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Propositional Resolution

John, Peter and Mary by simplification

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p

¬((p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m))∨m∨p

¬(p⇒¬j)∨¬(¬p⇒ j)∨¬(j⇒m)∨m∨p

(p∧¬¬j)∨ (¬p∧¬j)∨ (j ∧¬m)∨m∨p

with x ∨ (x ∧ y)≡ x

(¬p∧¬j)∨ (j ∧¬m)∨m∨p

with x ∨ (¬x ∧ y)≡ x ∨ y

¬j ∨ j ∨m∨p = 1
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Propositional Resolution

Overview

Boolean Algebra

Boolean functions

The BDDC tool

Introduction to resolution

Some definitions and notations

Conclusion
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Propositional Resolution

Boolean Algebra

Definition 1.5.1

A Boolean Algebra is a set of:

I at least two elements 0 and 1

I and three operations, complement (x), sum (+) and product (.)

I such that :

1. the sum is associative, commutative, with neutral element 0

2. the product is associative, commutative, with neutral element 1

3. the product is distributive over the sum

4. the sum is distributive over the product

5. negation laws:

I x + x = 1,
I x .x = 0.
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Propositional Resolution

Boolean Algebra

Propositional logic is a Boolean Algebra

The axioms can be proven using the truth tables.

Another example:

Boolean Algebra P (X)

1 X
0 /0

p X −p
p + q p∪q
p.q p∩q
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Propositional Resolution

Boolean Algebra

Properties of a Boolean Algebra

Property 1.5.3

I For any x , there is exactly one y such that x + y = 1 and xy = 0.
In other words, the complement is unique.

I 1. 1 = 0
2. 0 = 1
3. ¯̄x = x
4. x .x = x
5. x + x = x
6. 1 + x = 1
7. 0.x = 0
8. De Morgan laws:

I xy = x̄ + ȳ
I x + y = x̄ .ȳ
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Propositional Resolution

Boolean Algebra

Proof

1. 1 = 0.

By definition of negation, x .x = 0. Hence, 1.1 = 0.
Since 1 is neutral for the product, 1 = 0.

2. 0 = 1.

Ditto : x + x = 1 hence 0 + 0 = 1.
Since 0 is neutral, 0 = 1.

3. ¯̄x = x .

By commutativity, x + x = 1 and x .x = 0.
Because the complement of x̄ is unique, x = x .
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Propositional Resolution

Boolean Algebra

Proof

4. Product idempotence: x .x = x .

x = x .1

= x .(x + x)

= x .x + x .x

= x .x + 0

= x .x

5. Sum idempotence: x + x = x

Ditto, starting from x = x + 0.
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Propositional Resolution

Boolean Algebra

Proof

6. 1 is an absorbing element of the sum: 1 + x = 1.

We use sum idempotence.

1 + x = (x + x) + x

= x + x

= 1

7. 0 is an absorbing element for the product: 0.x = 0.

Ditto from 0.x = (x .x̄).x
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Propositional Resolution

Boolean Algebra

Proof: De Morgan Law: xy = x̄ + ȳ

We first show that xy + (x̄ + ȳ) = 1

x .y + (x + y) = (x + x + y).(y + x + y)

= (1 + y).(1 + x)

= 1.1

= 1

Similarly x .y .(x + y) = 0.
Since negation is unique x + y is the negation of xy .

Similarly we can prove that x + y = x .y by switching the uses of . and + in
this demonstration.
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Propositional Resolution

Boolean functions

Definition 1.6.1: Boolean function

A boolean function is a function whose arguments and result belong to
the set B = {0,1}.

Example 1.6.2

Which of these functions are boolean ?

I The function f : B→ B : f (x) = ¬x

yes

I The function f : N→ B : f (x) = x mod 2

no

I The function f : B→ N : f (x) = x + 1

no

I The function f : B×B→ B : f (x ,y) = ¬(x ∧ y)

yes
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Propositional Resolution

Boolean functions

Boolean functions and monomial sums

Theorem 1.6.3

Let x0 = x̄ and x1 = x .

