Transformations of logical formulae

Frédéric Prost

Université Grenoble Alpes

January 2023

B. Wack et al (UGA)

Transformations of logical formulae

Previous lecture

- ► Why formal logic ?
- Propositional logic
- Syntax
- Meaning of formulae

Our example with a truth table

Hypotheses:

- (H1): If Peter is old, then John is not the son of Peter
- (H2): If Peter is not old, then John is the son of Peter
- ► (H3): If John is Peter's son then Mary is the sister of John

Conclusion (C): Mary is the sister of John, or Peter is old.

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

Our example with a truth table

Hypotheses:

- (H1): If Peter is old, then John is not the son of Peter
- (H2): If Peter is not old, then John is the son of Peter
- ► (H3): If John is Peter's son then Mary is the sister of John

Conclusion (C): Mary is the sister of John, or Peter is old.

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

р	j	m	$p \Rightarrow \neg j$	$\neg p \Rightarrow j$	$j \Rightarrow m$	$H_1 \wedge H_2 \wedge H_3$	$m \lor p$	$H_1 \wedge H_2 \wedge H_3 \Rightarrow m \lor p$
0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	0	1	1
0	1	0	1	1	0	0	0	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	1	0	0	1	1
1	1	1	0	1	1	0	1	1

B. Wack et al (UGA)

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Logical consequence (entailment)

Definition 1.2.24

A is a consequence of the set Γ of hypotheses ($\Gamma \models A$) if every model of Γ is a model of A.

Remark 1.2.26

 \models A denotes that A is valid.

(Every truth assignment is a model for the empty set.)

Example of a consequence

Example 1.2.28

 $a \Rightarrow b$, $b \Rightarrow c \models a \Rightarrow c$.

Example of a consequence

Example 1.2.28

 $a \Rightarrow b$, $b \Rightarrow c \models a \Rightarrow c$.

а	b	С	$a \Rightarrow b$	$b \Rightarrow c$	a⇒c
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	1

ESSENTIAL property

Often used in exercises and during exams.

Property 1.2.27

Let $H_n = A_1 \wedge \ldots \wedge A_n$.

The following three formulations are equivalent:

- 1. $A_1, \ldots, A_n \models B$
- 2. $H_n \Rightarrow B$ is valid.
- 3. $H_n \wedge \neg B$ is unsatisfiable.

Proof.

Based on the truth tables of the connectives. We prove that $1 \Rightarrow 2$ then $2 \Rightarrow 3$ and $3 \Rightarrow 1$.

Proof (1/3)

Therefore $H_n \Rightarrow B$ is valid.

Proof (2/3)

• 2 \Rightarrow 3: let us assume that $H_n \Rightarrow B$ is valid. For every truth assignment *v*:

• either
$$[H_n]_v = 0$$

• or
$$[H_n]_v = 1$$
 and $[B]_v = 1$.

However $[H_n \wedge \neg B]_v = \min([H_n]_v, [\neg B]_v) = \min([H_n]_v, 1 - [B]_v).$

In both cases, we have $[H_n \land \neg B]_v = 0$. Therefore $H_n \land \neg B$ is unsatisfiable.

Proof (3/3)

▶ 3 ⇒ 1: let us assume that $H_n \land \neg B$ is unsatisfiable. Let us show that $A_1, \ldots, A_n \models B$.

Let v be a truth assignment model of A_1, \ldots, A_n : • $[H_n]_v = [A_1 \land \ldots \land A_n]_v = 1.$ • According to our hypothesis $[\neg B]_v = 0.$ Hence, $1 - [B]_v = 0$ so $[B]_v = 1$, i.e. v is a model for B.

Exercise 7 shows why proving these 3 circular implications is sufficient.

