# First Order Natural Deduction : Tactics and Consistency

Frédéric Prost

Université Grenoble Alpes

April 2023

F. Prost (UGA)

## Overview

**Reminder: Rules** 

Contents

**Proof tactics** 

Properties

Consistency of the system

Conclusion

## Overview

**Reminder: Rules** 

Contents

**Proof tactics** 

Properties

Consistency of the system

Conclusion

F. Prost (UGA)

## Reminder: "Propositional" rules

#### Table 3.1

| Introduction                |                 | Elimination                                              |                 |
|-----------------------------|-----------------|----------------------------------------------------------|-----------------|
| [A]                         |                 |                                                          |                 |
|                             |                 |                                                          |                 |
| $\frac{B}{A \Rightarrow B}$ | $\Rightarrow I$ | $\frac{A A \Rightarrow B}{B}$                            | $\Rightarrow E$ |
| $\frac{A B}{A \wedge B}$    | $\wedge l$      | $\frac{A \wedge B}{A}$                                   | ∧ <i>E</i> 1    |
|                             |                 | $\frac{A \wedge B}{B}$                                   | ∧ <i>E</i> 2    |
| $\frac{A}{A \lor B}$        | ∨ <i>I</i> 1    | $\frac{A \lor B \ A \Rightarrow C \ B \Rightarrow C}{C}$ | ∨E              |
| $\frac{A}{B \lor A}$        | ∨ <i>I</i> 2    |                                                          |                 |
| Ex falso quodlibet          |                 |                                                          |                 |
| $\frac{\perp}{A}$ Efq       |                 |                                                          |                 |
| Reductio ad absurdum        |                 |                                                          |                 |
| $\frac{\neg \neg A}{A}$ RAA |                 |                                                          |                 |

#### Natural Deduction Reminder: Rules

## Summary of the quantification rules: Figure 6.1

| $\frac{A}{\forall xA}$                          | $\forall I$ | <i>x</i> must be free neither in the proof environ-<br>ment, nor in the context                    |
|-------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------|
| $\frac{\forall xA}{A < x := t >}$               | $\forall E$ | t is free for x in A                                                                               |
| $\frac{A < x := t >}{\exists x A}$              | ∃/          | t is free for x in A                                                                               |
| $\frac{\exists xA \qquad (A \Rightarrow B)}{B}$ | ∃ <i>E</i>  | <i>x</i> must be free neither in the proof environ-<br>ment, nor in the context, nor in <i>B</i> . |

## Copy rule

| A'                  | if A is equal to $A'$ up to renaming of bound |
|---------------------|-----------------------------------------------|
| $\overline{A}$ copy | variables.                                    |

## + Reflexivity and congruence for equality

## Overview

Reminder: Rules

#### Contents

**Proof tactics** 

Properties

Consistency of the system

Conclusion

Natural Deduction Contents

## **Tactics**

- 1. Two proof tactics:
  - for the rule  $\forall I$
  - for the rule  $\exists E$

Natural Deduction Contents

## **Tactics**

- 1. Two proof tactics:
  - for the rule  $\forall I$
  - for the rule  $\exists E$
- 2. No tactic for the rules  $\forall E$  and  $\exists I$  (the ones that make the system undecidable !)

| Natural Deduction |  |  |
|-------------------|--|--|
| Contents          |  |  |

## **Consistency and Completeness**

| Natural Deduction |  |  |
|-------------------|--|--|
| Contents          |  |  |

## **Consistency and Completeness**

We will prove the consistency of the rules in our system.

| Natural Deduction |  |
|-------------------|--|
| Contents          |  |

## **Consistency and Completeness**

- We will prove the consistency of the rules in our system.
- We will assume without proof that the system is complete. You'll find similar proofs of completeness in the following books:
  - Peter B.Andrews. An introduction to mathematical logic : to truth through proof. Academic Press, 1986.
  - Herbert B.Enderton. A mathematical Introduction to Logic. Academic Press, 2001.

## Overview

Reminder: Rules

Contents

#### **Proof tactics**

Properties

Consistency of the system

Conclusion

F. Prost (UGA)

## Introduction

- 1. Two proof tactics for the rules  $\forall I$  and  $\exists E$  which correspond to forms of mathematical reasoning:
  - 1.1 Reason forwards with an existence hypothesis,
  - 1.2 Reason backwards to generalize.
- 2. Application to an example.

## Reason forwards with an existence hypothesis

Let  $\Gamma$  be a set of formulae, x a variable, A and C formulae.

We're looking for a proof of *C* under environment  $\Gamma$ ,  $\exists xA$ .

## Reason forwards with an existence hypothesis

Let  $\Gamma$  be a set of formulae, x a variable, A and C formulae.

We're looking for a proof of *C* under environment  $\Gamma$ ,  $\exists xA$ .

Two distinct cases:

- x is free neither in  $\Gamma$  nor in C.
- x is free either in  $\Gamma$  or C.

Natural Deduction Proof tactics

# $1^{st}$ case: x is free neither in $\Gamma$ nor in C

In this case, the proof can be written:

Assume A proof of C under environment  $\Gamma$ , A Therefore  $A \Rightarrow C \Rightarrow I 1, ...$  $C \exists E$ 

| Natural Deduction |  |
|-------------------|--|
| Proof tactics     |  |

# $2^{nd}$ case: x is free either in $\Gamma$ or in C

We choose a variable y:

- "fresh", *i.e.* not free in Γ, C
- not occurring in A

then we reduce this case to the previous one, via the copy rule.

