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Last lecture

Natural deduction

I Rules

I Context

I Proofs
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Natural Deduction

Reminder of the rules

Introduction Elimination
[A]

Implication . . . A A⇒B
B ⇒ E

B
A⇒B ⇒ I

Conjunction A B
A∧B ∧I

A∧B
A ∧E1

A∧B
B ∧E2

Disjunction A
A∨B ∨I1

B
A∨B ∨I2

A∨B A⇒C B⇒C
C ∨E

Ex falso quodlibet
⊥ ⊥

A Efq

Reductio ad absurdum
¬¬A

A RAA
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Natural Deduction

Second Example

Prove a∧¬a⇒ b.

context number proof justification
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Second Example

Prove a∧¬a⇒ b.

context number proof justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
1 3 ¬a ∧E2 1
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Natural Deduction

Second Example

Prove a∧¬a⇒ b.

context number proof justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
1 3 ¬a ∧E2 1
1 4 ⊥ ⇒ E 2,3
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Second Example

Prove a∧¬a⇒ b.

context number proof justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
1 3 ¬a ∧E2 1
1 4 ⊥ ⇒ E 2,3
1 5 b Efq 4
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Natural Deduction

Second Example

Prove a∧¬a⇒ b.

context number proof justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
1 3 ¬a ∧E2 1
1 4 ⊥ ⇒ E 2,3
1 5 b Efq4

6 Therefore a∧¬a⇒ b ⇒ I 1,5
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Natural Deduction

Third Example: with an environment

Prove ¬A in the environment ¬(A∨B)

environment
reference formula

(i) ¬(A∨B)
context number proof justification
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Third Example: with an environment

Prove ¬A in the environment ¬(A∨B)

environment
rference formula

(i) ¬(A∨B)
context number proof justification
1 1 Assume A
1 2 A∨B ∨I1 1
1 3 ⊥ ⇒ E i,2
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Natural Deduction

Third Example: with an environment

Prove ¬A in the environment ¬(A∨B)

environment
reference formula

(i) ¬(A∨B)
context number proof justification
1 1 Assume A
1 2 A∨B ∨I1 1
1 3 ⊥ ⇒ E i,2

4 Therefore ¬A ⇒ I 1,3
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Natural Deduction

Fourth exemple (example 3.1.12)

Prove ¬A∨B in the environment A⇒ B.

environment
reference formule

(i) A⇒ B
context number proof justification
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Natural Deduction

Fourth exemple (example 3.1.12)

Prove ¬A∨B in the environment A⇒ B.

environment
reference formula

(i) A⇒ B
context number proof justification
1 1 Assume ¬(¬A∨B)
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Natural Deduction

Fourth exemple (example 3.1.12)

Prove ¬A∨B in the environment A⇒ B.

environment
reference formula

(i) A⇒ B
context number proof justification
1 1 Assume ¬(¬A∨B)
1,2 2 Assume A
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Fourth exemple (example 3.1.12)

Prove ¬A∨B in the environment A⇒ B.

environment
reference formula
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Fourth exemple (example 3.1.12)
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Fourth exemple (example 3.1.12)
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Fourth exemple (example 3.1.12)

Prove ¬A∨B in the environment A⇒ B.

environment
reference formula

(i) A⇒ B
context number proof justification
1 1 Assume ¬(¬A∨B)
1,2 2 Assume A
1,2 3 B ⇒ E i , 2
1,2 4 ¬A∨B ∨I2 3
1,2 5 ⊥ ⇒ E 1, 4
1 6 Therefore ¬A ⇒ I 2, 5
1 7 ¬A∨B ∨I1 6
1 8 ⊥ ⇒ E 1, 7

9 Therefore ¬¬(¬A∨B) ⇒ I 1, 8
10 ¬A∨B RAA 9
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Natural Deduction

Tree (example 3.1.12)

Give the tree representation of the previous proof:

The environment consists of formulae occurring at non-removed leaves.
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Natural Deduction

Tree (example 3.1.12)