Let f be a boolean function with n arguments, and let:

A = ∑
f (a1,...,an)=1

xa1
1 . . .xan

n .

A is the sum of the monomials xa1
1 . . .xan

n such that f (a1, . . . ,an) = 1.

For any assignment v such that v(x1) = a1, . . . ,v(xn) = an,
we have f (a1, . . . ,an) = [A]v .
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Propositional Resolution

Boolean functions

Example 1.6.4

The function maj with 3 arguments yields 1 when at least 2 of its
arguments equal 1.

Define the equivalent sum of monomials (theorem 1.6.3)

x1 x2 x3 maj(x1,x2,x3)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

x1x2x3

1 0 0 0
1 0 1 1

x1x2x3

1 1 0 1

x1x2x3

1 1 1 1

x1x2x3

maj(x1,x2,x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

B. Wack et al (UGA) Propositional Resolution January 2023 16 / 47
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Propositional Resolution

Boolean functions

Let us verify the theorem 1.6.3 on example 1.6.4

x1 x2 x3 maj(x1,x2 ,x3) x1x2x3 x1x2x3 x1x2x3 x1x2x3 x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 1
1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1
1 1 0 1 0 0 1 0 1
1 1 1 1 0 0 0 1 1

maj(x1,x2,x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3
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Propositional Resolution

Boolean functions

Proof of Theorem 1.6.3

Let v be any assignment.
Note that for all variable x , v(xa) = 1 if and only if v(x) = a.

Thus:

[xa1
1 . . .xan

n ]v = 1 if and only if v(x1) = a1, . . . ,v(xn) = an. (1)

Let v be an assignment such that v(x1) = a1, . . .v(xn) = an.
Consider the following two cases:

1. f (a1, . . . ,an) = 1 :

According to (1), we have [xa1
1 . . .xan

n ]v = 1.
According to the definition of A, this monomial is the element of the sum A, so [A]v = 1.

2. f (a1, . . . ,an) = 0 :

By definition of A, any monomial xb1
1 . . .xbn

n in A is such that ai 6= bi for
at least one subscript i .
Consequently v(xi) 6= bi , so according to (1), [xb1

1 . . . ,xbn
n ]v = 0.

Since this is true for every monomial in A, we conclude that [A]v = 0.
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Propositional Resolution

Boolean functions

Boolean functions and product of clauses

Theorem 1.6.5

Let f a boolean function with n arguments, and:

A = ∏
f (a1,...,an)=0

xa1
1 + . . .+ xan

n .

A is the product of the clauses xa1
1 + . . .+ xan

n such that f (a1, . . . ,an) = 0.

For any assignment v such that v(x1) = a1, . . . ,v(xn) = an,
we have f (a1, . . . ,an) = [A]v .
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Propositional Resolution

Boolean functions

Proof of theorem 1.6.5

Similar proof:

I For every variable x , v(xa) = 0 if and only if v(x) 6= a.

I From this remark, we deduce the following property:

[xa1
1 + . . .xan

n ]v = 0 ⇔ v(x1) 6= a1, . . .v(xn) 6= an (2)

⇔ v(x1) = a1, . . .v(xn) = an. (3)

I From the above properties, we deduce as before that
f (x1, . . .xn) = A.
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Propositional Resolution

Boolean functions

Example 1.6.6

The function maj of 3 arguments yields 1 if at least 2 of its arguments
equal 1.