Instance of the property

Example 1.2.28

а	b	С	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$	$(a \Rightarrow b) \land (b \Rightarrow c)$	$(a \Rightarrow b) \land (b \Rightarrow c)$
						\Rightarrow (a \Rightarrow c)	$\wedge \neg (a \Rightarrow c)$
0	0	0	1	1	1		
0	0	1	1	1	1		
0	1	0	1	0	1		
0	1	1	1	1	1		
1	0	0	0	1	0		
1	0	1	0	1	1		
1	1	0	1	0	0		
1	1	1	1	1	1		

Instance of the property

Example 1.2.28

а	b	С	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$	$(a \Rightarrow b) \land (b \Rightarrow c)$	$(a \Rightarrow b) \land (b \Rightarrow c)$
						\Rightarrow (a \Rightarrow c)	$\wedge \neg (a \Rightarrow c)$
0	0	0	1	1	1	1	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	1	1	1	1	
1	0	0	0	1	0	1	
1	0	1	0	1	1	1	
1	1	0	1	0	0	1	
1	1	1	1	1	1	1	

Instance of the property

Example 1.2.28

а	b	С	$a \Rightarrow b$	$b \Rightarrow c$	a⇒c	$(a \Rightarrow b) \land (b \Rightarrow c)$	$(a \Rightarrow b) \land (b \Rightarrow c)$
						\Rightarrow (a \Rightarrow c)	$\wedge \neg(a \Rightarrow c)$
0	0	0	1	1	1	1	0
0	0	1	1	1	1	1	0
0	1	0	1	0	1	1	0
0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0
1	1	1	1	1	1	1	0

Compactness

Theorem 1.2.30 Propositional compactness

A set of propositional formulae has a model if an only if every finite subset of it has a model.

Compactness

Theorem 1.2.30 Propositional compactness

A set of propositional formulae has a model if an only if every finite subset of it has a model.

This theorem may look trivial. However, the set of formulae may be infinite !

This result will be used at a later stage in the course (bases for automated theorem proving).

Transformations of logical formulae Important equivalences

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Transformations of logical formulae Important equivalences

Preamble

How to prove that a formula is valid?

Preamble

How to prove that a formula is valid?

Truth table

Problem: for a formula having 100 variables, the truth table will contain 2¹⁰⁰ lines (unable to be computed, even by a computer!).

Preamble

How to prove that a formula is valid?

Truth table

Problem: for a formula having 100 variables, the truth table will contain 2¹⁰⁰ lines (unable to be computed, even by a computer!).

Idea:

- Simplify the formula using transformations
- Then, study the simplified formula using truth tables or a logic reasoning

Disjunction

- associative $x \lor (y \lor z) \equiv (x \lor y) \lor z$
- commutative $x \lor y \equiv y \lor x$
- idempotent $x \lor x \equiv x$

Disjunction

- associative $x \lor (y \lor z) \equiv (x \lor y) \lor z$
- commutative $x \lor y \equiv y \lor x$
- idempotent $x \lor x \equiv x$

Ditto for conjunction.

Transformations of logical formulae Important equivalences

Distributivity

• Conjunction distributes over disjunction $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$

Distributivity

- Conjunction distributes over disjunction $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$
- ► Disjunction distributes over conjunction $x \lor (y \land z) \equiv (x \lor y) \land (x \lor z)$

Neutrality and Absorption

- 0 is the neutral element for disjunction $0 \lor x \equiv x$
- 1 is the neutral element for conjunction $1 \land x \equiv x$
- 1 is the absorbing element for disjunction $1 \lor x \equiv 1$
- 0 is the absorbing element for conjunction $0 \land x \equiv 0$

Transformations of logical formulae Important equivalences

Negation

Transformations of logical formulae Important equivalences

De Morgan laws

$$\neg (x \land y) \equiv \neg x \lor \neg y$$
$$\neg (x \lor y) \equiv \neg x \land \neg y$$

Augustus De Morgan (1860) builds on Boole's algebra:

- Work about quantifiers
- Calculus of relations (also see C.S. Peirce's works)

which laid grounds for first-ordre logic (see 2nd part of the course).

Augustus De Morgan (1860) builds on Boole's algebra:

- Work about quantifiers
- Calculus of relations (also see C.S. Peirce's works)

Notion of duality in Boole's algebras expressed in particular as De Morgan's laws

Augustus De Morgan (1860) builds on Boole's algebra:

- Work about quantifiers
- Calculus of relations (also see C.S. Peirce's works)

which laid grounds for first-ordre logic (see 2nd part of the course).

