# Propositional Resolution 

A deductive system

Frédéric Prost<br>Université Grenoble Alpes

January 2023

## Last course

- Important Equivalences
- Substitutions and replacement
- Normal Forms


## John, Peter and Mary by simplification

$$
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p
$$

## John, Peter and Mary by simplification

$$
\begin{gathered}
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
\neg((p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m)) \vee m \vee p
\end{gathered}
$$

## John, Peter and Mary by simplification

$$
\begin{gathered}
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
\neg((p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m)) \vee m \vee p \\
\neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p
\end{gathered}
$$

## John, Peter and Mary by simplification

$$
\begin{aligned}
& \quad(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
& \neg((p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m)) \vee m \vee p \\
& \neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
& \\
& (p \wedge \neg \neg j) \vee(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
\end{aligned}
$$

## John, Peter and Mary by simplification

$$
\begin{aligned}
& \quad(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
& \neg((p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m)) \vee m \vee p \\
& \neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
& \\
& (p \wedge \neg \neg j) \vee(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
\end{aligned}
$$

with $x \vee(x \wedge y) \equiv x$

$$
(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
$$

## John, Peter and Mary by simplification

$$
\begin{aligned}
& (p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
\neg & ((p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m)) \vee m \vee p \\
\neg & (p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
& (p \wedge \neg \neg j) \vee(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
\end{aligned}
$$

with $x \vee(x \wedge y) \equiv x$

$$
(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
$$

with $x \vee(\neg x \wedge y) \equiv x \vee y$

$$
\neg j \vee j \vee m \vee p=1
$$

## Overview

Boolean Algebra

Boolean functions

The BDDC tool

Introduction to resolution

Some definitions and notations

Conclusion

## Plan

## Boolean Algebra

## Boolean functions

## The BDDC tool

## Introduction to resolution

## Some definitions and notations

## Conclusion

## Definition 1.5.1

A Boolean Algebra is a set of:

- at least two elements 0 and 1
- and three operations, complement ( $\bar{x}$ ), sum (+) and product (.)


## Definition 1.5.1

A Boolean Algebra is a set of:

- at least two elements 0 and 1
- and three operations, complement ( $\bar{x}$ ), sum (+) and product (.)
- such that:

1. the sum is associative, commutative, with neutral element 0
2. the product is associative, commutative, with neutral element 1

## Definition 1.5.1

A Boolean Algebra is a set of:

- at least two elements 0 and 1
- and three operations, complement ( $\bar{x}$ ), sum (+) and product (.)
- such that:

1. the sum is associative, commutative, with neutral element 0
2. the product is associative, commutative, with neutral element 1
3. the product is distributive over the sum
4. the sum is distributive over the product

## Definition 1.5.1

A Boolean Algebra is a set of:

- at least two elements 0 and 1
- and three operations, complement ( $\bar{x}$ ), sum (+) and product (.)
- such that:

1. the sum is associative, commutative, with neutral element 0
2. the product is associative, commutative, with neutral element 1
3. the product is distributive over the sum
4. the sum is distributive over the product
5. negation laws:

- $x+\bar{x}=1$,
- $x \cdot \bar{x}=0$.


## Propositional logic is a Boolean Algebra

The axioms can be proven using the truth tables.

## Propositional logic is a Boolean Algebra

The axioms can be proven using the truth tables.
Another example:

| Boolean Algebra | $\mathcal{P}(X)$ |
| :---: | :---: |
| 1 | $X$ |
| 0 | $\emptyset$ |
| $\bar{p}$ | $X-p$ |
| $p+q$ | $p \cup q$ |
| $p . q$ | $p \cap q$ |

## Properties of a Boolean Algebra

## Property 1.5.3

- For any $x$, there is exactly one $y$ such that $x+y=1$ and $x y=0$. In other words, the complement is unique.


## Properties of a Boolean Algebra

## Property 1.5.3

- For any $x$, there is exactly one $y$ such that $x+y=1$ and $x y=0$. In other words, the complement is unique.

1. $\overline{1}=0$
2. $\overline{0}=1$
3. $\overline{\bar{x}}=x$
4. $x \cdot x=x$
5. $x+x=x$
6. $1+x=1$
7. $0 . x=0$
8. De Morgan laws:

- $\overline{x y}=\bar{x}+\bar{y}$
- $\overline{x+y}=\bar{x} . \bar{y}$

Propositional Resolution
Boolean Algebra

## Proof

1. $\overline{1}=0$.

2. $\overline{0}=1$.
$\qquad$
3. $\overline{\bar{x}}=x$.
$\square$

## Proof

1. $\overline{1}=0$.

