Transformations of logical formulae

Frédéric Prost
Université Grenoble Alpes

January 2023

Previous lecture

- Why formal logic?
- Propositional logic
- Syntax
- Meaning of formulae

Our example with a truth table

Hypotheses:

- (H1): If Peter is old, then John is not the son of Peter
- (H2): If Peter is not old, then John is the son of Peter
- (H3): If John is Peter's son then Mary is the sister of John

Conclusion (C): Mary is the sister of John, or Peter is old.

$$
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p
$$

Our example with a truth table

Hypotheses:

- (H1): If Peter is old, then John is not the son of Peter
- (H2): If Peter is not old, then John is the son of Peter
- (H3): If John is Peter's son then Mary is the sister of John

Conclusion (C): Mary is the sister of John, or Peter is old.

$$
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p
$$

p	j	m	$p \Rightarrow \neg j$	$\neg p \Rightarrow j$	$j \Rightarrow m$	$H_{1} \wedge H_{2} \wedge H_{3}$	$m \vee p$	$H_{1} \wedge H_{2} \wedge H_{3} \Rightarrow m \vee p$
0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	0	1	1
0	1	0	1	1	0	0	0	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	1	0	0	1	1
1	1	1	0	1	1	0	1	1

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Logical consequence (entailment)

Definition 1.2.24

A is a consequence of the set Γ of hypotheses $(\Gamma \models A)$ if every model of Γ is a model of A.

Remark 1.2.26
$\vDash A$ denotes that A is valid.
(Every truth assignment is a model for the empty set.)

Example of a consequence

Example 1.2.28

$$
a \Rightarrow b, b \Rightarrow c \neq a \Rightarrow c .
$$

Example of a consequence

Example 1.2.28

$$
a \Rightarrow b, b \Rightarrow c \neq a \Rightarrow c .
$$

a	b	c	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	1

ESSENTIAL property

Often used in exercises and during exams.

Property 1.2.27

Let $H_{n}=A_{1} \wedge \ldots \wedge A_{n}$.
The following three formulations are equivalent:

1. $A_{1}, \ldots, A_{n}=B$
2. $H_{n} \Rightarrow B$ is valid.
3. $H_{n} \wedge \neg B$ is unsatisfiable.

Proof.

Based on the truth tables of the connectives.
We prove that $1 \Rightarrow 2$ then $2 \Rightarrow 3$ and $3 \Rightarrow 1$.

Proof (1/3)

- $1 \Rightarrow 2$: let us assume that $A_{1}, \ldots, A_{n} \models B$.

Let v be a truth assignment:

- if v is not a model for A_{1}, \ldots, A_{n} : for a certain i we have $\left[A_{i}\right]_{v}=0$, hence $\left[H_{n}\right]_{v}=0$. Thus $\left[H_{n} \Rightarrow B\right]_{v}=1$.
- is v is a model for A_{1}, \ldots, A_{n} : then by hypothesis v is a model for B therefore $[B]_{v}=1$. Thus $\left[H_{n} \Rightarrow B\right]_{v}=1$.
Therefore $H_{n} \Rightarrow B$ is valid.

Proof (2/3)

- $2 \Rightarrow 3$: let us assume that $H_{n} \Rightarrow B$ is valid.

For every truth assignment v :

- either $\left[H_{n}\right]_{v}=0$,
- or $\left[H_{n}\right]_{v}=1$ and $[B]_{v}=1$.

However $\left[H_{n} \wedge \neg B\right]_{v}=\min \left(\left[H_{n}\right]_{v},[\neg B]_{v}\right)=\min \left(\left[H_{n}\right]_{v}, 1-[B]_{v}\right)$.
In both cases, we have $\left[H_{n} \wedge \neg B\right]_{v}=0$.
Therefore $H_{n} \wedge \neg B$ is unsatisfiable.

Proof (3/3)

- $3 \Rightarrow 1$: let us assume that $H_{n} \wedge \neg B$ is unsatisfiable.

Let us show that $A_{1}, \ldots, A_{n}=B$.
Let v be a truth assignment model of A_{1}, \ldots, A_{n} :

- $\left[H_{n}\right]_{v}=\left[A_{1} \wedge \ldots \wedge A_{n}\right]_{v}=1$.
- According to our hypothesis $[\neg B]_{v}=0$.

Hence, $1-[B]_{v}=0$ so $[B]_{v}=1$, i.e. v is a model for B.
Exercise 7 shows why proving these 3 circular implications is sufficient.