- Notion of duality in Boole's algebras expressed in particular as De Morgan's laws
 - Involved (though very briefly) in the first conjectures about the four colour theorem

Transformations of logical formulae Important equivalences

```
Simplification laws
```

Property 1.2.31

For every *x*, *y* we have:

 $x \lor (x \land y) \equiv x$

$$> x \land (x \lor y) \equiv x$$

$$x \lor (\neg x \land y) \equiv x \lor y$$

Transformations of logical formulae Substitution and replacement

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Transformations of logical formulae Substitution and replacement

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

 $A\sigma$ = the formula *A* where all variables *x* are replaced by the formula $\sigma(x)$.
Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

 $A\sigma$ = the formula *A* where all variables *x* are replaced by the formula $\sigma(x)$.

Example: $A = \neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$

Let σ the following substitution: σ(p) = (a ∨ b), σ(q) = (c ∧ d)
 Aσ =

Substitution

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

 $A\sigma$ = the formula *A* where all variables *x* are replaced by the formula $\sigma(x)$.

Example: $A = \neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$

• Let σ the following substitution: $\sigma(p) = (a \lor b), \sigma(q) = (c \land d)$

$$\blacktriangleright A\sigma = \neg((a \lor b) \land (c \land d)) \Leftrightarrow (\neg(a \lor b) \lor \neg(c \land d))$$

Finite support substitution

Definition 1.3.2

- The support of a substitution σ is the set of variables x such that $x\sigma \neq x$.
- A finite support substitution σ is denoted $\langle x_1 := A_1, \dots, x_n := A_n \rangle$

Finite support substitution

Definition 1.3.2

• The support of a substitution σ is the set of variables x such that $x\sigma \neq x$.

• A finite support substitution σ is denoted $\langle x_1 := A_1, \dots, x_n := A_n \rangle$

Example 1.3.3

$$A = x \lor x \land y \Rightarrow z \land y$$
 and $\sigma = \langle x := a \lor b, z := b \land c \rangle$

 $A\sigma =$

Finite support substitution

Definition 1.3.2

• The support of a substitution σ is the set of variables x such that $x\sigma \neq x$.

• A finite support substitution σ is denoted $\langle x_1 := A_1, \dots, x_n := A_n \rangle$

Example 1.3.3

$$A = x \lor x \land y \Rightarrow z \land y$$
 and $\sigma = \langle x := a \lor b, z := b \land c \rangle$

$$A\sigma = (a \lor b) \lor (a \lor b) \land y \Rightarrow (b \land c) \land y$$

Property 1.3.4

Let *v* be a truth assignment and σ a substitution. Let *w* be the assignment $w : x \mapsto [\sigma(x)]_v$. For any formula *A*, we have $[A\sigma]_v = [A]_w$.

Property 1.3.4

Let *v* be a truth assignment and σ a substitution. Let *w* be the assignment $w : x \mapsto [\sigma(x)]_v$. For any formula *A*, we have $[A\sigma]_v = [A]_w$.

Example 1.3.5 :

Let $A = x \lor y \lor d$ Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$ Let v be v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

Property 1.3.4

Let *v* be a truth assignment and σ a substitution. Let *w* be the assignment $w : x \mapsto [\sigma(x)]_v$. For any formula *A*, we have $[A\sigma]_v = [A]_w$.

Example 1.3.5 :

Let $A = x \lor y \lor d$ Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$ Let v be v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

 $A\sigma = (a \lor b) \lor (b \land c) \lor d$

 $[A\sigma]_{\nu} = (1 \lor 0) \lor (0 \land 0) \lor 0$ $= 1 \lor 0 \lor 0 = 1$

Property 1.3.4

Let *v* be a truth assignment and σ a substitution. Let *w* be the assignment $w : x \mapsto [\sigma(x)]_v$. For any formula *A*, we have $[A\sigma]_v = [A]_w$.

Example 1.3.5 :

Let $A = x \lor y \lor d$ Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$ Let v be v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

$A\sigma = (a \lor b) \lor (b \land c) \lor d$	$w(x) = [a \lor b]_v = 1 \lor 0 = 1$
	$w(y) = [b \wedge c]_v = 0 \wedge 0 = 0$
	$w(d) = [d]_v = 0$
$[A\sigma]_{\nu} = (1 \lor 0) \lor (0 \land 0) \lor 0$	
$=1 \lor 0 \lor 0 = 1$	$[A]_w = 1 \lor 0 \lor 0 = 1$

Transformations of logical formulae Substitution and replacement

Initial step: |A| = 0

Two possible cases:

- If A is \top or \bot then $A\sigma = A$ and $[A]_v$ does not depend on v.
- If *A* is a variable *x*, then by construction $[x\sigma]_v == w(x)$.