Give the tree representation of the previous proof:

Exemple 3.1.7 Preuve précédente sous forme d’arbre

(1)!!!!!¬(¬A∨B)

(1)!!!!!¬(¬A∨B)

(i)A⇒ B (2)"A
(3)B ⇒ E

(4)¬A∨B ∨2

(5)⊥ ⇒ E

(6)¬A
⇒ I[2]

(7)¬A∨B ∨1

(8)⊥ ⇒ E

(9)¬¬(¬A∨B)
⇒ I[1]

(10)¬A∨B RAA

Dans l’arbre de preuve, l’environnement est constitué des formules portées par les feuilles non enlevées.

Théorème 3.1.1 (Indifférence aux abréviations) Soient Γ et ∆ deux ensembles de formules égaux aux abréviations
près. Toute preuve dans l’environnement Γ est aussi une preuve dans l’environnement ∆.
Soient A et B deux formules égales aux abréviations près. Toute preuve de A dans l’environnement Γ est aussi une
preuve de B dans l’environnement ∆.

Preuve : Il suffit de constater que dans la définition des preuves, on peut remplacer toute formule par une autre formule
égale aux abréviations près. !

3.2 Cohérence de la déduction naturelle
Théorème 3.2.1 (Cohérence de la déduction) Si une formule est déduite d’un environnement de formules alors elle
en est une conséquence.

Preuve : Soit Γ un ensemble de formules. Soit P une preuve de A dans cet environnement. Soit Ci la conclusion et Hi
le contexte de la i-ème ligne de la preuve P. Notons par Γ,Hi l’ensemble des formules de l’ensemble Γ et de la liste
Hi.

Supposons que pour tout i < k, Γ,Hi |= Ci. Montrons que Γ,Hk |= Ck.
1. Supposons que la ligne k est «supposons Ck». La formule Ck est la dernière formule de Hk, donc Γ,Hk |= Ck.
2. Supposons que la ligne k est «donc Ck». La formule Ck est égale, aux abréviations près à la formule B ⇒ D,

B est la dernière formule de Hk−1 et D est, aux abréviations près, élement de Γ ou est utilisable sur la ligne
précédente.

(a) Dans le premier cas D est égale aux abréviations près à une formule de Γ. Puisque deux formules, égales
aux abréviations près, sont équivalentes, D est conséquence de Γ, donc Γ,Hk |= B⇒ D. Et puisque deux
formules, égales aux abréviations prés, sont équivalentes, on a aussi Γ,Hk |= Ck.

(b) Dans le deuxième cas, D est utilisable sur la ligne précédente. Donc il existe i < k tel que D = Ci et Hi
est préfixe de Hk−1. Par hypothèse de récurrence, Γ,Hi |= D. Puisque Hi est préfixe de Hk−1, Γ,Hk−1 |= D.
Puisque B est la dernière formule de Hk−1, on a Hk−1 = Hk,B et donc Γ,Hk |= B⇒ D. Et puisque deux
formules, égales aux abréviations prés, sont équivalentes, on a Γ,Hk |= Ck.

3. Supposons que la ligne k est «Ck». Cette formule est, aux abréviations près, la conclusion B d’une règle du
paragraphe 3.1.1, appliquée à ses prémisses utilisables à la ligne précédente ou éléments de Γ.
Considérons le seul cas de la règle ∧I, les autres cas étant analogues. La formule B s’écrit, aux abréviations près,
(D∧E) et les premisses de la règle sont D et E.
Puisque D et E sont, aux abréviations près, éléments de Γ ou utilisables à la ligne précédente, comme dans le
cas précédent, en utilisant l’hypothèse de récurrence, on a :
Γ,Hk−1 |= D et Γ,Hk−1 |= E
Puisque la ligne k ne change pas les hypothèses, on a Hk−1 = Hk, donc Γ,Hk |= D et Γ,Hk |= E
Puisque B est, aux abréviation près, égale à (D∧E), on a : D,E |= B.

