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Propositional Resolution

Proof by resolution of our running example

I (H1) : p⇒¬j ≡ ¬p∨¬j

I (H2) : ¬p⇒ j ≡ p∨ j

I (H3) : j⇒m ≡ ¬j ∨m

I (¬ C): ¬m∧¬p

Clauses: {¬p∨¬j, p∨ j, ¬j ∨m, ¬m, ¬p}
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Propositional Resolution

Last course

I Boolean Algebra
I Boolean functions
I Resolution

(1) A ` B

B is deduced from A: there is a proof by resolution of B starting from A.

(2) A |= B

B is a consequence of A: every model of A is also a model of B.

Today: Correctness

(1)⇒ (2)

Today: Completeness

(2)⇒ (1)
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Propositional Resolution

Overview

Correctness

Completeness

Introduction to resolution algorithms

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Complete strategy

Conclusion
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Propositional Resolution

Correctness

Definition

The correctness of a deductive system states that all proofs obtained
in this system “prove only true statements”.

F. Prost et al (UGA) Propositional Resolution February 2023 6 / 51



Propositional Resolution

Correctness

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then A,B |= C.

Proof.

If C is a resolvent of A and B, then there is a literal L such that L ∈ A,Lc ∈ B,
and C = (A−{L})∪ (B−{Lc}).

Let v be an assignment such that [A]v = 1 and [B]v = 1: let us show that [C]v = 1.

I Suppose that [L]v = 1.

Therefore [Lc ]v = 0.

Since [B]v = 1, v is a model of a literal of (B−{Lc}). Hence [C]v = 1.

I Suppose that [Lc ]v = 1.

Therefore [L]v = 0.

Since [A]v = 1, v is a model of (A−{L}). Hence [C]v = 1.

Since every truth assignment is either model of L or Lc , v is a model of C.

2
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Propositional Resolution

Correctness

Correctness of deduction

Theorem 2.1.16

Let Γ be a set of clauses and C a clause. If Γ ` C then Γ |= C.

Proof.

Suppose that there is a proof P of C starting from Γ.
Suppose that for any proof of Γ ` D shorter than P, we have Γ |= D.
Let us show that Γ |= C. There are two possible cases:

1. C is a member of Γ, in this case Γ |= C.

2. Γ ` A and Γ ` B (with a shorter proof) and

A B

C

By induction hypothesis: Γ |= A and Γ |= B.

By correctness of the resolution rule: A,B |= C. Hence Γ |= C.

2
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Propositional Resolution

Completeness

Overview

Correctness
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Introduction to resolution algorithms

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Complete strategy
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Propositional Resolution

Completeness

Definition

Completeness for the refutation is the property: If Γ |=⊥ then Γ ` ⊥.

We prove this result for a finite Γ.
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Propositional Resolution

Completeness

Γ[L := 1]

Definition 2.1.18

Let Γ be a set of clauses and L a literal.

Γ[L := 1] is obtained by:

I deleting the clauses containing L

I removing Lc from the other clauses.

Γ[L := 0] is similarly defined by switching the roles of L and Lc .

Remark: the number of variables in Γ has been decreased.
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Propositional Resolution

Completeness

Examples

Example 2.1.19

Let Γ be the set of clauses p + q, q + r , p + q, p + r . We have:

I Γ[p := 1] =

{q,q + r}.

I Γ[p := 0] =

{q + r ,q, r}.

Notice that:

I (1 + q)(q + r)(1 + q)(1 + r) ≡
q(q + r)

I (0 + q)(q + r)(0 + q)(0 + r) ≡
(q + r)qr
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Propositional Resolution

Completeness

Property of Γ[L := ...]

Property 2.1.21

Γ has a model if and only if Γ[L := 1] or Γ[L := 0] has a model.

Proof.

⇒ If v is a model of Γ then v is a model of
either Γ[L := 0] (if [L]v ′ = 0)
or Γ[L := 1] (if [L]v ′ = 1)

⇐ If v is a model of Γ[L := i]
then we can build a model of Γ (by taking [L]v ′ = i)

2
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Propositional Resolution

Completeness

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal.
If Γ[L := 1] ` C then Γ ` C or Γ ` C + Lc .