Induction

Hypothesis: Assume the property holds for any formula of height less or equal to *n*.

Let *A* be a formula of height n + 1; there are two possible cases:

Case 1:
$$A = \neg B$$
 with $|B| = n$.
 $[A\sigma]_v = [\neg B\sigma]_v = [\neg (B\sigma)]_v = 1 - [B\sigma]_v$ and
 $[A]_w = [\neg B]_w = 1 - [B]_w$.
Since $|B| = n$, by induction hypothesis $[B\sigma]_v = [B]_w$
Hence, $[A\sigma]_v = [A]_w$.

Induction

Hypothesis: Assume the property is true for any formula of height less or equal to *n*. Let *A* be a formula of height n + 1; there are two possible cases:

• Case 2: $A = (B \circ C)$ with |B| < n+1 and |C| < n+1. Then $[A\sigma]_v = [B\sigma \circ C\sigma]_v$ and $[A]_w = [B \circ C]_w$ By induction hypothesis $[B\sigma]_v = [B]_w$ and $[C\sigma]_v = [C]_w$. Since the semantics for \circ remain the same, $[A\sigma]_v = [A]_w$.

Theorem 1.3.6

If A is valid then $A\sigma$ is valid for any σ .

Proof.

Theorem 1.3.6

If A is valid then $A\sigma$ is valid for any σ .

Proof.

Let v be any truth assignment.

Theorem 1.3.6

If A is valid then $A\sigma$ is valid for any σ .

Proof.

Let v be any truth assignment.

According to property 1.3.4 : $[A\sigma]_v = [A]_w$ where $w(x) = [\sigma(x)]_v$.

Theorem 1.3.6

If A is valid then $A\sigma$ is valid for any σ .

Proof.

Let v be any truth assignment.

According to property 1.3.4 : $[A\sigma]_v = [A]_w$ where $w(x) = [\sigma(x)]_v$.

Since A is valid, $[A]_w = 1$.

Consequently, $A\sigma$ equals 1 in every truth assignment, therefore $A\sigma$ is a valid formula.

Example 1.3.7

Let *A* be the formula $\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$. This formula is valid, it is an important equivalence. Let σ the following substitution: . The formula

Example 1.3.7

Let *A* be the formula $\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$. This formula is valid, it is an important equivalence. Let σ the following substitution: . The formula

 $A\sigma = \neg((a \lor b) \land (c \land d)) \Leftrightarrow (\neg(a \lor b) \lor \neg(c \land d))$ is also valid.

Replacement

Definition 1.3.8

The formula D is obtained by replacing certain occurrences of A by B in C if:

- C can be written E < x := A >
- *D* can be written E < x := B >

for some formula E.

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg (a \Rightarrow b)).$

The formula obtained by replacing all occurrences of (a ⇒ b) by (a ∧ b) is

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg(a \Rightarrow b)).$

The formula obtained by replacing all occurrences of (a ⇒ b) by (a ∧ b) is

$$D = ((a \wedge b) \vee \neg (a \wedge b))$$

using $E = (x \lor \neg x)$.

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg (a \Rightarrow b)).$

The formula obtained by replacing all occurrences of (a ⇒ b) by (a ∧ b) is

$$D = ((a \wedge b) \vee \neg (a \wedge b))$$

using $E = (x \lor \neg x)$.

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg (a \Rightarrow b)).$

• The formula obtained by replacing all occurrences of $(a \Rightarrow b)$ by $(a \wedge b)$ is

$$D = ((a \wedge b) \vee \neg (a \wedge b))$$

using $E = (x \vee \neg x)$.

• The formula obtained by replacing the *first* occurrence of $(a \Rightarrow b)$ by $(a \wedge b)$ is

$$D = ((a \land b) \lor \neg (a \Rightarrow b))$$

using
$$E = (x \lor \neg (a \Rightarrow b))$$
.

Theorem 1.3.10

If *D* is obtained by replacing, in *C*, some occurrences of *A* by *B*, then $(A \Leftrightarrow B) \models (C \Leftrightarrow D)$.

