $\forall I$
- for the rule $\exists E$

2. No tactic for the rules $\forall E$ and $\exists I$ (the ones that make the system undecidable !)

Contents

Consistency and Completeness

Consistency and Completeness

- We will prove the consistency of the rules in our system.

Consistency and Completeness

- We will prove the consistency of the rules in our system.
- We will assume without proof that the system is complete. You'll find similar proofs of completeness in the following books:
- Peter B.Andrews. An introduction to mathematical logic : to truth through proof. Academic Press, 1986.
- Herbert B.Enderton. A mathematical Introduction to Logic. Academic Press, 2001.

Overview

Reminder: Rules

Contents

Proof tactics

Properties

Consistency of the system

Conclusion

Introduction

1. Two proof tactics for the rules $\forall I$ and $\exists E$ which correspond to forms of mathematical reasoning:
1.1 Reason forwards with an existence hypothesis,
1.2 Reason backwards to generalize.
2. Application to an example.

Reason forwards with an existence hypothesis

Let Γ be a set of formulae, x a variable, A and C formulae.

We're looking for a proof of C under environment $\Gamma, \exists x A$.

Reason forwards with an existence hypothesis

Let Γ be a set of formulae, x a variable, A and C formulae.

We're looking for a proof of C under environment $\Gamma, \exists x A$.

Two distinct cases:

- x is free neither in Γ nor in C.
- x is free either in Γ or C.

$1^{\text {st }}$ case: x is free neither in Γ nor in C

In this case, the proof can be written:

Assume A proof of C under environment Γ, A
Therefore $A \Rightarrow C \quad \Rightarrow 11, \ldots$
C
$\exists \mathrm{E}$

$2^{\text {nd }}$ case: x is free either in Γ or in C

We choose a variable y :

- "fresh", i.e. not free in Г, C
- not occurring in A
then we reduce this case to the previous one, via the copy rule.

The proof is then written:

```
\(\exists y A<x:=y>\quad\) copy of \(\exists x A\)
Assume \(A<x:=y>\)
proof of \(C\) under environment \(\Gamma, A<x:=y>\)
Therefore \(A<x:=y>\Rightarrow C \mid 1,-\)
C
\(\exists \mathrm{E}\)
```


A simple example

Let's prove $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp$.

A simple example

Let's prove $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp$.
11 Assume $\exists x P(x) \wedge \forall x \neg P(x)$
$18 \perp$
9 Therefore $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp \quad \Rightarrow 11,8$

A simple example

Let's prove $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp$.

1	1	Assume $\exists x P(x) \wedge \forall x \neg P(x)$	
1	2	$\exists x P(x)$	$\wedge \mathrm{E} 1$
1	1		
1	3	$\forall x \neg P(x)$	$\wedge \mathrm{E} 2$

$18 \perp$
9 Therefore $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp \quad \Rightarrow 11,8$

A simple example

Let's prove $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp$.

1	1	Assume $\exists x P(x) \wedge \forall x \neg P(x)$	
1	2	$\exists x P(x)$	\wedge E1 1
1	3	$\forall x \neg P(x)$	\wedge E2 1
1,2	4	Assume $P(x)$	
1,2	6	\perp	
1	7	Therefore $P(x) \Rightarrow \perp$	
1	8	\perp	$\exists \mathrm{E} \mathrm{2,7}$
	9	Therefore $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp$	$\Rightarrow I 1,8$

A simple example

Let's prove $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp$.

1	1	Assume $\exists x P(x) \wedge \forall x \neg P(x)$	
1	2	$\exists x P(x)$	\wedge E1 1
1	3	$\forall x \neg P(x)$	\wedge E2 1
1,2	4	Assume $P(x)$	
1,2	5	$\neg P(x)$	$\forall \mathrm{E} 3 x$
1,2	6	\perp	$\Rightarrow \mathrm{E} 4,5$
1	7	Therefore $P(x) \Rightarrow \perp$	
1	8	\perp	$\exists \mathrm{E} \mathrm{2,7}$
	9	Therefore $\exists x P(x) \wedge \forall x \neg P(x) \Rightarrow \perp$	$\Rightarrow \mid 1,8$

Remarks

The search for the initial proof has been reduced to the search for a proof of the same formula in a simpler environment.

