Natural Deduction

Properties and tactics

Frédéric Prost
Université Grenoble Alpes

February 2023

Last lecture

Natural deduction
- Rules
- Context
- Proofs

Reminder of the rules

Implication	Introduction		Elimination	
	$\begin{gathered} {[A]} \\ \ldots \\ \frac{B}{A \Rightarrow B} \end{gathered}$	$\Rightarrow 1$	$\frac{A \quad A \Rightarrow B}{B}$	$\Rightarrow E$
Conjunction	$\begin{gathered} A \Rightarrow B \\ \hline A B \\ \hline A \wedge B \end{gathered}$	\wedge	$\begin{aligned} & \frac{A \wedge B}{A} \\ & \frac{A \wedge B}{B} \end{aligned}$	$\wedge E 1$ $\wedge E 2$
Disjunction	$\begin{aligned} & \frac{A}{A \vee B} \\ & \frac{B}{A \vee B} \end{aligned}$	v/2	$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C}$	VE
	Ex falso quodlibet			
\perp	$\stackrel{\perp}{\text { A }}$ Efq			
	Reductio ad absurdum			
	$\frac{\neg \neg A}{A} R A A$			

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$
1	4	\perp	$\Rightarrow E 2,3$

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$
1	4	\perp	$\Rightarrow E 2,3$
1	5	b	Efq 4

Second Example

Prove $a \wedge \neg a \Rightarrow b$.

context	number	proof	justification
1	1	Assume $a \wedge \neg a$	
1	2	a	$\wedge E 11$
1	3	$\neg a$	$\wedge E 21$
1	4	\perp	$\Rightarrow E 2,3$
1	5	b	$E f q 4$
	6	Therefore $a \wedge \neg a \Rightarrow b$	$\Rightarrow I 1,5$

Third Example: with an environment

Prove $\neg A$ in the environment $\neg(A \vee B)$

environment			
reference		formula	
(i)		$\neg(A \vee B)$	
context	number	proof	
justification			

Third Example: with an environment

Prove $\neg A$ in the environment $\neg(A \vee B)$

environment			
reference		formula	
(i)		$\neg(A \vee B)$	
context	number	proof	justification
1	1	Assume A	

Third Example: with an environment

Prove $\neg A$ in the environment $\neg(A \vee B)$

environment			
reference		formula	
(i)		$\neg(A \vee B)$	
context	number	proof	justification
1	1	Assume A	
1	2	$A \vee B$	$\vee / 11$

Third Example: with an environment

Prove $\neg A$ in the environment $\neg(A \vee B)$

environment			
rference		formula	
(i)		$\neg(A \vee B)$	
context	number	proof	justification
1	1	Assume A	
1	2	$A \vee B$	$\vee / 11$
1	3	\perp	$\Rightarrow E i, 2$

Third Example: with an environment

Prove $\neg A$ in the environment $\neg(A \vee B)$

environment			
reference		formula	
(i)		$\neg(A \vee B)$	
context	number	proof	justification
1	1	Assume A	
1	2	$A \vee B$	$\vee / 11$
1	3	\perp	$\Rightarrow E i, 2$
	4	Therefore $\neg A$	$\Rightarrow / 1,3$

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment				
\qquadformule reference $A \Rightarrow B$ (i) A context number proof justification				

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment			
reference		formula	
(i)		$A \Rightarrow B$	
context	number	proof	justification
1	1	Assume $\neg(\neg A \vee B)$	

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment			
reference		formula	
(i)		$A \Rightarrow B$	
context	number	proof	justification
1	1	Assume $\neg(\neg A \vee B)$	
1,2	2	Assume A	

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment			
reference		formula	
(i)		$A \Rightarrow B$	
context	number	proof	justification
1	1	Assume $\neg(\neg A \vee B)$	
1,2	2	Assume A	
1,2	3	B	$\Rightarrow E i, 2$

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment				
reference		formula		
(i)		$A \Rightarrow B$		
context	number	proof	justification	
1	1	Assume	$\neg(\neg A \vee B)$	
1,2	2	Assume	A	
1,2	3	B		$\Rightarrow E i, 2$
1,2	4	$\neg A \vee B$	$\vee I 23$	

