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Last lecture

Natural deduction
> Rules
» Context
» Proofs
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Natural Deduction

Reminder of the rules

Implication
Conjunction

Disjunction
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Natural Deduction

Second Example

Prove aA—a= b.

context | number | proof | justification
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Second Example

Prove aA —a= b.

context | number | proof justification
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Second Example

Prove aA—a= b.

context | number | proof justification
1 1 Assume @A\ —a
1 2 a AE11
1 3 -a ANE2 1
1 4 1 =E2,3
1 5 b Efq4
6 ThereforeaN—-a=>b | =11,5
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Third Example: with an environment

Prove —A in the environment —(AV B)

environment

reference

formula

(1)

~(AVB)

context | number | proof | justification
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Third Example: with an environment

Prove —A in the environment —(AV B)
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environment

reference formula
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context | number | proof justification
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Third Example: with an environment

Prove —A in the environment —(AV B)

F. Prost et al (UGA)

environment

reference formula
0 ~(AVB)
context | number | proof justification
1 1 Assume A
1 2 AV B VI
1 3 1 =Ei?2
4 Therefore A | = /1,3
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Fourth exemple (example 3.1.12)

Prove —=AV B in the environment A= B.

environment

reference

formule

(1)

A=B

context \ number | proof | justification
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Fourth exemple (example 3.1.12)

Prove —=AV B in the environment A= B.

environment

reference
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context | number

proof
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Fourth exemple (example 3.1.12)

Prove =AYV B in the environment A = B.

environment
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Fourth exemple (example 3.1.12)

Prove = AV B in the environment A = B.
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Fourth exemple (example 3.1.12)

Prove —=AV B in the environment A = B.

environment
reference formula
(1 A=B

context | number | proof justification
1 1 Assume —(—AV B)
1,2 2 Assume A
1,2 3 B =Ei?2
1,2 4 -AV B VI23
1,2 5 1L =E1,4
1 6 Therefore —A =12,5

F. Prost et al (UGA)

Natural Deduction

February 2023

6/49



Natural Deduction

Fourth exemple (example 3.1.12)

Prove =AYV B in the environment A = B.

environment
reference formula
0 A=B

context | number | proof justification
1 1 Assume —(—AVB)
1,2 2 Assume A
1,2 3 B =Ei?2
1,2 4 -AV B VI2 3
1,2 5 1L =E1,4
1 6 Therefore —A =12,5
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Fourth exemple (example 3.1.12)

Prove —AV B in the environment A= B.
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Fourth exemple (example 3.1.12)

Prove —=AV B in the environment A=- B.

environment
reference formula
(1 A=B
context | number | proof justification
1 1 Assume —(—AVB)
1,2 2 Assume A
1,2 3 B =Ei?2
1,2 4 -AV B VI23
1,2 5 1 =E1,4
1 6 Therefore —-A =12,5
1 7 -AVB vI16
1 8 1 =E1,7
9 Therefore ——(—AVB) | = 11,8
10 -AVB RAA 9
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Natural Deduction

Tree (example 3.1.12)

Give the tree representation of the previous proof:
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Tree (example 3.1.12)

Give the tree representation of the previous proof:

(A=>B (@A
(3)B
V2

(NooAvE]  @-AvE

=1[2]

=F

(8)L
9)~(-AVE)
(IO)ﬁA VB
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Natural Deduction

Tree (example 3.1.12)

Give the tree representation of the previous proof:

(A=>B (@A
(3)B
V2

(NooAvE]  @-AvE

=1[2]

=F

(8)L
9)~(-AVE)
(IO)ﬁA VB

The environment consists of formulae occurring at non-removed leaves.
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Natural Deduction

Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intu-
itionist philosophy: the validity of mathematics should be
verifiable by the human mind.

» refusal of infinite objects such as the ones of set
theory

P in particular, notion of constructible real number = algorithm o
that produces its digits

Example of a non-constructive proof : assume P(0) and —P(2).
Then 3x(P(x) A=P(x+1))
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Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intu-
itionist philosophy: the validity of mathematics should be
verifiable by the human mind.

