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Natural Deduction
Introduction to natural deduction

Intuition

When we write proofs in math courses,
when we decompose a reasoning in elementary obvious steps,

we practice natural deduction.
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Natural Deduction (ND)

New deductive systems (1934) introduced by Gentzen (1909-45):

» Natural deduction:
» we prove consequences [ - p rather than
tautologies
» only one axiom ', pFp
» introduction and elimination rules for each
connective
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New deductive systems (1934) introduced by Gentzen (1909-45):
» Natural deduction:
» we prove consequences [ - p rather than
tautologies
» only one axiom [, pkp
» introduction and elimination rules for each
connective
> Sequent calculus:

» [ A if whenever all of I is true, one of the formulas in A is true
» left and right introduction rules
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Introduction to natural deduction

Natural Deduction (ND)

New deductive systems (1934) introduced by Gentzen (1909-45):
» Natural deduction:
» we prove consequences [ - p rather than
tautologies
» only one axiom ', pFp

» introduction and elimination rules for each
connective

> Sequent calculus:

» [ A if whenever all of I is true, one of the formulas in A is true
» left and right introduction rules
FAp T pkA
N ViAWY
» Computing with proofs: cut elimination
Every proof that does not use the excluded middle can be
transformed into a constructive proof.

r
» cutrule
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Introduction to natural deduction

Resolution vs. Natural deduction

A proof by resolution is a list of clauses built using any of the previous
clauses.

In natural deduction, during a proof,
we can add and remove hypotheses.
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Introduction to natural deduction

Abbreviations

T, negation and equivalence are abbreviations defined as:
» T abbreviates | = L.
> —Aabbreviates A= L.
> A< Babbreviates (A= B) A (B= A).
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Introduction to natural deduction

Abbreviations

T, negation and equivalence are abbreviations defined as:
» T abbreviates L. = 1.
» —A abbreviates A= 1.

> A< Babbreviates (A= B) A (B= A).

Two formulae are considered to be equal, if the formulas obtained by
removing the abbreviations are identical.
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» T abbreviates | = L.
> —Aabbreviates A= L.
> A< Babbreviates (A= B) A (B= A).

Two formulae are considered to be equal, if the formulas obtained by
removing the abbreviations are identical.

For example, the formulae =—a, ~a= L and (a= L) = L are
equal.
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Natural Deduction
Introduction to natural deduction

Abbreviations

T, negation and equivalence are abbreviations defined as:
» T abbreviates | = L.
> —Aabbreviates A= L.
> A< Babbreviates (A= B) A (B= A).

Two formulae are considered to be equal, if the formulas obtained by
removing the abbreviations are identical.

For example, the formulae =—a, ~a= L and (a= L) = L are
equal.

Two equal formulae are equivalent!
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Natural Deduction
Rules

Rule

Definition 3.1.1

A rule consists of:
» some formulae H;, ..., H, called premises (or hypotheses)
» a unique conclusion C
> sometimes a name R for the rule
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Natural Deduction
Rules

Rule

Definition 3.1.1

A rule consists of:
» some formulae H;, ..., H, called premises (or hypotheses)
» a unique conclusion C
> sometimes a name R for the rule

Example : Proof of a conjunction

A B
g M)
ANB
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Rules

Classification of rules

» Introduction rules for introducing a connective in the conclusion.
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Classification of rules

» Introduction rules for introducing a connective in the conclusion.

» Elimination rules for removing a connective from one of the
premises.
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Natural Deduction
Rules

Classification of rules

» Introduction rules for introducing a connective in the conclusion.

» Elimination rules for removing a connective from one of the
premises.

» -+ two special rules
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Rules

The rules (system NK of Gentzen)

Table 3.1

Introduction Elimination

Implication

Conjunction

Disjunction

Ex falso quodlibet

Reductio ad absurdum
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Table 3.1
Introduction Elimination
[A]
Implication : AASB SE
ABB aid

Conjunction

Disjunction

Ex falso quodlibet
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Rules

The rules (system NK of Gentzen)

Table 3.1
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Implication
Conjunction

Disjunction

Introduction Elimination

[A]
5 A A=B c
B

r B =1

A B

ANB &

Ex falso quodlibet

Reductio ad absurdum

[A] means that A is a hypothesis
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The rules (system NK of Gentzen)

Table 3.1
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Implication
Conjunction

Disjunction

Introduction Elimination
[A]
: A A=B .
_B_ )
ANB A
A AAB .
75 A

Ex falso quodlibet

Reductio ad absurdum

[A] means that A is a hypothesis
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Rules

The rules (system NK of Gentzen)

Table 3.1
Introduction Elimination
A

Implication : AASB SE

=5 =
Conjunction | 42w azs AET
Disjunction ALgB v

n VI2

Ex falso quodlibet
1
Reductio ad absurdum

[A] means that A is a hypothesis
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Rules

