Natural Deduction

Properties and tactics

Frédéric Prost

Université Grenoble Alpes

February 2023

Last lecture

Natural deduction

- Rules
- Context
- Proofs

Reminder of the rules

Introduction Elimination [A] $\frac{A \quad A \Rightarrow B}{B}$ Implication $\Rightarrow E$. . . $\begin{array}{c}
B\\
A \Rightarrow B\\
A & B\\
\end{array}$ $\Rightarrow I$ $A \land B$ Conjunction $\wedge I$ $\frac{A \wedge B}{B}$ ∧*E*1 A∧B $\wedge E2$ $\frac{A}{A \lor B} \\
\frac{B}{A \lor B}$ Disjunction ∨*I*1 $A \lor B A \Rightarrow C B \Rightarrow C$ V/2 VΕ Ex falso quodlibet Efg Reductio ad absurdum $\frac{\neg \neg A}{A}$ RAA

```
Second Example
```

context	number	proof	justification
---------	--------	-------	---------------

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	

context	number	proof	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1

context	number	proof	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	∧ <i>E</i> 2 1

context	number	proof	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	∧ <i>E</i> 2 1
1	4	\perp	\Rightarrow <i>E</i> 2,3

context	number	proof	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	<i>∧E</i> 2 1
1	4	\perp	\Rightarrow <i>E</i> 2,3
1	5	b	Efq 4

context	number	proof	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	<i>∧E</i> 2 1
1	4	\perp	\Rightarrow <i>E</i> 2,3
1	5	b	Efq4
	6	Therefore $a \land \neg a \Rightarrow b$	\Rightarrow / 1,5

environment			
refer	ence	formula	
<i>(i)</i>		$\neg(A \lor B)$	
context	number	proof	justification

environment			
refer	ence	formula	
(<i>i</i>)		$\neg (A \lor B)$	
context	number	proof	justification
1	1	Assume A	

environment				
refer	ence	formula		
<i>(i)</i>		$\neg (A \lor B)$		
context	number	proof	justification	
1	1	Assume A		
1	2	$A \lor B$	∨ / 1 1	

environment				
rference		formula		
(i)		$\neg (A \lor B)$		
context	number	proof	justification	
1	1	Assume A		
1	2	$A \lor B$	∨ <i>I</i> 1 1	
1	3	\perp	\Rightarrow <i>E i</i> ,2	

environment				
reference		formula		
(<i>i</i>)		$\neg(A \lor B)$		
context	number	proof	justification	
1	1	Assume A		
1	2	$A \lor B$	∨ <i>I</i> 1 1	
1	3	\perp	$\Rightarrow E i, 2$	
	4	Therefore ¬ A	\Rightarrow <i>I</i> 1,3	

environment					
reference		formula			
<i>(i)</i>			$A \Rightarrow B$		
context	number	proof		justification	
1	1	Assume	$\neg(\neg A \lor B)$		

		onviron	mont	
		environi	nem	
reference			formula	
<i>(i)</i>		$A \Rightarrow B$		
context	number	proof		justification
1	1	Assume	$\neg(\neg A \lor B)$	
1,2	2	Assume	Α	

		environmer	ונ	
refer	ence		formula	
(i)		$A \Rightarrow B$	
context	number	proof		justification
1	1	Assume ¬	$(\neg A \lor B)$	
1,2	2	Assume A		
1,2	3	В		$\Rightarrow E i, 2$

		environ	ment	
refer	ence		formula	
<i>(i)</i>			$A \Rightarrow B$	
context	number	proof		justification
1	1	Assume	$\neg(\neg A \lor B)$	
1,2	2	Assume	Α	
1,2	3	В		\Rightarrow <i>E i</i> , 2
1,2	4	$\neg A \lor B$		∨ <i>I</i> 2 3