Proof.

Idea: we put back Lc in the clauses where it was removed.

I If C ∈ Γ[L := 1] :

I either C was in Γ, thus Γ ` C
I or C was obtained by removing a Lc , thus Γ ` C + Lc

I If C is a resolvent of A and B:

I either Γ ` A and Γ ` B, hence Γ ` C
I or Lc has to be put back into A or B, thus into C too

2
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Propositional Resolution

Completeness

Completeness of propositional resolution

Theorem 2.1.24

Let Γ be a finite set of clauses. If Γ is unsatisfiable then Γ ` ⊥.

Proof

By induction on the number of variables in Γ.

I Base case: Γ has no variable, so Γ = /0 (impossible, it’s valid)
or Γ = {⊥}.

I Inductive step: either we prove directly that Γ ` ⊥,
or that Γ ` x and Γ ` x .

Corollary 2.1.25

Γ is unsatisfiable if and only if Γ ` ⊥.

F. Prost et al (UGA) Propositional Resolution February 2023 15 / 51



Propositional Resolution

Introduction to resolution algorithms

Overview

Correctness

Completeness

Introduction to resolution algorithms

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Complete strategy

Conclusion
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Propositional Resolution

Introduction to resolution algorithms

Presentation of two algorithms

How to “systematically” decide whether Γ is inconsistent or not?

I The Davis-Putnam-Logemann-Loveland Algorithm
“Intelligent” traversal of the possible assignments of Γ

I Complete strategy
Construction of ALL the deductible clauses (resolvents) from Γ

Remark

Exponential solutions in time in the worst case.

F. Prost et al (UGA) Propositional Resolution February 2023 17 / 51
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Propositional Resolution

Introduction to resolution algorithms

Exponential complexity

Remember that two clauses having the same set of literals are equal.

If Γ uses n, then we have at most 2n distinct clauses deduced from Γ.

F. Prost et al (UGA) Propositional Resolution February 2023 18 / 51



Propositional Resolution

Introduction to resolution algorithms

Reduction of a set of clauses

In order to accelerate the algorithm, we reduce the set of clauses.

How to proceed with reduction?

Remove the valid clauses and the clauses containing another clause
of the set.

Example 2.1.27

The reduction of the set of clauses {p + q + p, p + r , p + r + s, r + q}
gives the reduced set:

{p + q + p,p + r ,p + r + s, r + q}.

F. Prost et al (UGA) Propositional Resolution February 2023 19 / 51
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Propositional Resolution

Introduction to resolution algorithms

Justification

Property 2.1.28

A set of clauses E is equivalent to the reduced set of clauses obtained
from E .

Proof.

I Removing valid clauses: x .1≡ x

I Removing a clause including another clause: x(x + y)≡ x
2
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Overview

Correctness

Completeness

Introduction to resolution algorithms

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

History

I Martin Davis (1928-), american
mathematician

I Hilary Putnam (1926-2016), american
philosopher, mathematician and computer
scientist

I resolution rule (exhaustively used in the first algorithm)
I Algorithm for satisfiability of boolean formulas (1960)

I finds (if possible) a model of a set of clauses
I initially devised to study first-order formulas
I refined in 1962 by M. Davis, G. Logemann and D. Loveland with a

branching mechanism
I Basis for efficient SAT-solvers

I Proof of undecidability of Diophantine equations
(with Y. Matiyasevich and J. Robinson)
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Principle I

Two types of formulae transformations:

1. preserving the truth value:
I reduction

2. preserving only satisfiability:
I pure literal elimination
I unit resolution

DPLL is (usually) efficient because it uses these two kinds
transformations.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Principle II

“Branching/Backtracking” (splitting rule)

I Branching: After simplification, assign to true a heuristically
chosen variable (branching literal).

I Continue the algorithm recursively.

I Backtracking: If we arrive to a contradiction, we return to the last
choice, and we “branch” by assigning false to the chosen
variable.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

The DPLL Algorithm (figure 2.1)

bool function Algo DPLL( Γ: set of clauses)
0 Remove the valid clauses from Γ.

