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Transformations of logical formulae

Previous lecture

I Why formal logic ?

I Propositional logic

I Syntax

I Meaning of formulae
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Transformations of logical formulae

Our example with a truth table

Hypotheses:
I (H1): If Peter is old, then John is not the son of Peter
I (H2): If Peter is not old, then John is the son of Peter
I (H3): If John is Peter’s son then Mary is the sister of John

Conclusion (C): Mary is the sister of John, or Peter is old.

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p

p j m p⇒¬j ¬p⇒ j j⇒m H1 ∧H2 ∧H3 m∨p H1 ∧H2 ∧H3⇒m∨p
0 0 0 1 0 1 0 0 1
0 0 1 1 0 1 0 1 1
0 1 0 1 1 0 0 0 1
0 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 0 0 1 0 0 1 1
1 1 1 0 1 1 0 1 1
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Transformations of logical formulae

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion
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Transformations of logical formulae

Consequence

Logical consequence (entailment)

Definition 1.2.24

A is a consequence of the set Γ of hypotheses ( Γ |= A ) if
every model of Γ is a model of A.

Remark 1.2.26

|= A denotes that A is valid.
(Every truth assignment is a model for the empty set.)
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Transformations of logical formulae

Consequence

Example of a consequence

Example 1.2.28

a⇒ b , b⇒ c |= a⇒ c.

a b c a⇒ b b⇒ c a⇒ c
0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 1
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Transformations of logical formulae

Consequence

ESSENTIAL property

Often used in exercises and during exams.

Property 1.2.27

Let Hn = A1∧ . . .∧An.
The following three formulations are equivalent:

1. A1, . . . ,An |= B

2. Hn⇒ B is valid.

3. Hn∧¬B is unsatisfiable.

Proof.

Based on the truth tables of the connectives.
We prove that 1⇒ 2 then 2⇒ 3 and 3⇒ 1. 2
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Transformations of logical formulae

Consequence

Proof (1/3)

I 1⇒ 2: let us assume that A1, . . . ,An |= B.

Let v be a truth assignment:
I if v is not a model for A1, . . . ,An:

for a certain i we have [Ai ]v = 0, hence [Hn]v = 0.
Thus [Hn⇒ B]v = 1.

I is v is a model for A1, . . . ,An:
then by hypothesis v is a model for B therefore [B]v = 1.
Thus [Hn⇒ B]v = 1.

Therefore Hn⇒ B is valid.
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Transformations of logical formulae

Consequence

Proof (2/3)

I 2⇒ 3: let us assume that Hn⇒ B is valid.
For every truth assignment v :
I either [Hn]v = 0,
I or [Hn]v = 1 and [B]v = 1.

However [Hn∧¬B]v = min([Hn]v , [¬B]v ) = min([Hn]v ,1− [B]v ).

In both cases, we have [Hn∧¬B]v = 0.
Therefore Hn∧¬B is unsatisfiable.
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Transformations of logical formulae

Consequence

Proof (3/3)

I 3⇒ 1: let us assume that Hn∧¬B is unsatisfiable.
Let us show that A1, . . . ,An |= B.

Let v be a truth assignment model of A1, . . . ,An:
I [Hn]v = [A1∧ . . .∧An]v = 1.
I According to our hypothesis [¬B]v = 0.

Hence, 1− [B]v = 0 so [B]v = 1, i.e. v is a model for B.

Exercise 7 shows why proving these 3 circular implications is sufficient.
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Transformations of logical formulae

Consequence

Instance of the property

Example 1.2.28

a b c a⇒ b b⇒ c a⇒ c (a⇒ b)∧ (b⇒ c) (a⇒ b)∧ (b⇒ c)
⇒ (a⇒ c) ∧¬(a⇒ c)

0 0 0 1 1 1

1 0

0 0 1 1 1 1

1 0

0 1 0 1 0 1

1 0

0 1 1 1 1 1

1 0

1 0 0 0 1 0

1 0

1 0 1 0 1 1

1 0

1 1 0 1 0 0

1 0

1 1 1 1 1 1

1 0
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Consequence
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0
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0
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0
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Transformations of logical formulae

Consequence
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Transformations of logical formulae

Consequence

Compactness

Theorem 1.2.30 Propositional compactness

A set of propositional formulae has a model if an only if every finite
subset of it has a model.