Instance of the property

Example 1.2.28

a	b	c	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\Rightarrow(a \Rightarrow c)$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\wedge \neg(a \Rightarrow c)$
0	0	0	1	1	1		
0	0	1	1	1	1		
0	1	0	1	0	1		
0	1	1	1	1	1		
1	0	0	0	1	0		
1	0	1	0	1	1		
1	1	0	1	0	0		
1	1	1	1	1	1		

Instance of the property

Example 1.2.28

a	b	c	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\Rightarrow(a \Rightarrow c)$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\wedge \neg(a \Rightarrow c)$
0	0	0	1	1	1	1	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	1	1	1	1	
1	0	0	0	1	0	1	
1	0	1	0	1	1	1	
1	1	0	1	0	0	1	
1	1	1	1	1	1	1	

Instance of the property

Example 1.2.28

a	b	c	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\Rightarrow(a \Rightarrow c)$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\wedge \neg(a \Rightarrow c)$
0	0	0	1	1	1	1	0
0	0	1	1	1	1	1	0
0	1	0	1	0	1	1	0
0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0
1	1	1	1	1	1	1	0

Compactness

Theorem 1.2.30 Propositional compactness
A set of propositional formulae has a model if an only if every finite subset of it has a model.

Compactness

Theorem 1.2.30 Propositional compactness
A set of propositional formulae has a model if an only if every finite subset of it has a model.

This theorem may look trivial. However, the set of formulae may be infinite!

This result will be used at a later stage in the course (bases for automated theorem proving).

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Preamble

How to prove that a formula is valid?

Preamble

How to prove that a formula is valid?

- Truth table
- Problem: for a formula having 100 variables, the truth table will contain 2^{100} lines (unable to be computed, even by a computer!).

Preamble

How to prove that a formula is valid?

- Truth table
- Problem: for a formula having 100 variables, the truth table will contain 2^{100} lines (unable to be computed, even by a computer!).
- Idea:
- Simplify the formula using transformations
- Then, study the simplified formula using truth tables or a logic reasoning

Disjunction

- associative $x \vee(y \vee z) \equiv(x \vee y) \vee z$
- commutative $x \vee y \equiv y \vee x$
- idempotent $x \vee x \equiv x$

Disjunction

- associative $x \vee(y \vee z) \equiv(x \vee y) \vee z$
- commutative $x \vee y \equiv y \vee x$
- idempotent $x \vee x \equiv x$

Ditto for conjunction.

Distributivity

- Conjunction distributes over disjunction $x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)$

Distributivity

- Conjunction distributes over disjunction $x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)$
- Disjunction distributes over conjunction

$$
x \vee(y \wedge z) \equiv(x \vee y) \wedge(x \vee z)
$$

Neutrality and Absorption

- 0 is the neutral element for disjunction $0 \vee x \equiv x$
- 1 is the neutral element for conjunction $1 \wedge x \equiv x$
- 1 is the absorbing element for disjunction $1 \vee x \equiv 1$
- 0 is the absorbing element for conjunction $0 \wedge x \equiv 0$

Negation

- Negation laws:
- $x \wedge \neg x \equiv 0$
- $x \vee \neg x \equiv 1$ (The law of excluded middle)
- $\neg \neg x \equiv x$
- $\neg 0 \equiv 1$
- $\neg 1 \equiv 0$

De Morgan laws

- $\neg(x \wedge y) \equiv \neg x \vee \neg y$
- $\neg(x \vee y) \equiv \neg x \wedge \neg y$

Augustus De Morgan (1860) builds on Boole's algebra:

- Work about quantifiers
- Calculus of relations (also see C.S. Peirce's works)
which laid grounds for first-ordre logic (see 2nd part
 of the course).

Augustus De Morgan (1860) builds on Boole's algebra:

- Work about quantifiers
- Calculus of relations (also see C.S. Peirce's works)
which laid grounds for first-ordre logic (see 2nd part
 of the course).
- Notion of duality in Boole's algebras expressed in particular as De Morgan's laws

Augustus De Morgan (1860) builds on Boole's algebra:

- Work about quantifiers
- Calculus of relations (also see C.S. Peirce's works)
which laid grounds for first-ordre logic (see 2nd part
 of the course).
- Notion of duality in Boole's algebras expressed in particular as De Morgan's laws
- Involved (though very briefly) in the first conjectures about the four colour theorem

Simplification laws

Property 1.2.31

For every x, y we have:

- $x \vee(x \wedge y) \equiv x$
- $x \wedge(x \vee y) \equiv x$
- $x \vee(\neg x \wedge y) \equiv x \vee y$

Transformations of logical formulae
Substitution and replacement

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.
$A \sigma=$ the formula A where all variables x are replaced by the formula $\sigma(x)$.

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.
$A \sigma=$ the formula A where all variables x are replaced by the formula $\sigma(x)$.

Example: $A=\neg(p \wedge q) \Leftrightarrow(\neg p \vee \neg q)$

- Let σ the following substitution: $\sigma(p)=(a \vee b), \sigma(q)=(c \wedge d)$
- $A \sigma=$

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.
$A \sigma=$ the formula A where all variables x are replaced by the formula $\sigma(x)$.

