Natural Deduction

Frédéric Prost
Université Grenoble Alpes

February 2023

Last course

- Correctness and completeness of resolution
- Complete Strategy
- Davis-Putnam algorithm

Homework: solution with DPLL

$$
\begin{gathered}
\bar{p}+\bar{j}, p+j, \bar{j}+m, \bar{m}, \bar{p} \\
\downarrow \text { RED } \\
p+j, \bar{j}+m, \bar{m}, \bar{p} \\
\\
\downarrow \text { UR }: m=0, \mathrm{p}=0 \\
j, \bar{j} \\
\downarrow \text { UR }
\end{gathered}
$$

Plan

Introduction to natural deduction

Rules

Natural deduction proofs

Conclusion

Plan

Introduction to natural deduction

Natural deduction proofs

Conclusion

Intuition

When we write proofs in math courses,
when we decompose a reasoning in elementary obvious steps,
we practice natural deduction.

Natural Deduction (ND)

New deductive systems (1934) introduced by Gentzen (1909-45):

- Natural deduction:
- we prove consequences $\Gamma \vdash p$ rather than tautologies
- only one axiom $\Gamma, p \vdash p$
- introduction and elimination rules for each connective

Natural Deduction (ND)

New deductive systems (1934) introduced by Gentzen (1909-45):

- Natural deduction:
- we prove consequences $\Gamma \vdash p$ rather than tautologies
- only one axiom $\Gamma, p \vdash p$
- introduction and elimination rules for each connective

- Sequent calculus:
- $\Gamma \vdash \Delta$ if whenever all of Γ is true, one of the formulas in Δ is true
- left and right introduction rules
- cut rule $\frac{\Gamma \vdash \Delta, p \quad \Gamma^{\prime}, p \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}}$

Natural Deduction (ND)

New deductive systems (1934) introduced by Gentzen (1909-45):

- Natural deduction:
- we prove consequences $\Gamma \vdash p$ rather than tautologies
- only one axiom $\Gamma, p \vdash p$
- introduction and elimination rules for each connective

- Sequent calculus:
- $\Gamma \vdash \Delta$ if whenever all of Γ is true, one of the formulas in Δ is true
- left and right introduction rules
- cut rule $\frac{\Gamma \vdash \Delta, p \quad \Gamma^{\prime}, p \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}}$

Natural Deduction (ND)

New deductive systems (1934) introduced by Gentzen (1909-45):

- Natural deduction:
- we prove consequences $\Gamma \vdash p$ rather than tautologies
- only one axiom $\Gamma, p \vdash p$
- introduction and elimination rules for each connective

- Sequent calculus:
- $\Gamma \vdash \Delta$ if whenever all of Γ is true, one of the formulas in Δ is true
- left and right introduction rules
- cut rule $\frac{\Gamma \vdash \Delta, p \quad \Gamma^{\prime}, p \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}}$
- Computing with proofs: cut elimination

Every proof that does not use the excluded middle can be transformed into a constructive proof.

Resolution vs. Natural deduction

A proof by resolution is a list of clauses built using any of the previous clauses.

In natural deduction, during a proof, we can add and remove hypotheses.

Abbreviations

\top, negation and equivalence are abbreviations defined as:

- \top abbreviates $\perp \Rightarrow \perp$.
- $\neg A$ abbreviates $A \Rightarrow \perp$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \wedge(B \Rightarrow A)$.

Abbreviations

\top, negation and equivalence are abbreviations defined as:

- \top abbreviates $\perp \Rightarrow \perp$.
- $\neg A$ abbreviates $A \Rightarrow \perp$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \wedge(B \Rightarrow A)$.

Two formulae are considered to be equal, if the formulas obtained by removing the abbreviations are identical.

Abbreviations

\top, negation and equivalence are abbreviations defined as:

- \top abbreviates $\perp \Rightarrow \perp$.
- $\neg A$ abbreviates $A \Rightarrow \perp$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \wedge(B \Rightarrow A)$.

Two formulae are considered to be equal, if the formulas obtained by removing the abbreviations are identical.