This theorem may look trivial. However, the set of formulae may be
infinite !

This result will be used at a later stage in the course (bases for
automated theorem proving).
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Transformations of logical formulae

Important equivalences

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion
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Transformations of logical formulae

Important equivalences

Preamble

How to prove that a formula is valid?

I Truth table

I Problem: for a formula having 100 variables, the truth table will
contain 2100 lines (unable to be computed, even by a computer!).

I Idea:

I Simplify the formula using transformations
I Then, study the simplified formula using truth tables or a logic

reasoning
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Transformations of logical formulae

Important equivalences

Disjunction

I associative x ∨ (y ∨ z)≡ (x ∨ y)∨ z

I commutative x ∨ y ≡ y ∨ x

I idempotent x ∨ x ≡ x

Ditto for conjunction.
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Transformations of logical formulae

Important equivalences

Distributivity

I Conjunction distributes over disjunction
x ∧ (y ∨ z)≡ (x ∧ y)∨ (x ∧ z)

I Disjunction distributes over conjunction
x ∨ (y ∧ z)≡ (x ∨ y)∧ (x ∨ z)

B. Wack et al (UGA) Transformations of logical formulae January 2023 17 / 48



Transformations of logical formulae

Important equivalences

Distributivity

I Conjunction distributes over disjunction
x ∧ (y ∨ z)≡ (x ∧ y)∨ (x ∧ z)

I Disjunction distributes over conjunction
x ∨ (y ∧ z)≡ (x ∨ y)∧ (x ∨ z)

B. Wack et al (UGA) Transformations of logical formulae January 2023 17 / 48



Transformations of logical formulae

Important equivalences

Neutrality and Absorption

I 0 is the neutral element for disjunction 0∨ x ≡ x

I 1 is the neutral element for conjunction 1∧ x ≡ x

I 1 is the absorbing element for disjunction 1∨ x ≡ 1

I 0 is the absorbing element for conjunction 0∧ x ≡ 0
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Transformations of logical formulae

Important equivalences

Negation

I Negation laws:
I x ∧¬x ≡ 0
I x ∨¬x ≡ 1 (The law of excluded middle)

I ¬¬x ≡ x

I ¬0≡ 1

I ¬1≡ 0
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Transformations of logical formulae

Important equivalences

De Morgan laws

I ¬(x ∧ y)≡ ¬x ∨¬y

I ¬(x ∨ y)≡ ¬x ∧¬y
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Transformations of logical formulae

Important equivalences

Augustus De Morgan (1860) builds on Boole’s alge-
bra:

I Work about quantifiers

I Calculus of relations
(also see C.S. Peirce’s works)

which laid grounds for first-ordre logic (see 2nd part
of the course).

I Notion of duality in Boole’s algebras

expressed in particular as De Morgan’s laws

I Involved (though very briefly) in the first conjectures about the
four colour theorem
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Transformations of logical formulae

Important equivalences

Simplification laws

Property 1.2.31

For every x ,y we have:

I x ∨ (x ∧ y)≡ x

I x ∧ (x ∨ y)≡ x

I x ∨ (¬x ∧ y)≡ x ∨ y
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Transformations of logical formulae

Substitution and replacement

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion
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Transformations of logical formulae

Substitution and replacement

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

Aσ = the formula A where all variables x are replaced by the formula
σ(x).

Example: A = ¬(p∧q)⇔ (¬p∨¬q)

I Let σ the following substitution: σ(p) = (a∨b),σ(q) = (c∧d)

I Aσ =

¬((a∨b)∧ (c∧d))⇔ (¬(a∨b)∨¬(c∧d))
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Transformations of logical formulae

Substitution and replacement

Finite support substitution

Definition 1.3.2

I The support of a substitution σ is the set of variables x such that
xσ 6= x .