» refusal of infinite objects such as the ones of set
theory ) K7 )

> in particular, notion of constructible real number = algorithm
that produces its digits

Example of a non-constructive proof : assume P(0) and —P(2).
Then 3x(P(x) A=P(x+1)) ... but we don’t know whether x =0 or
x = 1 is the “correct” witness for that property.
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Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intu-
itionist philosophy: the validity of mathematics should be
verifiable by the human mind.

» refusal of infinite objects such as the ones of set
theory ) K7 )

> in particular, notion of constructible real number = algorithm
that produces its digits

Example of a non-constructive proof : assume P(0) and —P(2).
Then 3x(P(x) A=P(x+1)) ... but we don’t know whether x =0 or
x = 1 is the “correct” witness for that property.

The introduction rules for V make it explicit which case is true:
following the reasoning step-by-step is an algorithm!
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Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intu-
itionist philosophy: the validity of mathematics should be
verifiable by the human mind.

» refusal of infinite objects such as the ones of set
theory ) K7 )

> in particular, notion of constructible real number = algorithm
that produces its digits

Example of a non-constructive proof : assume P(0) and —P(2).
Then 3x(P(x) A=P(x+1)) ... but we don’t know whether x =0 or
x = 1 is the “correct” witness for that property.

The introduction rules for V make it explicit which case is true:
following the reasoning step-by-step is an algorithm!

_|_\A

However the rule T allows to override that constraint.
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Natural Deduction

Our running example

context | number | proof justification
1 1 Assume

(p==NA(p=) A= m)
1 2 —p=j ANE A
1 3 j=m V=
1,4 4 Assume —(mVp)
1,4,5 5 Assume p
1,45 6 mVp V15
1,4,5 7 1L = E 4,6
1,4 8 Therefore —p = 15,7
1,4 9 j =E28
1,4 10 m =ES3,9
1,4 11 mvVp V110
1,4 12 L = E4,11
1 13 Therefore ——(mVp) = 14,13
1 14 mvp RAA 13
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Natural Deduction
Correctness

Plan

Correctness
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Natural Deduction

Correctness

Theorem

Theorem 3.3.1

If a formula A is deduced from an environment I (I - A) then Ais a
consequence of [ (I = A).

Every proof written in an environment I is correct!
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Natural Deduction
Correctness

Theorem

Theorem 3.3.1
If a formula A is deduced from an environment I (I - A) then Ais a
consequence of [ (I = A).

Every proof written in an environment I is correct!
Proof by induction on the number of lines in the proof P:

» Let H; be the context and C; the conclusion of the i line in P.
» We show that for every k we have I', Hx |= Cx.
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Natural Deduction

Correctness

Theorem

Theorem 3.3.1

If a formula A is deduced from an environment I (I - A) then Ais a
consequence of [ (I = A).

Every proof written in an environment I is correct!
Proof by induction on the number of lines in the proof P:

» Let H; be the context and C; the conclusion of the i line in P.
» We show that for every k we have I', Hx |= Cx.

Hence, for the last line n of the proof: I = A
(Hp is empty and C, = A)
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Natural Deduction
Correctness

Base case

Assume that A is derived from I by an empty proof.
That is, Ais a member of I'.

Hence I' = A.
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Natural Deduction
Correctness

Induction hypothesis

Assume that for every line i < k of the proof we have I', H; = C;.

Let us prove that I, Hy = Cx.
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Natural Deduction
Correctness

Induction hypothesis

Assume that for every line i < k of the proof we have I', H; = C;.
Let us prove that I, Hy = Cx.

Three possible cases:
» Line k is “Assume Cy”.
» Line kis “Therefore Cy”.
» Line kis “Cy”.
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Natural Deduction
Correctness

Line k is “Assume Cg”

The formula Cy is the last formula of H.