		environi	ment	
refer	rence		formula	
(i)		$A \Rightarrow B$	
context	number	proof		justification
1	1	Assume	$\neg(\neg A \lor B)$	
1,2	2	Assume	Α	
1,2	3	В		$\Rightarrow E i, 2$
1,2	4	$\neg A \lor B$		∨ <i>I</i> 2 3
1,2	5	\perp		$\Rightarrow E 1, 4$

		environment	
refer	ence	formula	
(i)	$A \Rightarrow B$	
context	number	proof	justification
1	1	Assume $\neg(\neg A \lor B)$	
1,2	2	Assume A	
1,2	3	В	$\Rightarrow E i, 2$
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3
1,2	5		$\Rightarrow E 1, 4$
1	6	Therefore ¬ A	\Rightarrow / 2, 5

		environment		
reference		formula		
(i)		$A \Rightarrow B$		
context	number	proof	justification	
1	1	Assume $\neg(\neg A \lor B)$		
1,2	2	Assume A		
1,2	3	В	$\Rightarrow E i, 2$	
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3	
1,2	5		$\Rightarrow E 1, 4$	
1	6	Therefore ¬ A	\Rightarrow <i>I</i> 2, 5	
1	7	$\neg A \lor B$	∨ / 1 6	

environment						
reference		formula				
(<i>i</i>)		$A \Rightarrow B$				
context	number	proof	justification			
1	1	Assume $\neg(\neg A \lor B)$				
1,2	2	Assume A				
1,2	3	В	$\Rightarrow E i, 2$			
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3			
1,2	5	\perp	$\Rightarrow E 1, 4$			
1	6	Therefore ¬ A	\Rightarrow <i>I</i> 2, 5			
1	7	$\neg A \lor B$	∨ / 1 6			
1	8		$\Rightarrow E 1, 7$			

Prove $\neg A \lor B$ in the environment $A \Rightarrow B$.

	environment							
refer	ence	formula						
(i)	$A \Rightarrow B$						
context	number	proof	justification					
1	1	Assume $\neg(\neg A \lor B)$						
1,2	2	Assume A						
1,2	3	В	$\Rightarrow E i, 2$					
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3					
1,2	5	1	$\Rightarrow E 1, 4$					
1	6	Therefore $\neg A$	\Rightarrow / 2, 5					
1	7	$\neg A \lor B$	∨ <i>I</i> 1 6					
1	8	1	$\Rightarrow E$ 1, 7					
	9	Therefore $\neg \neg (\neg A \lor B)$	\Rightarrow <i>I</i> 1, 8					

F. Prost et al (UGA)

Prove $\neg A \lor B$ in the environment $A \Rightarrow B$.

		environment		
reference		formula		
(i)	$A \Rightarrow B$		
context	number	proof	justification	
1	1	Assume $\neg(\neg A \lor B)$		
1,2	2	Assume A		
1,2	3	В	$\Rightarrow E i, 2$	
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3	
1,2	5	1	$\Rightarrow E$ 1, 4	
1	6	Therefore $\neg A$	\Rightarrow <i>I</i> 2, 5	
1	7	$\neg A \lor B$	∨ / 1 6	
1	8	1	$\Rightarrow E 1, 7$	
	9	Therefore $\neg \neg (\neg A \lor B)$	\Rightarrow <i>I</i> 1, 8	
	10	$\neg A \lor B$	RAA 9	

F. Prost et al (UGA)

Tree (example 3.1.12)

Give the tree representation of the previous proof:

Tree (example 3.1.12)

Give the tree representation of the previous proof:

Tree (example 3.1.12)

Give the tree representation of the previous proof:

The environment consists of formulae occurring at non-removed leaves.

Natural Deduction

In the wake of Poincaré, he founded (in 1918) the **intuitionist** philosophy: the validity of mathematics should be verifiable by the human mind.

 refusal of infinite objects such as the ones of set theory

in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume P(0) and $\neg P(2)$. Then $\exists x(P(x) \land \neg P(x+1))$

In the wake of Poincaré, he founded (in 1918) the **intuitionist** philosophy: the validity of mathematics should be verifiable by the human mind.

 refusal of infinite objects such as the ones of set theory

in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume P(0) and $\neg P(2)$. Then $\exists x(P(x) \land \neg P(x+1))$... but we don't know whether x = 0 or x = 1 is the "correct" witness for that property.