Theorem 1.3.10

If *D* is obtained by replacing, in *C*, some occurrences of *A* by *B*, then $(A \Leftrightarrow B) \models (C \Leftrightarrow D)$.

Proof.

By definition, C = E < x := A > et D = E < x := B >. Assume that $[A]_v = [B]_v$, then *w* is the same for both substitutions. Therefore $[C]_v = [D]_v$: the assignment *v* is a model of $(C \Leftrightarrow D)$.

Theorem 1.3.10

If *D* is obtained by replacing, in *C*, some occurrences of *A* by *B*, then $(A \Leftrightarrow B) \models (C \Leftrightarrow D)$.

Proof.

By definition, C = E < x := A > et D = E < x := B >. Assume that $[A]_v = [B]_v$, then *w* is the same for both substitutions. Therefore $[C]_v = [D]_v$: the assignment *v* is a model of $(C \Leftrightarrow D)$.

Example 1.3.12: $p \Leftrightarrow q \models (p \lor (p \Rightarrow r)) \Leftrightarrow (p \lor (q \Rightarrow r)).$

Theorem 1.3.10

If *D* is obtained by replacing, in *C*, some occurrences of *A* by *B*, then $(A \Leftrightarrow B) \models (C \Leftrightarrow D)$.

Proof.

By definition, C = E < x := A > et D = E < x := B >. Assume that $[A]_v = [B]_v$, then *w* is the same for both substitutions. Therefore $[C]_v = [D]_v$: the assignment *v* is a model of $(C \Leftrightarrow D)$.

Example 1.3.12: $p \Leftrightarrow q \models (p \lor (p \Rightarrow r)) \Leftrightarrow (p \lor (q \Rightarrow r)).$

Corollary 1.3.11

Let *D* be obtained by replacing, in *C*, one occurrence of *A* by *B*. If $A \equiv B$ then $C \equiv D$.

B. Wack et al (UGA)

Transformations of logical formulae

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Definition 1.4.1

► A literal is a variable or its negation.

Definition 1.4.1

- ► A literal is a variable or its negation.
- ► A monomial is a conjunction of literals (special cases 0 and 1).

Definition 1.4.1

- A literal is a variable or its negation.
- ► A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Definition 1.4.1

- ► A literal is a variable or its negation.
- ► A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

 \blacktriangleright x, y, $\neg z$ are literals.

Definition 1.4.1

- A literal is a variable or its negation.
- ► A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- \blacktriangleright x, y, $\neg z$ are literals.
- $x \land \neg y \land z$ is a monomial

Definition 1.4.1

- A literal is a variable or its negation.
- ► A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- \blacktriangleright x, y, $\neg z$ are literals.
- $x \land \neg y \land z$ is a monomial
- The monomial $x \land \neg y \land z \land \neg x$ contains x and $\neg x$: its value is 0.

Definition 1.4.1

- A literal is a variable or its negation.
- ► A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- \blacktriangleright x, y, $\neg z$ are literals.
- $x \land \neg y \land z$ is a monomial
- The monomial $x \land \neg y \land z \land \neg x$ contains x and $\neg x$: its value is 0.
- $x \lor \neg y \lor z$ is a clause

Definition 1.4.1

- A literal is a variable or its negation.
- ► A monomial is a conjunction of literals (special cases 0 and 1).
- A clause is a disjunction of literals (special cases 0 and 1).

Example 1.4.2

- \blacktriangleright x, y, $\neg z$ are literals.
- $x \land \neg y \land z$ is a monomial
- The monomial $x \land \neg y \land z \land \neg x$ contains x and $\neg x$: its value is 0.
- $x \lor \neg y \lor z$ is a clause

The clause $x \lor \neg y \lor z \lor \neg x$ contains x and $\neg x$: its value is 1.
Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \land,\lor,\neg and the negations are only applied to variables.

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \land,\lor,\neg and the negations are only applied to variables.

Example 1.4.4

The formula $\neg a \lor b$ is in normal form $a \Rightarrow b$ is not in normal form, even if it is equivalent to the first one.

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \land,\lor,\neg and the negations are only applied to variables.

Example 1.4.4

The formula $\neg a \lor b$ is in normal form $a \Rightarrow b$ is not in normal form, even if it is equivalent to the first one.

Every formula admits an equivalent normal form.