By definition of negation, $x \cdot \bar{x}=0$. Hence, 1. $\overline{1}=0$. Since 1 is neutral for the product, $\overline{1}=0$.
2. $\overline{0}=1$.
$\qquad$
3. $\overline{\bar{x}}=x$.
$\square$

## Proof

1. $\overline{1}=0$.

By definition of negation, $x \cdot \bar{x}=0$. Hence, 1. $\overline{1}=0$.
Since 1 is neutral for the product, $\overline{1}=0$.
2. $\overline{0}=1$.

Ditto : $x+\bar{x}=1$ hence $0+\overline{0}=1$.
Since 0 is neutral, $\overline{0}=1$.
3. $\overline{\bar{x}}=x$.
$\square$

## Proof

1. $\overline{1}=0$.

By definition of negation, $x \cdot \bar{x}=0$. Hence, 1. $\overline{1}=0$.
Since 1 is neutral for the product, $\overline{1}=0$.
2. $\overline{0}=1$.

Ditto : $x+\bar{x}=1$ hence $0+\overline{0}=1$.
Since 0 is neutral, $\overline{0}=1$.
3. $\overline{\bar{x}}=x$.

By commutativity, $\bar{x}+x=1$ and $\bar{x} \cdot x=0$.
Because the complement of $\bar{x}$ is unique, $\overline{\bar{x}}=x$.

## Proof

4. Product idempotence: $x \cdot x=x$.
$\square$
5. Sum idempotence: $x+x=x$
$\square$

## Proof

4. Product idempotence: $x \cdot x=x$.

$$
\begin{aligned}
x & =x \cdot 1 \\
& =x \cdot(x+\bar{x}) \\
& =x \cdot x+x \cdot \bar{x} \\
& =x \cdot x+0 \\
& =x \cdot x
\end{aligned}
$$

5. Sum idempotence: $x+x=x$
$\square$

## Proof

4. Product idempotence: $x \cdot x=x$.

$$
\begin{aligned}
x & =x \cdot 1 \\
& =x \cdot(x+\bar{x}) \\
& =x \cdot x+x \cdot \bar{x} \\
& =x \cdot x+0 \\
& =x \cdot x
\end{aligned}
$$

5. Sum idempotence: $x+x=x$

Ditto, starting from $x=x+0$.

## Proof

6. 1 is an absorbing element of the sum: $1+x=1$.


## Proof

6. 1 is an absorbing element of the sum: $1+x=1$.

We use sum idempotence.

$$
\begin{aligned}
1+x & =(x+\bar{x})+x \\
& =x+\bar{x} \\
& =1
\end{aligned}
$$

7. 0 is an absorbing element for the product: $0 . x=0$.
$\square$

## Proof

6. 1 is an absorbing element of the sum: $1+x=1$.

We use sum idempotence.

$$
\begin{aligned}
1+x & =(x+\bar{x})+x \\
& =x+\bar{x} \\
& =1
\end{aligned}
$$

7. 0 is an absorbing element for the product: $0 . x=0$.

Ditto from $0 . x=(x \cdot \bar{x}) \cdot x$

## Proof: De Morgan Law: $\overline{x y}=\bar{x}+\bar{y}$

## Proof: De Morgan Law: $\overline{x y}=\bar{x}+\bar{y}$

We first show that $x y+(\bar{x}+\bar{y})=1$

$$
\begin{aligned}
x \cdot y+(\bar{x}+\bar{y}) & =(x+\bar{x}+\bar{y}) \cdot(y+\bar{x}+\bar{y}) \\
& =(1+\bar{y}) \cdot(1+\bar{x}) \\
& =1.1 \\
& =1
\end{aligned}
$$

## Proof: De Morgan Law: $\overline{x y}=\bar{x}+\bar{y}$

We first show that $x y+(\bar{x}+\bar{y})=1$

$$
\begin{aligned}
x \cdot y+(\bar{x}+\bar{y}) & =(x+\bar{x}+\bar{y}) \cdot(y+\bar{x}+\bar{y}) \\
& =(1+\bar{y}) \cdot(1+\bar{x}) \\
& =1 \cdot 1 \\
& =1
\end{aligned}
$$

Similarly x.y. $(\bar{x}+\bar{y})=0$.

## Proof: De Morgan Law: $\overline{x y}=\bar{x}+\bar{y}$

We first show that $x y+(\bar{x}+\bar{y})=1$

$$
\begin{aligned}
x \cdot y+(\bar{x}+\bar{y}) & =(x+\bar{x}+\bar{y}) \cdot(y+\bar{x}+\bar{y}) \\
& =(1+\bar{y}) \cdot(1+\bar{x}) \\
& =1 \cdot 1 \\
& =1
\end{aligned}
$$

Similarly $x \cdot y \cdot(\bar{x}+\bar{y})=0$.
Since negation is unique $\bar{x}+\bar{y}$ is the negation of $x y$.