Example: $A=\neg(p \wedge q) \Leftrightarrow(\neg p \vee \neg q)$

- Let σ the following substitution: $\sigma(p)=(a \vee b), \sigma(q)=(c \wedge d)$
- $A \sigma=\neg((a \vee b) \wedge(c \wedge d)) \Leftrightarrow(\neg(a \vee b) \vee \neg(c \wedge d))$

Finite support substitution

Definition 1.3.2

- The support of a substitution σ is the set of variables x such that $x \sigma \neq x$.
- A finite support substitution σ is denoted

$$
<x_{1}:=A_{1}, \ldots, x_{n}:=A_{n}>
$$

Finite support substitution

Definition 1.3.2

- The support of a substitution σ is the set of variables x such that $x \sigma \neq x$.
- A finite support substitution σ is denoted

$$
<x_{1}:=A_{1}, \ldots, x_{n}:=A_{n}>
$$

Example 1.3.3

$A=x \vee x \wedge y \Rightarrow z \wedge y$ and $\sigma=<x:=a \vee b, z:=b \wedge c>$
$A \sigma=$

Finite support substitution

Definition 1.3.2

- The support of a substitution σ is the set of variables x such that $x \sigma \neq x$.
- A finite support substitution σ is denoted

$$
<x_{1}:=A_{1}, \ldots, x_{n}:=A_{n}>
$$

Example 1.3.3

$A=x \vee x \wedge y \Rightarrow z \wedge y$ and $\sigma=<x:=a \vee b, z:=b \wedge c>$
$A \sigma=(a \vee b) \vee(a \vee b) \wedge y \Rightarrow(b \wedge c) \wedge y$

Properties of substitutions

Property 1.3.4
Let v be a truth assignment and σ a substitution.
Let w be the assignment $w: x \mapsto[\sigma(x)]_{v}$.
For any formula A, we have $[A \sigma]_{v}=[A]_{w}$.

Properties of substitutions

Property 1.3.4

Let v be a truth assignment and σ a substitution.
Let w be the assignment $w: x \mapsto[\sigma(x)]_{v}$.
For any formula A, we have $[A \sigma]_{v}=[A]_{w}$.

Example 1.3.5:

Let $A=x \vee y \vee d$
Let $\sigma=<x:=a \vee b, y:=b \wedge c>$
Let v be $v(a)=1, v(b)=0, v(c)=0, v(d)=0$

Properties of substitutions

Property 1.3.4

Let v be a truth assignment and σ a substitution.
Let w be the assignment $w: x \mapsto[\sigma(x)]_{v}$.
For any formula A, we have $[A \sigma]_{v}=[A]_{w}$.

Example 1.3.5:

Let $A=x \vee y \vee d$
Let $\sigma=<x:=a \vee b, y:=b \wedge c>$
Let v be $v(a)=1, v(b)=0, v(c)=0, v(d)=0$

$$
\begin{aligned}
& A \sigma=(a \vee b) \vee(b \wedge c) \vee d \\
& \begin{aligned}
{[A \sigma]_{\vee} } & =(1 \vee 0) \vee(0 \wedge 0) \vee 0 \\
& =1 \vee 0 \vee 0=1
\end{aligned}
\end{aligned}
$$

Properties of substitutions

Property 1.3.4

Let v be a truth assignment and σ a substitution.
Let w be the assignment $w: x \mapsto[\sigma(x)]_{v}$.
For any formula A, we have $[A \sigma]_{v}=[A]_{w}$.

Example 1.3.5:

Let $A=x \vee y \vee d$
Let $\sigma=<x:=a \vee b, y:=b \wedge c>$
Let v be $v(a)=1, v(b)=0, v(c)=0, v(d)=0$

$$
\begin{array}{ll}
A \sigma=(a \vee b) \vee(b \wedge c) \vee d & \\
& w(x)=[a \vee b]_{\vee}=1 \vee 0=1 \\
& w(y)=[b \wedge c]_{v}=0 \wedge 0=0 \\
{[A \sigma]_{v}} & =(1 \vee 0) \vee(0 \wedge 0) \vee 0 \\
& =1 \vee 0 \vee 0=1
\end{array} \quad \begin{aligned}
& \\
& {[A]_{w}=1 \vee 0 \vee 0=1 }
\end{aligned}
$$

Initial step: $|A|=0$

Two possible cases:

- If A is T or \perp then $A \sigma=A$ and $[A]_{v}$ does not depend on v.
- If A is a variable x, then by construction $[x \sigma]_{v}==w(x)$.

Induction

Hypothesis: Assume the property holds for any formula of height less or equal to n.
Let A be a formula of height $n+1$; there are two possible cases:

- Case 1: $A=\neg B$ with $|B|=n$.
$[A \sigma]_{v}=[\neg B \sigma]_{v}=[\neg(B \sigma)]_{v}=1-[B \sigma]_{v}$ and
$[A]_{w}=[\neg B]_{w}=1-[B]_{w}$.
Since $|B|=n$, by induction hypothesis $[B \sigma]_{v}=[B]_{w}$ Hence, $[A \sigma]_{v}=[A]_{w}$.