The proof is then written:

 $\exists yA < x := y >$ copy of  $\exists xA$ Assume A < x := y >proof of C under environment  $\Gamma, A < x := y >$ Therefore  $A < x := y > \Rightarrow C$  $\Rightarrow I 1,_-$ C $\exists E$ 

Natural Deduction **Proof tactics** 

Let's prove  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$ .

Natural Deduction **Proof tactics** 

Let's prove  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$ .

1 1 Assume  $\exists x P(x) \land \forall x \neg P(x)$ 

1 8 
$$\perp$$
  
9 Therefore  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \perp \Rightarrow 1, 8$ 

Natural Deduction **Proof tactics** 

Let's prove  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$ .

11Assume  $\exists x P(x) \land \forall x \neg P(x)$ 12 $\exists x P(x)$  $\land E1 \ 1$ 13 $\forall x \neg P(x)$  $\land E2 \ 1$ 

1 8 
$$\bot$$
  
9 Therefore  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot \Rightarrow I 1, 8$ 

Natural Deduction Proof tactics

Let's prove  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$ .

1 1 Assume  $\exists x P(x) \land \forall x \neg P(x)$ 1 2  $\exists x P(x)$   $\land E1$  1 1 3  $\forall x \neg P(x)$   $\land E2$  1 1,2 4 Assume P(x)1,2 6  $\bot$ 1 7 Therefore  $P(x) \Rightarrow \bot$ 1 8  $\bot$   $\exists E 2,7$ 9 Therefore  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$   $\Rightarrow I$  1, 8

Natural Deduction **Proof tactics** 

Let's prove  $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$ .

| 1 | Assume $\exists x P(x) \land \forall x \neg P(x)$                     |                                                                                                                                                                                                                                                                                    |
|---|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | $\exists x P(x)$                                                      | ∧E1 1                                                                                                                                                                                                                                                                              |
| 3 | $\forall x \neg P(x)$                                                 | ∧E2 1                                                                                                                                                                                                                                                                              |
| 4 | Assume $P(x)$                                                         |                                                                                                                                                                                                                                                                                    |
| 5 | $\neg P(x)$                                                           | ∀E 3 <i>x</i>                                                                                                                                                                                                                                                                      |
| 6 | $\perp$                                                               | ⇒E 4,5                                                                                                                                                                                                                                                                             |
| 7 | Therefore $P(x) \Rightarrow \bot$                                     |                                                                                                                                                                                                                                                                                    |
| 8 | $\perp$                                                               | ∃E 2,7                                                                                                                                                                                                                                                                             |
| 9 | Therefore $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$ | ⇒l 1, 8                                                                                                                                                                                                                                                                            |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                             | 1 Assume $\exists x P(x) \land \forall x \neg P(x)$<br>2 $\exists x P(x)$<br>3 $\forall x \neg P(x)$<br>4 Assume $P(x)$<br>5 $\neg P(x)$<br>6 $\bot$<br>7 Therefore $P(x) \Rightarrow \bot$<br>8 $\bot$<br>9 Therefore $\exists x P(x) \land \forall x \neg P(x) \Rightarrow \bot$ |

| Natural | Deduction |
|---------|-----------|
| Proof   | tactics   |

## Remarks

The search for the initial proof has been reduced to the search for a proof of the *same* formula in a simpler environment.

## Remarks

The search for the initial proof has been reduced to the search for a proof of the *same* formula in a simpler environment.

This kind of reasoning is used in maths when we look for a proof of a formula *C* under hypothesis  $\exists x P(x)$ .

## Remarks

The search for the initial proof has been reduced to the search for a proof of the *same* formula in a simpler environment.

This kind of reasoning is used in maths when we look for a proof of a formula *C* under hypothesis  $\exists x P(x)$ .

It amounts to introducing a "new" constant *a* such that P(a) holds, and proving *C* under hypothesis P(a).

| Natural Ded | uction |
|-------------|--------|
| Proof tact  | ics    |

### Reasoning backwards to generalize

We're looking for a proof of  $\forall xA$  under environment  $\Gamma$ .

## Reasoning backwards to generalize

We're looking for a proof of  $\forall xA$  under environment  $\Gamma$ .

Two distinct cases:

- $\blacktriangleright x$  is not free in  $\Gamma$ .
- $\blacktriangleright$  x is free in  $\Gamma$ .

Natural Deduction **Proof tactics** 

 $1^{st}$  case: x is not free in  $\Gamma$ 

proof of *A* under environment  $\Gamma$  $\forall xA \quad \forall I$ 

Natural Deduction Proof tactics

## $2^{nd}$ case: x is free in $\Gamma$

We choose a variable y:

- "fresh", *i.e.* not free in Γ
- not occurring in A

then we reduce this case to the previous one, via the copy rule.

The proof can then be written:

proof of A < x := y > under environment  $\Gamma$  $\forall yA < x := y > \forall I$  $\forall xA$ copy of the previous formula

Natural Deduction **Proof tactics** 

Let us prove  $\forall x P(x) \Rightarrow \forall y P(y)$  without copy.