43

The environment consists of formulae occurring at non-removed leaves.
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Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intu-
itionist philosophy: the validity of mathematics should be
verifiable by the human mind.

I refusal of infinite objects such as the ones of set
theory

I in particular, notion of constructible real number = algorithm
that produces its digits

Example of a non-constructive proof : assume P(0) and ¬P(2).
Then ∃x(P(x)∧¬P(x + 1))

... but we don’t know whether x = 0 or
x = 1 is the “correct” witness for that property.
The introduction rules for ∨ make it explicit which case is true:
following the reasoning step-by-step is an algorithm!

However the rule
¬¬A

A
allows to override that constraint.
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Our running example

context number proof justification
1 1 Assume

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)
1 2 ¬p⇒ j ∧E 1
1 3 j⇒m ∧E 1
1,4 4 Assume ¬(m∨p)
1,4,5 5 Assume p
1,4,5 6 m∨p ∨I 5
1,4,5 7 ⊥ ⇒ E 4,6
1,4 8 Therefore ¬p ⇒ I 5,7
1,4 9 j ⇒ E 2, 8
1,4 10 m ⇒ E 3, 9
1,4 11 m∨p ∨I 10
1,4 12 ⊥ ⇒ E 4, 11
1 13 Therefore ¬¬(m∨p) ⇒ I 4, 13
1 14 m∨p RAA 13
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Correctness

Plan

Correctness

Completeness

Tactics

Conclusion
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Natural Deduction

Correctness

Theorem

Theorem 3.3.1

If a formula A is deduced from an environment Γ (Γ ` A) then A is a
consequence of Γ (Γ |= A).

Every proof written in an environment Γ is correct!

Proof by induction on the number of lines in the proof P:

I Let Hi be the context and Ci the conclusion of the i th line in P.

I We show that for every k we have Γ,Hk |= Ck .

Hence, for the last line n of the proof: Γ |= A
(Hn is empty and Cn = A)
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Natural Deduction

Correctness

Base case

Assume that A is derived from Γ by an empty proof.

That is, A is a member of Γ.

Hence Γ |= A.
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Natural Deduction

Correctness

Induction hypothesis

Assume that for every line i < k of the proof we have Γ, Hi |= Ci .

Let us prove that Γ, Hk |= Ck .

Three possible cases:

I Line k is “Assume Ck ”.

I Line k is “Therefore Ck ”.

I Line k is “Ck ”.
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Correctness

Induction hypothesis

Assume that for every line i < k of the proof we have Γ, Hi |= Ci .
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Natural Deduction

Correctness

Line k is “Assume Ck ”

The formula Ck is the last formula of Hk .

Then Γ,Hk |= Ck .
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Natural Deduction

Correctness

The line k is “Therefore Ck ”

Ck is the formula B⇒ D where:

I B is the last formula of Hk−1 and Hk−1 = Hk ,B

I D is usable on the previous line.

Hence there exists a line i < k such that D = Ci and Hi is a prefix of
Hk−1.
By induction hypothesis, Γ, Hi |= D.

Since Hi is a prefix of Hk−1, we have Γ, Hk−1 |= D
which can also be written Γ, Hk , B |= D.
Therefore Γ, Hk |= B⇒ D.
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Natural Deduction

Correctness

Line k is “Ck ”

Ck is then the conclusion of a rule, whose premises either:

I are usable on the previous line

I or belong to Γ.

We only consider the rule ∧I, the other cases being similar.
Ck = (D∧E) and the premises of the rule are D and E .

By induction hypothesis, we have:
Γ, Hk−1 |= D and Γ, Hk−1 |= E .
Since the line k does not change the hypotheses, we have Hk−1 = Hk .

Finally D, E |= D∧E . Transitively, Γ, Hk |= Ck .

For the other rules, it is the same proof, you just have to prove that the
conclusion is a consequence of the premises.
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Natural Deduction

Completeness

Theorem

We prove the completeness of the rules only for formulas containing
the following logic symbols: ⊥, ∧, ∨, ⇒.