For example, the formulae $\neg \neg a, \neg a \Rightarrow \perp$ and $(a \Rightarrow \perp) \Rightarrow \perp$ are equal.

Abbreviations

\top, negation and equivalence are abbreviations defined as:

- \top abbreviates $\perp \Rightarrow \perp$.
- $\neg A$ abbreviates $A \Rightarrow \perp$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \wedge(B \Rightarrow A)$.

Two formulae are considered to be equal, if the formulas obtained by removing the abbreviations are identical.

For example, the formulae $\neg \neg a, \neg a \Rightarrow \perp$ and $(a \Rightarrow \perp) \Rightarrow \perp$ are equal.

Two equal formulae are equivalent!

Plan

Introduction to natural deduction

Rules

Natural deduction proofs

Conclusion

Rule

Definition 3.1.1

A rule consists of:

- some formulae H_{1}, \ldots, H_{n} called premises (or hypotheses)
- a unique conclusion C
- sometimes a name R for the rule

$$
\frac{H_{1} \ldots H_{n}}{C} R
$$

Rule

Definition 3.1.1

A rule consists of:

- some formulae H_{1}, \ldots, H_{n} called premises (or hypotheses)
- a unique conclusion C
- sometimes a name R for the rule

$$
\frac{H_{1} \ldots H_{n}}{C} R
$$

Example : Proof of a conjunction

$$
\frac{A \quad B}{A \wedge B}(\wedge I)
$$

Classification of rules

- Introduction rules for introducing a connective in the conclusion.

Classification of rules

- Introduction rules for introducing a connective in the conclusion.
- Elimination rules for removing a connective from one of the premises.

Classification of rules

- Introduction rules for introducing a connective in the conclusion.
- Elimination rules for removing a connective from one of the premises.
- + two special rules

The rules (system NK of Gentzen)

Table 3.1

	Introduction	Elimination	
Implication			
Conjunction			
Disjunction			
		Ex falso quodlibet	
		Reductio ad absurdum	

The rules (system NK of Gentzen)

Table 3.1

	Introduction	Elimination
Implication	$\begin{gathered} {[A]} \\ \vdots \\ \frac{B}{A \Rightarrow B} \quad \Rightarrow 1 \end{gathered}$	
Conjunction		
Disjunction		
	Ex f	uodlibet
\perp		
	Reduc	absurdum

[A] means that A is a hypothesis

The rules (system NK of Gentzen)

Table 3.1

[A] means that A is a hypothesis

The rules (system NK of Gentzen)

Table 3.1

[A] means that A is a hypothesis

The rules (system NK of Gentzen)

Table 3.1

[A] means that A is a hypothesis

The rules (system NK of Gentzen)

Table 3.1

[A] means that A is a hypothesis

The rules (system NK of Gentzen)

Table 3.1

Implication	Introduction		Elimination	
	$\begin{gathered} {[A]} \\ \vdots \\ \frac{B}{A \Rightarrow B} \end{gathered}$		$\frac{A A \Rightarrow B}{B}$	$\Rightarrow E$
Conjunction	$\frac{A \Rightarrow B}{\frac{A B}{A \wedge B}}$	\wedge	$\begin{aligned} & \frac{A \wedge B}{A} \\ & \frac{A \wedge B}{B} \end{aligned}$	$\wedge E 1$ $\wedge E 2$
Disjunction	$\begin{aligned} & \frac{A}{A \vee B} \\ & \frac{B}{A \vee B} \end{aligned}$	V/1 v/2	$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C}$	vE
	Ex falso quodlibet			
\perp				
	Reductio ad absurdum			

[A] means that A is a hypothesis

The rules (system NK of Gentzen)

Table 3.1

[A] means that A is a hypothesis

The rules (system NK of Gentzen)

Table 3.1

[A] means that A is a hypothesis

A "simple" example

A "simple" example

What have we proven here exactly?