I A finite support substitution σ is denoted
< x1 := A1, . . . ,xn := An >

Example 1.3.3

A = x ∨ x ∧ y ⇒ z ∧ y and σ =< x := a∨b,z := b∧ c >

Aσ =

(a∨b)∨ (a∨b)∧ y ⇒ (b∧ c)∧ y
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Transformations of logical formulae

Substitution and replacement

Properties of substitutions

Property 1.3.4

Let v be a truth assignment and σ a substitution.
Let w be the assignment w : x 7→ [σ(x)]v .
For any formula A, we have [Aσ]v = [A]w .

Example 1.3.5 :
Let A = x ∨ y ∨d
Let σ =< x := a∨b,y := b∧ c >
Let v be v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

Aσ = (a∨b)∨ (b∧ c)∨d

w(x) = [a∨b]v = 1∨0 = 1
w(y) = [b∧ c]v = 0∧0 = 0
w(d) = [d]v = 0

[Aσ]v = (1∨0)∨ (0∧0)∨0
= 1∨0∨0 = 1

[A]w = 1∨0∨0 = 1

B. Wack et al (UGA) Transformations of logical formulae January 2023 26 / 48



Transformations of logical formulae

Substitution and replacement

Properties of substitutions

Property 1.3.4

Let v be a truth assignment and σ a substitution.
Let w be the assignment w : x 7→ [σ(x)]v .
For any formula A, we have [Aσ]v = [A]w .

Example 1.3.5 :
Let A = x ∨ y ∨d
Let σ =< x := a∨b,y := b∧ c >
Let v be v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

Aσ = (a∨b)∨ (b∧ c)∨d

w(x) = [a∨b]v = 1∨0 = 1
w(y) = [b∧ c]v = 0∧0 = 0
w(d) = [d]v = 0

[Aσ]v = (1∨0)∨ (0∧0)∨0
= 1∨0∨0 = 1

[A]w = 1∨0∨0 = 1

B. Wack et al (UGA) Transformations of logical formulae January 2023 26 / 48



Transformations of logical formulae

Substitution and replacement

Properties of substitutions

Property 1.3.4

Let v be a truth assignment and σ a substitution.
Let w be the assignment w : x 7→ [σ(x)]v .
For any formula A, we have [Aσ]v = [A]w .

Example 1.3.5 :
Let A = x ∨ y ∨d
Let σ =< x := a∨b,y := b∧ c >
Let v be v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

Aσ = (a∨b)∨ (b∧ c)∨d

w(x) = [a∨b]v = 1∨0 = 1
w(y) = [b∧ c]v = 0∧0 = 0
w(d) = [d]v = 0

[Aσ]v = (1∨0)∨ (0∧0)∨0
= 1∨0∨0 = 1

[A]w = 1∨0∨0 = 1

B. Wack et al (UGA) Transformations of logical formulae January 2023 26 / 48



Transformations of logical formulae

Substitution and replacement

Properties of substitutions

Property 1.3.4

Let v be a truth assignment and σ a substitution.
Let w be the assignment w : x 7→ [σ(x)]v .
For any formula A, we have [Aσ]v = [A]w .

Example 1.3.5 :
Let A = x ∨ y ∨d
Let σ =< x := a∨b,y := b∧ c >
Let v be v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

Aσ = (a∨b)∨ (b∧ c)∨d w(x) = [a∨b]v = 1∨0 = 1
w(y) = [b∧ c]v = 0∧0 = 0
w(d) = [d]v = 0

[Aσ]v = (1∨0)∨ (0∧0)∨0
= 1∨0∨0 = 1 [A]w = 1∨0∨0 = 1

B. Wack et al (UGA) Transformations of logical formulae January 2023 26 / 48



Transformations of logical formulae

Substitution and replacement

Initial step: |A|= 0

Two possible cases:

I If A is > or ⊥ then Aσ = A and [A]v does not depend on v .