Induction

Hypothesis: Assume the property is true for any formula of height less or equal to n.
Let A be a formula of height $n+1$; there are two possible cases:

- Case 2: $A=(B \circ C)$ with $|B|<n+1$ and $|C|<n+1$. Then $[A \sigma]_{v}=[B \sigma \circ C \sigma]_{v}$ and $[A]_{w}=[B \circ C]_{w}$

By induction hypothesis $[B \sigma]_{v}=[B]_{w}$ and $[C \sigma]_{v}=[C]_{w}$. Since the semantics for \circ remain the same, $[A \sigma]_{v}=[A]_{w}$.

Substitution of a valid formula

Theorem 1.3.6

If A is valid then $A \sigma$ is valid for any σ.

Proof.

Substitution of a valid formula

Theorem 1.3.6

If A is valid then $A \sigma$ is valid for any σ.

Proof.

Let v be any truth assignment.

Substitution of a valid formula

Theorem 1.3.6

If A is valid then $A \sigma$ is valid for any σ.

Proof.

Let v be any truth assignment.
According to property 1.3 .4 : $[A \sigma]_{v}=[A]_{w}$ where $w(x)=[\sigma(x)]_{v}$.

Substitution of a valid formula

Theorem 1.3.6

If A is valid then $A \sigma$ is valid for any σ.

Proof.

Let v be any truth assignment.
According to property 1.3 .4 : $[A \sigma]_{v}=[A]_{w}$ where $w(x)=[\sigma(x)]_{v}$.
Since A is valid, $[A]_{w}=1$.
Consequently, A σ equals 1 in every truth assignment, therefore $A \sigma$ is a valid formula.

Examples

Example 1.3.7

Let A be the formula $\neg(p \wedge q) \Leftrightarrow(\neg p \vee \neg q)$. This formula is valid, it is an important equivalence. Let σ the following substitution:
$<p:=(a \vee b), q:=(c \wedge d)>$. The formula

Examples

Example 1.3.7

Let A be the formula $\neg(p \wedge q) \Leftrightarrow(\neg p \vee \neg q)$. This formula is valid, it is an important equivalence. Let σ the following substitution:
$<p:=(a \vee b), q:=(c \wedge d)>$. The formula
$A \sigma=\neg((a \vee b) \wedge(c \wedge d)) \Leftrightarrow(\neg(a \vee b) \vee \neg(c \wedge d))$ is also valid.

Replacement

Definition 1.3.8

The formula D is obtained by replacing certain occurrences of A by B in C if:

- C can be written $E<x:=A>$
- D can be written $E<x:=B>$
for some formula E.

Examples

Example 1.3.9

Consider the formula $C=((a \Rightarrow b) \vee \neg(a \Rightarrow b))$.

- The formula obtained by replacing all occurrences of $(a \Rightarrow b)$ by $(a \wedge b)$ is

Examples

Example 1.3.9

Consider the formula $C=((a \Rightarrow b) \vee \neg(a \Rightarrow b))$.

- The formula obtained by replacing all occurrences of $(a \Rightarrow b)$ by $(a \wedge b)$ is

$$
D=((a \wedge b) \vee \neg(a \wedge b))
$$

$$
\text { using } E=(x \vee \neg x)
$$

Examples

Example 1.3.9

Consider the formula $C=((a \Rightarrow b) \vee \neg(a \Rightarrow b))$.

- The formula obtained by replacing all occurrences of $(a \Rightarrow b)$ by $(a \wedge b)$ is

$$
D=((a \wedge b) \vee \neg(a \wedge b))
$$

$$
\text { using } E=(x \vee \neg x)
$$

- The formula obtained by replacing the first occurrence of $(a \Rightarrow b)$ by $(a \wedge b)$ is

Examples

Example 1.3.9

Consider the formula $C=((a \Rightarrow b) \vee \neg(a \Rightarrow b))$.

- The formula obtained by replacing all occurrences of $(a \Rightarrow b)$ by $(a \wedge b)$ is

$$
\begin{aligned}
& D=((a \wedge b) \vee \neg(a \wedge b)) \\
& \text { using } E=(x \vee \neg x) \text {. }
\end{aligned}
$$

- The formula obtained by replacing the first occurrence of $(a \Rightarrow b)$ by $(a \wedge b)$ is

$$
\begin{aligned}
& \hline D=((a \wedge b) \vee \neg(a \Rightarrow b)) \\
& \text { using } E=(x \vee \neg(a \Rightarrow b)) .
\end{aligned}
$$

Properties of the replacements

Theorem 1.3.10
If D is obtained by replacing, in C, some occurrences of A by B, then $(A \Leftrightarrow B) \models(C \Leftrightarrow D)$.

Properties of the replacements

Theorem 1.3.10

If D is obtained by replacing, in C, some occurrences of A by B, then $(A \Leftrightarrow B) \models(C \Leftrightarrow D)$.

Proof.

By definition, $C=E<x:=A>$ et $D=E<x:=B>$.
Assume that $[A]_{v}=[B]_{v}$, then w is the same for both substitutions.
Therefore $[C]_{v}=[D]_{v}:$ the assignment v is a model of $(C \Leftrightarrow D)$.