## Proof: De Morgan Law: $\overline{x y}=\bar{x}+\bar{y}$

We first show that $x y+(\bar{x}+\bar{y})=1$

$$
\begin{aligned}
x \cdot y+(\bar{x}+\bar{y}) & =(x+\bar{x}+\bar{y}) \cdot(y+\bar{x}+\bar{y}) \\
& =(1+\bar{y}) \cdot(1+\bar{x}) \\
& =1 \cdot 1 \\
& =1
\end{aligned}
$$

Similarly $x \cdot y \cdot(\bar{x}+\bar{y})=0$.
Since negation is unique $\bar{x}+\bar{y}$ is the negation of $x y$.
Similarly we can prove that $\overline{x+y}=\bar{x} \cdot \bar{y}$ by switching the uses of . and + in this demonstration.

## Plan

## Boolean Algebra

## Boolean functions

## The BDDC tool

## Introduction to resolution

## Some definitions and notations

## Conclusion

## Definition 1.6.1: Boolean function

A boolean function is a function whose arguments and result belong to the set $\mathbb{B}=\{0,1\}$.

## Definition 1.6.1: Boolean function

A boolean function is a function whose arguments and result belong to the set $\mathbb{B}=\{0,1\}$.

## Example 1.6.2

Which of these functions are boolean?

- The function $f: \mathbb{B} \rightarrow \mathbb{B}: f(x)=\neg x$
- The function $f: \mathbb{N} \rightarrow \mathbb{B}: f(x)=x \bmod 2$
- The function $f: \mathbb{B} \rightarrow \mathbb{N}: f(x)=x+1$
- The function $f: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}: f(x, y)=\neg(x \wedge y)$


## Definition 1.6.1: Boolean function

A boolean function is a function whose arguments and result belong to the set $\mathbb{B}=\{0,1\}$.

## Example 1.6.2

Which of these functions are boolean?

- The function $f: \mathbb{B} \rightarrow \mathbb{B}: f(x)=\neg x$


## yes

- The function $f: \mathbb{N} \rightarrow \mathbb{B}: f(x)=x \bmod 2$
no
- The function $f: \mathbb{B} \rightarrow \mathbb{N}: f(x)=x+1$
no
- The function $f: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}: f(x, y)=\neg(x \wedge y)$


## Boolean functions and monomial sums

Theorem 1.6.3
Let $x^{0}=\bar{x}$ and $x^{1}=x$.

Let $f$ be a boolean function with $n$ arguments, and let:

$$
A=\sum_{f\left(a_{1}, \ldots, a_{n}\right)=1} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} .
$$

$A$ is the sum of the monomials $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ such that $f\left(a_{1}, \ldots, a_{n}\right)=1$.
For any assignment $v$ such that $v\left(x_{1}\right)=a_{1}, \ldots, v\left(x_{n}\right)=a_{n}$, we have $f\left(a_{1}, \ldots, a_{n}\right)=[A]_{v}$.

## Example 1.6.4

The function maj with 3 arguments yields 1 when at least 2 of its arguments equal 1.

Define the equivalent sum of monomials (theorem 1.6.3)

## Example 1.6.4

The function maj with 3 arguments yields 1 when at least 2 of its arguments equal 1.

Define the equivalent sum of monomials (theorem 1.6.3)

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Example 1.6.4

The function maj with 3 arguments yields 1 when at least 2 of its arguments equal 1.

Define the equivalent sum of monomials (theorem 1.6.3)

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

$$
\overline{x_{1}} x_{2} x_{3}
$$

## Example 1.6.4

The function maj with 3 arguments yields 1 when at least 2 of its arguments equal 1.

Define the equivalent sum of monomials (theorem 1.6.3)

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

$$
\begin{aligned}
& \overline{x_{1}} x_{2} x_{3} \\
& x_{1} \overline{x_{2}} x_{3} \\
& x_{1} x_{2} \overline{x_{3}} \\
& x_{1} x_{2} x_{3}
\end{aligned}
$$

$$
m a j\left(x_{1}, x_{2}, x_{3}\right)=\overline{x_{1}} x_{2} x_{3}+x_{1} \overline{x_{2}} x_{3}+x_{1} x_{2} \overline{x_{3}}+x_{1} x_{2} x_{3}
$$

## Let us verify the theorem 1.6.3 on example 1.6.4

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ | $\overline{x_{1}} x_{2} x_{3}$ | $x_{1} \overline{x_{2}} x_{3}$ | $x_{1} x_{2} \overline{x_{3}}$ | $x_{1} x_{2} x_{3}$ | $\overline{x_{1}} x_{2} x_{3}+x_{1} \overline{x_{2}} x_{3}+x_{1} x_{2} \overline{x_{3}}+x_{1} x_{2} x_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |

$$
\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)=\overline{x_{1}} x_{2} x_{3}+x_{1} \overline{x_{2}} x_{3}+x_{1} x_{2} \overline{x_{3}}+x_{1} x_{2} x_{3}
$$

## Proof of Theorem 1.6.3

Let $v$ be any assignment.
Note that for all variable $x, v\left(x^{a}\right)=1$ if and only if $v(x)=a$.