The rules (system NK of Gentzen)

Table 3.1
Introduction Elimination
1A
Implication : 448 SE
B
r B =1
Conjunction | 42w azs AET
AAB
T NE2
Disjunction A
] AVB
g AVB A=C B=C
n ViI2 —C VE
Ex falso quodlibet
1
Reductio ad absurdum

[A] means that A is a hypothesis
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Table 3.1
Introduction Elimination
1A
Implication : 448 SE
B
A=B ad
Conjunction | 42w azs AET
AAB
T NE2
Disjunction A
] AVB
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n ViI2 —C VE
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Rules

The rules (system NK of Gentzen)

Table 3.1
Introduction Elimination
1A
Implication : AASB SE
B
r B =1
Conjunction | 42w azs AET
AAB
T NE2
Disjunction A
] AVB
g AVB A=C B=C
n VI2 —C VE
Ex falso quodlibet
J_ % Efq
Reductio ad absurdum
ﬁTjA RAA

[A] means that A is a hypothesis
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Rules

A “simple” example

A A=B A A= C

Al

BAC
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A A=B A A=C
—Y—2EF ———=FE

BAC

What have we proven here exactly?
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Natural Deduction
Rules

A “simple” example

A A=B A A=C
—Y—=2EF ———=FE

BAC

What have we proven here exactly? BAC
under the hypotheses A, A= B, A= C

ie. AJA=B, A= CEBAC
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Natural Deduction
Rules

Fundamental rule of Natural Deduction

Implies-introduction:

In order to prove A= B,
just derive B with the additional hypothesis A and then remove this
assumption.

(If A=B then = A= B)
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Natural Deduction
Rules

Fundamental rule of Natural Deduction

Implies-introduction:

In order to prove A= B,
just derive B with the additional hypothesis A and then remove this

assumption.
(If AEB then =A= B)
[A] Hy ... H;p
B
=/
A=1B proves that Hi,...,H, F A= B.
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Natural deduction proofs

Proof line

Definition 3.1.2

A proof line is one of the three following:
» Assume formula
» formula

» Therefore formula
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Natural deduction proofs

Proof line

Definition 3.1.2
A proof line is one of the three following:
» Assume formula (to add an hypothesis)
» formula (derived from previous lines using the rules)

» Therefore formula (to remove the last hypothesis)
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Natural deduction proofs

Proof line

Definition 3.1.2
A proof line is one of the three following:
» Assume formula (to add an hypothesis)
» formula (derived from previous lines using the rules)
» Therefore formula (to remove the last hypothesis)
This last case is the rule of implies-introduction.
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Natural deduction proofs

Proof line

Definition 3.1.2
A proof line is one of the three following:
» Assume formula (to add an hypothesis)
» formula (derived from previous lines using the rules)
» Therefore formula (to remove the last hypothesis)
This last case is the rule of implies-introduction.

Examples:
» Assume AAB [ANB]
NE
> A
— =
» Therefore ANAB= A ANB= A
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Natural deduction proofs

Proof sketch

Definition 3.1.3

A proof sketch is a sequence of lines such that, in every prefix of the
sequence, there are at least as many Assume as Therefore.
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Proof sketch

Definition 3.1.3

A proof sketch is a sequence of lines such that, in every prefix of the
sequence, there are at least as many Assume as Therefore.

Example 3.1.4

number | line

Assume a

aVvb
Thereforea=aVvb
Therefore —a

BN =

Assume b
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Proof sketch

Definition 3.1.3

A proof sketch is a sequence of lines such that, in every prefix of the
sequence, there are at least as many Assume as Therefore.
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Natural deduction proofs

Proof sketch: examples

Where are the sketches?

F. Prost et al (UGA)

A ON =

Therefore a=-aVvb
Assume b

num | line -
num | line
1 Assume aA b
1 Assume a
2 b
3 bV e 2 avb
3 Thereforea=-aVvb
4 ThereforeaAb=bVc
4 Assume b
5 Therefore —a
5 Therefore —a
6 Assume b
num | line
Assume a
aVvb
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Natural deduction proofs

Context (1/2)

» Each line of a proof sketch has a context

» The context is the sequence of hypotheses previously introduced
in Assume lines and not removed in Therefore lines.
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Natural deduction proofs

Context (1/2)

» Each line of a proof sketch has a context

» The context is the sequence of hypotheses previously introduced

in Assume lines and not removed in Therefore lines.

Example 3.1.6:
context | number | line rule
1 1 Assume a
1,2 2 Assume b
1,2 3 anb Al1,2
1 4 Therefore b= aAb | =12,3
1,5 5 Assume e

F. Prost et al (UGA)
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Natural deduction proofs

Context (2/2)

The context of a formula represents the hypotheses from which it has
been derived.