Remarks

The search for the initial proof has been reduced to the search for a proof of the same formula in a simpler environment.

This kind of reasoning is used in maths when we look for a proof of a formula C under hypothesis $\exists x P(x)$.

Remarks

The search for the initial proof has been reduced to the search for a proof of the same formula in a simpler environment.

This kind of reasoning is used in maths when we look for a proof of a formula C under hypothesis $\exists x P(x)$.

It amounts to introducing a "new" constant a such that $P(a)$ holds, and proving C under hypothesis $P(a)$.

Reasoning backwards to generalize

We're looking for a proof of $\forall x A$ under environment Γ.

Reasoning backwards to generalize

We're looking for a proof of $\forall x A$ under environment Γ.

Two distinct cases:

- x is not free in Γ.
- x is free in Γ.

$1^{s t}$ case: x is not free in Γ

proof of A under environment Γ
$\forall x A \quad \forall I$

$2^{\text {nd }}$ case: x is free in Γ

We choose a variable y :

- "fresh", i.e. not free in 「
- not occurring in A
then we reduce this case to the previous one, via the copy rule.

The proof can then be written:

$$
\begin{array}{ll}
\text { proof of } A<x:=y>\text { under environment } \Gamma \\
\forall y A<x:=y> & \forall I \\
\forall x A & \text { copy of the previous formula }
\end{array}
$$

A simple example

Let us prove $\forall x P(x) \Rightarrow \forall y P(y)$ without copy.

A simple example

Let us prove $\forall x P(x) \Rightarrow \forall y P(y)$ without copy.
11 Assume $\forall x P(x)$
$13 \forall y P(y)$
4 Therefore $\forall x P(x) \Rightarrow \forall y P(y) \Rightarrow 11,4$

A simple example

Let us prove $\forall x P(x) \Rightarrow \forall y P(y)$ without copy.
11 Assume $\forall x P(x)$
$P(y)$
$13 \forall y P(y)$
$\forall 12$
4 Therefore $\forall x P(x) \Rightarrow \forall y P(y) \quad \Rightarrow 11,4$

A simple example

Let us prove $\forall x P(x) \Rightarrow \forall y P(y)$ without copy.

```
11 Assume \(\forall x P(x)\)
\(12 P(y) \quad \forall \mathrm{E} 1 y\)
\(13 \forall y P(y) \quad \forall I 2\)
4 Therefore \(\forall x P(x) \Rightarrow \forall y P(y) \quad \Rightarrow 11,4\)
```


Remark

The search for the initial proof has been reduced to the search for a proof of a simpler formula in the same environment.

Remark

The search for the initial proof has been reduced to the search for a proof of a simpler formula in the same environment.

This kind of reasoning is used in maths when we're looking for a proof of $\forall x P(x)$.

Remark

The search for the initial proof has been reduced to the search for a proof of a simpler formula in the same environment.

This kind of reasoning is used in maths when we're looking for a proof of $\forall x P(x)$.

It amounts to introducing a "fresh" variable y and proving the formula $P(y)$.
Then we conclude: since the choice of y was arbitrary, we have $\forall x P(x)$.

An example of tactics application

We define "there exists one x and only one" (briefly noted $\exists!x$) as:

- $\exists!x P(x) \doteq \exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$

An example of tactics application

We define "there exists one x and only one" (briefly noted $\exists!x$) as:

- $\exists!x P(x) \doteq \exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$

Expressing separately the existence of x and its uniqueness, we can define the same notion as:

- $\exists!x P(x) \doteq \exists x P(x) \wedge \forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)$.