A "simple" example

What have we proven here exactly? $B \wedge C$

A "simple" example

What have we proven here exactly? $B \wedge C$
under the hypotheses $A, A \Rightarrow B, A \Rightarrow C$
i.e. $A, A \Rightarrow B, A \Rightarrow C \vDash B \wedge C$

Fundamental rule of Natural Deduction

Implies-introduction:

In order to prove $A \Rightarrow B$, just derive B with the additional hypothesis A and then remove this assumption.
(If $A \models B$ then $\models A \Rightarrow B$)

Fundamental rule of Natural Deduction

Implies-introduction:

In order to prove $A \Rightarrow B$, just derive B with the additional hypothesis A and then remove this assumption.

$$
\text { (If } A \models B \text { then } \models A \Rightarrow B \text {) }
$$

proves that $\quad H_{1}, \ldots, H_{n} \vDash A \Rightarrow B$.

Plan

Introduction to natural deduction

Natural deduction proofs

Conclusion

Proof line

Definition 3.1.2

A proof line is one of the three following:

- Assume formula
- formula
- Therefore formula

Proof line

Definition 3.1.2

A proof line is one of the three following:

- Assume formula (to add an hypothesis)
- formula (derived from previous lines using the rules)
- Therefore formula (to remove the last hypothesis)

Proof line

Definition 3.1.2

A proof line is one of the three following:

- Assume formula (to add an hypothesis)
- formula (derived from previous lines using the rules)
- Therefore formula (to remove the last hypothesis)

This last case is the rule of implies-introduction.

Proof line

Definition 3.1.2

A proof line is one of the three following:

- Assume formula (to add an hypothesis)
- formula (derived from previous lines using the rules)
- Therefore formula (to remove the last hypothesis)

This last case is the rule of implies-introduction.

Examples:

- Assume $A \wedge B$
- A
- Therefore $A \wedge B \Rightarrow A$

$$
\frac{\frac{[A \wedge B]}{A} \wedge E}{A \wedge B \Rightarrow A} \Rightarrow I
$$

Proof sketch

Definition 3.1.3

A proof sketch is a sequence of lines such that, in every prefix of the sequence, there are at least as many Assume as Therefore.

Proof sketch

Definition 3.1.3

A proof sketch is a sequence of lines such that, in every prefix of the sequence, there are at least as many Assume as Therefore.

Example 3.1.4

number	line
1	Assume a
2	$a \vee b$
3	Therefore $a \Rightarrow a \vee b$
4	Therefore $\neg a$
5	Assume b

Proof sketch

Definition 3.1.3

A proof sketch is a sequence of lines such that, in every prefix of the sequence, there are at least as many Assume as Therefore.

Example 3.1.4

number	line
1	Assume a
2	$a \vee b$
3	Therefore $a \Rightarrow a \vee b$
4	Therefore $\neg a$
5	Assume b

Proof sketch: examples

Where are the sketches?

num	line
1	Assume $a \wedge b$
2	b
3	$b \vee c$
4	Therefore $a \wedge b \Rightarrow b \vee c$
5	Therefore $\neg a$
6	Assume b

num	line
1	Assume a
2	$a \vee b$
3	Therefore $a \Rightarrow a \vee b$
4	Assume b
5	Therefore $\neg a$

num	line
1	Assume a
2	$a \vee b$
3	Therefore $a \Rightarrow a \vee b$
4	Assume b

Context (1/2)

- Each line of a proof sketch has a context
- The context is the sequence of hypotheses previously introduced in Assume lines and not removed in Therefore lines.

Context (1/2)

- Each line of a proof sketch has a context
- The context is the sequence of hypotheses previously introduced in Assume lines and not removed in Therefore lines.

Example 3.1.6:

context	number	line	rule
1	1	Assume a	
1,2	2	Assume b	
1,2	3	$a \wedge b$	\wedge I 1,2
1	4	Therefore $b \Rightarrow a \wedge b$	$\Rightarrow \mid 2,3$
1,5	5	Assume e	

Context (2/2)

The context of a formula represents the hypotheses from which it has been derived.