In the wake of Poincaré, he founded (in 1918) the **intuitionist** philosophy: the validity of mathematics should be verifiable by the human mind.

 refusal of infinite objects such as the ones of set theory

in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume P(0) and $\neg P(2)$. Then $\exists x(P(x) \land \neg P(x+1))$... but we don't know whether x = 0 or x = 1 is the "correct" witness for that property. The introduction rules for \lor make it explicit which case is true: following the reasoning step-by-step is an *algorithm*!

In the wake of Poincaré, he founded (in 1918) the **intuitionist** philosophy: the validity of mathematics should be verifiable by the human mind.

 refusal of infinite objects such as the ones of set theory

in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume P(0) and $\neg P(2)$. Then $\exists x(P(x) \land \neg P(x+1))$... but we don't know whether x = 0 or x = 1 is the "correct" witness for that property. The introduction rules for \lor make it explicit which case is true: following the reasoning step-by-step is an *algorithm*!

However the rule
$$\frac{\neg \neg A}{A}$$
 allows to override that constraint.

F. Prost et al (UGA)

Natural Deduction

Our running example

context	number	proof	justification
1	1	Assume	
		$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$\neg p \Rightarrow j$	<i>∧E</i> 1
1	3	$j \Rightarrow m$	<i>∧E</i> 1
1,4	4	Assume $\neg(m \lor p)$	
1,4,5	5	Assume p	
1,4,5	6	$m \lor p$	<i>∨I</i> 5
1,4,5	7	上 —	\Rightarrow <i>E</i> 4,6
1,4	8	Therefore ¬ <i>p</i>	\Rightarrow <i>I</i> 5,7
1,4	9	j	\Rightarrow <i>E</i> 2, 8
1,4	10	m	\Rightarrow <i>E</i> 3, 9
1,4	11	$m \lor p$	<i>∨I</i> 10
1,4	12		\Rightarrow <i>E</i> 4, 11
1	13	Therefore $\neg \neg (m \lor p)$	\Rightarrow <i>I</i> 4, 13
1	14	$m \lor p$	<i>RAA</i> 13

F. Prost et al (UGA)

Natural Deduction Correctness

Plan

Correctness

Completeness

Tactics

Conclusion

F. Prost et al (UGA)

Theorem

Theorem 3.3.1

If a formula *A* is deduced from an environment Γ ($\Gamma \vdash A$) then *A* is a consequence of Γ ($\Gamma \models A$).

Every proof written in an environment Γ is correct!
Theorem

Theorem 3.3.1

If a formula *A* is deduced from an environment Γ ($\Gamma \vdash A$) then *A* is a consequence of Γ ($\Gamma \models A$).

Every proof written in an environment Γ is correct! Proof by induction on the number of lines in the proof *P*:

- Let H_i be the context and C_i the conclusion of the *i*th line in *P*.
- We show that for every k we have Γ , $H_k \models C_k$.

Theorem

Theorem 3.3.1

If a formula *A* is deduced from an environment Γ ($\Gamma \vdash A$) then *A* is a consequence of Γ ($\Gamma \models A$).

Every proof written in an environment Γ is correct! Proof by induction on the number of lines in the proof *P*:

• Let H_i be the context and C_i the conclusion of the *i*th line in *P*.

• We show that for every k we have Γ , $H_k \models C_k$.

Hence, for the last line *n* of the proof: $\Gamma \models A$ (*H_n* is empty and *C_n* = *A*)

Natural Deduction	
Correctness	

Base case

Assume that A is derived from Γ by an empty proof.

That is, A is a member of Γ .

Hence $\Gamma \models A$.

Induction hypothesis

Assume that for every line *i* < *k* of the proof we have Γ , $H_i \models C_i$.

Let us prove that Γ , $H_k \models C_k$.