Then F,Hk ): Ck.
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Natural Deduction
Correctness

The line k is “Therefore Ck”

Cy is the formula B = D where:
» Bis the last formula of Hx_1 and Hx_1 = Hx,B
» D is usable on the previous line.

F. Prost et al (UGA) Natural Deduction February 2023

15/49



Natural Deduction
Correctness

The line k is “Therefore Cg”

Cy is the formula B = D where:
» Bis the last formula of Hx_1 and Hx_1 = Hx,B
» D is usable on the previous line.

Hence there exists a line i < k such that D = C; and Hi; is a prefix of
Hi_.
By induction hypothesis, I', H; = D.
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Natural Deduction
Correctness

The line k is “Therefore Ck”

Cy is the formula B = D where:
» Bis the last formula of Hx_1 and Hx_1 = Hx,B
» D is usable on the previous line.

Hence there exists a line i < k such that D = C; and Hi; is a prefix of
Hi_.
By induction hypothesis, I', H; = D.

Since Hi is a prefix of Hx_1, we have I', Hx_1 =D
which can also be written I', Hk, B = D.
Therefore I', Hx = B = D.
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Natural Deduction
Correctness

Line k is “Ck”

Cx is then the conclusion of a rule, whose premises either:

» are usable on the previous line

» orbelongtol.
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Natural Deduction

Correctness

Line k is “Ck”

Cx is then the conclusion of a rule, whose premises either:
» are usable on the previous line
» orbelongtol.

We only consider the rule Al, the other cases being similar.
Ck = (DA E) and the premises of the rule are D and E.
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Correctness

Line k is “Ck”

Cx is then the conclusion of a rule, whose premises either:
» are usable on the previous line

» orbelongtol.

We only consider the rule Al, the other cases being similar.
Ck = (DA E) and the premises of the rule are D and E.

By induction hypothesis, we have:
|_7 Hk,1 ': D and |—7 Hk,1 ’: E.
Since the line k does not change the hypotheses, we have Hi_1 = Hk.
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Correctness

Line k is “Ck”

Cx is then the conclusion of a rule, whose premises either:
» are usable on the previous line
» orbelongtol.
We only consider the rule Al, the other cases being similar.
Cx = (DA E) and the premises of the rule are D and E.

By induction hypothesis, we have:
|_7 Hk,1 ': D and |—7 Hk,1 ’: E.
Since the line k does not change the hypotheses, we have Hi_1 = Hk.

Finally D, E |= DA\ E. Transitively, ', Hx = Cy.
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Natural Deduction
Correctness

Line k is “Ck”

Cx is then the conclusion of a rule, whose premises either:
» are usable on the previous line
» orbelongtol.
We only consider the rule Al, the other cases being similar.
Ck = (DA E) and the premises of the rule are D and E.

By induction hypothesis, we have:
|_7 Hk,1 ': D and |—7 Hk,1 ’: E.
Since the line k does not change the hypotheses, we have Hi_1 = Hk.

Finally D, E |= DA\ E. Transitively, ', Hx = Cy.

For the other rules, it is the same proof, you just have to prove that the
conclusion is a consequence of the premises.
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Completeness

Plan

Completeness
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Natural Deduction
Completeness

Theorem

We prove the completeness of the rules only for formulas containing
the following logic symbols: L, A, V, =-.

This is enough because additional symbols T, — and < can be
regarded as abbreviations.
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Natural Deduction
Completeness

Theorem

We prove the completeness of the rules only for formulas containing
the following logic symbols: L, A, V, =-.

This is enough because additional symbols T, — and < can be
regarded as abbreviations.

Theorem 3.4.1

Let [ be a finite set of formulae and A a formula.
If I =AthenT - A
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Natural Deduction
Completeness

Definitions

A literal is either a variable x or an implication x = L.
x and x = | (abbreviated as —x) are complementary literals.
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Completeness

Definitions

A literal is either a variable x or an implication x = L.

x and x = | (abbreviated as —x) are complementary literals.