## Proof of Theorem 1.6.3

Let $v$ be any assignment.
Note that for all variable $x, v\left(x^{a}\right)=1$ if and only if $v(x)=a$.
Thus:

$$
\begin{equation*}
\left[x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right]_{v}=1 \quad \text { if and only if } \quad v\left(x_{1}\right)=a_{1}, \ldots, v\left(x_{n}\right)=a_{n} \tag{1}
\end{equation*}
$$

## Proof of Theorem 1.6.3

Let $v$ be any assignment.
Note that for all variable $x, v\left(x^{a}\right)=1$ if and only if $v(x)=a$.
Thus:

$$
\begin{equation*}
\left[x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right]_{v}=1 \quad \text { if and only if } \quad v\left(x_{1}\right)=a_{1}, \ldots, v\left(x_{n}\right)=a_{n} \tag{1}
\end{equation*}
$$

Let $v$ be an assignment such that $v\left(x_{1}\right)=a_{1}, \ldots v\left(x_{n}\right)=a_{n}$.
Consider the following two cases:

## Proof of Theorem 1.6.3

Let $v$ be any assignment.
Note that for all variable $x, v\left(x^{a}\right)=1$ if and only if $v(x)=a$.
Thus:

$$
\begin{equation*}
\left[x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right]_{v}=1 \quad \text { if and only if } \quad v\left(x_{1}\right)=a_{1}, \ldots, v\left(x_{n}\right)=a_{n} \tag{1}
\end{equation*}
$$

Let $v$ be an assignment such that $v\left(x_{1}\right)=a_{1}, \ldots v\left(x_{n}\right)=a_{n}$.
Consider the following two cases:

1. $f\left(a_{1}, \ldots, a_{n}\right)=1$ :
2. $f\left(a_{1}, \ldots, a_{n}\right)=0$ :

## Proof of Theorem 1.6.3

Let $v$ be any assignment.
Note that for all variable $x, v\left(x^{a}\right)=1$ if and only if $v(x)=a$.
Thus:

$$
\begin{equation*}
\left[x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right]_{v}=1 \quad \text { if and only if } \quad v\left(x_{1}\right)=a_{1}, \ldots, v\left(x_{n}\right)=a_{n} \tag{1}
\end{equation*}
$$

Let $v$ be an assignment such that $v\left(x_{1}\right)=a_{1}, \ldots v\left(x_{n}\right)=a_{n}$.
Consider the following two cases:

1. $f\left(a_{1}, \ldots, a_{n}\right)=1$ : According to (1), we have $\left[x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right]_{v}=1$.

According to the definition of $A$, this monomial is the element of the sum $A$, so $[A]_{V}=1$.
2. $f\left(a_{1}, \ldots, a_{n}\right)=0$ :

## Proof of Theorem 1.6.3

## Let $v$ be any assignment.

Note that for all variable $x, v\left(x^{a}\right)=1$ if and only if $v(x)=a$.
Thus:

$$
\begin{equation*}
\left[x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right]_{v}=1 \quad \text { if and only if } \quad v\left(x_{1}\right)=a_{1}, \ldots, v\left(x_{n}\right)=a_{n} \tag{1}
\end{equation*}
$$

Let $v$ be an assignment such that $v\left(x_{1}\right)=a_{1}, \ldots v\left(x_{n}\right)=a_{n}$.
Consider the following two cases:

1. $f\left(a_{1}, \ldots, a_{n}\right)=1$ : According to (1), we have $\left[x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right]_{v}=1$.

According to the definition of $A$, this monomial is the element of the sum $A$, so $[A]_{V}=1$.
2. $f\left(a_{1}, \ldots, a_{n}\right)=0$ : By definition of $A$, any monomial $x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$ in $A$ is such that $a_{i} \neq b_{i}$ for at least one subscript $i$.
Consequently $v\left(x_{i}\right) \neq b_{i}$, so according to (1), $\left[x_{1}^{b_{1}} \ldots, x_{n}^{b_{n}}\right]_{v}=0$.
Since this is true for every monomial in $A$, we conclude that $[A]_{V}=0$.