Induction hypothesis

Assume that for every line *i* < *k* of the proof we have Γ , $H_i \models C_i$.

Let us prove that Γ , $H_k \models C_k$.

Three possible cases:

- Line k is "Assume C_k ".
- Line k is "Therefore C_k ".
- Line k is " C_k ".

Natural Deduction Correctness

Line k is "Assume C_k"

The formula C_k is the last formula of H_k .

Then Γ , $H_k \models C_k$.

The line k is "Therefore C_k "

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} and $H_{k-1} = H_k$, *B*
- ► *D* is usable on the previous line.

The line k is "Therefore Ck"

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} and $H_{k-1} = H_k$, *B*
- D is usable on the previous line.

Hence there exists a line i < k such that $D = C_i$ and H_i is a prefix of H_{k-1} . By induction hypothesis, Γ , $H_i \models D$.

The line k is "Therefore Ck"

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} and $H_{k-1} = H_k$, *B*
- D is usable on the previous line.

Hence there exists a line i < k such that $D = C_i$ and H_i is a prefix of H_{k-1} . By induction hypothesis, Γ , $H_i \models D$.

Since H_i is a prefix of H_{k-1} , we have Γ , $H_{k-1} \models D$ which can also be written Γ , H_k , $B \models D$. Therefore Γ , $H_k \models B \Rightarrow D$.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ .

We only consider the rule $\land I$, the other cases being similar. $C_k = (D \land E)$ and the premises of the rule are *D* and *E*.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\land I$, the other cases being similar. $C_k = (D \land E)$ and the premises of the rule are *D* and *E*.

By induction hypothesis, we have: Γ , $H_{k-1} \models D$ and Γ , $H_{k-1} \models E$. Since the line *k* does not change the hypotheses, we have $H_{k-1} = H_k$.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\land I$, the other cases being similar. $C_k = (D \land E)$ and the premises of the rule are *D* and *E*.

By induction hypothesis, we have: Γ , $H_{k-1} \models D$ and Γ , $H_{k-1} \models E$. Since the line *k* does not change the hypotheses, we have $H_{k-1} = H_k$.

Finally $D, E \models D \land E$. Transitively, $\Gamma, H_k \models C_k$.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\land I$, the other cases being similar. $C_k = (D \land E)$ and the premises of the rule are *D* and *E*.

By induction hypothesis, we have: $\Gamma, H_{k-1} \models D \text{ and } \Gamma, H_{k-1} \models E.$

Since the line *k* does not change the hypotheses, we have $H_{k-1} = H_k$.

Finally $D, E \models D \land E$. Transitively, $\Gamma, H_k \models C_k$.

For the other rules, it is the same proof, you just have to prove that the conclusion is a consequence of the premises.

Natural Deduction Completeness

Plan

Correctness

Completeness

Tactics

Conclusion

F. Prost et al (UGA)

Theorem

We prove the completeness of the rules only for formulas containing the following logic symbols: \bot , \land , \lor , \Rightarrow .

This is enough because additional symbols \top , \neg and \Leftrightarrow can be regarded as abbreviations.

Theorem

We prove the completeness of the rules only for formulas containing the following logic symbols: \bot , \land , \lor , \Rightarrow .

This is enough because additional symbols \top , \neg and \Leftrightarrow can be regarded as abbreviations.

Theorem 3.4.1

Let Γ be a finite set of formulae and A a formula. If $\Gamma \models A$ then $\Gamma \vdash A$.