1. Equivalence elimination

- 2. Implication elimination
- 3. Shifting negations towards variables

- 1. Equivalence elimination Replace any occurrence of $A \Leftrightarrow B$ by (a) $(\neg A \lor B) \land (\neg B \lor A)$ OR (b) $(A \land B) \lor (\neg A \land \neg B)$
- 2. Implication elimination
- 3. Shifting negations towards variables

- 1. Equivalence elimination Replace any occurrence of $A \Leftrightarrow B$ by (a) $(\neg A \lor B) \land (\neg B \lor A)$
 - (a) $(\neg A \lor B) \land (\neg B \lor A)$ OR
 - (b) $(A \wedge B) \vee (\neg A \wedge \neg B)$
- 2. Implication elimination

Replace any occurrence of $A \Rightarrow B$ by $\neg A \lor B$

3. Shifting negations towards variables

1. Equivalence elimination Replace any occurrence of $A \Leftrightarrow B$ by

(a) $(\neg A \lor B) \land (\neg B \lor A)$ OR

(b) $(A \wedge B) \vee (\neg A \wedge \neg B)$

2. Implication elimination

Replace any occurrence of $A \Rightarrow B$ by $\neg A \lor B$

3. Shifting negations towards variables Replace any occurrence of

(a) $\neg \neg A$ by A (b) $\neg (A \lor B)$ by $\neg A \land \neg B$ (c) $\neg (A \land B)$ by $\neg A \lor \neg B$

Simplify as soon as possible:

1. Replace $\neg (A \Rightarrow B)$ by $A \land \neg B$.

Simplify as soon as possible:

- 1. Replace $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by 0 if it contains a formula and its negation
- 3. Replace a disjunction by 1 if it contains a formula and its negation

Simplify as soon as possible:

- 1. Replace $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by 0 if it contains a formula and its negation
- 3. Replace a disjunction by 1 if it contains a formula and its negation
- 4. Apply :
 - ► Idempotence of ∧ and ∨
 - Neutrality and absorption of 0 and 1
 - Replace $\neg 1$ by 0 and vice versa.

Simplify as soon as possible:

- 1. Replace $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by 0 if it contains a formula and its negation
- 3. Replace a disjunction by 1 if it contains a formula and its negation
- 4. Apply :
 - ► Idempotence of ∧ and ∨
 - Neutrality and absorption of 0 and 1
 - ► Replace ¬1 by 0 and vice versa.
- 5. Apply the simplifications:

$$x \lor (x \land y) \equiv x, x \land (x \lor y) \equiv x, x \lor (\neg x \land y) \equiv x \lor y$$

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$ The interest of a DNF is to highlight the models.

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$ The interest of a DNF is to highlight the models.

Example 1.4.7

 $(x \land y) \lor (\neg x \land \neg y \land z)$ is a DNF, which has two main models:

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Method: distribute the conjuctions over the disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$ The interest of a DNF is to highlight the models.

Example 1.4.7

 $(x \wedge y) \lor (\neg x \wedge \neg y \wedge z)$ is a DNF, which has two main models:

•
$$x \mapsto 1, y \mapsto 1$$

 $\blacktriangleright x \mapsto 0, y \mapsto 0, z \mapsto 1$

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

$$\blacktriangleright A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

$$\blacktriangleright A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

The interest of a CNF is to highlight the counter-models.

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

$$\blacktriangleright A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

The interest of a CNF is to highlight the counter-models.

Example 1.4.12

 $(x \lor y) \land (\neg x \lor \neg y \lor z)$ is a CNF, which has two counter-models.

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Apply the (unusual) distributivity of disjunction over conjunction:

$$\blacktriangleright A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

The interest of a CNF is to highlight the counter-models.

Example 1.4.12

 $(x \lor y) \land (\neg x \lor \neg y \lor z)$ is a CNF, which has two counter-models.

$$\blacktriangleright x \mapsto 0, y \mapsto 0$$

 $\blacktriangleright x \mapsto 1, y \mapsto 1, z \mapsto 0.$

Transformation in DNF of the following:

 $(a \lor b) \land (c \lor d \lor e) \equiv$

Transformation in DNF of the following:

 $(a \lor b) \land (c \lor d \lor e) \equiv$

 $(a \wedge c) \lor (a \wedge d) \lor (a \wedge e) \lor (b \wedge c) \lor (b \wedge d) \lor (b \wedge e).$