These two definitions are equivalent of course: here we prove formally that the former implies the latter.

An example of tactics application

We define "there exists one x and only one" (briefly noted $\exists!x$) as:

- $\exists!x P(x) \doteq \exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$

Expressing separately the existence of x and its uniqueness, we can define the same notion as:

- $\exists!x P(x) \doteq \exists x P(x) \wedge \forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)$.

These two definitions are equivalent of course: here we prove formally that the former implies the latter.

Since the proof is large, we're going to decompose it.

6.2.3 Proof overview

$$
\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y)) \Rightarrow \exists x P(x) \wedge \forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)
$$

We apply the two following tactics:

- To prove $A \Rightarrow B$, assume A and deduce B.
- To prove $B_{1} \wedge B_{2}$, prove B_{1} and prove B_{2}.

6.2.3 Proof overview

$$
\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y)) \Rightarrow \exists x P(x) \wedge \forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)
$$

We apply the two following tactics:

- To prove $A \Rightarrow B$, assume A and deduce B.
- To prove $B_{1} \wedge B_{2}$, prove B_{1} and prove B_{2}.

```
1 Assume }\existsx(P(x)\wedge\forally(P(y)=>x=y)
1 1 proof of \existsxP(x) under environment 1 
    Therefore }\existsx(P(x)\wedge\forally(P(y)=>x=y))=>\existsxP(x)\wedge\forallx\forally(P(x)\wedgeP(y)=>x=y)\quad=>
```


6.2.3 Application of the tactic for using an existence hypothesis

Proof of $\exists x P(x)$ under environment $\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$

6.2.3 Application of the tactic for using an existence hypothesis

Proof of $\exists x P(x)$ under environment $\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$

context	N^{0}	formula	rule
	i	$\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$	
1	1	Assume $P(x) \wedge \forall y(P(y) \Rightarrow x=y)$	
1	2	$P(x)$	$\wedge \mathrm{E} 11$
1	3	$\exists x P(x)$	$\exists \mathrm{I} 2, x$
	4	Therefore $P(x) \wedge \forall y(P(y) \Rightarrow x=y) \Rightarrow \exists x P(x)$	\Rightarrow I 1,2
	5	$\exists x P(x)$	$\exists \mathrm{E} \mathrm{i}, 4$

6.2.3 Application of the tactic for obtaining a general conclusion: proof overview

Proof of $\forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)$
under environment $\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$
We apply the following tactics:

1. "Reason forwards with an existence hypothesis"
2. "Reason backwards to generalize" (twice)
3. To prove $A \Rightarrow B$, assume A and deduce B

6.2.3 Application of the tactic for obtaining a general conclusion: proof

context N°	formula	rule
\qquadi $\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$		

6.2.3 Application of the tactic for obtaining a general conclusion: proof

6.2.3 Application of the tactic for obtaining a general conclusion: proof

6.2.3 Application of the tactic for obtaining a general conclusion: proof

6.2.3 Application of the tactic for obtaining a general conclusion: proof

6.2.3 Application of the tactic for obtaining a general conclusion: proof

6.2.3 Application of the tactic for obtaining a general conclusion: proof

context N°		formula	rule
	i	$\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$	
1	1	Assume $P(x) \wedge \forall y(P(y) \Rightarrow x=y$	
1,2	2	Assume $P(u) \wedge P(y)$	
1,2	3	$\forall y(P(y) \Rightarrow x=y)$	\wedge E2 1
1,2	4	$P(u)$	\wedge E1 2
1,2	5	$P(u) \Rightarrow x=u$	$\forall E 3, u$
1,2	6	$x=u$	$\Rightarrow \mathrm{E} 4,5$
1,2	10	$u=y$	
1	11	Therefore $P(u) \wedge P(y) \Rightarrow u=y$	$\Rightarrow 12,10$
1	12	$\forall y(P(u) \wedge P(y) \Rightarrow u=y)$	$\forall 11$
1	13	$\forall u \forall y(P(u) \wedge P(y) \Rightarrow u=y)$	$\forall 112$
	14	$\forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)$	copy of 13
	15	Therefore $(P(x) \wedge \forall y(P(y) \Rightarrow x=$	$\Rightarrow 11,14$
	16	$\forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)$	$\exists \mathrm{E}, 15$