If Γ = /0, return (true).
Else return (DPLL(Γ))

bool function DPLL( Γ: set of non-valid clauses)
The function returns true if and only if Γ is satisfiable.
1 If ⊥ ∈ Γ, return(false).

If Γ = /0, return (true).
2 Reduce Γ.
3 Remove from Γ the clauses containing a pure literal.

If the set Γ has been modified, goto 1.
4 Apply unit resolution to Γ.

If the set Γ has been modified, goto 1.
5 Pick an arbitrary variable x in Γ

return (DPLL(Γ[x := 0]) or else DPLL(Γ[x := 1]))
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Removal of clauses containing a pure literal

Definition 2.3.1

A litteral L is pure if none of the clauses in Γ contains Lc .

Lemma 2.3.2

Removing clauses with a pure literal preserves satisfiability.

Proof: see exercise 49.

Intuition: assigning [L]v to 1 is always possible for a pure literal.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Example 2.3.3

Let Γ be the set of clauses

(1) p + q + r

(2) q + r

(3) q + s

(4) s + t

Simplify Γ by removing clauses containing pure literals.

The literals p and t are pure.
Therefore we obtain

(2) q + r

(3) q + s

The literals r and s are pure.
We obtain the empty set.
Therefore Γ has a model (for instance p = 1, t = 1, r = 0,s = 1).
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Unit resolution

Definition 2.3.4

A unit clause is a clause which contains only one literal.

Lemma 2.3.5

Let L be the literal from a unit clause of Γ.
Let Θ be the set of clauses obtained by:

• removing the clauses containing L

• removing Lc inside the remaining clauses

I if Γ contains two complementary unit clauses, then Θ = {⊥}.

We apply this process for every unit clause.
Γ has a model if and only if Θ has a model.

Proof: The proof is requested in exercise 50.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

I Γ = p + q, p̄, q̄

q, q̄ by unit resolution on p̄, then ⊥ by UR on q̄
Hence Γ has no model.

I Γ = a + b + d̄ , ā + c + d̄ , b̄, d , c̄

1. a, a.
2. ⊥

hence Γ has no model.

I Γ = p, q, p + r , p̄ + r , q + r̄ , q̄ + s

By unit resolution, we obtain: r , s.
This set of clauses has a model, hence Γ has a model.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Removal of valid clauses

Lemma 2.3.7

Let Θ be the set of clauses obtained by removing the valid clauses of Γ.

Γ has a model iff Θ has a model.

Proof.

⇒ Every model of Γ is clearly a model of Θ, since Θ⊆ Γ.

⇐ Suppose that Θ has a model v .

Let v ′ be the truth assignment built from v by assigning any value to the variables
appearing in Γ but not in Θ.

Every clause C in Γ is:

I either a clause of Θ, then [C]′v = [C]v = 1
I or a valid clause, so obviously v ′ is a model of C.

Hence v ′ is a model of Γ.

2
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

The DPLL Algorithm (figure 2.1)

bool function Algo DPLL( Γ: set of clauses)
0 Remove the valid clauses from Γ.

If Γ = /0, return (true).
Else return (DPLL(Γ))

bool function DPLL( Γ: set of non-valid clauses)
The function returns true if and only if Γ is satisfiable.
1 If ⊥ ∈ Γ, return(false).

If Γ = /0, return (true).
2 Reduce Γ.
3 Remove from Γ the clauses containing a pure literal.

If the set Γ has been modified, goto 1.
4 Apply unit resolution to Γ.

If the set Γ has been modified, goto 1.
5 Pick an arbitrary variable x in Γ

return (DPLL(Γ[x := 0]) or else DPLL(Γ[x := 1]))
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Example 2.3.8

Let Γ be the set of clauses: a + b, a + b, a + c, a + c, b + c, b + c.

ā + b̄,a + b, ā + c̄,a + c, b̄ + c̄,b + c

b,c, b̄ + c̄,b + c b̄, c̄, b̄ + c̄,b + c

b,c, b̄ + c̄ b̄, c̄,b + c

⊥ ⊥
Since every leave contains the empty clause, the set Γ is unsatisfiable.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Example 2.3.8

Let Γ be the set of clauses: p + q, p + s, p + q, p + s.

p + q, p + s, p + q, p + s

s = 0uu s = 1 ))
p + q, p, p + q

RED
��

p + q, p + q, p

p, p + q

PLE: q=1
��

p

PLE: p = 0
��
/0

Since one branch leads to the empty set, the set Γ is satisfiable.
It is useless to continue the construction of the right branch.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Theorems 2.3.9 et 2.3.10

The algorithm Algo DPLL is correct and terminates.