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

We define a measure *m* of formulae and of lists of formulae as:

•
$$m(\perp) = 0$$

- $\blacktriangleright m(x) = 1$
- $\blacktriangleright m(A \Rightarrow B) = 1 + m(A) + m(B)$
- $M(A \wedge B) = 1 + m(A) + m(B)$
- $M(A \vee B) = 2 + m(A) + m(B)$
- $m(\Gamma) = \sum_{A \in \Gamma} m(A)$

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

We define a measure *m* of formulae and of lists of formulae as:

•
$$m(\perp) = 0$$

- $\blacktriangleright m(x) = 1$
- $\blacktriangleright m(A \Rightarrow B) = 1 + m(A) + m(B)$

(thus $m(\neg A) = m(A) + 1$)

- $M(A \wedge B) = 1 + m(A) + m(B)$
- $M(A \vee B) = 2 + m(A) + m(B)$
- $\blacktriangleright m(\Gamma) = \sum_{A \in \Gamma} m(A)$

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

We define a measure *m* of formulae and of lists of formulae as:

•
$$m(\perp) = 0$$

$$\blacktriangleright m(x) = 1$$

$$M(A \Rightarrow B) = 1 + m(A) + m(B)$$

$$M(A \wedge B) = 1 + m(A) + m(B)$$

$$M(A \vee B) = 2 + m(A) + m(B)$$

•
$$m(\Gamma) = \sum_{A \in \Gamma} m(A)$$

For example, let $A = (a \lor \neg a)$. $m(\neg a) = 2$, m(A) = 5 and $m(A, (b \land b), A) = 13$.

(thus $m(\neg A) = m(A) + 1$)

Natural Deduction Completeness

Induction

We define P(n) to be the following property: If $m(\Gamma, A) = n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.

Induction

We define P(n) to be the following property: If $m(\Gamma, A) = n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.

To show that P(n) holds for every integer *n*, we use "strong" induction:

Induction

We define P(n) to be the following property: If $m(\Gamma, A) = n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.

To show that P(n) holds for every integer *n*, we use "strong" induction:

Assume that for every i < k, property P(i) holds. Assume that $m(\Gamma, A) = k$ and $\Gamma \models A$. Let us show that $\Gamma \vdash A$.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp .

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp .

We study three cases:

Case 1: Neither A, nor Γ is decomposable.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp .

We study three cases:

Case 1: Neither A, nor Γ is decomposable.

Case 2: A is decomposable.

We decompose *A* in two sub-formulae *B* and *C*. We obtain $m(\Gamma, B) < m(\Gamma, A)$ and $m(\Gamma, C) < m(\Gamma, A)$.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp .

We study three cases:

Case 1: Neither A, nor Γ is decomposable.

Case 2: A is decomposable.

We decompose A in two sub-formulae B and C. We obtain $m(\Gamma, B) < m(\Gamma, A)$ and $m(\Gamma, C) < m(\Gamma, A)$.

Case 3: Γ is decomposable.

We choose a decomposable formula (other than $x \Rightarrow \bot$) in Γ .

Then:

• Γ is a list of literals or contains the formula \bot .

• A is \perp or a variable.

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.

(a) If $\bot \in \Gamma$ then A can be derived from \bot by the rule *Efq*.

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.
- (a) If ⊥ ∈ Γ then A can be derived from ⊥ by the rule *Efq*.
 (b) If Γ is a list of literals then we have two cases:

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.
- (a) If $\bot \in \Gamma$ then A can be derived from \bot by the rule *Efq*.

(b) If Γ is a list of literals then we have two cases:

• $A = \bot$.

Since $s(\Gamma) \models A$, there are two complementary literals in Γ . Therefore *A* can be derived from Γ by the rule \Rightarrow E.

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.
- (a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule *Efq*.

(b) If Γ is a list of literals then we have two cases:

 $\blacktriangleright A = \bot.$

Since $s(\Gamma) \models A$, there are two complementary literals in Γ . Therefore *A* can be derived from Γ by the rule \Rightarrow E.

• A is a variable. Since $\Gamma \models A$:

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.
- (a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule *Efq*.

(b) If Γ is a list of literals then we have two cases:

 $\blacktriangleright A = \bot.$

Since $s(\Gamma) \models A$, there are two complementary literals in Γ . Therefore *A* can be derived from Γ by the rule \Rightarrow E.

• A is a variable. Since $\Gamma \models A$:

• either Γ contains two complementary literals, and similarly $\Gamma \vdash A$

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.
- (a) If $\bot \in \Gamma$ then A can be derived from \bot by the rule *Efq*.