We define a measure m of formulae and of lists of formulae as:

>

vVvYyyvyy

m(L)=0

m(x) =1

m(A= B) =1+ m(A)+ m(B)
m(AA B) =1+ m(A)+ m(B)
m(AV B) =2+ m(A) + m(B)
m(T") = Lacr m(A)
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Definitions

A literal is either a variable x or an implication x = L.
x and x = | (abbreviated as —x) are complementary literals.

We define a measure m of formulae and of lists of formulae as:

>

vVvYyyvyy

m(L)=0

m(x) =1

m(A= B) =1+ m(A)+ m(B) (thus m(—=A) = m(A)+1)
m(AAB) =1+ m(A)+ m(B)

m(AV B) =2+ m(A) + m(B)

m(T") = Lacr m(A)
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Completeness

Definitions

A literal is either a variable x or an implication x = L.
x and x = | (abbreviated as —x) are complementary literals.

We define a measure m of formulae and of lists of formulae as:

>

vVvYyyvyy

m(L)=0

m(x) =1

m(A= B) =1+ m(A)+ m(B) (thus m(—=A) = m(A)+1)
m(AAB) =1+ m(A)+ m(B)

m(AV B) =2+ m(A) + m(B)

m(T") = Lacr m(A)

For example, let A= (aV —a).
m(—a) =2, m(A) =5 and m(A, (bAb), A) =13.
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Completeness

Induction

We define P(n) to be the following property:

If m(T', A)=n, thenif I =Athenl - A.
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Completeness

Induction

We define P(n) to be the following property:
If m(T', A)=n, thenif I =Athenl - A.

To show that P(n) holds for every integer n, we use “strong” induction:
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Natural Deduction
Completeness

Induction

We define P(n) to be the following property:
If m(T', A)=n, thenif I =Athenl - A.

To show that P(n) holds for every integer n, we use “strong” induction:
Assume that for every i < k, property P(i) holds.

Assume that m(I', A) =kand I = A.
Let us show that ' - A.
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Natural Deduction
Completeness

Decomposition

Idea: we decompose I, A in order to apply the induction hypothesis.
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Completeness

Decomposition

Idea: we decompose I, A in order to apply the induction hypothesis.

Ais undecomposable if Ais L or a variable and I is undecomposable
if I is a list of literals or contain the formula L.
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Completeness

Decomposition

Idea: we decompose I, A in order to apply the induction hypothesis.

Ais undecomposable if Ais L or a variable and I is undecomposable
if I is a list of literals or contain the formula L.

We study three cases:
Case 1: Neither A, nor I is decomposable.
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Completeness

Decomposition

Idea: we decompose I, A in order to apply the induction hypothesis.

Ais undecomposable if Ais L or a variable and I is undecomposable
if I is a list of literals or contain the formula L.

We study three cases:
Case 1: Neither A, nor I is decomposable.

Case 2: Ais decomposable.
We decompose A in two sub-formulae B and C.
We obtain m(I", B) < m(I', A) and m(I', C) < m(T', A).
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Natural Deduction
Completeness

Decomposition

Idea: we decompose I, A in order to apply the induction hypothesis.

Ais undecomposable if Ais L or a variable and I is undecomposable
if I is a list of literals or contain the formula L.

We study three cases:
Case 1: Neither A, nor I is decomposable.

Case 2: Ais decomposable.
We decompose A in two sub-formulae B and C.
We obtain m(I", B) < m(I', A) and m(I', C) < m(T', A).

Case 3: [ is decomposable.
We choose a decomposable formula (other than x = 1) inT.

F. Prost et al (UGA) Natural Deduction February 2023
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Completeness

Case 1 : neither A, nor [ are decomposable

Then:
» [ is alist of literals or contains the formula _L.
» Ais L or avariable.
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Completeness

Case 1 : neither A, nor [ are decomposable

Then:
» [ is alist of literals or contains the formula _L.
» Ais L or avariable.