## Boolean functions and product of clauses

## Theorem 1.6.5

Let $f$ a boolean function with $n$ arguments, and:

$$
A=\prod_{f\left(a_{1}, \ldots, a_{n}\right)=0} x_{1}^{\overline{a_{1}}}+\ldots+x_{n}^{\overline{a_{n}}}
$$

$A$ is the product of the clauses $x_{1}^{\overline{a_{1}}}+\ldots+x_{n}^{\overline{a_{n}}}$ such that $f\left(a_{1}, \ldots, a_{n}\right)=0$.
For any assignment $v$ such that $v\left(x_{1}\right)=a_{1}, \ldots, v\left(x_{n}\right)=a_{n}$, we have $f\left(a_{1}, \ldots, a_{n}\right)=[A]_{v}$.

## Proof of theorem 1.6.5

Similar proof:

- For every variable $x, v\left(x^{a}\right)=0$ if and only if $v(x) \neq a$.
- From this remark, we deduce the following property:

$$
\begin{align*}
{\left[x_{1}^{\overline{\alpha_{1}}}+\ldots x_{n}^{\overline{a_{n}}}\right]_{v}=0 } & \Leftrightarrow v\left(x_{1}\right) \neq \overline{a_{1}}, \ldots v\left(x_{n}\right) \neq \overline{a_{n}}  \tag{2}\\
& \Leftrightarrow v\left(x_{1}\right)=a_{1}, \ldots v\left(x_{n}\right)=a_{n} . \tag{3}
\end{align*}
$$

- From the above properties, we deduce as before that $f\left(x_{1}, \ldots x_{n}\right)=A$.


## Example 1.6.6

The function maj of 3 arguments yields 1 if at least 2 of its arguments equal 1.

Define the equivalent product of clauses (theorem 1.6.5)

## Example 1.6.6

The function maj of 3 arguments yields 1 if at least 2 of its arguments equal 1.

Define the equivalent product of clauses (theorem 1.6.5)

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Example 1.6.6

The function maj of 3 arguments yields 1 if at least 2 of its arguments equal 1.

Define the equivalent product of clauses (theorem 1.6.5)

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

$$
x_{1}+x_{2}+x_{3}
$$

## Example 1.6.6

The function maj of 3 arguments yields 1 if at least 2 of its arguments equal 1.

Define the equivalent product of clauses (theorem 1.6.5)

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3} \\
& x_{1}+x_{2}+\overline{x_{3}} \\
& x_{1}+\overline{x_{2}}+x_{3} \\
& \overline{x_{1}}+x_{2}+x_{3}
\end{aligned}
$$

$$
\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{3}}\right)\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(\overline{x_{1}}+x_{2}+x_{3}\right)
$$

## Let us verify theorem 1.6.5 on the example 1.6.6

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$ | $x_{1}+x_{2}+x_{3}$ | $x_{1}+x_{2}+\overline{x_{3}}$ | $x_{1}+\overline{x_{2}}+x_{3}$ | $\overline{x_{1}}+x_{2}+x_{3}$ | $\left(x_{1}+x_{2}+x_{3}\right)$ <br> $\left(x_{1}+x_{2}+\overline{x_{3}}\right)$ <br> $\left(x_{1}+\overline{x_{2}}+x_{3}\right)$ <br> $\left(\overline{x_{1}}+x_{2}+x_{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |  |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |  |  |  | 1 | 1 |

$$
\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{3}}\right)\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(\overline{x_{1}}+x_{2}+x_{3}\right)
$$

Propositional Resolution
The BDDC tool

## Plan

## Boolean Algebra

## Boolean functions

The BDDC tool

## Introduction to resolution

## Some definitions and notations

## Conclusion

## BDDC (Binary Decision Diagram based Calculator)

BDDC is a tool for manipulating propositional formulae developed by Pascal Raymond and available at the following address:

```
http://www-verimag.imag.fr/~raymond/home/tools/bddc/
```


## Plan of the Semester

- Propositional logic *
- Propositional resolution
- Natural propositional deduction

MIDTERM EXAM

- First order logic
- Basis for the automatic proof ("first order resolution")
- First order natural deduction

EXAM

Propositional Resolution
Introduction to resolution

## Plan

## Boolean Algebra

## Boolean functions

## The BDDC tool

## Introduction to resolution

## Some definitions and notations

## Conclusion

## Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods:

## Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods:
The truth tables and transformations

## Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods:
The truth tables and transformations

## Problem

If the number of variables increases, these methods are very long

## Example

By a truth table, to verify
$a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10}=1024$ lines.

## Example

By a truth table, to verify
$a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10}=1024$ lines.