This is enough because additional symbols >, ¬ and⇔ can be
regarded as abbreviations.

Theorem 3.4.1

Let Γ be a finite set of formulae and A a formula.
If Γ |= A then Γ ` A.
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Natural Deduction

Completeness

Definitions

A literal is either a variable x or an implication x ⇒⊥.
x and x ⇒⊥ (abbreviated as ¬x) are complementary literals.

We define a measure m of formulae and of lists of formulae as:

I m(⊥) = 0

I m(x) = 1

I m(A⇒ B) = 1 + m(A) + m(B)

(thus m(¬A) = m(A) + 1)

I m(A∧B) = 1 + m(A) + m(B)

I m(A∨B) = 2 + m(A) + m(B)

I m(Γ) = ∑A∈Γ m(A)

For example, let A = (a∨¬a).
m(¬a) = 2, m(A) = 5 and m(A, (b∧b), A) = 13.
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Natural Deduction

Completeness

Induction

We define P(n) to be the following property:
If m(Γ, A) = n, then if Γ |= A then Γ ` A.

To show that P(n) holds for every integer n, we use “strong” induction:

Assume that for every i < k , property P(i) holds.
Assume that m(Γ, A) = k and Γ |= A.
Let us show that Γ ` A.
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Natural Deduction

Completeness

Decomposition

Idea: we decompose Γ,A in order to apply the induction hypothesis.

A is undecomposable if A is ⊥ or a variable and Γ is undecomposable
if Γ is a list of literals or contain the formula ⊥.

We study three cases:

Case 1: Neither A, nor Γ is decomposable.

Case 2: A is decomposable.
We decompose A in two sub-formulae B and C.
We obtain m(Γ, B) < m(Γ, A) and m(Γ, C) < m(Γ, A).

Case 3: Γ is decomposable.
We choose a decomposable formula (other than x ⇒⊥) in Γ.
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Natural Deduction

Completeness

Case 1 : neither A, nor Γ are decomposable

Then:

I Γ is a list of literals or contains the formula ⊥.

I A is ⊥ or a variable.

(a) If ⊥ ∈ Γ then A can be derived from ⊥ by the rule Efq.
(b) If Γ is a list of literals then we have two cases:

I A =⊥.
Since s(Γ) |= A, there are two complementary literals in Γ.
Therefore A can be derived from Γ by the rule⇒E.

I A is a variable.
Since Γ |= A :

I either Γ contains two complementary literals, and similarly Γ ` A
I or A ∈ Γ and in this case Γ ` A (by empty proof).
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Natural Deduction

Completeness

Case 2: A is decomposable into B and C

A is decomposed into B∧C, B∨C, or B⇒ C.

We only study the case A = B∧C, the other cases are similar.

Since Γ |= A and A = B∧C, we have Γ |= B and Γ |= C.

The measures of B and C are strictly less than the measure of A,
hence m(Γ,B) < k and m(Γ,C) < k .
By induction hypothesis, there exist two proofs P and Q such that
Γ ` P : B and Γ ` Q : C.

Hence the proof “P, Q, A” is a proof of A in the environment Γ.
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Natural Deduction

Completeness

Case 3: Γ is decomposable

There is a decomposable formula in Γ which is either:

I B∧C

I B∨C

I B⇒ C où C 6=⊥
I (B∧C)⇒⊥
I (B∨C)⇒⊥
I (B⇒ C)⇒⊥

We only study the first case.
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Natural Deduction

Completeness

Γ is a permutation of the list (B∧C),∆

Γ and (B∧C),∆ have the same measure.

Since Γ |= A, we have B,C,∆ |= A.

The sum of the measures of B and C is strictly less than the measure
of B∧C.

Hence m(B,C,∆,A) < m((B∧C),∆,A) = m(Γ,A) = k , by induction
hypothesis, there exist a proof P such that B,C,∆ ` P : A.