Properties of the replacements

Theorem 1.3.10

If D is obtained by replacing, in C, some occurrences of A by B, then $(A \Leftrightarrow B) \models(C \Leftrightarrow D)$.

Proof.

By definition, $C=E<x:=A>$ et $D=E<x:=B>$.
Assume that $[A]_{v}=[B]_{v}$, then w is the same for both substitutions.
Therefore $[C]_{v}=[D]_{v}$: the assignment v is a model of $(C \Leftrightarrow D)$.

Example 1.3.12:

$$
p \Leftrightarrow q \models(p \vee(\square \Rightarrow r)) \Leftrightarrow(p \vee(\square \Rightarrow r)) .
$$

Properties of the replacements

Theorem 1.3.10

If D is obtained by replacing, in C, some occurrences of A by B, then $(A \Leftrightarrow B) \models(C \Leftrightarrow D)$.

Proof.

By definition, $C=E<x:=A>$ et $D=E<x:=B>$.
Assume that $[A]_{v}=[B]_{v}$, then w is the same for both substitutions.
Therefore $[C]_{v}=[D]_{v}$: the assignment v is a model of $(C \Leftrightarrow D)$.

Example 1.3.12: $\quad p \Leftrightarrow q \vDash(p \vee(\boxed{p} \Rightarrow r)) \Leftrightarrow(p \vee(\boxed{q} \Rightarrow r))$.

Corollary 1.3.11

Let D be obtained by replacing, in C, one occurrence of A by B. If $A \equiv B$ then $C \equiv D$.

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Definitions

Definition 1.4.1

- A literal is a variable or its negation.

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals (special cases 0 and 1).

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- $x, y, \neg z$ are literals.

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- $x, y, \neg z$ are literals.
- $x \wedge \neg y \wedge z$ is a monomial

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- $x, y, \neg z$ are literals.
- $x \wedge \neg y \wedge z$ is a monomial
- The monomial $x \wedge \neg y \wedge z \wedge \neg x$ contains x and $\neg x$: its value is 0 .

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- $x, y, \neg z$ are literals.
- $x \wedge \neg y \wedge z$ is a monomial
- The monomial $x \wedge \neg y \wedge z \wedge \neg x$ contains x and $\neg x$: its value is 0 .
- $x \vee \neg y \vee z$ is a clause

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- $x, y, \neg z$ are literals.
- $x \wedge \neg y \wedge z$ is a monomial
- The monomial $x \wedge \neg y \wedge z \wedge \neg x$ contains x and $\neg x$: its value is 0 .
- $x \vee \neg y \vee z$ is a clause
- The clause $x \vee \neg y \vee z \vee \neg x$ contains x and $\neg x$: its value is 1 .

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \wedge, \vee, \neg and the negations are only applied to variables.

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \wedge, \vee, \neg and the negations are only applied to variables.

Example 1.4.4

The formula $\neg a \vee b$ is in normal form $a \Rightarrow b$ is not in normal form, even if it is equivalent to the first one.

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \wedge, \vee, \neg and the negations are only applied to variables.

Example 1.4.4

The formula $\neg a \vee b$ is in normal form $a \Rightarrow b$ is not in normal form, even if it is equivalent to the first one.

Every formula admits an equivalent normal form.

Computing a normal form

1. Equivalence elimination
2. Implication elimination
3. Shifting negations towards variables

Computing a normal form

1. Equivalence elimination Replace any occurrence of $A \Leftrightarrow B$ by
(a) $(\neg A \vee B) \wedge(\neg B \vee A)$ OR
(b) $(A \wedge B) \vee(\neg A \wedge \neg B)$
2. Implication elimination
3. Shifting negations towards variables

Computing a normal form

1. Equivalence elimination Replace any occurrence of $A \Leftrightarrow B$ by
(a) $(\neg A \vee B) \wedge(\neg B \vee A)$ OR
(b) $(A \wedge B) \vee(\neg A \wedge \neg B)$
2. Implication elimination Replace any occurrence of $A \Rightarrow B$ by $\neg A \vee B$
3. Shifting negations towards variables

Computing a normal form

1. Equivalence elimination Replace any occurrence of $A \Leftrightarrow B$ by
(a) $(\neg A \vee B) \wedge(\neg B \vee A)$ OR
(b) $(A \wedge B) \vee(\neg A \wedge \neg B)$
2. Implication elimination Replace any occurrence of $A \Rightarrow B$ by $\neg A \vee B$
3. Shifting negations towards variables Replace any occurrence of
(a) $\neg \neg A$ by A
(b) $\neg(A \vee B)$ by $\neg A \wedge \neg B$
(c) $\neg(A \wedge B)$ by $\neg A \vee \neg B$

Remark 1.4.5: simplifications

Simplify as soon as possible:

1. Replace $\neg(A \Rightarrow B)$ by $A \wedge \neg B$.

Remark 1.4.5: simplifications

Simplify as soon as possible:

1. Replace $\neg(A \Rightarrow B)$ by $A \wedge \neg B$.
2. Replacing a conjunction by 0 if it contains a formula and its negation
3. Replace a disjunction by 1 if it contains a formula and its negation

Remark 1.4.5: simplifications

Simplify as soon as possible:

1. Replace $\neg(A \Rightarrow B)$ by $A \wedge \neg B$.
2. Replacing a conjunction by 0 if it contains a formula and its negation
3. Replace a disjunction by 1 if it contains a formula and its negation
4. Apply :

- Idempotence of \wedge and \vee
- Neutrality and absorption of 0 and 1
- Replace $\neg 1$ by 0 and vice versa.