Natural Deduction **Proof tactics** 

1

Let us prove  $\forall x P(x) \Rightarrow \forall y P(y)$  without copy.

1 1 Assume  $\forall x P(x)$ 

3 
$$\forall y P(y)$$
  
4 Therefore  $\forall x P(x) \Rightarrow \forall y P(y) \Rightarrow 1, 4$ 

Natural Deduction **Proof tactics** 

Let us prove  $\forall x P(x) \Rightarrow \forall y P(y)$  without copy.

1 1 Assume 
$$\forall x P(x)$$
  
 $P(y)$ 

$$1 \quad 3 \quad \forall y P(y) \qquad \forall I 2$$

4 Therefore  $\forall x P(x) \Rightarrow \forall y P(y) \Rightarrow 1, 4$ 

Natural Deduction **Proof tactics** 

Let us prove  $\forall x P(x) \Rightarrow \forall y P(y)$  without copy.

- 1 1 Assume  $\forall x P(x)$
- 1 2 *P*(*y*) ∀E 1 *y*
- 1 3  $\forall y P(y)$   $\forall I 2$ 
  - 4 Therefore  $\forall x P(x) \Rightarrow \forall y P(y) \Rightarrow 1, 4$

## Remark

The search for the initial proof has been reduced to the search for a proof of a simpler formula in the same environment.

## Remark

The search for the initial proof has been reduced to the search for a proof of a simpler formula in the same environment.

This kind of reasoning is used in maths when we're looking for a proof of  $\forall x P(x)$ .

## Remark

The search for the initial proof has been reduced to the search for a proof of a simpler formula in the same environment.

This kind of reasoning is used in maths when we're looking for a proof of  $\forall x P(x)$ .

It amounts to introducing a "fresh" variable *y* and proving the formula P(y). Then we conclude: since the choice of *y* was arbitrary, we have  $\forall xP(x)$ .
#### An example of tactics application

We define "there exists one *x* and only one" (briefly noted  $\exists ! x$ ) as:

 $\blacktriangleright \exists ! x P(x) \doteq \exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ 

### An example of tactics application

We define "there exists one x and only one" (briefly noted  $\exists !x$ ) as:

 $\blacktriangleright \exists ! x P(x) \doteq \exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ 

Expressing separately the existence of x and its uniqueness, we can define the same notion as:

$$\blacktriangleright \exists ! x P(x) \doteq \exists x P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y).$$

These two definitions are equivalent of course: here we prove formally that **the former implies the latter**.

### An example of tactics application

We define "there exists one x and only one" (briefly noted  $\exists ! x$ ) as:

 $\blacktriangleright \exists ! x P(x) \doteq \exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ 

Expressing separately the existence of x and its uniqueness, we can define the same notion as:

$$\blacktriangleright \exists ! x P(x) \doteq \exists x P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y).$$

These two definitions are equivalent of course: here we prove formally that **the former implies the latter**.

Since the proof is large, we're going to decompose it.

#### 6.2.3 Proof overview

 $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \exists x P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$ 

We apply the two following tactics:

- To prove  $A \Rightarrow B$ , assume A and deduce B.
- To prove  $B_1 \wedge B_2$ , prove  $B_1$  and prove  $B_2$ .

#### 6.2.3 Proof overview

 $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \exists x P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$ 

We apply the two following tactics:

- To prove  $A \Rightarrow B$ , assume A and deduce B.
- To prove  $B_1 \wedge B_2$ , prove  $B_1$  and prove  $B_2$ .
- 1 Assume  $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$
- 1 proof of  $\exists x P(x)$  under environment 1
- 1 proof of  $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$  under environment 1

$$1 \quad \exists x P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y) \qquad \land I$$

Therefore  $\exists x(P(x) \land \forall y(P(y) \Rightarrow x = y)) \Rightarrow \exists xP(x) \land \forall x \forall y(P(x) \land P(y) \Rightarrow x = y) \Rightarrow \mathsf{I}$ 

Natural Deduction Proof tactics

# 6.2.3 Application of the tactic for using an existence hypothesis

Proof of  $\exists x P(x)$  under environment  $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ 

# 6.2.3 Application of the tactic for using an existence hypothesis

Proof of  $\exists x P(x)$  under environment  $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ 

| context | N <sup>o</sup> | formula                                                                              | rule           |
|---------|----------------|--------------------------------------------------------------------------------------|----------------|
|         | i              | $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$                          |                |
| 1       | 1              | Assume $P(x) \land \forall y (P(y) \Rightarrow x = y)$                               |                |
| 1       | 2              | P(x)                                                                                 | ∧E1 1          |
| 1       | 3              | $\exists x P(x)$                                                                     | ∃I 2, <i>x</i> |
|         | 4              | Therefore $P(x) \land \forall y (P(y) \Rightarrow x = y) \Rightarrow \exists x P(x)$ | ⇒l 1,2         |
|         | 5              | $\exists x P(x)$                                                                     | ∃E i, 4        |

Proof of  $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$ under environment  $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ 

We apply the following tactics:

- 1. "Reason forwards with an existence hypothesis"
- 2. "Reason backwards to generalize" (twice)
- 3. To prove  $A \Rightarrow B$ , assume A and deduce B

| context N <sup>o</sup> | formula<br>$\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ | rule |  |
|------------------------|------------------------------------------------------------------------|------|--|
|                        |                                                                        |      |  |
|                        |                                                                        |      |  |
|                        |                                                                        |      |  |
|                        |                                                                        |      |  |
|                        |                                                                        |      |  |
|                        |                                                                        |      |  |
|                        |                                                                        |      |  |
|                        |                                                                        |      |  |



F. Prost (UGA)

Natural Deduction



F. Prost (UGA)



F. Prost (UGA)

| conte | xt N <sup>o</sup> | formula                                                                                                                         | rule       |  |
|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|--|
|       | i                 | $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$                                                                     |            |  |
| 1     | 1                 | Assume $P(x) \land \forall y (P(y) \Rightarrow x = y)$                                                                          |            |  |
| 1,2   | 2                 | Assume $P(u) \wedge P(y)$                                                                                                       |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
| 1,2   | 10                | u = y                                                                                                                           |            |  |
| 1     | 11                | Therefore $P(u) \land P(y) \Rightarrow u = y$                                                                                   | ⇒l 2, 10   |  |
| 1     | 12                | $\forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                                 | ∀I 11      |  |
| 1     | 13                | $\forall u \forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                       | ∀l 12      |  |
| 1     | 14                | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | copy of 13 |  |
|       | 15                | Therefore $(P(x) \land \forall v (P(y) \Rightarrow x = y)) \Rightarrow \forall x \forall v (P(x) \land P(y) \Rightarrow x = y)$ | )⇒[1,14    |  |
|       | 16                | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | ∃E i 15    |  |
|       |                   |                                                                                                                                 | , 10       |  |

| conte | xt N <sup>o</sup> | formula                                                                                                                         | rule       |  |
|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|--|
|       | i                 | $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$                                                                     |            |  |
| 1     | 1                 | Assume $P(x) \land \forall y (P(y) \Rightarrow x = y)$                                                                          |            |  |
| 1,2   | 2                 | Assume $P(u) \wedge P(y)$                                                                                                       |            |  |
| 1,2   | 3                 | $\forall y (P(y) \Rightarrow x = y)$                                                                                            | ∧E2 1      |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
|       |                   |                                                                                                                                 |            |  |
| 1.0   | 10                |                                                                                                                                 |            |  |
| 1,2   | 10                | u = y                                                                                                                           |            |  |
| 1     | 11                | Therefore $P(u) \land P(y) \Rightarrow u = y$                                                                                   | ⇒l 2, 10   |  |
| 1     | 12                | $\forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                                 | ∀I 11      |  |
| 1     | 13                | $\forall u \forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                       | ∀l 12      |  |
| 1     | 14                | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | copy of 13 |  |
|       | 15                | Therefore $(P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$ | ) ⇒l 1, 14 |  |
|       | 16                | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | ∃E i, 15   |  |

| contex | d N⁰ | formula                                                                                                                         | rule           |   |
|--------|------|---------------------------------------------------------------------------------------------------------------------------------|----------------|---|
|        | i    | $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$                                                                     |                |   |
| 1      | 1    | Assume $P(x) \land \forall y (P(y) \Rightarrow x = y)$                                                                          |                | - |
| 1,2    | 2    | Assume $P(u) \land P(y)$                                                                                                        |                |   |
| 1,2    | 3    | $\forall y (P(y) \Rightarrow x = y)$                                                                                            | ∧E2 1          |   |
| 1,2    | 4    | P(u)                                                                                                                            | ∧E1 2          |   |
| 1,2    | 5    | $P(u) \Rightarrow x = u$                                                                                                        | ∀E 3, <i>u</i> |   |
| 1,2    | 6    | x = u                                                                                                                           | ⇒E 4, 5        |   |
|        |      |                                                                                                                                 |                |   |
| 1,2    | 10   | u = y                                                                                                                           |                |   |
| 1      | 11   | Therefore $P(u) \land P(y) \Rightarrow u = y$                                                                                   | ⇒l 2, 10       |   |
| 1      | 12   | $\forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                                 | ∀I 11          |   |
| 1      | 13   | $\forall u \forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                       | ∀l 12          |   |
| 1      | 14   | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | copy of 13     |   |
|        | 15   | Therefore $(P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$ | ) ⇒l 1, 14     |   |
|        | 16   | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | ∃E i, 15       |   |