Define the equivalent product of clauses (theorem 1.6.5)

x1 x2 x3 maj(x1,x2,x3)
0 0 0 0

x1 + x2 + x3

0 0 1 0

x1 + x2 + x3

0 1 0 0

x1 + x2 + x3

0 1 1 1
1 0 0 0

x1 + x2 + x3

1 0 1 1
1 1 0 1
1 1 1 1

maj(x1,x2,x3) = (x1 +x2 +x3)(x1 +x2 +x3)(x1 +x2 +x3)(x1 +x2 +x3)
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Propositional Resolution

Boolean functions

Let us verify theorem 1.6.5 on the example 1.6.6

x1 x2 x3 maj(x1,x2 ,x3) x1 + x2 + x3 x1 + x2 + x3 x1 + x2 + x3 x1 + x2 + x3

(x1 + x2 + x3)
(x1 + x2 + x3)
(x1 + x2 + x3)
(x1 + x2 + x3)

0 0 0 0 0 1 1 1 0
0 0 1 0 1 0 1 1 0
0 1 0 0 1 1 0 1 0
0 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 0 0
1 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

maj(x1,x2,x3) = (x1 +x2 +x3)(x1 +x2 +x3)(x1 +x2 +x3)(x1 +x2 +x3)
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The BDDC tool
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Propositional Resolution

The BDDC tool

BDDC (Binary Decision Diagram based Calculator)

BDDC is a tool for manipulating propositional formulae developed by
Pascal Raymond and available at the following address:

http://www-verimag.imag.fr/˜raymond/home/tools/bddc/

B. Wack et al (UGA) Propositional Resolution January 2023 24 / 47
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Propositional Resolution

The BDDC tool

Plan of the Semester

I Propositional logic *

I Propositional resolution

I Natural propositional deduction

MIDTERM EXAM

I First order logic

I Basis for the automatic proof
(“first order resolution”)

I First order natural deduction

EXAM
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Propositional Resolution

Introduction to resolution

Deduction methods

I Is a formula valid?

I Is a reasoning correct?

Two methods:

The truth tables and transformations

Problem

If the number of variables increases, these methods are very long
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Propositional Resolution

Introduction to resolution

Example

By a truth table, to verify
a⇒ b,b⇒ c,c⇒ d ,d ⇒ e,e⇒ f , f ⇒ g,g⇒ h,h⇒ i, i⇒ j |= a⇒ j
we must test 210 = 1024 lines.

Or, by deduction, this is a correct reasoning:

1. By transitivity of the implication, a⇒ j |= a⇒ j .

2. By definition, the formula a⇒ j is a consequence of its own.
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Propositional Resolution

Introduction to resolution

Today

I Formalisation of a deductive system (with 1 rule)

I How to prove a formula by resolution

I Some properties of resolution
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Propositional Resolution

Introduction to resolution

David Hilbert (1862-1943)

I Founder of the formalism school : mathematics can and should
be formalized to be studied.

I Hilbert’s program (1920):
“Wir müssen wissen. Wir werden wissen.”
as an answer to “Ignoramus et ignorabimus”

I choose a finite set of axioms to express all of maths

I prove it is consistent

I design an algorithm that decides whether a
proposition can be proved (Entscheidungsproblem)

I Hilbert-style deductive systems: axioms such as ` p⇒ (q⇒ p)

and a few deduction rules such as
` p⇒ q ` p

` q
I proofs are thorough but hard to read and to check
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Propositional Resolution

Introduction to resolution

Intuition

Formulas are put into CNF (conjunction of clauses), and then we use:

a + b, b + c |= a + c
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Some definitions and notations
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Propositional Resolution

Some definitions and notations

Definitions

Definition 2.1.1

A clause is identified to the set of its literals, so we may say that:

I A literal is a member of a clause.

I A clause A is included in a clause B (or is a sub-clause of B).

I Two clauses are equal if they have the same set of literals.
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Propositional Resolution

Some definitions and notations

Example 2.1.2

I The clauses p + q, q + p, and p + q + p are equal

I p ∈ q + p + r + p

I p + q ⊆ q + p + r + p

I q + p + r + p − p = q + r

I p + p + p − p = ⊥
I Adding the literal r to the clause p yields the clause p + r

I Adding the literal p to the clause ⊥ yields the clause p
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Propositional Resolution

Some definitions and notations

Notation

s(A) the set of literals of the clause A.
By convention ⊥ is the empty clause and s(⊥) = /0.