6.2.3 Application of the tactic for obtaining a general conclusion: proof

6.2.3 Application of the tactic for obtaining a general conclusion: proof

context N°		formula	rule
	i	$\exists x(P(x) \wedge \forall y(P(y) \Rightarrow x=y))$	
1	1	Assume $P(x) \wedge \forall y(P(y) \Rightarrow x=y$	
1,2	2	Assume $P(u) \wedge P(y)$	
1,2	3	$\forall y(P(y) \Rightarrow x=y)$	\wedge E2 1
1,2	4	$P(u)$	$\wedge E 12$
1,2	5	$P(u) \Rightarrow x=u$	$\forall \mathrm{E} 3, \mathrm{u}$
1,2	6	$x=u$	$\Rightarrow \mathrm{E} 4,5$
1,2	7	$P(y)$	\wedge E2 2
1,2	8	$P(y) \Rightarrow x=y$	$\forall \mathrm{E} 3, y$
1,2	9	$\underline{x}=y$	$\Rightarrow \mathrm{E} 7$, 8
1,2	10	$\underline{u}=y$	congruend
1	11	Therefore $P(u) \wedge P(y) \Rightarrow u=y$	$\Rightarrow 12,10$
1	12	$\forall y(P(u) \wedge P(y) \Rightarrow u=y)$	$\forall 111$
1	13	$\forall u \forall y(P(u) \wedge P(y) \Rightarrow u=y)$	$\forall 112$
1	14	$\forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)$	copy of 13
	15	Therefore $(P(x) \wedge \forall y(P(y) \Rightarrow x=$	$\Rightarrow 11,14$
	16	$\forall x \forall y(P(x) \wedge P(y) \Rightarrow x=y)$	$\exists \mathrm{E}$ i, 15

Conclusion

The hard points in looking for proofs are the rules $\forall \mathrm{E}$ and $\exists \mathrm{I}$:

- in forward reasoning, for formulae beginning with \forall, we need to find suitable instances of the bound variables
- in backward reasoning, we need to find suitable instances for proving formulae beginning with \exists

Overview

Reminder: Rules

Contents

Proof tactics

Properties

Consistency of the system

Conclusion

Reminder

We are going to use (again) two results about substitution:

Theorem 4.3.36

If t is a free term for the variable x in A, then

$$
[A<x:=t>]_{(I, e)}=[A]_{(I, e[x=d])} \text { where } \quad d=\llbracket t \rrbracket_{(I, e)}
$$

Corollary 4.3.38
If t is a free term for x in A, then

- $\vDash \forall x A \Rightarrow A<x:=t>$
- $\vDash A<x:=t>\Rightarrow \exists x A$

Properties of consequence

Property 6.3.1
If x is not free in Γ, then
$\Gamma \models A$ if and only if $\quad \Gamma \models \forall x A$

Proof of the property 6.3.1

\Rightarrow Assume that $\Gamma \neq A$.
Let (I, e) be a model of Γ.

Proof of the property 6.3.1

\Rightarrow Assume that $\Gamma \models A$.
Let (I, e) be a model of Γ.
Since x is not free in Γ, for every $d \in D$:
$(I, e[x=d])$ and (I, e) give the same value to the formulae in Γ hence $(I, e[x=d])$ is model of Γ.

Proof of the property 6.3.1

\Rightarrow Assume that $\Gamma \vDash A$.
Let (I, e) be a model of Γ.
Since x is not free in Γ, for every $d \in D$:
$(I, e[x=d])$ and (I, e) give the same value to the formulae in Γ hence $(I, e[x=d])$ is model of Γ.
Therefore, $(I, e[x=d])$ is a model of A for any $d \in D$, so (I, e) is a model of $\forall x A$.