| contex | kt N <sup>o</sup> | formula                                                                                                                         | rule           |  |
|--------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|        | i                 | $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$                                                                     |                |  |
| 1      | 1                 | Assume $P(x) \land \forall y (P(y) \Rightarrow x = y)$                                                                          |                |  |
| 1,2    | 2                 | Assume $P(u) \land P(y)$                                                                                                        |                |  |
| 1,2    | 3                 | $\forall y (P(y) \Rightarrow x = y)$                                                                                            | ∧E2 1          |  |
| 1,2    | 4                 | P(u)                                                                                                                            | ∧E1 2          |  |
| 1,2    | 5                 | $P(u) \Rightarrow x = u$                                                                                                        | ∀E 3, <i>u</i> |  |
| 1,2    | 6                 | x = u                                                                                                                           | ⇒E 4, 5        |  |
| 1,2    | 7                 | P(y)                                                                                                                            | ∧E2 2          |  |
| 1,2    | 8                 | $P(y) \Rightarrow x = y$                                                                                                        | ∀E 3, <i>y</i> |  |
| 1,2    | 9                 | x = y                                                                                                                           | ⇒E 7, 8        |  |
| 1,2    | 10                | u = y                                                                                                                           |                |  |
| 1      | 11                | Therefore $P(u) \land P(y) \Rightarrow u = y$                                                                                   | ⇒l 2, 10       |  |
| 1      | 12                | $\forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                                 | ∀I 11          |  |
| 1      | 13                | $\forall u \forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                       | ∀I 12          |  |
| 1      | 14                | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | copy of 13     |  |
|        | 15                | Therefore $(P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$ | ) ⇒l 1, 14     |  |
|        | 16                | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | ∃E i, 15       |  |

| conte | kt N⁰ | formula                                                                                                                         | rule           |        |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
|       | i     | $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$                                                                     |                |        |
| 1     | 1     | Assume $P(x) \land \forall y (P(y) \Rightarrow x = y)$                                                                          |                |        |
| 1,2   | 2     | Assume $P(u) \wedge P(y)$                                                                                                       |                |        |
| 1,2   | 3     | $\forall y (P(y) \Rightarrow x = y)$                                                                                            | ∧E2 1          |        |
| 1,2   | 4     | P(u)                                                                                                                            | ∧E1 2          |        |
| 1,2   | 5     | $P(u) \Rightarrow x = u$                                                                                                        | ∀E 3, <i>u</i> |        |
| 1,2   | 6     | x = u                                                                                                                           | ⇒E 4, 5        |        |
| 1,2   | 7     | P(y)                                                                                                                            | ∧E2 2          |        |
| 1,2   | 8     | $P(y) \Rightarrow x = y$                                                                                                        | ∀E 3, <i>y</i> |        |
| 1,2   | 9     | $\underline{x} = y$                                                                                                             | ⇒E 7, 8        |        |
| 1,2   | 10    | $\underline{u} = y$                                                                                                             | congruend      | e 6, 9 |
| 1     | 11    | Therefore $P(u) \land P(y) \Rightarrow u = y$                                                                                   | ⇒l 2, 10       |        |
| 1     | 12    | $\forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                                 | ∀l 11          |        |
| 1     | 13    | $\forall u \forall y (P(u) \land P(y) \Rightarrow u = y)$                                                                       | ∀l 12          |        |
| 1     | 14    | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | copy of 13     | 8      |
|       | 15    | Therefore $(P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$ | ) ⇒l 1, 14     |        |
|       | 16    | $\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$                                                                       | ∃E i, 15       |        |

### Conclusion

The hard points in looking for proofs are the rules  $\forall E$  and  $\exists I$ :

- ► in forward reasoning, for formulae beginning with ∀, we need to find suitable instances of the bound variables
- In backward reasoning, we need to find suitable instances for proving formulae beginning with ∃

### Overview

Reminder: Rules

Contents

**Proof tactics** 

#### Properties

Consistency of the system

#### Conclusion

F. Prost (UGA)

### Reminder

We are going to use (again) two results about substitution:

Theorem 4.3.36

If *t* is a free term for the variable *x* in *A*, then

$$[A < x := t >]_{(l,e)} = [A]_{(l,e[x=d])}$$
 where  $d = [[t]]_{(l,e)}$ 

Corollary 4.3.38

If t is a free term for x in A, then

- $\blacktriangleright \models \forall x A \Rightarrow A < x := t >$
- $\blacktriangleright \models A < x := t > \Rightarrow \exists x A$

| Natural Deduction |  |
|-------------------|--|
| Properties        |  |

#### Properties of consequence

Property 6.3.1

If x is not free in  $\Gamma$ , then

 $\Gamma \models A$  if and only if  $\Gamma \models \forall xA$ 

 $\Rightarrow$  Assume that  $\Gamma \models A$ .

Let (I, e) be a model of  $\Gamma$ .

 $\Rightarrow$  Assume that  $\Gamma \models A$ .

Let (I, e) be a model of  $\Gamma$ .

Since x is not free in  $\Gamma$ , for every  $d \in D$ : (I, e[x = d]) and (I, e) give the same value to the formulae in  $\Gamma$  hence (I, e[x = d]) is model of  $\Gamma$ .

 $\Rightarrow$  Assume that  $\Gamma \models A$ .

Let (I, e) be a model of  $\Gamma$ .

Since x is not free in  $\Gamma$ , for every  $d \in D$ : (I, e[x = d]) and (I, e) give the same value to the formulae in  $\Gamma$  hence (I, e[x = d]) is model of  $\Gamma$ .

Therefore, (I, e[x = d]) is a model of A for any  $d \in D$ , so (I, e) is a model of  $\forall xA$ .

 $\Rightarrow$  Assume that  $\Gamma \models A$ .

Let (I, e) be a model of  $\Gamma$ .

Since *x* is not free in  $\Gamma$ , for every  $d \in D$ :

(I, e[x = d]) and (I, e) give the same value to the formulae in  $\Gamma$  hence (I, e[x = d]) is model of  $\Gamma$ .