Remark 1.4.5: simplifications

Simplify as soon as possible:

1. Replace $\neg(A \Rightarrow B)$ by $A \wedge \neg B$.
2. Replacing a conjunction by 0 if it contains a formula and its negation
3. Replace a disjunction by 1 if it contains a formula and its negation
4. Apply :

- Idempotence of \wedge and \vee
- Neutrality and absorption of 0 and 1
- Replace $\neg 1$ by 0 and vice versa.

5. Apply the simplifications:

- $x \vee(x \wedge y) \equiv x$,
- $x \wedge(x \vee y) \equiv x$,
- $x \vee(\neg x \wedge y) \equiv x \vee y$

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions $x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)$

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions $x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)$
The interest of a DNF is to highlight the models.

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions
$x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)$
The interest of a DNF is to highlight the models.

Example 1.4.7

$(x \wedge y) \vee(\neg x \wedge \neg y \wedge z)$ is a DNF, which has two main models:

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions
$x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)$
The interest of a DNF is to highlight the models.

Example 1.4.7

$(x \wedge y) \vee(\neg x \wedge \neg y \wedge z)$ is a DNF, which has two main models:

- $x \mapsto 1, y \mapsto 1$
- $x \mapsto 0, y \mapsto 0, z \mapsto 1$

Conjunctive normal form (CNF)

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

- $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$

Conjunctive normal form (CNF)

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

- $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$

The interest of a CNF is to highlight the counter-models.

Conjunctive normal form (CNF)

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

- $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$

The interest of a CNF is to highlight the counter-models.

Example 1.4.12

$(x \vee y) \wedge(\neg x \vee \neg y \vee z)$ is a CNF, which has two counter-models.

Conjunctive normal form (CNF)

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

- $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$

The interest of a CNF is to highlight the counter-models.

Example 1.4.12

$(x \vee y) \wedge(\neg x \vee \neg y \vee z)$ is a CNF, which has two counter-models.

- $x \mapsto 0, y \mapsto 0$
- $x \mapsto 1, y \mapsto 1, z \mapsto 0$.

Examples 1.4.8 and 1.4.13

Transformation in DNF of the following:

$$
(a \vee b) \wedge(c \vee d \vee e) \equiv
$$

Examples 1.4.8 and 1.4.13

Transformation in DNF of the following:

$$
(a \vee b) \wedge(c \vee d \vee e) \equiv
$$

$$
(a \wedge c) \vee(a \wedge d) \vee(a \wedge e) \vee(b \wedge c) \vee(b \wedge d) \vee(b \wedge e)
$$

Examples 1.4.8 and 1.4.13

Transformation in DNF of the following:

$$
(a \vee b) \wedge(c \vee d \vee e) \equiv
$$

$(a \wedge c) \vee(a \wedge d) \vee(a \wedge e) \vee(b \wedge c) \vee(b \wedge d) \vee(b \wedge e)$.
Transformation in CNF of the following:

$$
(a \wedge b) \vee(c \wedge d \wedge e) \equiv
$$

Examples 1.4.8 and 1.4.13

Transformation in DNF of the following:

$$
(a \vee b) \wedge(c \vee d \vee e) \equiv
$$

$$
(a \wedge c) \vee(a \wedge d) \vee(a \wedge e) \vee(b \wedge c) \vee(b \wedge d) \vee(b \wedge e)
$$

Transformation in CNF of the following:

$$
(a \wedge b) \vee(c \wedge d \wedge e) \equiv
$$

$$
(a \vee c) \wedge(a \vee d) \wedge(a \vee e) \wedge(b \vee c) \wedge(b \vee d) \wedge(b \vee e)
$$

Another use of DNFs

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Another use of DNFs

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:

Another use of DNFs

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:
We transform $\neg A$ in an equivalent disjunction of monomials B :

Another use of DNFs

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:
We transform $\neg A$ in an equivalent disjunction of monomials B :

- If $B=0$ then $\neg A=0$, hence $A=1$, that is, A is valid

Another use of DNFs

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:
We transform $\neg A$ in an equivalent disjunction of monomials B :

- If $B=0$ then $\neg A=0$, hence $A=1$, that is, A is valid
- Otherwise B is equal to a disjunction of nonzero monomials equivalent to $\neg A$, which give us models of $\neg A$, hence counter-models of A.