Proof of the property 6.3.1

\Rightarrow Assume that $\Gamma \models A$.
Let (I, e) be a model of Γ.
Since x is not free in Γ, for every $d \in D$:
$(I, e[x=d])$ and (I, e) give the same value to the formulae in Γ hence $(I, e[x=d])$ is model of Γ.
Therefore, $(I, e[x=d])$ is a model of A for any $d \in D$, so (I, e) is a model of $\forall x A$.
\Leftarrow Assume that $\Gamma \models \forall x A$.
Since the formula $\forall x A \Rightarrow A$ is valid (corollary with $t=x$), we have $\Gamma \vDash A$.

Properties of consequence

Property 6.3.2

If x is free neither in Γ, nor in B, then we have:

$$
\Gamma \models A \Rightarrow B \text { if and only if } \Gamma \models(\exists x A) \Rightarrow B
$$

Proof of property 6.3.2

\Rightarrow Assume that $\Gamma \models A \Rightarrow B$. Actually we prove that $\Gamma, \exists x A \mid=B$ Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of $\exists x A$.

Proof of property 6.3.2

\Rightarrow Assume that $\Gamma \models A \Rightarrow B$. Actually we prove that $\Gamma, \exists x A \mid=B$ Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of $\exists x A$.
This means that $(I, e[x=d])$ is a model of A for some $d \in D$.

Proof of property 6.3.2

\Rightarrow Assume that $\Gamma \models A \Rightarrow B$. Actually we prove that $\Gamma, \exists x A \mid=B$ Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of $\exists x A$.
This means that $(I, e[x=d])$ is a model of A for some $d \in D$.
Because x is not free in Γ, the assignments $(I, e[x=d])$ and (I, e) give the same value to the formulae in Γ.

Hence $(I, e[x=d])$ is a model of $A \Rightarrow B$.

Proof of property 6.3.2

\Rightarrow Assume that $\Gamma \models A \Rightarrow B$. Actually we prove that $\Gamma, \exists x A \mid=B$ Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of $\exists x A$.
This means that $(I, e[x=d])$ is a model of A for some $d \in D$.
Because x is not free in Γ, the assignments $(I, e[x=d])$ and (I, e) give the same value to the formulae in Γ.

Hence $(I, e[x=d])$ is a model of $A \Rightarrow B$.
Since $(I, e[x=d])$ is a model of A too, it must be a model of B.
Finally, since x is not free in $B,(I, e)$ and $(I, e[x=d])$ give the same value to B.

Proof of property 6.3.2

\Rightarrow Assume that $\Gamma \models A \Rightarrow B$. Actually we prove that $\Gamma, \exists x A \mid=B$ Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of $\exists x A$.
This means that $(I, e[x=d])$ is a model of A for some $d \in D$.
Because x is not free in Γ, the assignments $(I, e[x=d])$ and (I, e) give the same value to the formulae in Γ.

Hence $(I, e[x=d])$ is a model of $A \Rightarrow B$.
Since $(I, e[x=d])$ is a model of A too, it must be a model of B.
Finally, since x is not free in $B,(I, e)$ and $(I, e[x=d])$ give the same value to B.
\Leftarrow Assume that $\Gamma \models(\exists x A) \Rightarrow B$, i.e. $\Gamma, \exists A \models B$.
Since the formula $A \Rightarrow(\exists x A)$ is valid (corollary with $x=t$), we have $\Gamma, A \models \Gamma, \exists x A \models B$, thus $\Gamma \models A \Rightarrow B$.

Overview

Reminder: Rules

Contents

Proof tactics

Properties

Consistency of the system

Conclusion

Consistency of deduction

Theorem 6.3.3
If $\Gamma \vdash A$ (by a proof in natural deduction) then $\Gamma \models A$.