(@) If L €T then A can be derived from L by the rule Efg.
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Natural Deduction
Completeness

Case 1 : neither A, nor [ are decomposable

Then:
» [ is alist of literals or contains the formula _L.
» Ais L or avariable.

(@) If L €T then A can be derived from L by the rule Efg.
(b) If I' is a list of literals then we have two cases:
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Completeness

Case 1 : neither A, nor [ are decomposable

Then:
» [ is alist of literals or contains the formula L.
> Ais L oravariable.
(@) If L €T then A can be derived from L by the rule Efg.
(b) If I' is a list of literals then we have two cases:
> A= 1.

Since s(I') |= A, there are two complementary literals in T
Therefore A can be derived from I by the rule =E.
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Case 1 : neither A, nor [ are decomposable

Then:
» [ is alist of literals or contains the formula _L.
» Ais L or avariable.

(@) If L €T then A can be derived from L by the rule Efg.
(b) If I' is a list of literals then we have two cases:
> A= 1.
Since s(I') |= A, there are two complementary literals in T
Therefore A can be derived from I by the rule =E.

> Ais a variable.
SincelN=A:
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Case 1 : neither A, nor [ are decomposable

Then:
» [ is alist of literals or contains the formula _L.
» Ais L or avariable.

(@) If L €T then A can be derived from L by the rule Efg.
(b) If I' is a list of literals then we have two cases:
> A= 1.
Since s(I') |= A, there are two complementary literals in T
Therefore A can be derived from I by the rule =E.

> Ais a variable.
SincelN=A:

» either " contains two complementary literals, and similarly I' - A
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Completeness

Case 1 : neither A, nor [ are decomposable

Then:
» [ is alist of literals or contains the formula _L.
» Ais L or avariable.

(@) If L €T then A can be derived from L by the rule Efg.
(b) If I' is a list of literals then we have two cases:
> A= 1.
Since s(I') |= A, there are two complementary literals in T
Therefore A can be derived from I by the rule =E.
> Ais a variable.
SincelN=A:
» either " contains two complementary literals, and similarly I' - A
» or Ac T andin this case I - A (by empty proof).
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Case 2: Ais decomposable into B and C

Ais decomposed into BA C, BV C, or B=- C.

We only study the case A= B A C, the other cases are similar.
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Case 2: Ais decomposable into B and C

Ais decomposed into BA C, BV C, or B=- C.
We only study the case A= B A C, the other cases are similar.
Since =Aand A=BAC,wehavel =Band I = C.

The measures of B and C are strictly less than the measure of A,
hence m(I", B) < k and m(I", C) < k.
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Case 2: Ais decomposable into B and C

Ais decomposed into BA C, BV C, or B=- C.

We only study the case A= B A C, the other cases are similar.
Since =Aand A=BAC,wehavel =Band I = C.

The measures of B and C are strictly less than the measure of A,
hence m(I',B) < k and m(I', C) < k.

By induction hypothesis, there exist two proofs P and Q such that
FP:BandlFQ:C.
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Case 2: Ais decomposable into B and C

Ais decomposed into BA C, BV C, or B=- C.

We only study the case A= B A C, the other cases are similar.
Since =Aand A=BAC,wehavel =Band I = C.

The measures of B and C are strictly less than the measure of A,
hence m(I", B) < k and m(I", C) < k.

By induction hypothesis, there exist two proofs P and Q such that

[FP:Bandl'-Q: C.

Hence the proof “P, Q, A” is a proof of A in the environment I'.
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Completeness

Case 3: [ is decomposable

There is a decomposable formula in [ which is either:
> BAC
> BVC

> B=ColuC=# 1l

» (BAC)= L

» (BVC)= L1

» (B=C)= L

We only study the first case.
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[ is a permutation of the list (BA C), A
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I and (BA C), A have the same measure.
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[ is a permutation of the list (BA C), A

I and (BA C), A have the same measure.