(b) If Γ is a list of literals then we have two cases:

• $A = \bot$.

Since $s(\Gamma) \models A$, there are two complementary literals in Γ . Therefore *A* can be derived from Γ by the rule \Rightarrow E.

- A is a variable. Since $\Gamma \models A$:
 - either Γ contains two complementary literals, and similarly $\Gamma \vdash A$
 - or $A \in \Gamma$ and in this case $\Gamma \vdash A$ (by empty proof).
A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

The measures of *B* and *C* are strictly less than the measure of *A*, hence $m(\Gamma, B) < k$ and $m(\Gamma, C) < k$.

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

The measures of *B* and *C* are strictly less than the measure of *A*, hence $m(\Gamma, B) < k$ and $m(\Gamma, C) < k$. By induction hypothesis, there exist two proofs *P* and *Q* such that $\Gamma \vdash P : B$ and $\Gamma \vdash Q : C$.

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

The measures of *B* and *C* are strictly less than the measure of *A*, hence $m(\Gamma, B) < k$ and $m(\Gamma, C) < k$. By induction hypothesis, there exist two proofs *P* and *Q* such that $\Gamma \vdash P : B$ and $\Gamma \vdash Q : C$.

Hence the proof "P, Q, A" is a proof of A in the environment Γ .

Case 3: Γ is decomposable

There is a decomposable formula in Γ which is either:

- ► *B*∧*C*
- ► *B*∨*C*
- ► $B \Rightarrow C$ où $C \neq \bot$
- ▶ $(B \land C) \Rightarrow \bot$
- ▶ $(B \lor C) \Rightarrow \bot$
- ► $(B \Rightarrow C) \Rightarrow \bot$

We only study the first case.

 Γ and $(B \land C), \Delta$ have the same measure.

 Γ and $(B \land C), \Delta$ have the same measure.

Since $\Gamma \models A$, we have $B, C, \Delta \models A$.

 Γ and $(B \land C), \Delta$ have the same measure.

Since $\Gamma \models A$, we have $B, C, \Delta \models A$.

The sum of the measures of *B* and *C* is strictly less than the measure of $B \wedge C$.

- Γ and $(B \land C), \Delta$ have the same measure.
- Since $\Gamma \models A$, we have $B, C, \Delta \models A$.

The sum of the measures of *B* and *C* is strictly less than the measure of $B \wedge C$.

Hence $m(B, C, \Delta, A) < m((B \land C), \Delta, A) = m(\Gamma, A) = k$, by induction hypothesis, there exist a proof *P* such that $B, C, \Delta \vdash P : A$.

- Γ and $(B \land C), \Delta$ have the same measure.
- Since $\Gamma \models A$, we have $B, C, \Delta \models A$.

The sum of the measures of *B* and *C* is strictly less than the measure of $B \wedge C$.

Hence $m(B, C, \Delta, A) < m((B \land C), \Delta, A) = m(\Gamma, A) = k$, by induction hypothesis, there exist a proof *P* such that $B, C, \Delta \vdash P : A$.

Since *B* can be derived from $(B \land C)$ by the rule $\land E1$ and *C* can be derived from $(B \land C)$ by the rule $\land E2$: "*B*, *C*, *P*" is a proof of *A* in the environment Γ .

Plan

Correctness

Completeness

Tactics

Conclusion

F. Prost et al (UGA)

Remark 3.4.2

The proof of completeness is constructive, that is it provides an algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

Remark 3.4.2

The proof of completeness is constructive, that is it provides an algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

The tool http://teachinglogic.univ-grenoble-alpes.fr/DN/ builds proofs more more efficiently.

Remark 3.4.2

The proof of completeness is constructive, that is it provides an algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

The tool http://teachinglogic.univ-grenoble-alpes.fr/DN/ builds proofs more more efficiently. It uses "optimised" tactics presented in section 3.2.