Since B can be derived from (B∧C) by the rule ∧E1 and C can be
derived from (B∧C) by the rule ∧E2 : “B, C, P” is a proof of A in the
environment Γ.
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of B∧C.

Hence m(B,C,∆,A) < m((B∧C),∆,A) = m(Γ,A) = k , by induction
hypothesis, there exist a proof P such that B,C,∆ ` P : A.

Since B can be derived from (B∧C) by the rule ∧E1 and C can be
derived from (B∧C) by the rule ∧E2 : “B, C, P” is a proof of A in the
environment Γ.
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Tactics

Remark 3.4.2

The proof of completeness is constructive, that is it provides an
algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

The tool
http://teachinglogic.univ-grenoble-alpes.fr/DN/
builds proofs more more efficiently.
It uses “optimised” tactics presented in section 3.2.

For example, to prove B∨C:

I First try to prove B

I If failure, then try to prove C

I Otherwise, use tactic 10 (prove C under the hypothesis ¬B)
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Tactics

Proof tactics

We wish to prove A in the environment Γ

The 13 following tactics must be used in the following order!

I Tactics 1 to 3 : the proof is over

I Tactics 4 to 6 : proof guided by the conclusion (Intro rules)

I Tactics 7 to 9 : proof guided by the environment (Elim rules)

I Tactics 10 to 13 : reasoning by absurd
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Tactics

Tactic 1

If A ∈ Γ then the empty proof is obtained.
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Tactics

Tactic 2

If A is the consequence of a rule whose premises are in Γ, then the
obtained proof is
“A”.
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Tactics

Tactic 3

If Γ contains a contradiction, that is a formula B and a formula ¬B,
then the obtained proof is “⊥, A”.
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Tactics

Tactic 4

If A is B∧C then:
contexte preuve justification
Γ B · · ·P · · ·
Γ C · · ·Q · · ·
Γ B∧C ∧I

The proofs can fail (if Γ 6|= A).
Here, if the proof of B or C fails, the proof of A fails too.

In the remainder of the lecture, we do not highlight the failure cases
anymore, unless another proof has to be tried.
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Natural Deduction

Tactics

Tactic 5

If A is B⇒ C, then prove C under hypothesis B:

contexte preuve justification
Γ,B Assume B
Γ,B C · · ·P · · ·
Γ Therefore B⇒ C ⇒ I
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Tactics

Tactic 6

If A is B∨C, then prove B :

contexte preuve justification
Γ B · · ·P · · ·
Γ B∨C ∨I1

If the proof of B fails then prove C :

contexte preuve justification
Γ C · · ·P · · ·
Γ B∨C ∨I2

If the proof of C fails, try the following tactics.
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Tactics

Tactic 7

If B∧C is in the environment, then prove A starting from formulae B,
C, replacing B∧C in the environment:

contexte preuve justification
Γ,B∧C B ∧E1
Γ,B∧C C ∧E2
Γ,B∧C A · · ·P · · ·
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Tactics

Tactic 8

If B∨C is in the environment, then:

I prove A in the environment where B replaces B∨C.

I prove A in the environment where C replaces B∨C.

contexte preuve justification
Γ,B∨C,B Assume B
Γ,B∨C,B A · · ·P · · ·
Γ,B∨C Therefore B⇒ A ⇒ I
Γ,B∨C,C Assume C
Γ,B∨C,C A · · ·Q · · ·
Γ,B∨C Therefore C⇒ A ⇒ I
Γ,B∨C A ∨E
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Tactics

Tactic 9

If ¬(B∨C) is in the environment, then

I we derive ¬B by the proof P4 and

I ¬C by the proof P5 (proofs requested in exercise 59).

I Let P the proof of A in the environment where ¬B, ¬C replace
the formula ¬(B∨C).

The proof of A is “P4, P5, P”.
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Tactics

Tactic 10

If A is B∨C, then prove C under hypothesis ¬B: let P the obtained
proof.
“Assume ¬B, P, Therefore ¬B⇒ C” is a proof of the formula
¬B⇒ C which is equivalent to A.