Consistency proof overview

Let Γ be a set of formulae. Let P be a proof of A under Γ.
Let C_{i} be the conclusion and H_{i} the context of the i-th line in proof P.

Consistency proof overview

Let Γ be a set of formulae. Let P be a proof of A under Γ.
Let C_{i} be the conclusion and H_{i} the context of the i-th line in proof P.

Induction Hypothesis:

Assume that for every i where $0<i<k$, we have $\Gamma, H_{i} \models C_{i}$.
Let us prove that $\Gamma, H_{k} \models C_{k}$.

Consistency proof overview

Let Γ be a set of formulae. Let P be a proof of A under Γ.
Let C_{i} be the conclusion and H_{i} the context of the i-th line in proof P.

Induction Hypothesis:
Assume that for every i where $0<i<k$, we have $\Gamma, H_{i} \models C_{i}$.
Let us prove that $\Gamma, H_{k} \models C_{k}$.
The cases where C_{k} has been obtained by a propositional rule has already been checked.
We only deal with the new rules.

The rule $\forall E$

Assume that $C_{k}=A<x:=t>$ was deduced by rule $\forall \mathrm{E}$.
By induction hypothesis, there is an $i<k$ such that $\Gamma, H_{i} \models \forall x A$.

The rule $\forall E$

Assume that $C_{k}=A<x:=t>$ was deduced by rule $\forall \mathrm{E}$.
By induction hypothesis, there is an $i<k$ such that $\Gamma, H_{i} \models \forall x A$.
According to the application conditions of rule $\forall E$, the term t is free for x in A.
Hence, according to corollary 4.3.38, the formula $\forall x A \Rightarrow A<x:=t>$ is valid and therefore $\Gamma, H_{i} \models A<x:=t>$.

Since line i is usable, H_{i} is a prefix of H_{k}, hence $\Gamma, H_{k} \models C_{k}$.

The rule $\exists \mathrm{I}$

Assume that $C_{k}=\exists x A$ was deduced by rule $\exists l$.

By induction hypothesis, there is an $i<k$ such that $\Gamma, H_{i} \models A<x:=t>$

The rule $\exists \mathrm{I}$

Assume that $C_{k}=\exists x A$ was deduced by rule $\exists l$.

By induction hypothesis, there is an $i<k$ such that
$\Gamma, H_{i} \models A<x:=t>$
According to the application conditions of rule $\exists l, t$ is free for the variable x in A.
Hence, according to the corollary 4.3.38, the formula $A<x:=t>\Rightarrow \exists x A$ is valid and so $\Gamma, H_{i} \models \exists x A$.

Since line i is usable, H_{i} is a prefix of H_{k}, hence $\Gamma, H_{k} \models C_{k}$.

The rule $\forall \mathrm{I}$

Assume that $C_{k}=\forall x A$ was deduced by the rule $\forall I$.

The rule $\forall \mathrm{I}$

Assume that $C_{k}=\forall x A$ was deduced by the rule $\forall I$.
Either $A=C_{i}$ with $i<k$, by induction hypothesis we have $\Gamma, H_{i} \models A$. Or $A \in \Gamma$ and then $\Gamma \models A$.

The rule $\forall \mathrm{I}$

Assume that $C_{k}=\forall x A$ was deduced by the rule $\forall I$.
Either $A=C_{i}$ with $i<k$, by induction hypothesis we have $\Gamma, H_{i} \models A$. Or $A \in \Gamma$ and then $\Gamma \models A$.

According to the application conditions of rule $\forall I$, x is not free in Γ, H_{i}.
Hence, according to property 6.3.1, we also have $\Gamma, H_{i} \models \forall x A$.

The rule $\forall \mathrm{I}$

Assume that $C_{k}=\forall x A$ was deduced by the rule $\forall I$.
Either $A=C_{i}$ with $i<k$, by induction hypothesis we have $\Gamma, H_{i} \models A$. Or $A \in \Gamma$ and then $\Gamma \models A$.