Or, by deduction, this is a correct reasoning:

## Example

By a truth table, to verify
$a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10}=1024$ lines.

Or, by deduction, this is a correct reasoning:

1. By transitivity of the implication, $a \Rightarrow j \models a \Rightarrow j$.
2. By definition, the formula $a \Rightarrow j$ is a consequence of its own.

Propositional Resolution
Introduction to resolution

## Today

Propositional Resolution
Introduction to resolution

## Today

- Formalisation of a deductive system (with 1 rule)


## Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution


## Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution
- Some properties of resolution


## David Hilbert (1862-1943)

- Founder of the formalism school : mathematics can and should be formalized to be studied.
- Hilbert's program (1920):
"Wir müssen wissen. Wir werden wissen." as an answer to "Ignoramus et ignorabimus"
- choose a finite set of axioms to express all of maths
- prove it is consistent

- design an algorithm that decides whether a proposition can be proved (Entscheidungsproblem)
- Hilbert-style deductive systems: axioms such as $\vdash p \Rightarrow(q \Rightarrow p)$ and a few deduction rules such as $\frac{\vdash p \Rightarrow q}{\vdash q}$
- proofs are thorough but hard to read and to check


## Intuition

Formulas are put into CNF (conjunction of clauses), and then we use:

$$
a+\bar{b}, b+c \mid=a+c
$$

Some definitions and notations

## Plan

## Boolean Algebra

## Boolean functions

The BDDC tool

Introduction to resolution
Some definitions and notations
Conclusion

Some definitions and notations

## Definitions

## Definition 2.1.1

A clause is identified to the set of its literals, so we may say that:

## Definitions

## Definition 2.1.1

A clause is identified to the set of its literals, so we may say that:

- A literal is a member of a clause.
- A clause $A$ is included in a clause $B$ (or is a sub-clause of $B$ ).
- Two clauses are equal if they have the same set of literals.

Some definitions and notations

## Example 2.1.2

- The clauses $p+\bar{q}, \bar{q}+p$, and $p+\bar{q}+p$ are equal


## Example 2.1.2

- The clauses $p+\bar{q}, \bar{q}+p$, and $p+\bar{q}+p$ are equal
- $p \in \bar{q}+p+r+p$
- $p+\bar{q} \subseteq \bar{q}+p+r+p$


## Example 2.1.2

- The clauses $p+\bar{q}, \bar{q}+p$, and $p+\bar{q}+p$ are equal
- $p \in \bar{q}+p+r+p$
- $p+\bar{q} \subseteq \bar{q}+p+r+p$
- $\bar{q}+p+r+p-p=\bar{q}+r$
- $p+p+p-p=\perp$


## Example 2.1.2

- The clauses $p+\bar{q}, \bar{q}+p$, and $p+\bar{q}+p$ are equal
- $p \in \bar{q}+p+r+p$
- $p+\bar{q} \subseteq \bar{q}+p+r+p$
- $\bar{q}+p+r+p-p=\bar{q}+r$
- $p+p+p-p=\perp$
- Adding the literal $r$ to the clause $p$ yields the clause $p+r$
- Adding the literal $p$ to the clause $\perp$ yields the clause $p$


## Notation

$s(A)$ the set of literals of the clause $A$.
By convention $\perp$ is the empty clause and $s(\perp)=\emptyset$.

## Example 2.1.3

$s(\bar{q}+p+r+p+\bar{p})=$

## Notation

$s(A)$ the set of literals of the clause $A$.
By convention $\perp$ is the empty clause and $s(\perp)=\emptyset$.

## Example 2.1.3

$s(\bar{q}+p+r+p+\bar{p})=$
$\{\bar{q}, p, r, \bar{p}\}$

## Complementary literal

## Definition 2.1.4

We note $L^{C}$ the complementary literal of a literal $L$ :
If $L$ is a variable, $L^{c}$ is the negation of $L$.

If $L$ is the negation of a variable, $L^{c}$ is obtained by removing the negation of $L$.

Example 2.1.5
$x^{c}=\bar{x}$ and $\bar{x}^{c}=x$.

## Resolvent

## Definition 2.1.6

Let $A$ and $B$ be two clauses.

The clause $C$ is a resolvent of $A$ and $B$ iff there exists a literal $L$ such that

$$
L \in A, \quad L^{c} \in B, \quad C=(A-\{L\}) \cup\left(B-\left\{L^{c}\right\}\right)
$$

## Resolvent

## Definition 2.1.6

Let $A$ and $B$ be two clauses.