Transformation in DNF of the following:

 $(a \lor b) \land (c \lor d \lor e) \equiv$

 $(a \wedge c) \lor (a \wedge d) \lor (a \wedge e) \lor (b \wedge c) \lor (b \wedge d) \lor (b \wedge e).$

Transformation in CNF of the following:

 $(a \wedge b) \lor (c \wedge d \wedge e) \equiv$

Transformation in DNF of the following:

 $(a \lor b) \land (c \lor d \lor e) \equiv$

 $(a \wedge c) \lor (a \wedge d) \lor (a \wedge e) \lor (b \wedge c) \lor (b \wedge d) \lor (b \wedge e).$

Transformation in CNF of the following:

 $(a \wedge b) \lor (c \wedge d \wedge e) \equiv$

 $(a \lor c) \land (a \lor d) \land (a \lor e) \land (b \lor c) \land (b \lor d) \land (b \lor e).$

B. Wack et al (UGA)

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:

We transform $\neg A$ in an equivalent disjunction of monomials *B*:

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:

We transform $\neg A$ in an equivalent disjunction of monomials *B*:

• If B = 0 then $\neg A = 0$, hence A = 1, that is, A is valid

Transforming a formula into a disjunction of monomials also allows us to determine whether the formula is valid or not.

Let A be a formula whose validity we wish to check:

We transform $\neg A$ in an equivalent disjunction of monomials *B*:

- If B = 0 then $\neg A = 0$, hence A = 1, that is, A is valid
- Otherwise B is equal to a disjunction of nonzero monomials equivalent to ¬A, which give us models of ¬A, hence counter-models of A.

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine whether A is valid.

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine whether A is valid.

 $eg A \equiv (p \Rightarrow (q \Rightarrow r)) \land \neg (p \land q \Rightarrow r) \quad \text{since } \neg (B \Rightarrow C) \equiv B \land \neg C$

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine whether A is valid.

 $\neg A$ $\equiv (p \Rightarrow (q \Rightarrow r)) \land \neg (p \land q \Rightarrow r) \quad \text{ since } \neg (B \Rightarrow C) \equiv B \land \neg C$ $\equiv (\neg p \lor \neg q \lor r) \land \neg (p \land q \Rightarrow r) \quad \text{eliminating two} \Rightarrow$

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine whether A is valid.

$$\neg A
\equiv (p \Rightarrow (q \Rightarrow r)) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land (p \land q \land \neg r)$$

since $\neg (B \Rightarrow C) \equiv B \land \neg C$ eliminating two \Rightarrow since $\neg (B \Rightarrow C) \equiv B \land \neg C$

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine whether A is valid.

$$\neg A
\equiv (p \Rightarrow (q \Rightarrow r)) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land (p \land q \land \neg r)
\equiv (\neg q \lor r) \land p \land q \land \neg r$$

since $\neg (B \Rightarrow C) \equiv B \land \neg C$ eliminating two \Rightarrow since $\neg (B \Rightarrow C) \equiv B \land \neg C$ simplification $x \land (\neg x \lor y)$

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine whether A is valid.

$$\neg A
\equiv (p \Rightarrow (q \Rightarrow r)) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land (p \land q \Rightarrow r)
\equiv (\neg q \lor r) \land p \land q \land \neg r
\equiv (r) \land p \land q \land \neg r$$

since $\neg (B \Rightarrow C) \equiv B \land \neg C$ eliminating two \Rightarrow since $\neg (B \Rightarrow C) \equiv B \land \neg C$ simplification $x \land (\neg x \lor y)$ simplification $x \land (\neg x \lor y)$

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine whether A is valid.

$$\neg A$$

$$\equiv (p \Rightarrow (q \Rightarrow r)) \land \neg (p \land q \Rightarrow r)$$

$$\equiv (\neg p \lor \neg q \lor r) \land \neg (p \land q \Rightarrow r)$$

$$\equiv (\neg p \lor \neg q \lor r) \land (p \land q \land \neg r)$$

$$\equiv (\neg q \lor r) \land p \land q \land \neg r$$

$$\equiv (r) \land p \land q \land \neg r$$

$$= 0$$

since $\neg (B \Rightarrow C) \equiv B \land \neg C$ eliminating two \Rightarrow since $\neg (B \Rightarrow C) \equiv B \land \neg C$ simplification $x \land (\neg x \lor y)$ simplification $x \land (\neg x \lor y)$ since we have $r \land \neg r$ in the monomial

Hence $\neg A = 0$ and A = 1, that is A is valid.

Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine whether A is valid.

 $\neg A$
Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine whether A is valid.

 $\neg A$ $\equiv \neg((a \Rightarrow b) \land c) \land \neg(a \land d)$

(de Morgan)

Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine whether A is valid.

$$\neg A \equiv \neg((a \Rightarrow b) \land c) \land \neg(a \land d) \equiv (\neg(a \Rightarrow b) \lor \neg c) \land (\neg a \lor \neg d)$$

(de Morgan) (de Morgan)

Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine whether A is valid.

$$\neg A \equiv \neg((a \Rightarrow b) \land c) \land \neg(a \land d) \equiv (\neg(a \Rightarrow b) \lor \neg c) \land (\neg a \lor \neg d) \equiv ((a \land \neg b) \lor \neg c) \land (\neg a \lor \neg d)$$

(de Morgan) (de Morgan) elimination of the implication

Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine whether A is valid.

$$\neg A \\ \equiv \neg((a \Rightarrow b) \land c) \land \neg(a \land d) \qquad (de Morgan) \\ \equiv (\neg(a \Rightarrow b) \lor \neg c) \land (\neg a \lor \neg d) \qquad (de Morgan) \\ \equiv ((a \land \neg b) \lor \neg c) \land (\neg a \lor \neg d) \qquad elimination of the implication \\ \equiv (a \land \neg b \land \neg a) \lor (a \land \neg b \land \neg d) \lor (\neg c \land \neg a) \lor (\neg c \land \neg d) \\ \qquad distributivity of \lor over \land$$

Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine whether A is valid.

$$\neg A \equiv \neg((a \Rightarrow b) \land c) \land \neg(a \land d)$$
 (de Morgan)
 $\equiv (\neg(a \Rightarrow b) \lor \neg c) \land (\neg a \lor \neg d)$ (de Morgan)
 $\equiv ((a \land \neg b) \lor \neg c) \land (\neg a \lor \neg d)$ elimination of the implication
 $\equiv (a \land \neg b \land \neg a) \lor (a \land \neg b \land \neg d) \lor (\neg c \land \neg a) \lor (\neg c \land \neg d)$
 $= (a \land \neg b \land \neg d) \lor (\neg c \land \neg d) \lor (\neg c \land \neg d)$ distributivity of \lor over \land
 $\equiv (a \land \neg b \land \neg d) \lor (\neg c \land \neg a) \lor (\neg c \land \neg d)$ 1st monomial contradictory

Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine whether A is valid.

$$\neg A \equiv \neg((a \Rightarrow b) \land c) \land \neg(a \land d)$$
 (de Morgan)
 $\equiv (\neg(a \Rightarrow b) \lor \neg c) \land (\neg a \lor \neg d)$ (de Morgan)
 $\equiv ((a \land \neg b) \lor \neg c) \land (\neg a \lor \neg d)$ elimination of the implication
 $\equiv (a \land \neg b \land \neg a) \lor (a \land \neg b \land \neg d) \lor (\neg c \land \neg a) \lor (\neg c \land \neg d)$
 $\qquad distributivity of \lor over \land$
 $\equiv (a \land \neg b \land \neg d) \lor (\neg c \land \neg a) \lor (\neg c \land \neg d)$ 1st monomial contradictory

We obtain 3 models of $\neg A$: $(a \mapsto 1, b \mapsto 0, d \mapsto 0)$, $(a \mapsto 0, c \mapsto 0)$, $(c \mapsto 0, d \mapsto 0)$. That is, counter-models of A. Hence A is not valid.

B. Wack et al (UGA)

Plan

Consequence

Important equivalences

Substitution and replacement

Normal forms

Conclusion

Today

- Substitutions allow us to deduce the validity of a formula from another
- Replacements allow us to change part of a formula without changing its meaning and thus allow us to compute a simpler equivalent formula
- Every formula admits normal forms which allow to highlight its models and counter-models

Next course

- Boolean algebra
- Boolean functions
- Resolution

Prove our example by formula simplification

 $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$