I If A is a variable x , then by construction [xσ]v == w(x).
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Transformations of logical formulae

Substitution and replacement

Induction

Hypothesis: Assume the property holds for any formula of height less
or equal to n.
Let A be a formula of height n + 1; there are two possible cases:

I Case 1: A = ¬B with |B|= n.
[Aσ]v = [¬Bσ]v = [¬(Bσ)]v = 1− [Bσ]v and
[A]w = [¬B]w = 1− [B]w .
Since |B|= n, by induction hypothesis [Bσ]v = [B]w

Hence, [Aσ]v = [A]w .
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Transformations of logical formulae

Substitution and replacement

Induction

Hypothesis: Assume the property is true for any formula of height less
or equal to n.
Let A be a formula of height n + 1; there are two possible cases:

I Case 2: A = (B ◦C) with |B|< n + 1 and |C|< n + 1.
Then [Aσ]v = [Bσ◦Cσ]v

and [A]w = [B ◦C]w

By induction hypothesis [Bσ]v = [B]w and [Cσ]v = [C]w .
Since the semantics for ◦ remain the same, [Aσ]v = [A]w .
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Transformations of logical formulae

Substitution and replacement

Substitution of a valid formula

Theorem 1.3.6

If A is valid then Aσ is valid for any σ.

Proof.

Let v be any truth assignment.

According to property 1.3.4 : [Aσ]v = [A]w where w(x) = [σ(x)]v .

Since A is valid, [A]w = 1.

Consequently, Aσ equals 1 in every truth assignment, therefore
Aσ is a valid formula.

2
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Consequently, Aσ equals 1 in every truth assignment, therefore
Aσ is a valid formula. 2
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Transformations of logical formulae

Substitution and replacement

Examples

Example 1.3.7

Let A be the formula ¬(p∧q)⇔ (¬p∨¬q). This formula is valid, it is
an important equivalence. Let σ the following substitution:
< p := (a∨b),q := (c∧d) >. The formula

Aσ = ¬((a∨b)∧ (c∧d))⇔ (¬(a∨b)∨¬(c∧d)) is also valid.
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Transformations of logical formulae

Substitution and replacement

Replacement

Definition 1.3.8

The formula D is obtained by replacing certain occurrences of A by B
in C if:

I C can be written E < x := A >

I D can be written E < x := B >

for some formula E .
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Transformations of logical formulae

Substitution and replacement

Examples

Example 1.3.9

Consider the formula C = ((a⇒ b)∨¬(a⇒ b)).

I The formula obtained by replacing all occurrences of (a⇒ b) by
(a∧b) is

D = ((a∧b)∨¬(a∧b))

using E = (x ∨¬x).

I The formula obtained by replacing the first occurrence of (a⇒ b)
by (a∧b) is

D = ((a∧b)∨¬(a⇒ b))

using E = (x ∨¬(a⇒ b)).
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Transformations of logical formulae

Substitution and replacement

Properties of the replacements

Theorem 1.3.10

If D is obtained by replacing, in C, some occurrences of A by B, then
(A⇔ B) |= (C⇔ D).

Proof.

By definition, C = E < x := A > et D = E < x := B >.
Assume that [A]v = [B]v , then w is the same for both substitutions.
Therefore [C]v = [D]v : the assignment v is a model of (C⇔ D). 2

Example 1.3.12: p⇔ q |= (p∨ ( p ⇒ r))⇔ (p∨ ( q ⇒ r)).

Corollary 1.3.11

Let D be obtained by replacing, in C, one occurrence of A by B.
If A≡ B then C ≡ D.
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Transformations of logical formulae

Normal forms

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion
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Transformations of logical formulae

Normal forms

Definitions

Definition 1.4.1

I A literal is a variable or its negation.

I A monomial is a conjunction of literals (special cases 0 and 1).

I A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

I x ,y ,¬z are literals.

I x ∧¬y ∧ z is a monomial

I The monomial x ∧¬y ∧ z ∧¬x contains x and ¬x : its value is 0.

I x ∨¬y ∨ z is a clause

I The clause x ∨¬y ∨ z ∨¬x contains x and ¬x : its value is 1.
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Transformations of logical formulae

Normal forms

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators ∧,∨,¬ and
the negations are only applied to variables.

Example 1.4.4

The formula ¬a∨b is in normal form
a⇒ b is not in normal form, even if it is equivalent to the first one.