According to the application conditions of rule $\forall I$, x is not free in Γ, H_{i}.
Hence, according to property 6.3.1, we also have $\Gamma, H_{i} \models \forall x A$.
Since line i is usable, H_{i} is a prefix of H_{k}, hence $\Gamma, H_{k} \models C_{k}$.

The rule $\exists \mathrm{E}$

Assume that $C_{k}=B$ was deduced by rule $\exists \mathrm{E}$, from formulae $\exists x A$ and $A \Rightarrow B$.

By induction hypothesis, there are some $i<k$ and $j<k$ such that $\Gamma, H_{i} \models \exists x A$ and $\Gamma, H_{j} \models A \Rightarrow B$.

The rule $\exists \mathrm{E}$

Assume that $C_{k}=B$ was deduced by rule $\exists \mathrm{E}$, from formulae $\exists x A$ and $A \Rightarrow B$.

By induction hypothesis, there are some $i<k$ and $j<k$ such that $\Gamma, H_{i} \models \exists x A$ and $\Gamma, H_{j} \models A \Rightarrow B$.

According to the application conditions of rule $\exists E, x$ is free neither in Γ, H_{j}, nor in B.
Hence (property 6.3.2), we also have $\Gamma, H_{j} \models(\exists x A) \Rightarrow B$.

The rule $\exists \mathrm{E}$

Assume that $C_{k}=B$ was deduced by rule $\exists \mathrm{E}$, from formulae $\exists x A$ and $A \Rightarrow B$.

By induction hypothesis, there are some $i<k$ and $j<k$ such that $\Gamma, H_{i} \models \exists x A$ and $\Gamma, H_{j} \models A \Rightarrow B$.

According to the application conditions of rule $\exists E, x$ is free neither in Γ, H_{j}, nor in B. Hence (property 6.3.2), we also have $\Gamma, H_{j} \models(\exists x A) \Rightarrow B$.

Since lines i and j are usable, H_{i} and H_{j} are prefixes of H_{k}, hence $\Gamma, H_{k} \models \exists x A$ and $\Gamma, H_{k} \models(\exists x A) \Rightarrow B$.
Consequently $\Gamma, H_{k} \models C_{k}$.

The copy rule

Assume that $C_{k}=A^{\prime}$ was deduced by copy from formula A.
By induction hypothesis, there exists an $i<k$ such that $\Gamma, H_{i} \models A$.
We know that if $A={ }_{\alpha} A^{\prime}$, then $A \equiv A^{\prime}$, hence $\Gamma, H_{i} \models A^{\prime}$.
Since line i is usable, H_{i} is a prefix of H_{k}, hence $\Gamma, H_{k} \models C_{k}$.

Reflexivity

Assume that C_{k} is the formula $t=t$.

Let us recall that equality is always interpreted as $\{(d, d) \mid d \in D\}$, so in particular $=$, always contains $(\llbracket t \rrbracket, \llbracket t \rrbracket /)$.

Thus, the formula C_{k} is valid, and $\Gamma, H_{k} \models C_{k}$.

Congruence

Assume that $C_{k}=A<x:=t>$ was deduced by the congruence rule.
By induction hypothesis, there exist some $i<k$ and $j<k$ such that $\Gamma, H_{i} \models(s=t)$ and $\Gamma, H_{j} \mid=A<x:=s>$.

Since lines i and j are usable, H_{i} and H_{j} are prefixes of H_{k}, hence $\Gamma, H_{k} \models(s=t)$ and $\Gamma, H_{k} \models A<x:=s>$.

Congruence

Assume that $C_{k}=A<x:=t>$ was deduced by the congruence rule.
By induction hypothesis, there exist some $i<k$ and $j<k$ such that $\Gamma, H_{i} \models(s=t)$ and $\Gamma, H_{j} \mid=A<x:=s>$.

Since lines i and j are usable, H_{i} and H_{j} are prefixes of H_{k}, hence $\Gamma, H_{k} \models(s=t)$ and $\Gamma, H_{k} \models A<x:=s>$.