The clause $C$ is a resolvent of $A$ and $B$ iff there exists a literal $L$ such that

$$
L \in A, \quad L^{c} \in B, \quad C=(A-\{L\}) \cup\left(B-\left\{L^{c}\right\}\right)
$$

" $C$ is a resolvent of $A$ and $B$ " is represented by:


## Resolvent

## Definition 2.1.6

Let $A$ and $B$ be two clauses.

The clause $C$ is a resolvent of $A$ and $B$ iff there exists a literal $L$ such that

$$
L \in A, \quad L^{c} \in B, \quad C=(A-\{L\}) \cup\left(B-\left\{L^{c}\right\}\right)
$$

" $C$ is a resolvent of $A$ and $B$ " is represented by:

$C$ is generated by $A$ and $B$
$A$ and $B$ are the parents of clause $C$.

## Examples with resolution

## Example 2.1.7

Give the resolvents of:

- $p+q+r$ and $p+\bar{q}+r$
- $p+\bar{q}$ and $\bar{p}+q+r$
- $p$ and $\bar{p}$


## Examples with resolution

## Example 2.1.7

Give the resolvents of:

- $p+q+r$ and $p+\bar{q}+r$

$$
\frac{p+q+r \quad p+\bar{q}+r}{p+r}
$$

- $p+\bar{q}$ and $\bar{p}+q+r$
- $p$ and $\bar{p}$


## Examples with resolution

## Example 2.1.7

Give the resolvents of:

- $p+q+r$ and $p+\bar{q}+r$

$$
\frac{p+q+r \quad p+\bar{q}+r}{p+r}
$$

- $p+\bar{q}$ and $\bar{p}+q+r$

$$
\frac{p+\bar{q} \quad \bar{p}+q+r}{\bar{p}+p+r} \quad \frac{p+\bar{q} \quad \bar{p}+q+r}{\bar{q}+q+r}
$$

- $p$ and $\bar{p}$


## Examples with resolution

## Example 2.1.7

Give the resolvents of:

- $p+q+r$ and $p+\bar{q}+r$

$$
\frac{p+q+r \quad p+\bar{q}+r}{p+r}
$$

- $p+\bar{q}$ and $\bar{p}+q+r$

$$
\frac{p+\bar{q} \quad \bar{p}+q+r}{\bar{p}+p+r} \quad \frac{p+\bar{q} \quad \bar{p}+q+r}{\bar{q}+q+r}
$$

- $p$ and $\bar{p}$

$$
\frac{p \quad \bar{p}}{\perp}
$$

## Property

## Property 2.1.8

If one of the parents of a resolvent is valid, the resolvent is valid or contains the other parent.

## Proof.

See exercise 39.

## Property

## Property 2.1.8

If one of the parents of a resolvent is valid, the resolvent is valid or contains the other parent.

## Proof.

See exercise 39.

Example

$$
\frac{p+\bar{p}+q \quad \bar{q}+r}{p+\bar{p}+r} \quad \frac{p+\bar{p}+q \quad \bar{p}+r}{\bar{p}+q+r}
$$

## Definition of a proof

## Definition 2.1.11

Let $\Gamma$ be a set of clauses and $C$ a clause.

A proof of $C$ starting from $\Gamma$ is a list of clauses:

- where every clause of the proof is a member of $\Gamma$


## Definition of a proof

## Definition 2.1.11

Let $\Gamma$ be a set of clauses and $C$ a clause.

A proof of $C$ starting from $\Gamma$ is a list of clauses:

- where every clause of the proof is a member of $\Gamma$
- or is a resolvent of two clauses already obtained


## Definition of a proof

## Definition 2.1.11

Let $\Gamma$ be a set of clauses and $C$ a clause.

A proof of $C$ starting from $\Gamma$ is a list of clauses:

- where every clause of the proof is a member of $\Gamma$
- or is a resolvent of two clauses already obtained
- ending with $C$.


## Definition of a proof

## Definition 2.1.11

Let $\Gamma$ be a set of clauses and $C$ a clause.

A proof of $C$ starting from $\Gamma$ is a list of clauses:

- where every clause of the proof is a member of $\Gamma$
- or is a resolvent of two clauses already obtained
- ending with $C$.

The clause $C$ is deduced from $\Gamma$ ( $\Gamma$ yields $C$, or $\Gamma$ proves $C$ ), denoted $\Gamma \vdash C$, if there is a proof of $C$ starting from $\Gamma$.

The size of a proof is the number of lines in it.