Example 1.4.9

$$
\text { Let } A=(p \Rightarrow(q \Rightarrow r)) \Rightarrow(p \wedge q \Rightarrow r)
$$

Determine whether A is valid.

$$
\neg A
$$

Example 1.4.9

Let $A=(p \Rightarrow(q \Rightarrow r)) \Rightarrow(p \wedge q \Rightarrow r)$
Determine whether A is valid.

$$
\begin{aligned}
& \neg A \\
& \equiv(p \Rightarrow(q \Rightarrow r)) \wedge \neg(p \wedge q \Rightarrow r) \quad \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C
\end{aligned}
$$

Example 1.4.9

Let $A=(p \Rightarrow(q \Rightarrow r)) \Rightarrow(p \wedge q \Rightarrow r)$
Determine whether A is valid.

$$
\begin{array}{ll}
\neg A & \\
\equiv(p \Rightarrow(q \Rightarrow r)) \wedge \neg(p \wedge q \Rightarrow r) & \\
\text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg p \vee \neg q \vee r) \wedge \neg(p \wedge q \Rightarrow r) & \\
\text { eliminating two } \Rightarrow
\end{array}
$$

Example 1.4.9

Let $A=(p \Rightarrow(q \Rightarrow r)) \Rightarrow(p \wedge q \Rightarrow r)$
Determine whether A is valid.

$$
\begin{array}{ll}
\neg A & \\
\equiv(p \Rightarrow(q \Rightarrow r)) \wedge \neg(p \wedge q \Rightarrow r) & \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg p \vee \neg q \vee r) \wedge \neg(p \wedge q \Rightarrow r) & \text { eliminating two } \Rightarrow \\
\equiv(\neg p \vee \neg q \vee r) \wedge(p \wedge q \wedge \neg r) & \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C
\end{array}
$$

Example 1.4.9

Let $A=(p \Rightarrow(q \Rightarrow r)) \Rightarrow(p \wedge q \Rightarrow r)$
Determine whether A is valid.

$$
\begin{array}{ll}
\neg A & \\
\equiv(p \Rightarrow(q \Rightarrow r)) \wedge \neg(p \wedge q \Rightarrow r) & \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg p \vee \neg q \vee r) \wedge \neg(p \wedge q \Rightarrow r) & \\
\text { eliminating two } \Rightarrow \\
\equiv(\neg p \vee \neg q \vee r) \wedge(p \wedge q \wedge \neg r) & \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg q \vee r) \wedge p \wedge q \wedge \neg r & \\
\text { simplification } x \wedge(\neg x \vee y)
\end{array}
$$

Example 1.4.9

Let $A=(p \Rightarrow(q \Rightarrow r)) \Rightarrow(p \wedge q \Rightarrow r)$
Determine whether A is valid.

$$
\begin{array}{ll}
\neg A & \\
\equiv(p \Rightarrow(q \Rightarrow r)) \wedge \neg(p \wedge q \Rightarrow r) & \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg p \vee \neg q \vee r) \wedge \neg(p \wedge q \Rightarrow r) & \\
\text { eliminating two } \Rightarrow \\
\equiv(\neg p \vee \neg q \vee r) \wedge(p \wedge q \wedge \neg r) & \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg q \vee r) \wedge p \wedge q \wedge \neg r & \text { simplification } x \wedge(\neg x \vee y) \\
\equiv(r) \wedge p \wedge q \wedge \neg r & \\
\text { simplification } x \wedge(\neg x \vee y)
\end{array}
$$

Example 1.4.9

Let $A=(p \Rightarrow(q \Rightarrow r)) \Rightarrow(p \wedge q \Rightarrow r)$
Determine whether A is valid.

$$
\begin{array}{ll}
\neg A & \\
\equiv(p \Rightarrow(q \Rightarrow r)) \wedge \neg(p \wedge q \Rightarrow r) & \\
\text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg p \vee \neg q \vee r) \wedge \neg(p \wedge q \Rightarrow r) & \\
\text { eliminating two } \Rightarrow \\
\equiv(\neg p \vee \neg q \vee r) \wedge(p \wedge q \wedge \neg) & \text { since } \neg(B \Rightarrow C) \equiv B \wedge \neg C \\
\equiv(\neg q \vee r) \wedge p \wedge q \wedge \neg r & \text { simplification } x \wedge(\neg x \vee y) \\
\equiv(r) \wedge p \wedge q \wedge \neg r & \text { simplification } x \wedge(\neg x \vee y) \\
=0 & \text { since we have } r \wedge \neg r \text { in the monomial } \\
& \\
\text { Hence } \neg A=0 \text { and } A=1 \text {, that is } A \text { is valid. }
\end{array}
$$

Example 1.4.10

Let $A=(a \Rightarrow b) \wedge c \vee(a \wedge d)$.
Determine whether A is valid.
$\neg A$

Example 1.4.10

Let $A=(a \Rightarrow b) \wedge c \vee(a \wedge d)$.
Determine whether A is valid.