Definition 3.1.5

Formally: I'; is the context of the line i.

[0=0
If the line i is:
> Assume A
thenl;=1T,_4,i
> A
thenl; =1T,_4

» Therefore A
then I'; is obtained by deleting the last formula in I';_;
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Natural deduction proofs

Example of context

Write down the contexts of the following proof sketch:

F. Prost et al (UGA)

context

number | line

1

a b~ WD

Assume a

avb
Thereforea= aVvb
Assume b

Therefore b

Natural Deduction
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Natural deduction proofs

Example of context

Write down the contexts of the following proof sketch:

F. Prost et al (UGA)

context | number | line
1 1 Assume a
1 2 aVvb
3 Thereforea= aVvb
4 4 Assume b
5 Therefore b

Natural Deduction
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Natural deduction proofs

Usable formulae (1/2)

Definition 3.1.7

» A formula appearing on a line of a proof sketch is its conclusion.

» The conclusion of a line is usable as long as its context (i.e., the
hypotheses from which it has been derived) is present.
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Natural deduction proofs

Usable formulae (1/2)

Definition 3.1.7

» A formula appearing on a line of a proof sketch is its conclusion.

» The conclusion of a line is usable as long as its context (i.e., the
hypotheses from which it has been derived) is present.

Example 3.1.8
context | number | line
1 1 Assume a
1 2 avb
3 Thereforea=b
4 a
5 bVa

The conclusion of line 2 is usable on line 2 and not beyond.

F. Prost et al (UGA) Natural Deduction February 2023
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Natural deduction proofs

Usable formulae (2/2)

On which lines are formulae 1 and 3 usable?

context | number | line

1 1 Assume a

1,2 2 Assume b

1,2 3 c

1 4 Therefore d
1,5 5 Assume €
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Natural deduction proofs

Definition of a Proof

Definition 3.1.9

Let I be a set of formulae.
A proof in the environment [ is a proof sketch such that:

1. For every “Therefore” ling, the formula is B =- C, where:

» Bis the last hypothesis we’ve removed
(from the context of the previous line)

» Cis either a formula usable on the previous line, or belongs to I'.
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Natural deduction proofs

Definition of a Proof

Definition 3.1.9

Let I be a set of formulae.
A proof in the environment [ is a proof sketch such that:

1. For every “Therefore” ling, the formula is B =- C, where:

» Bis the last hypothesis we’ve removed
(from the context of the previous line)

» Cis either a formula usable on the previous line, or belongs to I'.
2. For every “A” line, the formula A is:

» the conclusion of a rule (other than = /)
» whose premises are usable on the previous line, or belong to I'.
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Natural Deduction

Natural deduction proofs

Definition of a Proof

Definition 3.1.9

Let I be a set of formulae.
A proof in the environment [ is a proof sketch such that:

1. For every “Therefore” ling, the formula is B =- C, where:

» Bis the last hypothesis we’ve removed
(from the context of the previous line)

» Cis either a formula usable on the previous line, or belongs to I'.
2. For every “A” line, the formula A is:

» the conclusion of a rule (other than = /)
» whose premises are usable on the previous line, or belong to I'.

Beware:

» The context I'; changes during the proof.

» The environment I remains the same.
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Natural deduction proofs

Proof of formulae

Definition 3.1.10

A proof of formula A within the environment [ is:
» either the empty proof (when A is an element of '),
» or a proof whose last line is A with an empty context.
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Natural deduction proofs

Proof of formulae

Definition 3.1.10

A proof of formula A within the environment [ is:
» either the empty proof (when A is an element of '),
» or a proof whose last line is A with an empty context.

We note:
» [ Athe fact that there is a proof of A within the environment I,
» [ P: Athe fact that P is a proof of A within I.
» When the environment is empty, we abbreviate 0 - A by - A.

» When we ask for a proof without indicating the environment, we
mean that [ = 0.
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Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (a=- b) = (=b= —a).

context | number | proof | justification |
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Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (a=- b) = (=b= —a).

context

number

proof

justification

1

1

Assume a=- b

F. Prost et al (UGA)

Natural Deduction

February 2023
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Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (a=- b) = (—b= —a).

context | number | proof justification
1 1 Assume a=b
1,2 2 Assume b

F. Prost et al (UGA)
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Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (2= b) = (=b= —a).

context | number | proof justification
1 1 Assume a=b

1,2 2 Assume —b

1,2,3 3 Assume a

F. Prost et al (UGA)

Natural Deduction

February 2023

27/34



Natural Deduction
Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (a=- b) = (=b= —a).

context | number | proof justification
1 1 Assume a= b

1,2 2 Assume —b

1,2,3 3 Assume a

1,2,3 4 b =E1,3
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Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (a= b) = (-b= —a).