Definition 3.1.5

Formally: Γ_{i} is the context of the line i.
$\Gamma_{0}=\emptyset$
If the line i is:

- Assume A
then $\Gamma_{i}=\Gamma_{i-1}, i$
- A
then $\Gamma_{i}=\Gamma_{i-1}$
- Therefore A
then Γ_{i} is obtained by deleting the last formula in Γ_{i-1}

Example of context

Write down the contexts of the following proof sketch:

context	number	line
	1	Assume a
	2	$a \vee b$
	3	Therefore $a \Rightarrow a \vee b$
	4	Assume b
	5	Therefore b

Example of context

Write down the contexts of the following proof sketch:

context	number	line
1	1	Assume a
1	2	$a \vee b$
	3	Therefore $a \Rightarrow a \vee b$
4	4	Assume b
	5	Therefore b

Usable formulae (1/2)

Definition 3.1.7

- A formula appearing on a line of a proof sketch is its conclusion.
- The conclusion of a line is usable as long as its context (i.e., the hypotheses from which it has been derived) is present.

Usable formulae (1/2)

Definition 3.1.7

- A formula appearing on a line of a proof sketch is its conclusion.
- The conclusion of a line is usable as long as its context (i.e., the hypotheses from which it has been derived) is present.

Example 3.1.8

context	number	line
1	1	Assume a
1	2	$a \vee b$
	3	Therefore $a \Rightarrow b$
	4	a
	5	$b \vee a$

The conclusion of line 2 is usable on line 2 and not beyond.

Usable formulae (2/2)

On which lines are formulae 1 and 3 usable?

context	number	line
1	1	Assume a
1,2	2	Assume b
1,2	3	c
1	4	Therefore d
1,5	5	Assume e

Definition of a Proof

Definition 3.1.9

Let Γ be a set of formulae.
A proof in the environment Γ is a proof sketch such that:

1. For every "Therefore" line, the formula is $B \Rightarrow C$, where:

- B is the last hypothesis we've removed (from the context of the previous line)
- C is either a formula usable on the previous line, or belongs to Γ.

Definition of a Proof

Definition 3.1.9

Let Γ be a set of formulae.
A proof in the environment Γ is a proof sketch such that:

1. For every "Therefore" line, the formula is $B \Rightarrow C$, where:

- B is the last hypothesis we've removed (from the context of the previous line)
- C is either a formula usable on the previous line, or belongs to Γ.

2. For every " A " line, the formula A is:

- the conclusion of a rule (other than $\Rightarrow I$)
- whose premises are usable on the previous line, or belong to Γ.

Definition of a Proof

Definition 3.1.9

Let Γ be a set of formulae.
A proof in the environment Γ is a proof sketch such that:

1. For every "Therefore" line, the formula is $B \Rightarrow C$, where:

- B is the last hypothesis we've removed (from the context of the previous line)
- C is either a formula usable on the previous line, or belongs to Γ.

2. For every " A " line, the formula A is:

- the conclusion of a rule (other than $\Rightarrow I$)
- whose premises are usable on the previous line, or belong to Γ.

Beware:

- The context Γ_{i} changes during the proof.
- The environment Γ remains the same.

Proof of formulae

Definition 3.1.10

A proof of formula A within the environment Γ is:

- either the empty proof (when A is an element of Γ),
- or a proof whose last line is A with an empty context.

Proof of formulae

Definition 3.1.10

A proof of formula A within the environment Γ is:

- either the empty proof (when A is an element of Γ),
- or a proof whose last line is A with an empty context.

We note:
$-\Gamma \vdash A$ the fact that there is a proof of A within the environment Γ,

- 「トP:A the fact that P is a proof of A within Γ.
- When the environment is empty, we abbreviate $\emptyset \vdash A$ by $\vdash A$.
- When we ask for a proof without indicating the environment, we mean that $\Gamma=\emptyset$.