Every formula admits an equivalent normal form.
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Transformations of logical formulae

Normal forms

Computing a normal form

1. Equivalence elimination

Replace any occurrence of A⇔ B by
(a) (¬A∨B)∧ (¬B∨A)

OR
(b) (A∧B)∨ (¬A∧¬B)

2. Implication elimination

Replace any occurrence of A⇒ B by ¬A∨B

3. Shifting negations towards variables

Replace any occurrence of
(a) ¬¬A by A
(b) ¬(A∨B) by ¬A∧¬B
(c) ¬(A∧B) by ¬A∨¬B
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Transformations of logical formulae

Normal forms

Remark 1.4.5: simplifications

Simplify as soon as possible:

1. Replace ¬(A⇒ B) by A∧¬B.

2. Replacing a conjunction by 0 if it contains a formula and its negation

3. Replace a disjunction by 1 if it contains a formula and its negation

4. Apply :

I Idempotence of ∧ and ∨
I Neutrality and absorption of 0 and 1
I Replace ¬1 by 0 and vice versa.

5. Apply the simplifications:

I x ∨ (x ∧ y)≡ x ,
I x ∧ (x ∨ y)≡ x ,
I x ∨ (¬x ∧ y)≡ x ∨ y
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Transformations of logical formulae

Normal forms

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a
disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions
x ∧ (y ∨ z)≡ (x ∧ y)∨ (x ∧ z)

The interest of a DNF is to highlight the models.

Example 1.4.7

(x ∧ y)∨ (¬x ∧¬y ∧ z) is a DNF, which has two main models:

I x 7→ 1,y 7→ 1

I x 7→ 0,y 7→ 0,z 7→ 1
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Transformations of logical formulae

Normal forms

Conjunctive normal form (CNF)

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a
conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

I A∨ (B∧C) ≡ (A∨B)∧ (A∨C)

The interest of a CNF is to highlight the counter-models.

Example 1.4.12

(x ∨ y)∧ (¬x ∨¬y ∨ z) is a CNF, which has two counter-models.

I x 7→ 0,y 7→ 0

I x 7→ 1,y 7→ 1,z 7→ 0.
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Transformations of logical formulae

Normal forms

Examples 1.4.8 and 1.4.13

Transformation in DNF of the following:

(a∨b)∧ (c∨d ∨e)≡

(a∧ c)∨ (a∧d)∨ (a∧e)∨ (b∧ c)∨ (b∧d)∨ (b∧e).

Transformation in CNF of the following:

(a∧b)∨ (c∧d ∧e)≡

(a∨ c)∧ (a∨d)∧ (a∨e)∧ (b∨ c)∧ (b∨d)∧ (b∨e).
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Transformation in CNF of the following:

(a∧b)∨ (c∧d ∧e)≡
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B. Wack et al (UGA) Transformations of logical formulae January 2023 42 / 48



Transformations of logical formulae

Normal forms

Examples 1.4.8 and 1.4.13

Transformation in DNF of the following:

(a∨b)∧ (c∨d ∨e)≡

(a∧ c)∨ (a∧d)∨ (a∧e)∨ (b∧ c)∨ (b∧d)∨ (b∧e).

Transformation in CNF of the following:

(a∧b)∨ (c∧d ∧e)≡

(a∨ c)∧ (a∨d)∧ (a∨e)∧ (b∨ c)∧ (b∨d)∧ (b∨e).

B. Wack et al (UGA) Transformations of logical formulae January 2023 42 / 48



Transformations of logical formulae

Normal forms

Examples 1.4.8 and 1.4.13

Transformation in DNF of the following:

(a∨b)∧ (c∨d ∨e)≡

(a∧ c)∨ (a∧d)∨ (a∧e)∨ (b∧ c)∨ (b∧d)∨ (b∧e).

Transformation in CNF of the following:

(a∧b)∨ (c∧d ∧e)≡

(a∨ c)∧ (a∨d)∧ (a∨e)∧ (b∨ c)∧ (b∨d)∧ (b∨e).