Since ' = A, we have B,C,A = A.
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[ is a permutation of the list (BA C), A

I and (BA C), A have the same measure.
Since ' = A, we have B,C,A = A.

The sum of the measures of B and C is strictly less than the measure
of BAC.
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[ is a permutation of the list (BA C), A

I and (BA C), A have the same measure.
Since ' = A, we have B,C,A = A.

The sum of the measures of B and C is strictly less than the measure
of BAC.

Hence m(B,C,A,A) < m((BA C),A,A) = m(l', A) = k, by induction
hypothesis, there exist a proof P such that B,C,A+ P : A.

F. Prost et al (UGA) Natural Deduction February 2023 25/49



Natural Deduction
Completeness

[ is a permutation of the list (BA C), A

I and (BA C), A have the same measure.
Since ' = A, we have B,C,A = A.

The sum of the measures of B and C is strictly less than the measure
of BAC.

Hence m(B,C,A,A) < m((BA C),A,A) = m(l', A) = k, by induction
hypothesis, there exist a proof P such that B,C,A+ P : A.

Since B can be derived from (B A C) by the rule AE1 and C can be
derived from (B A C) by the rule AE2 : “B, C, P”is a proof of Ain the
environment I'.
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Remark 3.4.2

The proof of completeness is constructive, that is it provides an
algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.
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However, this algorithm can lead to long proofs.
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Remark 3.4.2

The proof of completeness is constructive, that is it provides an
algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

The tool
http://teachinglogic.univ-grenoble-alpes.fr/DN/
builds proofs more more efficiently.
It uses “optimised” tactics presented in section 3.2.
For example, to prove BV C:

» First try to prove B

» |If failure, then try to prove C

» Otherwise, use tactic 10 (prove C under the hypothesis —B)
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Proof tactics

We wish to prove A in the environment '

The 13 following tactics must be used in the following order!
» Tactics 1 to 3 : the proof is over
» Tactics 4 to 6 : proof guided by the conclusion (Intro rules)
» Tactics 7 to 9 : proof guided by the environment (Elim rules)
» Tactics 10 to 13 : reasoning by absurd
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Tactic 1

If A€ T then the empty proof is obtained.
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Tactic 2

If Ais the consequence of a rule whose premises are in ', then the
obtained proof is
“A”.
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Tactic 3

If I contains a contradiction, that is a formula B and a formula =B,
then the obtained proofis “L, A”.
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Tactic 4

If Ais BAC then:

F. Prost et al (UGA)

contexte | preuve | justification
r B . P...

r C Q-

r BAC | Al

Natural Deduction

February 2023

32/49



Natural Deduction
Tactics

Tactic 4

If Ais BAC then:

contexte | preuve | justification
r B . P...

r C Q-

r BAC | Al

The proofs can fail (if [ [~ A).

Here, if the proof of B or C fails, the proof of A fails too.

In the remainder of the lecture, we do not highlight the failure cases
anymore, unless another proof has to be tried.
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Tactic 5

If Ais B= C, then prove C under hypothesis B:

contexte preuve justification
B Assume B
r.B C P
I Therefore B=C | =/
F. Prost et al (UGA) Natural Deduction
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Tactic 6

If Ais BV C, then prove B :

contexte | preuve | justification
r B =T
r BvVC | Vv

If the proof of B fails then prove C :

contexte | preuve | justification
r C -
r BvVC | VI2

If the proof of C fails, try the following tactics.
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Tactic 7

If BA C is in the environment, then prove A starting from formulae B,
C, replacing B A C in the environment:

contexte | preuve | justification
BAC B AE1
BAC C NE2

I A .P...

F. Prost et al (UGA)
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Tactic 8

If BV C is in the environment, then:
» prove Ain the environment where B replaces BV C.
» prove A in the environment where C replaces BV C.

contexte preuve justification
r ,B Assume B

r .B A P

r Therefore B=A | = |

r ,C Assume C

r .C A Q-

r Therefore C=A | =/
LBvVC A VE
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Tactic 9

If =(BV C) is in the environment, then
» we derive =B by the proof P4 and
> —C by the proof P5 (proofs requested in exercise 59).