Example 2.1.3

s(q + p + r + p + p) =

{q,p, r ,p}
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Propositional Resolution

Some definitions and notations

Complementary literal

Definition 2.1.4

We note Lc the complementary literal of a literal L :

If L is a variable, Lc is the negation of L.

If L is the negation of a variable, Lc is obtained by removing the
negation of L.

Example 2.1.5

xc = x and xc = x .
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Propositional Resolution

Some definitions and notations

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause C is a resolvent of A and B iff there exists a literal L such
that

L ∈ A, Lc ∈ B, C = (A − {L})∪ (B − {Lc})

“C is a resolvent of A and B” is represented by:

A B

C

C is generated by A and B
A and B are the parents of clause C.
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Propositional Resolution

Some definitions and notations

Examples with resolution

Example 2.1.7

Give the resolvents of:

I p + q + r and p + q + r

p + q + r p + q + r

p + r

I p + q and p + q + r

p + q p + q + r

p + p + r

p + q p + q + r

q + q + r

I p and p

p p

⊥
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Propositional Resolution

Some definitions and notations

Property

Property 2.1.8

If one of the parents of a resolvent is valid, the resolvent is valid or
contains the other parent.

Proof.

See exercise 39. 2

Example

p + p̄ + q q̄ + r

p + p̄ + r

p + p̄ + q p̄ + r

p̄ + q + r
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Propositional Resolution

Some definitions and notations

Definition of a proof

Definition 2.1.11

Let Γ be a set of clauses and C a clause.

A proof of C starting from Γ is a list of clauses:

I where every clause of the proof is a member of Γ

I or is a resolvent of two clauses already obtained

I ending with C.

The clause C is deduced from Γ (Γ yields C, or Γ proves C), denoted
Γ ` C, if there is a proof of C starting from Γ.

The size of a proof is the number of lines in it.
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Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses p + q, p + q, p + q, p + q.
We show that Γ ` ⊥:

1 p + q Hypothesis
2 p + q Hypothesis
3 p Resolvent of 1, 2
4 p + q Hypothesis
5 q Resolvent of 3, 4
6 p + q Hypothesis
7 p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7
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Propositional Resolution

Some definitions and notations

Monotony and Composition

Property 2.1.14

1. Monotony: If Γ ` A and if Γ⊆∆ then ∆ ` A

2. Composition: If Γ ` A and Γ ` B and if C is a resolvent of A and B
then Γ ` C.

Proof.

Exercise 38 2

B. Wack et al (UGA) Propositional Resolution January 2023 43 / 47



Propositional Resolution

Conclusion

Plan

Boolean Algebra

Boolean functions

The BDDC tool

Introduction to resolution

Some definitions and notations

Conclusion

B. Wack et al (UGA) Propositional Resolution January 2023 44 / 47



Propositional Resolution

Conclusion

Today

I Important equivalences correspond to computation rules in a
Boolean algebra

I Any boolean function can be represented by a (normal) formula

I A deductive system is given by a set of formal rules
I A proof is a sequence of applications of these rules starting from

hypotheses.
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Propositional Resolution

Conclusion

Next course

I Correctness and Completeness of the system

I Comprehensive strategy

I Davis-Putnam
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Propositional Resolution

Conclusion

Homework

Hypotheses:

I (H1): If Peter is old, then John is not the son of Peter

I (H2): If Peter is not old, then John is the son of Peter

I (H3): If John is Peter’s son then Mary is the sister of John

Conclusion (C): Either Mary is the sister of John or Peter is old.

Transform into clauses the premises and the negation of the
conclusion.

What can you (or should you) prove using resolution ?
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