B. Wack et al (UGA) Transformations of logical formulae January 2023 42 / 48



Transformations of logical formulae

Normal forms

Another use of DNFs

Transforming a formula into a disjunction of monomials also allows us
to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:

We transform ¬A in an equivalent disjunction of monomials B:

I If B = 0 then ¬A = 0, hence A = 1, that is, A is valid

I Otherwise B is equal to a disjunction of nonzero monomials
equivalent to ¬A, which give us models of ¬A, hence
counter-models of A.
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Transformations of logical formulae

Normal forms

Example 1.4.9

Let A = (p⇒ (q⇒ r))⇒ (p∧q⇒ r)

Determine whether A is valid.

¬A

≡ (p⇒ (q⇒ r))∧¬(p∧q⇒ r) since ¬(B⇒ C)≡ B∧¬C
≡ (¬p∨¬q∨ r)∧¬(p∧q⇒ r) eliminating two⇒
≡ (¬p∨¬q∨ r)∧ (p∧q∧¬r) since ¬(B⇒ C)≡ B∧¬C
≡ (¬q∨ r)∧p∧q∧¬r simplification x ∧ (¬x ∨ y)
≡ (r)∧p∧q∧¬r simplification x ∧ (¬x ∨ y)
= 0 since we have r ∧¬r in the monomial

Hence ¬A = 0 and A = 1, that is A is valid.
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Transformations of logical formulae

Normal forms

Example 1.4.10

Let A = (a⇒ b)∧ c∨ (a∧d).

Determine whether A is valid.

¬A

≡ ¬((a⇒ b)∧ c)∧¬(a∧d) (de Morgan)
≡ (¬(a⇒ b)∨¬c)∧ (¬a∨¬d) (de Morgan)
≡ ((a∧¬b)∨¬c)∧ (¬a∨¬d) elimination of the implication
≡ (a∧¬b∧¬a)∨ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d)

distributivity of ∨ over ∧
≡ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d) 1st monomial contradictory

We obtain 3 models of ¬A: (a 7→ 1,b 7→ 0,d 7→ 0) , (a 7→ 0,c 7→ 0),
(c 7→ 0,d 7→ 0).
That is, counter-models of A.
Hence A is not valid.

B. Wack et al (UGA) Transformations of logical formulae January 2023 45 / 48



Transformations of logical formulae

Normal forms

Example 1.4.10

Let A = (a⇒ b)∧ c∨ (a∧d).

Determine whether A is valid.

¬A
≡ ¬((a⇒ b)∧ c)∧¬(a∧d) (de Morgan)

≡ (¬(a⇒ b)∨¬c)∧ (¬a∨¬d) (de Morgan)
≡ ((a∧¬b)∨¬c)∧ (¬a∨¬d) elimination of the implication
≡ (a∧¬b∧¬a)∨ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d)

distributivity of ∨ over ∧
≡ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d) 1st monomial contradictory

We obtain 3 models of ¬A: (a 7→ 1,b 7→ 0,d 7→ 0) , (a 7→ 0,c 7→ 0),
(c 7→ 0,d 7→ 0).
That is, counter-models of A.
Hence A is not valid.

B. Wack et al (UGA) Transformations of logical formulae January 2023 45 / 48



Transformations of logical formulae

Normal forms

Example 1.4.10

Let A = (a⇒ b)∧ c∨ (a∧d).

Determine whether A is valid.

¬A
≡ ¬((a⇒ b)∧ c)∧¬(a∧d) (de Morgan)
≡ (¬(a⇒ b)∨¬c)∧ (¬a∨¬d) (de Morgan)

≡ ((a∧¬b)∨¬c)∧ (¬a∨¬d) elimination of the implication
≡ (a∧¬b∧¬a)∨ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d)

distributivity of ∨ over ∧
≡ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d) 1st monomial contradictory

We obtain 3 models of ¬A: (a 7→ 1,b 7→ 0,d 7→ 0) , (a 7→ 0,c 7→ 0),
(c 7→ 0,d 7→ 0).
That is, counter-models of A.
Hence A is not valid.

B. Wack et al (UGA) Transformations of logical formulae January 2023 45 / 48



Transformations of logical formulae

Normal forms

Example 1.4.10

Let A = (a⇒ b)∧ c∨ (a∧d).

Determine whether A is valid.