For example, to prove $B \lor C$:

- First try to prove B
- ▶ If failure, then try to prove C
- Otherwise, use tactic 10 (prove C under the hypothesis $\neg B$)

Proof tactics

We wish to prove A in the environment Γ

The 13 following tactics must be used in the following order!

- Tactics 1 to 3 : the proof is over
- Tactics 4 to 6 : proof guided by the conclusion (Intro rules)
- Tactics 7 to 9 : proof guided by the environment (Elim rules)
- Tactics 10 to 13 : reasoning by absurd

Natural Deduction	
Tactics	

If $A \in \Gamma$ then the empty proof is obtained.

Natural Deduction	
Tactics	

If *A* is the consequence of a rule whose premises are in Γ , then the obtained proof is "*A*".

Natural Deduction	
Tactics	

If Γ contains a contradiction, that is a formula *B* and a formula $\neg B$, then the obtained proof is " \bot , *A*".

Natural	Deduction

Tactic 4

If A is $B \wedge C$ then:

contexte	preuve	justification
Г	В	···P···
Г	С	$\cdots Q \cdots$
Г	$B \wedge C$	$\wedge I$

Natural Deduction	
Tactics	

If A is $B \wedge C$ then:

contexte	preuve	justification
Γ	В	····P···
Г	С	$\cdots Q \cdots$
Г	$B \wedge C$	$\wedge I$

The proofs can fail (if $\Gamma \not\models A$).

Here, if the proof of *B* or *C* fails, the proof of *A* fails too.

In the remainder of the lecture, we do not highlight the failure cases anymore, unless another proof has to be tried.

Natural Deduction	
Tactics	

If A is $B \Rightarrow C$, then prove C under hypothesis B:

contexte	preuve	justification
Г, В	Assume B	
Г, В	С	···P···
Г	Therefore $B \Rightarrow C$	\Rightarrow I

If A is $B \lor C$, then prove B:

contexte	preuve	justification
Г	В	···P···
Г	$B \lor C$	∨ <i>I</i> 1

If the proof of *B* fails then prove *C* :

contexte	preuve	justification
Г	С	···P···
Г	$B \lor C$	∨ <i>I</i> 2

If the proof of *C* fails, try the following tactics.

Natural Deduction	
Tactics	

If $B \wedge C$ is in the environment, then prove *A* starting from formulae *B*, *C*, replacing $B \wedge C$ in the environment:

contexte	preuve	justification
$\Gamma, B \wedge C$	В	<i>∧E</i> 1
Г, <i>В</i> ∧ <i>С</i>	С	∧ <i>E</i> 2
$lacksquare$, $B \wedge C$	A	$\cdots P \cdots$

If $B \lor C$ is in the environment, then:

- prove A in the environment where B replaces $B \lor C$.
- ▶ prove *A* in the environment where *C* replaces $B \lor C$.

contexte	preuve	justification
$\Gamma, B \lor C, B$	Assume B	
Γ , <i>B</i> ∨ <i>C</i> , B	A	···P···
$\Gamma, B \lor C$	Therefore $B \Rightarrow A$	\Rightarrow I
Γ , <i>B</i> ∨ <i>C</i> , C	Assume C	
Γ , <i>B</i> ∨ <i>C</i> , C	A	···Q···
$\Gamma, B \lor C$	Therefore $C \Rightarrow A$	\Rightarrow I
Г, <i>B</i> ∨ <i>С</i>	A	VE

If $\neg(B \lor C)$ is in the environment, then

- we derive $\neg B$ by the proof P4 and
- $\neg C$ by the proof *P*5 (proofs requested in exercise 59).
- Let *P* the proof of *A* in the environment where $\neg B$, $\neg C$ replace the formula $\neg (B \lor C)$.

The proof of A is "P4, P5, P".

If *A* is $B \lor C$, then prove *C* under hypothesis $\neg B$: let *P* the obtained proof. "Assume $\neg B$, *P*, Therefore $\neg B \Rightarrow C$ " is a proof of the formula $\neg B \Rightarrow C$ which is equivalent to *A*.