Therefore, (I, e[x = d]) is a model of A for any  $d \in D$ , so (I, e) is a model of  $\forall xA$ .

← Assume that Γ  $\models \forall xA$ . Since the formula  $\forall xA \Rightarrow A$  is valid (corollary with *t* = *x*), we have Γ  $\models A$ .

| Natural Deduction |  |
|-------------------|--|
| Properties        |  |

#### Properties of consequence

Property 6.3.2

If x is free neither in  $\Gamma$ , nor in B, then we have:

 $\Gamma \models A \Rightarrow B$  if and only if  $\Gamma \models (\exists xA) \Rightarrow B$ 

F. Prost (UGA)

```
Natural Deduction
Properties
```

⇒ Assume that  $\Gamma \models A \Rightarrow B$ . Actually we prove that  $\Gamma, \exists xA \models B$ Let (*I*, *e*) be a model of  $\Gamma$ . Assume also that (*I*, *e*) is a model of  $\exists xA$ .

```
Natural Deduction
Properties
```

Assume that Γ ⊨ A ⇒ B. Actually we prove that Γ,∃xA ⊨ B
Let (*I*, *e*) be a model of Γ.
Assume also that (*I*, *e*) is a model of ∃xA.
This means that (*I*, *e*[x = d]) is a model of A for some d ∈ D.

```
Natural Deduction
Properties
```

⇒ Assume that Γ ⊨ A ⇒ B. Actually we prove that Γ,∃xA ⊨ B
Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of ∃xA.
This means that (I, e[x = d]) is a model of A for some d ∈ D.
Because x is not free in Γ, the assignments (I, e[x = d]) and (I, e) give the same value to the formulae in Γ.

Hence (I, e[x = d]) is a model of  $A \Rightarrow B$ .

```
Natural Deduction
Properties
```

⇒ Assume that Γ ⊨ A ⇒ B. Actually we prove that Γ,∃xA ⊨ B
Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of ∃xA.
This means that (I, e[x = d]) is a model of A for some d ∈ D.
Because x is not free in Γ, the assignments (I, e[x = d]) and (I, e) give the same value to the formulae in Γ.
Hence (I, e[x = d]) is a model of A ⇒ B.

Since (I, e[x = d]) is a model of A too, it must be a model of B.

Finally, since x is not free in B, (I, e) and (I, e[x = d]) give the same value to B.

```
Natural Deduction
Properties
```

⇒ Assume that Γ ⊨ A ⇒ B. Actually we prove that Γ,∃xA ⊨ B
Let (I, e) be a model of Γ.
Assume also that (I, e) is a model of ∃xA.
This means that (I, e[x = d]) is a model of A for some d ∈ D.
Because x is not free in Γ, the assignments (I, e[x = d]) and (I, e) give the same value to the formulae in Γ.
Hence (I, e[x = d]) is a model of A ⇒ B.
Since (I, e[x = d]) is a model of A too, it must be a model of B.

Finally, since x is not free in B, (I, e) and (I, e[x = d]) give the same value to B.

 $\leftarrow \text{ Assume that } \Gamma \models (\exists xA) \Rightarrow B, i.e. \ \Gamma, \exists A \models B.$ Since the formula  $A \Rightarrow (\exists xA)$  is valid (corollary with x = t), we have  $\Gamma, A \models \Gamma, \exists xA \models B$ , thus  $\Gamma \models A \Rightarrow B$ .

### Overview

Reminder: Rules

Contents

**Proof tactics** 

Properties

Consistency of the system

Conclusion

### Consistency of deduction

Theorem 6.3.3

If  $\Gamma \vdash A$  (by a proof in natural deduction) then  $\Gamma \models A$ .

#### Consistency proof overview

Let  $\Gamma$  be a set of formulae. Let *P* be a proof of *A* under  $\Gamma$ . Let *C<sub>i</sub>* be the conclusion and *H<sub>i</sub>* the context of the *i*-th line in proof *P*.

### Consistency proof overview

Let  $\Gamma$  be a set of formulae. Let *P* be a proof of *A* under  $\Gamma$ . Let *C<sub>i</sub>* be the conclusion and *H<sub>i</sub>* the context of the *i*-th line in proof *P*.

#### **Induction Hypothesis:**

Assume that for every *i* where 0 < i < k, we have  $\Gamma$ ,  $H_i \models C_i$ .

Let us prove that  $\Gamma$ ,  $H_k \models C_k$ .

### Consistency proof overview

Let  $\Gamma$  be a set of formulae. Let *P* be a proof of *A* under  $\Gamma$ . Let *C<sub>i</sub>* be the conclusion and *H<sub>i</sub>* the context of the *i*-th line in proof *P*.

#### **Induction Hypothesis:**

Assume that for every *i* where 0 < i < k, we have  $\Gamma$ ,  $H_i \models C_i$ .

Let us prove that  $\Gamma$ ,  $H_k \models C_k$ .

The cases where  $C_k$  has been obtained by a propositional rule has already been checked. We only deal with the new rules.
Assume that  $C_k = A < x := t >$  was deduced by rule  $\forall E$ .