$$
\begin{align*}
& \neg A \\
& \equiv \neg((a \Rightarrow b) \wedge c) \wedge \neg(a \wedge d) \tag{deMorgan}
\end{align*}
$$

Example 1.4.10

Let $A=(a \Rightarrow b) \wedge c \vee(a \wedge d)$.
Determine whether A is valid.

$$
\begin{aligned}
& \neg A \\
& \equiv \neg((a \Rightarrow b) \wedge c) \wedge \neg(a \wedge d) \\
& \equiv(\neg(a \Rightarrow b) \vee \neg c) \wedge(\neg a \vee \neg d)
\end{aligned}
$$

(de Morgan) (de Morgan)

Example 1.4.10

Let $A=(a \Rightarrow b) \wedge c \vee(a \wedge d)$.

Determine whether A is valid.

$$
\begin{aligned}
& \neg A \\
& \equiv \neg((a \Rightarrow b) \wedge c) \wedge \neg(a \wedge d) \\
& \equiv(\neg(a \Rightarrow b) \vee \neg c) \wedge(\neg a \vee \neg d) \\
& \equiv((a \wedge \neg b) \vee \neg c) \wedge(\neg a \vee \neg d)
\end{aligned}
$$

(de Morgan)
(de Morgan)
elimination of the implication

Example 1.4.10

Let $A=(a \Rightarrow b) \wedge c \vee(a \wedge d)$.
Determine whether A is valid.

$$
\begin{array}{lr}
\neg A & \text { (de Morgan) } \\
\equiv \neg((a \Rightarrow b) \wedge c) \wedge \neg(a \wedge d) & \text { (de Morgan) } \\
\equiv(\neg(a \Rightarrow b) \vee \neg c) \wedge(\neg a \vee \neg d) & \text { elimination of } \\
\equiv((a \wedge \neg b) \vee \neg c) \wedge(\neg a \vee \neg d) & \\
\equiv(a \wedge \neg b \wedge \neg a) \vee(a \wedge \neg b \wedge \neg d) \vee(\neg c \wedge \neg a) \vee(\neg c \wedge \neg d)
\end{array}
$$

$$
\text { distributivity of } \vee \text { over } \wedge
$$

Example 1.4.10

Let $A=(a \Rightarrow b) \wedge c \vee(a \wedge d)$.
Determine whether A is valid.

$$
\begin{array}{lr}
\neg A & \text { (de Morgan) } \\
\equiv \neg((a \Rightarrow b) \wedge c) \wedge \neg(a \wedge d) & \text { (de Morgan) } \\
\equiv(\neg(a \Rightarrow b) \vee \neg c) \wedge(\neg a \vee \neg d) & \text { elimination of the implicatior } \\
\equiv((a \wedge \neg \neg) \vee \neg c) \wedge(\neg a \vee \neg d) & \text { distributivity of } \vee \text { over } \wedge \\
\equiv(a \wedge \neg b \wedge \neg a) \vee(a \wedge \neg b \wedge \neg d) \vee(\neg c \wedge \neg a) \vee(\neg c \wedge \neg d) \\
\equiv(a \wedge \neg b \wedge \neg d) \vee(\neg c \wedge \neg a) \vee(\neg c \wedge \neg d) & \text { 1st monomial contradictory }
\end{array}
$$

Example 1.4.10

Let $A=(a \Rightarrow b) \wedge c \vee(a \wedge d)$.
Determine whether A is valid.

$$
\begin{array}{ll}
\neg A & \\
\equiv \neg((a \Rightarrow b) \wedge c) \wedge \neg(a \wedge d) & \text { (de Morgan) } \\
\equiv(\neg(a \Rightarrow b) \vee \neg c) \wedge(\neg a \vee \neg d) & \text { (de Morgan) } \\
\equiv((a \wedge \neg b) \vee \neg c) \wedge(\neg a \vee \neg d) & \text { elimination of the implicatior } \\
\equiv(a \wedge \neg b \wedge \neg a) \vee(a \wedge \neg b \wedge \neg d) \vee(\neg c \wedge \neg a) \vee(\neg c \wedge \neg d) \\
& \\
\equiv(a \wedge \neg b \wedge \neg d) \vee(\neg c \wedge \neg a) \vee(\neg c \wedge \neg d) & \text { distributivity of } \vee \text { over } \wedge
\end{array}
$$

We obtain 3 models of $\neg A:(a \mapsto 1, b \mapsto 0, d \mapsto 0),(a \mapsto 0, c \mapsto 0)$, ($c \mapsto 0, d \mapsto 0$).
That is, counter-models of A. Hence A is not valid.

Conclusion

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Today

- Substitutions allow us to deduce the validity of a formula from another
- Replacements allow us to change part of a formula without changing its meaning and thus allow us to compute a simpler equivalent formula
- Every formula admits normal forms which allow to highlight its models and counter-models

Next course

- Boolean algebra
- Boolean functions
- Resolution

Prove our example by formula simplification

$$
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p
$$