To obtain the proof of *A*, simply add the proof *P*1, requested in exercise 59 of *A* in the environment $\neg B \Rightarrow C$. The proof obtained from *A* is therefore "Assume $\neg B$, *P*, Therefore $\neg B \Rightarrow C$, *P*1".

If $\neg(B \land C)$ is in the environment, then we deduce from it $\neg B \lor \neg C$ by the proof *P*3 requested in exercise 59 then we reason case by case as follows:

- ▶ prove *A* in the environment where $\neg B$ replaces $\neg(B \land C)$: Let *P* the obtained proof,
- ▶ prove *A* in the environment where $\neg C$ replaces $\neg (B \land C)$: Let *Q* the obtained proof.

The proof of A is "P3, Assume $\neg B$, P, Therefore $\neg B \Rightarrow A$, Assume $\neg C$, Q, Therefore $\neg C \Rightarrow A$, A".

Tactique 12

If $\neg(B \Rightarrow C)$ is in the environment, then

- we derive B by the proof P6,
- $\neg C$ by the proof *P*7 (proofs requested in exercise 59).
- Let *P* the proof of *A* in the environment where *B*, $\neg C$ replace the formula $\neg(B \Rightarrow C)$.

The proof of A is "P6, P7, P".

If $B \Rightarrow C$ is in the environment and if $C \neq \bot$, i.e. if $B \Rightarrow C$ is not $\neg B$, then,

we derive $\neg B \lor C$ in the environment $B \Rightarrow C$ by proof *P*2 from exercise 59, then we reason by cases:

- ▶ prove *A* in the environment where $\neg B$ replaces $B \Rightarrow C$: Let *P* the obtained proof,
- ► prove A in the environment where C replaces B ⇒ C: Let Q the obtained proof.

The proof of A is "P2, Assume $\neg B$, P, Therefore $\neg B \Rightarrow A$, Assume C, Q, Therefore $C \Rightarrow A$, A".

Natural	Deduction
Tactic	s

Example

Proof of Peirce's formula:

 $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$

Natural Deduction	
Tactics	

Proof plan

Tactic 5 is compulsory!

Proof Q: Assume $(p \Rightarrow q) \Rightarrow p$ Q₁ proof or p in the environment $(p \Rightarrow q) \Rightarrow p$ Therefore $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$

Proof Q_1 necessarily uses tactic 13 (the environment is $B \Rightarrow C = (p \Rightarrow q) \Rightarrow p$).

Hence we have to prove *p* both:

- in the environment $\neg B = \neg (p \Rightarrow q)$
- in the environment C = p.

Plan of the proof of Q_1

Proof of Q_1

 Q_{13} is the empty proof, since A = C = p.

 Q_{12} is the proof of C = p in the environment $\neg(p \Rightarrow q)$. Since $\neg A$ is an abbreviation of $A \Rightarrow \bot$, this proof is the proof P_6 requested in exercise 59, where B = p and C = q.

By gluing pieces Q_1 , Q_{11} , Q_{12} , Q_{13} , we obtain the proof Q.

The proof Q_{12} can also be done without using the tactics.

Natural Deduction Conclusion

Plan

Correctness

Completeness

Tactics

Conclusion

F. Prost et al (UGA)
Natural Deduction Conclusion

Today

Propositional Natural Deduction is correct and complete.

Tactics for building a proof

Automated proofs

To automatically obtain the proofs in the system, we recommend the following software (implementing the 13 previous tactics):

http://teachinglogic.univ-grenoble-alpes.fr/DN/

People who prefer tree-like proofs can use the following software:

http://www-sop.inria.fr/marelle/Laurent.Thery/
peanoware/Nd.html

Overview of the Semester

TODAY

- Propositional logic
- Propositional resolution
- Natural deduction for propositional logic *
- First order logic

MIDTERM EXAM

- Logical basis for automated proving ("first-order resolution")
- First-order natural deduction

EXAM