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$. We show that $\Gamma \vdash \perp$ :

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$. We show that $\Gamma \vdash \perp$ :
$1 \quad p+q$ Hypothesis

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$. We show that $\Gamma \vdash \perp$ :
$\begin{array}{lll}1 & p+q & \text { Hypothesis } \\ 2 & p+\bar{q} & \text { Hypothesis }\end{array}$

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$. We show that $\Gamma \vdash \perp$ :
$1 \quad p+q$ Hypothesis
$2 p+\bar{q}$ Hypothesis
3 $p$
Resolvent of 1, 2

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$.
We show that $\Gamma \vdash \perp$ :
$1 \quad p+q$ Hypothesis
$2 p+\bar{q}$ Hypothesis
$3 p \quad$ Resolvent of 1, 2
$4 \bar{p}+q$ Hypothesis

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$.
We show that $\Gamma \vdash \perp$ :

| 1 | $p+q$ | Hypothesis |
| :--- | :--- | :--- |
| 2 | $p+\bar{q}$ | Hypothesis |
| 3 | $p$ | Resolvent of 1,2 |
| 4 | $\bar{p}+q$ | Hypothesis |
| 5 | $q$ | Resolvent of 3,4 |

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$.
We show that $\Gamma \vdash \perp$ :

| 1 | $p+q$ | Hypothesis |
| :--- | :--- | :--- |
| 2 | $p+\bar{q}$ | Hypothesis |
| 3 | $p$ | Resolvent of 1, 2 |
| 4 | $\bar{p}+q$ | Hypothesis |
| 5 | $q$ | Resolvent of 3, 4 |
| 6 | $\bar{p}+\bar{q}$ | Hypothesis |

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$.
We show that $\Gamma \vdash \perp$ :

|  |  |  |
| :--- | :--- | :--- |
| 2 | $p+\bar{q}$ | Hypothesis |
| 3 | $p$ | Resolvent of 1, 2 |
| 4 | $\bar{p}+q$ | Hypothesis |
| 5 | $q$ | Resolvent of 3, 4 |
| 6 | $\bar{p}+\bar{q}$ | Hypothesis |
| 7 | $\bar{p}$ | Resolvent of 5, 6 |
|  |  |  |

## Example

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$.
We show that $\Gamma \vdash \perp$ :

|  |  |  |
| :--- | :--- | :--- |
| 1 | $p+q$ | Hypothesis |
| 2 | $p+\bar{q}$ | Hypothesis |
| 3 | $p$ | Resolvent of 1, 2 |
| 4 | $\bar{p}+q$ | Hypothesis |
| 5 | $q$ | Resolvent of 3, 4 |
| 6 | $\bar{p}+\bar{q}$ | Hypothesis |
| 7 | $\bar{p}$ | Resolvent of 5, 6 |
| 8 | $\perp$ | Resolvent of 3, 7 |

## Proof tree

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$. We show that $\Gamma \vdash \perp$ :

$$
\begin{array}{cccc}
\frac{p+q}{\frac{p+\bar{q}}{p}} & & & \\
\hline & \bar{p}+q \\
& \bar{p} & \bar{p}+\bar{q} \\
& \perp & & \\
& &
\end{array}
$$

## Proof tree

## Example 2.1.12

Let $\Gamma$ be the set of clauses $\bar{p}+q, p+\bar{q}, \bar{p}+\bar{q}, p+q$. We show that $\Gamma \vdash \perp$ :

$$
\begin{aligned}
& \begin{array}{ccc}
\frac{p+q \quad p+\bar{q}}{p} & \bar{p}+q \\
\hline q & \bar{p}+\bar{q} \\
\bar{p} & \frac{p+q \quad p+\bar{q}}{p}
\end{array} \\
& \perp
\end{aligned}
$$

## Monotony and Composition

## Property 2.1.14

1. Monotony: If $\Gamma \vdash A$ and if $\Gamma \subseteq \Delta$ then $\Delta \vdash A$
2. Composition: If $\Gamma \vdash A$ and $\Gamma \vdash B$ and if $C$ is a resolvent of $A$ and $B$ then $\Gamma \vdash C$.

## Proof.

Exercise 38

Conclusion

## Plan

## Boolean Algebra

## Boolean functions

The BDDC tool

## Introduction to resolution

Some definitions and notations

Conclusion

## Today

- Important equivalences correspond to computation rules in a Boolean algebra
- Any boolean function can be represented by a (normal) formula
- A deductive system is given by a set of formal rules
- A proof is a sequence of applications of these rules starting from hypotheses.


## Next course

- Correctness and Completeness of the system
- Comprehensive strategy
- Davis-Putnam


## Homework

## Hypotheses:

- (H1): If Peter is old, then John is not the son of Peter
- (H2): If Peter is not old, then John is the son of Peter
- (H3): If John is Peter's son then Mary is the sister of John

Conclusion (C): Either Mary is the sister of John or Peter is old.

Transform into clauses the premises and the negation of the conclusion.

What can you (or should you) prove using resolution ?