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
$1,2,3$	3	Assume a	

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
$1,2,3$	3	Assume a	
$1,2,3$	4	b	$\Rightarrow E 1,3$

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
$1,2,3$	3	Assume a	
$1,2,3$	4	b	$\Rightarrow E 1,3$
$1,2,3$	5	\perp	$\Rightarrow E 2,4$

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
$1,2,3$	3	Assume a	
$1,2,3$	4	b	$\Rightarrow E 1,3$
$1,2,3$	5	\perp	$\Rightarrow E 2,4$
1,2	6	Therefore $\neg a$	$\Rightarrow / 3,5$

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
$1,2,3$	3	Assume a	$\Rightarrow E 1,3$
$1,2,3$	4	b	$\Rightarrow E 2,4$
$1,2,3$	5	\perp	$\Rightarrow I 3,5$
1,2	6	Therefore $\neg a$	$\Rightarrow I 2,6$
	7	Therefore $\neg b \Rightarrow \neg a$	

First Example (exemple 3.1.11)

Let us prove $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$.

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
$1,2,3$	3	Assume a	
$1,2,3$	4	b	$\Rightarrow E 1,3$
$1,2,3$	5	\perp	$\Rightarrow E 2,4$
1,2	6	Therefore $\neg a$	$\Rightarrow / 3,5$
1	7	Therefore $\neg b \Rightarrow \neg a$	$\Rightarrow / 2,6$
	8	Therefore $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$	$\Rightarrow / 1,7$

Proofs with abbreviations vs. without abbreviations

cont.	n.	proof with abbreviation	proof without abbreviation
1	1	Assume $a \Rightarrow b$	Assume $a \Rightarrow b$
1,2	2	Assume $\neg b$	Assume $b \Rightarrow \perp$
$1,2,3$	3	Assume a	Assume a
$1,2,3$	4	b	b
$1,2,3$	5	\perp	\perp
1,2	6	Therefore $\neg a$	Therefore $a \Rightarrow \perp$
1	7	Therefore $\neg b \Rightarrow \neg a$	Therefore $(b \Rightarrow \perp) \Rightarrow(a \Rightarrow \perp)$
	8	Therefore $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$	Therefore $(a \Rightarrow b) \Rightarrow((b \Rightarrow \perp) \Rightarrow(a \Rightarrow \perp))$

Tree (example 3.1.11)

$$
\begin{gathered}
\frac{(2) \rightarrow \hbar}{\frac{(1) a \Rightarrow b \quad(3) d}{(4) b}} \Rightarrow E \\
\frac{(5) \perp}{(6) \neg a} \Rightarrow I[3] \\
\frac{(7) \neg b \Rightarrow \neg a}{(8)(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)} \Rightarrow I[1]
\end{gathered}
$$

context	number	proof	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
$1,2,3$	3	Assume a	
$1,2,3$	4	b	$\Rightarrow E 1,3$
$1,2,3$	5	\perp	$\Rightarrow / 3,5$
1,2	6	Therefore $\neg a$	$\Rightarrow / 2,6$
1	7	Therefore $\neg b \Rightarrow \neg a$	$\Rightarrow / 1,7$
	8	Therefore $(a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a)$	

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$
1	4	\perp	$\Rightarrow E 2,3$

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$
1	4	\perp	$\Rightarrow E 2,3$
1	5	b	Efq 4

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$
1	4	\perp	$\Rightarrow E 2,3$
1	5	b	$E f q 4$
	6	Therefore $a \wedge \neg a \Rightarrow b$	$\Rightarrow I 1,5$

Proofs with abbreviations vs. without abbreviation (2/2)

contexte	number	proof with abbreviation	proof without abbreviation	justification
1	1	Assume $a \wedge \neg a$	Assume $a \wedge(a \Rightarrow \perp)$	
1	2	a	a	$\wedge E 11$
1	3	$\neg a$	$a \Rightarrow \perp$	$\wedge E 21$
1	4	\perp	\perp	$\Rightarrow E 2,3$
1	5	b	b	$E f q 4$
	6	Therefore $a \wedge \neg a \Rightarrow b$	Therefore $a \wedge(a \Rightarrow \perp) \Rightarrow b$	$\Rightarrow / 1,5$

Plan

Introduction to natural deduction

Rules

Natural deduction proofs

Conclusion

Today

- Propositional natural deduction reflects the usual deduction rules into a formal system.
- Unlike in resolution, a proof occurs in a context (list of formulae assumed at a given point).

Next lecture

- Completeness
- Correctness
- Tactics

Homework: prove

$$
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p
$$

using natural deduction.