**By induction hypothesis**, there is an *i* < *k* such that  $\Gamma$ ,  $H_i \models \forall xA$ .

Assume that  $C_k = A < x := t >$  was deduced by rule  $\forall E$ .

**By induction hypothesis**, there is an *i* < *k* such that  $\Gamma$ ,  $H_i \models \forall xA$ .

According to the application conditions of rule  $\forall E$ , the term *t* is free for *x* in *A*. Hence, **according to corollary 4.3.38**, the formula  $\forall xA \Rightarrow A < x := t >$  is valid and therefore  $\Gamma, H_i \models A < x := t >$ .

Since line *i* is usable,  $H_i$  is a prefix of  $H_k$ , hence  $\Gamma, H_k \models C_k$ .

# The rule ∃I

Assume that  $C_k = \exists x A$  was deduced by rule  $\exists I$ .

By induction hypothesis, there is an i < k such that  $\Gamma, H_i \models A < x := t >$ 

# The rule ∃I

Assume that  $C_k = \exists x A$  was deduced by rule  $\exists I$ .

By induction hypothesis, there is an i < k such that  $\Gamma, H_i \models A < x := t >$ 

According to the application conditions of rule  $\exists I$ , *t* is free for the variable *x* in *A*. Hence, according to the corollary 4.3.38, the formula  $A < x := t > \Rightarrow \exists xA$  is valid and so  $\Gamma, H_i \models \exists xA$ .

Since line *i* is usable,  $H_i$  is a prefix of  $H_k$ , hence  $\Gamma, H_k \models C_k$ .

Assume that  $C_k = \forall xA$  was deduced by the rule  $\forall I$ .

Assume that  $C_k = \forall xA$  was deduced by the rule  $\forall I$ .

Either  $A = C_i$  with i < k, by induction hypothesis we have  $\Gamma, H_i \models A$ . Or  $A \in \Gamma$  and then  $\Gamma \models A$ .

Assume that  $C_k = \forall xA$  was deduced by the rule  $\forall I$ .

Either  $A = C_i$  with i < k, by induction hypothesis we have  $\Gamma, H_i \models A$ . Or  $A \in \Gamma$  and then  $\Gamma \models A$ .

#### According to the application conditions of rule $\forall I$ ,

*x* is not free in  $\Gamma$ ,  $H_i$ . Hence, **according to property 6.3.1**, we also have  $\Gamma$ ,  $H_i \models \forall xA$ .

Assume that  $C_k = \forall xA$  was deduced by the rule  $\forall I$ .

Either  $A = C_i$  with i < k, by induction hypothesis we have  $\Gamma, H_i \models A$ . Or  $A \in \Gamma$  and then  $\Gamma \models A$ .

#### According to the application conditions of rule $\forall I$ , *x* is not free in $\Gamma$ , $H_i$ . Hence, according to property 6.3.1, we also have $\Gamma$ , $H_i \models \forall xA$ .

Since line *i* is usable,  $H_i$  is a prefix of  $H_k$ , hence  $\Gamma, H_k \models C_k$ .

# The rule ∃E

Assume that  $C_k = B$  was deduced by rule  $\exists E$ , from formulae  $\exists xA$  and  $A \Rightarrow B$ .

**By induction hypothesis**, there are some i < k and j < k such that  $\Gamma, H_i \models \exists x A$  and  $\Gamma, H_i \models A \Rightarrow B$ .

# The rule ∃E

Assume that  $C_k = B$  was deduced by rule  $\exists E$ , from formulae  $\exists xA$  and  $A \Rightarrow B$ .

**By induction hypothesis**, there are some i < k and j < k such that  $\Gamma, H_i \models \exists x A \text{ and } \Gamma, H_j \models A \Rightarrow B$ .

According to the application conditions of rule  $\exists E, x$  is free neither in  $\Gamma, H_j$ , nor in *B*. Hence (property 6.3.2), we also have  $\Gamma, H_j \models (\exists xA) \Rightarrow B$ .

# The rule ∃E

Assume that  $C_k = B$  was deduced by rule  $\exists E$ , from formulae  $\exists xA$  and  $A \Rightarrow B$ .

**By induction hypothesis**, there are some i < k and j < k such that  $\Gamma, H_i \models \exists x A \text{ and } \Gamma, H_j \models A \Rightarrow B$ .

According to the application conditions of rule  $\exists E, x$  is free neither in  $\Gamma, H_j$ , nor in *B*. Hence (**property 6.3.2**), we also have  $\Gamma, H_j \models (\exists xA) \Rightarrow B$ .

Since lines *i* and *j* are usable,  $H_i$  and  $H_j$  are prefixes of  $H_k$ , hence  $\Gamma, H_k \models \exists xA$  and  $\Gamma, H_k \models (\exists xA) \Rightarrow B$ . Consequently  $\Gamma, H_k \models C_k$ .

# The copy rule

Assume that  $C_k = A'$  was deduced by copy from formula A.

**By induction hypothesis**, there exists an *i* < *k* such that  $\Gamma$ ,  $H_i \models A$ .

We know that if  $A =_{\alpha} A'$ , then  $A \equiv A'$ , hence  $\Gamma, H_i \models A'$ .

Since line *i* is usable,  $H_i$  is a prefix of  $H_k$ , hence  $\Gamma, H_k \models C_k$ .