The use conditions of the rule ensure that s and t are free for x in A. Hence we can use:

- $[A<x:=s>]_{(I, e)}=[A]_{(I, e[x=d])} \quad$ where $d=\llbracket s \rrbracket_{(I, e)}$
- $[A<x:=t>]_{(I, e)}=[A]_{\left(1, e\left[x=d^{\prime}\right]\right)} \quad$ where $d^{\prime}=\llbracket t \rrbracket_{(I, e)}$

Congruence

Assume that $C_{k}=A<x:=t>$ was deduced by the congruence rule.
By induction hypothesis, there exist some $i<k$ and $j<k$ such that $\Gamma, H_{i} \models(s=t)$ and $\Gamma, H_{j} \mid=A<x:=s>$.

Since lines i and j are usable, H_{i} and H_{j} are prefixes of H_{k}, hence $\Gamma, H_{k} \models(s=t)$ and $\Gamma, H_{k} \models A<x:=s>$.

The use conditions of the rule ensure that s and t are free for x in A. Hence we can use:

- $[A<x:=s>]_{(I, e)}=[A]_{(1, e[x=d])} \quad$ where $d=\llbracket s \rrbracket_{(1, e)}$
- $[A<x:=t>]_{(I, e)}=[A]_{\left(1, e\left[x=d^{\prime}\right]\right)} \quad$ where $d^{\prime}=\llbracket t \rrbracket_{(1, e)}$

Furthermore, equality ensures that if (I, e) is a model of $s=t$ then d and d^{\prime} are the same member of D.

Congruence

Assume that $C_{k}=A<x:=t>$ was deduced by the congruence rule.
By induction hypothesis, there exist some $i<k$ and $j<k$ such that $\Gamma, H_{i} \models(s=t)$ and $\Gamma, H_{j} \mid=A<x:=s>$.

Since lines i and j are usable, H_{i} and H_{j} are prefixes of H_{k}, hence $\Gamma, H_{k} \models(s=t)$ and $\Gamma, H_{k} \models A<x:=s>$.

The use conditions of the rule ensure that s and t are free for x in A. Hence we can use:

- $[A<x:=s>]_{(I, e)}=[A]_{(I, e[x=d])} \quad$ where $d=\llbracket s \rrbracket_{(I, e)}$
- $[A<x:=t>]_{(I, e)}=[A]_{\left(1, e\left[x=d^{\prime}\right]\right)} \quad$ where $d^{\prime}=\llbracket t \rrbracket_{(1, e)}$

Furthermore, equality ensures that if (I, e) is a model of $s=t$ then d and d^{\prime} are the same member of D.
Hence $s=t, A<x:=s\rangle \mid=A<x:=t>$, so $\Gamma, H_{k} \models C_{k}$.

Kurt Gödel (1906-1978) and his incompleteness theorems

First incompleteness theorem (1931)
Every logical system in which we can formalize arithmetics also allows to state:
"This statement is unprovable".

- either this statement is false; thus it is provable, and our system is inconsistent
- or this statement is true; thus it is unprovable, and our system is incomplete

Kurt Gödel (1906-1978) and his incompleteness theorems

First incompleteness theorem (1931)
Every logical system in which we can formalize arithmetics also allows to state:
"This statement is unprovable".

- either this statement is false; thus it is provable, and our system is inconsistent
- or this statement is true; thus it is unprovable, and our system is incomplete

Second incompleteness theorem
No logical system can prove its own consistency.

Overview

Reminder: Rules

Contents

Proof tactics

Properties

Consistency of the system

Conclusion

Today

- First-order Natural Deduction:
- Tactics
- Consistency

Overview of the Semester

- Propositional logic
- Propositional resolution
- Propositional natural deduction

MID-TERM EXAM

- First-order logic
- Basis for the automated deduction ("first-order resolution")
- First-order natural deduction

EXAM