context | number | proof justification
1 1 Assume a= b

1,2 2 Assume —b

1,2,3 3 Assume a

1,2,3 4 b =E1,3
1,2,3 5 1 = FE24
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First Example (exemple 3.1.11)

Let us prove (a=- b) = (=b= —a).

context | number | proof justification
1 1 Assume a=b

1,2 2 Assume —b

1,2,3 3 Assume a

1,2,3 4 b =E1,3
1,2,3 5 1 =E24
1,2 6 Therefore—a | = 13,5
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Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (a = b) = (-b= —a).

context | number | proof justification
1 1 Assume a= b

1,2 2 Assume —b

1,2,3 3 Assume a

1,2,3 4 b =E1,3
1,2,3 5 1 =E24
1,2 6 Therefore —a =13,5

1 7 Therefore " b=—-a| =12,6
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Natural deduction proofs

First Example (exemple 3.1.11)

Let us prove (a=- b) = (=b= —a).

context | number | proof justification
1 1 Assume a=b
1,2 2 Assume —b
1,2,3 3 Assume a
1,2,3 4 b =E1,83
1,2,3 5 1L =E24
1,2 6 Therefore —a =13,5
1 7 Therefore -b= —a =12,6

8 Therefore (a=b) = (-b=—a) | = 11,7
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Natural deduction proofs

Proofs with abbreviations vs. without abbreviations

cont. | n. | proof with abbreviation proof without abbreviation
1 1 Assume a= b Assume @ = b
1,2 2 Assume —b Assume b=_1
1,23 | 3 | Assume a Assume a
123 | 4 | b b
123 | 5 | L 1
1,2 6 Therefore —a Therefore a=_1
1 7 | Therefore ~b= —a Therefore (b=1)= (a=1)
8 | Therefore (a= b) = (-b=-—a) | Therefore(a=b)=((b=1)=(a=Ll))

F. Prost et al (UGA)
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Natural deduction proofs

Tree (example 3.1.11)

(a=rt ()
(2)=t (4)b B
GL
173]
(6)—a
=2
(7)-b = —a 1]
(8)(a=b) = (mb= —a)
context number proof justification
1 1 Assume a= b
1,2 2 Assume —b
1,23 3 Assume @
12,3 4 b =E1,3
12,3 5 €L =E24
1,2 6 Therefore na =13,5
1 7 Therefore =b= —a =12,6
8 Therefore (a=> b) = (-b= —a) =117

F. Prost et al (UGA) Natural Deduction February 2023 29/34
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Natural deduction proofs

Second Example

Prove aA—a= b.

context | number | proof | justification
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Second Example

Prove aA—a = b.

context | number | proof justification
1 1 Assume a/A\—a
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Natural deduction proofs

Second Example

Prove aA —a= b.

context | number | proof justification
1 1 Assume a/A\—a
1 2 a AE11

F. Prost et al (UGA)
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Natural deduction proofs

Second Example

Prove aA—a= b.

context | number | proof justification
1 1 Assume a/A—a

1 2 a NET1A1

1 3 -a NE21

F. Prost et al (UGA) Natural Deduction February 2023 30/34
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Natural deduction proofs

Second Example

Prove aA—a= b.

context | number | proof justification
1 1 Assume a/A\—a

1 2 a ANE11

1 3 -a ANE2 1

1 4 1 =E2,3
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Natural Deduction
Natural deduction proofs

Second Example

Prove aA—a= b.

context | number

proof

justification

1

—_ A
o~ O

Assume a/A\—a
a

—a

1

b

ANE1 1
NE2 1
=E23
Efq 4
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Natural deduction proofs

Second Example

Prove aA—a= b.

context | number | proof justification
1 1 Assume @A\ —a
1 2 a AE11
1 3 -a ANE2 1
1 4 1 =E2,3
1 5 b Efq4
6 ThereforeaN—-a=>b | =11,5
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Natural Deduction

Natural deduction proofs

Proofs with abbreviations vs. without abbreviation (2/2)

contexte | number | proof with abbreviation proof without abbreviation justification
1 1 Assume aA—a Assume aA(a= 1)
1 2 a a NETA1
1 3 —a a= 1 NE21
1 4 L 1 =E23
1 5 b b Efq4
6 Therefore aA—a=-b | ThereforeaA(a= L)=b | =/1,5
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Conclusion

Plan

Conclusion
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Natural Deduction
Conclusion

Today

» Propositional natural deduction reflects the usual deduction
rules into a formal system.

» Unlike in resolution, a proof occurs in a context (list of formulae
assumed at a given point).
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Natural Deduction
Conclusion

Next lecture

» Completeness
» Correctness
» Tactics

Homework: prove

(p=-NA(=p=j)A({=m)=mVp

using natural deduction.
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