Termination proof

I Valid clause removal is only executed once

I Simplification iteration: the number of clauses strictly decreases

I Recursive calls: the number of variables strictly decreases

Hence the termination.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Correctness proof

I Invariant for the simplification loop:
the current value of Γ has a model iff Γ has a model.

see lemma for each simplification.

I Correctness of recursive calls:
Reminder of property 2.1.21:
Γ has a model iff Γ[x := 0] or Γ[x := 1] is satisfiable.
So if the recursive calls are correct, the current call is too.

Since the algorithm is correct for a set Γ with no literal, it is correct for
any set Γ of clauses.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Remarks 2.3.11 and 2.3.12

I Forgetting simplifications: DPLL is still correct if we forget
(once or more) reduction (2), pure literal elimination (3) and/or
unit reduction (4).

I Choice of the variable (branching literal):
I A good choice for variable x in step (5) is the variable that appears

most often.
I A better choice is the variable which will lead to the maximum

number of simplifications

Cf. Sub-section 2.3.5, for the main branching heuristics
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

SAT Solveur demo

Problem

I Each square may either contain a token or not.

I Two neighbouring squares can never both contain a token.

I At least two squares must contain a token.

Input of the problem: the length n of the grid

Boolean modelization

I Each square is associated to a boolean variable (true if the
square contains a token)

I For the Dimacs format, we number the squares 1 to n
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Propositional Resolution

Complete strategy

Overview

Correctness

Completeness

Introduction to resolution algorithms

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Complete strategy

Conclusion
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Propositional Resolution

Complete strategy

Principle of the algorithm: Build all the clauses deduced
from Γ

Following the height of the proof trees.

Algorithm

For any integer i
While it is possible to construct new clauses
Build the reduced set of all the clauses having a proof tree of height at
most i .

In practice:
Maintain two sequences of the sets of clauses, ∆i(i≥0) and Θi(i≥0)
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Propositional Resolution

Complete strategy

Result of the algorithm: minimum deduction clauses

Definition 2.1.29

A minimum clause for the deduction from Γ is :

I a non-valid clause

I deduced from Γ

I and containing no other clause deduced from Γ.

Example 2.1.30

Γ = {a + b, b + c + d}
I The clause a + c + d is a minimum clause for deduction.

I But if we add a + c to Γ, then a + c + d is not minimal anymore
(since we can now deduce c + d).
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Propositional Resolution

Complete strategy

Property

Property 2.1.31

Let Θ be the set of minimum deduction clauses for the set Γ.
Γ is unsatisfiable if and only if ⊥ ∈Θ.

Proof.

I Suppose ⊥ ∈Θ, then Γ ` ⊥, hence by resolution correctness, Γ
is unsatisfiable.

I Suppose Γ is unsatisfiable, by resolution completeness, Γ ` ⊥.
Consequently ⊥ is a minimum clause for deduction from Γ,
therefore ⊥ ∈Θ.

2
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Propositional Resolution

Complete strategy

Two sequences of sets of clauses

∆i are the new useful clauses

Clauses deduced from Γ by a proof of height i , after removal of:

I valid clauses

I clauses including another clause whose proof has height < i .

∆0 is obtained by reducing Γ.

Θi are the old clauses still useful

Clauses deduced from Γ by a proof of height < i after removal of:

I valid clauses

I clauses including another clause whose proof has height ≤ i .

Θ0 is the empty set.
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Propositional Resolution

Complete strategy

Construction of the sequences ∆i(i≥0) and Θi(i≥0)

∆i+1

I Compute all the resolvents of ∆i and ∆i ∪Θi

I Reduce this set

I Remove the new resolvents including a clause from ∆i ∪Θi

Θi+1

Remove from ∆i ∪Θi the clauses which include a clause from ∆i+1.