P Let P the proof of A in the environment where =B, —C replace
the formula —(BV C).

The proof of Ais “P4, P5, P.
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Tactic 10

If Ais BV C, then prove C under hypothesis —B: let P the obtained
proof.

“Assume B, P, Therefore =B =- C” is a proof of the formula

—B = C which is equivalent to A.

To obtain the proof of A, simply add the proof P1, requested in
exercise 59 of Ain the environment -B = C.

The proof obtained from A is therefore “Assume —B, P, Therefore
-B= C, P1".
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Tactic 11

If =(B A C) is in the environment, then we deduce from it =BV =C by
the proof P3 requested in exercise 59 then we reason case by case as
follows:
» prove A in the environment where =B replaces —(BA C) : Let P
the obtained proof,
» prove A in the environment where —C replaces ~(BA C): Let Q
the obtained proof.
The proof of Ais “P3, Assume =B, P, Therefore =B = A, Assume
=C, Q, Therefore -C = A, A".
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Tactique 12

If =(B = C) is in the environment, then
» we derive B by the proof P6,
> —C by the proof P7 (proofs requested in exercise 59).

P Let P the proof of A in the environment where B, —C replace the
formula =(B = C).

The proof of Ais “P6, P7, P".
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Tactic 13

If B= Cis in the environment and if C # L, i.e. if B= Cis not =B,

then,
we derive =BV C in the environment B = C by proof P2 from

exercise 59, then we reason by cases:
» prove Ain the environment where —B replaces B = C: Let P the
obtained proof,
» prove A in the environment where C replaces B = C: Let Q the
obtained proof.
The proof of Ais “P2, Assume —B, P, Therefore =B =- A, Assume C,
Q, Therefore C= A, A"
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Example

Proof of Peirce’s formula:

(p=q)=p)=0p
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Proof plan

Tactic 5 is compulsory!

Proof Q:

Assume (p=q)=p

| Qi proof or pin the environment (p = q) = p |
Therefore ((p=q)=p)=p

Proof Qi necessarily uses tactic 13 (the environment is
B=C=(p=q)=p).

Hence we have to prove p both:
» in the environment =B = —(p = q)

» in the environment C = p.
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Plan of the proof of Q4

Proof Qs :

l Q11 is the proof of =BV C in the environment B = C, see exercise 59
Assume =(p = q)

[ Q2 proof of pin the environment ~(p = q) |

Therefore ~(p=q) = p

Assume p

| Q3 proof of pin the environment p |

Thereforep=p

p
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Proof of Qq

Q3 is the empty proof, since A= C = p.

Q2 is the proof of C = p in the environment —(p = q).

Since —A is an abbreviation of A= L, this proof is the proof Pg
requested in exercise 59, where B=p and C = g.

By gluing pieces Qq, Q1, Qi2, Qy3, we obtain the proof Q.

The proof Qq2 can also be done without using the tactics.
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Today

» Propositional Natural Deduction is correct and complete.
» Tactics for building a proof
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Automated proofs

To automatically obtain the proofs in the system, we recommend the
following software (implementing the 13 previous tactics):

http://teachinglogic.univ-grenoble-alpes.fr/DN/
People who prefer tree-like proofs can use the following software:

http://www-sop.inria.fr/marelle/Laurent.Thery/
peanoware/Nd.html
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Overview of the Semester

TODAY
» Propositional logic
» Propositional resolution
» Natural deduction for propositional logic *
» First order logic
MIDTERM EXAM

» Logical basis for automated proving
(“first-order resolution”)

» First-order natural deduction
EXAM

F. Prost et al (UGA) Natural Deduction February 2023

49 /49



	
	
	Correctness
	
	
	
	
	
	

	Completeness
	
	
	
	
	
	
	
	

	Tactics
	Conclusion