# Reflexivity

Assume that  $C_k$  is the formula t = t.

Let us recall that equality is always interpreted as  $\{(d, d) \mid d \in D\}$ , so in particular  $=_I$  always contains  $(\llbracket t \rrbracket_I, \llbracket t \rrbracket_I)$ .

Thus, the formula  $C_k$  is valid, and  $\Gamma, H_k \models C_k$ .

Assume that  $C_k = A < x := t >$  was deduced by the congruence rule.

**By induction hypothesis**, there exist some *i* < *k* and *j* < *k* such that  $\Gamma$ ,  $H_i \models (s = t)$  and  $\Gamma$ ,  $H_j \models A < x := s >$ .

Since lines *i* and *j* are usable,  $H_i$  and  $H_j$  are prefixes of  $H_k$ , hence  $\Gamma, H_k \models (s = t)$  and  $\Gamma, H_k \models A < x := s >$ .

Assume that  $C_k = A < x := t >$  was deduced by the congruence rule.

**By induction hypothesis**, there exist some *i* < *k* and *j* < *k* such that  $\Gamma$ ,  $H_i \models (s = t)$  and  $\Gamma$ ,  $H_j \models A < x := s >$ .

Since lines *i* and *j* are usable,  $H_i$  and  $H_j$  are prefixes of  $H_k$ , hence  $\Gamma, H_k \models (s = t)$  and  $\Gamma, H_k \models A < x := s >$ .

**The use conditions of the rule** ensure that *s* and *t* are free for *x* in *A*. Hence we can use:

•  $[A < x := s >]_{(l,e)} = [A]_{(l,e[x=d])}$  where  $d = [[s]]_{(l,e)}$ •  $[A < x := t >]_{(l,e)} = [A]_{(l,e[x=d'])}$  where  $d' = [[t]]_{(l,e)}$ 

Assume that  $C_k = A < x := t >$  was deduced by the congruence rule.

**By induction hypothesis**, there exist some *i* < *k* and *j* < *k* such that  $\Gamma$ ,  $H_i \models (s = t)$  and  $\Gamma$ ,  $H_j \models A < x := s >$ .

Since lines *i* and *j* are usable,  $H_i$  and  $H_j$  are prefixes of  $H_k$ , hence  $\Gamma, H_k \models (s = t)$  and  $\Gamma, H_k \models A < x := s >$ .

**The use conditions of the rule** ensure that *s* and *t* are free for *x* in *A*. Hence we can use:

- $[A < x := s >]_{(l,e)} = [A]_{(l,e[x=d])}$  where  $d = [[s]]_{(l,e)}$
- $[A < x := t >]_{(l,e)} = [A]_{(l,e[x=d'])}$  where  $d' = [[t]]_{(l,e)}$

Furthermore, equality ensures that if (I, e) is a model of s = t then d and d' are the **same** member of D.

Assume that  $C_k = A < x := t >$  was deduced by the congruence rule.

**By induction hypothesis**, there exist some *i* < *k* and *j* < *k* such that  $\Gamma$ ,  $H_i \models (s = t)$  and  $\Gamma$ ,  $H_j \models A < x := s >$ .

Since lines *i* and *j* are usable,  $H_i$  and  $H_j$  are prefixes of  $H_k$ , hence  $\Gamma, H_k \models (s = t)$  and  $\Gamma, H_k \models A < x := s >$ .

**The use conditions of the rule** ensure that *s* and *t* are free for *x* in *A*. Hence we can use:

- $[A < x := s >]_{(l,e)} = [A]_{(l,e[x=d])}$  where  $d = [[s]]_{(l,e)}$
- $[A < x := t >]_{(l,e)} = [A]_{(l,e[x=d'])}$  where  $d' = [[t]]_{(l,e)}$

Furthermore, equality ensures that if (I, e) is a model of s = t then d and d' are the **same** member of D. Hence  $s = t, A < x := s > \models A < x := t >$ , so  $\Gamma, H_k \models C_k$ .

F. Prost (UGA)

# Kurt Gödel (1906-1978) and his incompleteness theorems

First incompleteness theorem (1931)

Every logical system in which we can formalize arithmetics also allows to state:

"This statement is unprovable".



- either this statement is false; thus it is provable, and our system is inconsistent
- or this statement is true; thus it is unprovable, and our system is incomplete

# Kurt Gödel (1906-1978) and his incompleteness theorems

First incompleteness theorem (1931)

Every logical system in which we can formalize arithmetics also allows to state:

"This statement is unprovable".



- either this statement is false; thus it is provable, and our system is inconsistent
- or this statement is true; thus it is unprovable, and our system is incomplete

Second incompleteness theorem

No logical system can prove its own consistency.

F. Prost (UGA)

Natural Deduction

# Overview

Reminder: Rules

Contents

**Proof tactics** 

Properties

Consistency of the system

#### Conclusion

F. Prost (UGA)

Natural Deduction Conclusion

# Today

#### First-order Natural Deduction:

Tactics

Consistency

# Overview of the Semester

- Propositional logic
- Propositional resolution
- Propositional natural deduction
- **MID-TERM EXAM** 
  - First-order logic
  - Basis for the automated deduction ("first-order resolution")
  - First-order natural deduction

EXAM