To obtain the proof of A, simply add the proof P1, requested in
exercise 59 of A in the environment ¬B⇒ C.
The proof obtained from A is therefore “Assume ¬B, P, Therefore
¬B⇒ C, P1”.
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Tactics

Tactic 11

If ¬(B∧C) is in the environment, then we deduce from it ¬B∨¬C by
the proof P3 requested in exercise 59 then we reason case by case as
follows:

I prove A in the environment where ¬B replaces ¬(B∧C) : Let P
the obtained proof,

I prove A in the environment where ¬C replaces ¬(B∧C): Let Q
the obtained proof.

The proof of A is “P3, Assume ¬B, P, Therefore ¬B⇒ A, Assume
¬C, Q, Therefore ¬C⇒ A, A”.
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Tactics

Tactique 12

If ¬(B⇒ C) is in the environment, then

I we derive B by the proof P6,

I ¬C by the proof P7 (proofs requested in exercise 59).

I Let P the proof of A in the environment where B, ¬C replace the
formula ¬(B⇒ C).

The proof of A is “P6, P7, P”.
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Tactics

Tactic 13

If B⇒ C is in the environment and if C 6=⊥, i.e. if B⇒ C is not ¬B,
then,
we derive ¬B∨C in the environment B⇒ C by proof P2 from
exercise 59, then we reason by cases:

I prove A in the environment where ¬B replaces B⇒ C: Let P the
obtained proof,

I prove A in the environment where C replaces B⇒ C: Let Q the
obtained proof.

The proof of A is “P2, Assume ¬B, P, Therefore ¬B⇒ A, Assume C,
Q, Therefore C⇒ A, A”.
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Tactics

Example

Proof of Peirce’s formula:

((p⇒ q)⇒ p)⇒ p
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Proof plan

Tactic 5 is compulsory!

Proof Q:
Assume (p⇒ q)⇒ p

Q1 proof or p in the environment (p⇒ q)⇒ p
Therefore ((p⇒ q)⇒ p)⇒ p

Proof Q1 necessarily uses tactic 13 (the environment is
B⇒ C = (p⇒ q)⇒ p).

Hence we have to prove p both:

I in the environment ¬B = ¬(p⇒ q)

I in the environment C = p.
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Plan of the proof of Q1

Proof Q1 :
Q11 is the proof of ¬B∨C in the environment B⇒ C, see exercise 59

Assume ¬(p⇒ q)

Q12 proof of p in the environment ¬(p⇒ q)

Therefore ¬(p⇒ q)⇒ p
Assume p

Q13 proof of p in the environment p
Therefore p⇒ p
p
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Tactics

Proof of Q1

Q13 is the empty proof, since A = C = p.

Q12 is the proof of C = p in the environment ¬(p⇒ q).
Since ¬A is an abbreviation of A⇒⊥, this proof is the proof P6

requested in exercise 59, where B = p and C = q.

By gluing pieces Q1, Q11, Q12, Q13, we obtain the proof Q.

The proof Q12 can also be done without using the tactics.

F. Prost et al (UGA) Natural Deduction February 2023 45 / 49



Natural Deduction

Conclusion

Plan

Correctness

Completeness

Tactics

Conclusion

F. Prost et al (UGA) Natural Deduction February 2023 46 / 49



Natural Deduction

Conclusion

Today

I Propositional Natural Deduction is correct and complete.

I Tactics for building a proof
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Automated proofs

To automatically obtain the proofs in the system, we recommend the
following software (implementing the 13 previous tactics):

http://teachinglogic.univ-grenoble-alpes.fr/DN/

People who prefer tree-like proofs can use the following software:

http://www-sop.inria.fr/marelle/Laurent.Thery/
peanoware/Nd.html
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Conclusion

Overview of the Semester

TODAY

I Propositional logic

I Propositional resolution

I Natural deduction for propositional logic *

I First order logic

MIDTERM EXAM

I Logical basis for automated proving
(“first-order resolution”)

I First-order natural deduction

EXAM
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