When ∆k = /0, stop the construction:

I k−1 is then the maximum height of a proof

I Θk is the reduced set of the clauses deduced from Γ
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Propositional Resolution

Complete strategy

Exemple 2.2.1

Soit Γ = {a + b + ā,a + b,a + b + c,a + b̄, ā + b, ā + b̄}

Rappel :
I ∆i+1 =

I Compute all the resolvents of ∆i and ∆i ∪Θi
I Reduce this set
I Remove the new resolvents which include a clause from ∆i ∪Θi

I Θi+1 =

Remove from ∆i ∪Θi the clauses which include a clause of ∆i+1.
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ā + b, ā + b̄

1 a,b, b̄, ā /0
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ā + b, ā + b̄
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Rappel :
I ∆i+1 =

I Compute all the resolvents of ∆i and ∆i ∪Θi
I Reduce this set
I Remove the new resolvents which include a clause from ∆i ∪Θi

I Θi+1 =
Remove from ∆i ∪Θi the clauses which include a clause of ∆i+1.
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ā + b, ā + b̄
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1 a,b, b̄, ā /0 a,b, b̄, ā ⊥
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Propositional Resolution

Complete strategy

The proof we built

1 a + b
2 a + b
3 a + b
4 a + b
5 a resolvent of 1 and 2
6 b resolvent of 1 and 3
7 b resolvent of 2 and 4
8 a resolvent of 3 and 4
9 ⊥ resolvent of 5 and 8
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Propositional Resolution

Complete strategy

Example 2.2.2

{a, c, a + b, c + e}

i ∆i Θi ∆i ∪Θi Rés. de ∆i et ∆i ∪Θi

0 a,c,a + b,c + e /0 a,c,a + b,c + e b̄,e

1 b̄,e a,c b̄,e,a,c /0

2 /0 b̄,e,a,c

Rappel :

I ∆i+1 =
I Compute all the resolvents of ∆i and ∆i ∪Θi
I Reduce this set
I Remove the new resolvents which include a clause from ∆i ∪Θi

I Θi+1 =

Remove from ∆i ∪Θi the clauses which include a clause of ∆i+1.
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Propositional Resolution

Complete strategy

Termination of the algorithm: idea

There are at most 2n clauses deduced from Γ.

∆i(i≥0) contains only clauses deduced from Γ

Property 2.2.4

For all i ≤ k , the sets ∆i are mutually disjoint.
(by construction of ∆i )

∆i(i≥0) are mutually disjoint

Hence there are at most 2n + 1 sets, therefore k ≤ 2n + 1
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Propositional Resolution

Complete strategy

Result of the algorithm

When the algorithm terminates:

if ⊥ ∈Θk : Γ is unsatisfiable

if ⊥ /∈Θk : Γ is satisfiable, but what does Θk represent?

I Θk = set of minimum deduction clauses.

I Γ and Θk are equivalent.

Property 2.2.5

For all i < k , the sets ∆i ∪Θi and ∆i+1∪Θi+1 are equivalent.

Hence :

Γ ≡ ∆0∪ /0 = ∆0∪Θ0 ≡ . . . ≡ ∆k ∪Θk = /0∪Θk = Θk
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Propositional Resolution

Conclusion

Overview

Correctness

Completeness

Introduction to resolution algorithms

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Complete strategy

Conclusion
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Propositional Resolution

Conclusion

Today

I Resolution is a correct and complete deductive system: it
characterizes all the unsatisfiable formulae.

I The DPLL algorithm uses ideas from resolution to:
I find a model
I or else, prove the unsatisfiability by an efficient search of the

assignments.

I Complete Strategy is an algorithm for computing every clause
deducible from an initial set
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Propositional Resolution

Conclusion

Next lecture

I Natural deduction

Homework: Hypotheses :

I (H1) : p⇒¬j ≡ ¬p∨¬j

I (H2) : ¬p⇒ j ≡ p∨ j

I (H3) : j⇒m ≡ ¬j ∨m

I (¬ C): ¬m∧¬p (two clauses)

Build the proof of H1,H2,H3,¬C ` ⊥ obtained by the DPLL
algorithm (you may pick any variable for branching)
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