¬A
≡ ¬((a⇒ b)∧ c)∧¬(a∧d) (de Morgan)
≡ (¬(a⇒ b)∨¬c)∧ (¬a∨¬d) (de Morgan)
≡ ((a∧¬b)∨¬c)∧ (¬a∨¬d) elimination of the implication

≡ (a∧¬b∧¬a)∨ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d)
distributivity of ∨ over ∧

≡ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d) 1st monomial contradictory

We obtain 3 models of ¬A: (a 7→ 1,b 7→ 0,d 7→ 0) , (a 7→ 0,c 7→ 0),
(c 7→ 0,d 7→ 0).
That is, counter-models of A.
Hence A is not valid.

B. Wack et al (UGA) Transformations of logical formulae January 2023 45 / 48



Transformations of logical formulae

Normal forms

Example 1.4.10

Let A = (a⇒ b)∧ c∨ (a∧d).

Determine whether A is valid.

¬A
≡ ¬((a⇒ b)∧ c)∧¬(a∧d) (de Morgan)
≡ (¬(a⇒ b)∨¬c)∧ (¬a∨¬d) (de Morgan)
≡ ((a∧¬b)∨¬c)∧ (¬a∨¬d) elimination of the implication
≡ (a∧¬b∧¬a)∨ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d)

distributivity of ∨ over ∧

≡ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d) 1st monomial contradictory

We obtain 3 models of ¬A: (a 7→ 1,b 7→ 0,d 7→ 0) , (a 7→ 0,c 7→ 0),
(c 7→ 0,d 7→ 0).
That is, counter-models of A.
Hence A is not valid.

B. Wack et al (UGA) Transformations of logical formulae January 2023 45 / 48



Transformations of logical formulae

Normal forms

Example 1.4.10

Let A = (a⇒ b)∧ c∨ (a∧d).

Determine whether A is valid.

¬A
≡ ¬((a⇒ b)∧ c)∧¬(a∧d) (de Morgan)
≡ (¬(a⇒ b)∨¬c)∧ (¬a∨¬d) (de Morgan)
≡ ((a∧¬b)∨¬c)∧ (¬a∨¬d) elimination of the implication
≡ (a∧¬b∧¬a)∨ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d)

distributivity of ∨ over ∧
≡ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d) 1st monomial contradictory

We obtain 3 models of ¬A: (a 7→ 1,b 7→ 0,d 7→ 0) , (a 7→ 0,c 7→ 0),
(c 7→ 0,d 7→ 0).
That is, counter-models of A.
Hence A is not valid.

B. Wack et al (UGA) Transformations of logical formulae January 2023 45 / 48



Transformations of logical formulae

Normal forms

Example 1.4.10

Let A = (a⇒ b)∧ c∨ (a∧d).

Determine whether A is valid.

¬A
≡ ¬((a⇒ b)∧ c)∧¬(a∧d) (de Morgan)
≡ (¬(a⇒ b)∨¬c)∧ (¬a∨¬d) (de Morgan)
≡ ((a∧¬b)∨¬c)∧ (¬a∨¬d) elimination of the implication
≡ (a∧¬b∧¬a)∨ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d)

distributivity of ∨ over ∧
≡ (a∧¬b∧¬d)∨ (¬c∧¬a)∨ (¬c∧¬d) 1st monomial contradictory

We obtain 3 models of ¬A: (a 7→ 1,b 7→ 0,d 7→ 0) , (a 7→ 0,c 7→ 0),
(c 7→ 0,d 7→ 0).
That is, counter-models of A.
Hence A is not valid.

B. Wack et al (UGA) Transformations of logical formulae January 2023 45 / 48



Transformations of logical formulae

Conclusion
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Transformations of logical formulae

Conclusion

Today

I Substitutions allow us to deduce the validity of a formula from
another

I Replacements allow us to change part of a formula without
changing its meaning and thus allow us to compute a simpler
equivalent formula

I Every formula admits normal forms which allow to highlight its
models and counter-models
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Transformations of logical formulae

Conclusion

Next course

I Boolean algebra

I Boolean functions

I Resolution

Prove our example by formula simplification

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p
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