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment			
reference		formula	
(i)		$A \Rightarrow B$	
context	number	proof	justification
1	1	Assume	$\neg(\neg A \vee B)$
1,2	2	Assume	A
1,2	3	B	
1,2	4	$\neg A \vee B$	$\Rightarrow E i, 2$
1,2	5	\perp	$\vee I 23$

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment				
reference		formula		
(i)		$A \Rightarrow B$		
context	number	proof	justification	
1	1	Assume	$\neg(\neg A \vee B)$	
1,2	2	Assume A		
1,2	3	B		$\Rightarrow E i, 2$
1,2	4	$\neg A \vee B$		$\vee I 23$
1,2	5	\perp	$\Rightarrow E 1,4$	
1	6	Therefore $\neg A$	$\Rightarrow I 2,5$	

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment				
reference		formula		
(i)		$A \Rightarrow B$		
context	number	proof	justification	
1	1	Assume $\quad \neg(\neg A \vee B)$		
1,2	2	Assume A		
1,2	3	B		$\Rightarrow E i, 2$
1,2	4	$\neg A \vee B$		$\vee I 23$
1,2	5	\perp		$\Rightarrow E 1,4$
1	6	Therefore $\neg A$	$\Rightarrow I 2,5$	
1	7	$\neg A \vee B$		$\vee I 16$

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment				
reference		formula		
(i)		$A \Rightarrow B$		
context	number	proof	justification	
1	1	Assume	$\neg(\neg A \vee B)$	
1,2	2	Assume	A	
1,2	3	B		$\Rightarrow E i, 2$
1,2	4	$\neg A \vee B$		$\vee I 23$
1,2	5	\perp	$\Rightarrow E 1,4$	
1	6	Therefore	$\neg A$	$\Rightarrow I 2,5$
1	7	$\neg A \vee B$		$\vee I 16$
1	8	\perp	$\Rightarrow E 1,7$	

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment			
reference		formula	
(i)		$A \Rightarrow B$	
context	number	proof	justification
1	1	Assume $\neg(\neg A \vee B)$	
1,2	2	Assume A	
1,2	3	B	$\Rightarrow E i, 2$
1,2	4	$\neg A \vee B$	VI2 3
1,2	5	\perp	$\Rightarrow E 1,4$
1	6	Therefore $\neg A$	$\Rightarrow 12,5$
1	7	$\neg A \vee B$	V/1 6
1	8	\perp	$\Rightarrow E 1,7$
	9	Therefore $\neg \neg(\neg A \vee B)$	$\Rightarrow 11,8$

Fourth exemple (example 3.1.12)

Prove $\neg A \vee B$ in the environment $A \Rightarrow B$.

environment			
reference		formula	
(i)		$A \Rightarrow B$	
context	number	proof	justification
1	1	Assume $\neg(\neg A \vee B)$	
1,2	2	Assume A	
1,2	3	B	$\Rightarrow E i, 2$
1,2	4	$\neg A \vee B$	$\checkmark 123$
1,2	5	\perp	$\Rightarrow E 1,4$
1	6	Therefore $\neg A$	$\Rightarrow 12,5$
1	7	$\neg A \vee B$	V/1 6
1	8	\perp	$\Rightarrow E 1,7$
	9	Therefore $\neg \neg(\neg A \vee B)$	$\Rightarrow 11,8$
	10	$\neg A \vee B$	RAA 9

Tree (example 3.1.12)

Give the tree representation of the previous proof:
\square

Tree (example 3.1.12)

Give the tree representation of the previous proof:

$$
\begin{gathered}
\frac{(i) A \Rightarrow B \quad(2) A}{(3) B} \vee \\
\frac{(1) \neg(\neg A \vee B)}{(4) \neg A \vee B} \vee 2 \\
\frac{(5) \perp}{(6) \neg A} \Rightarrow I[2]
\end{gathered} E
$$

Tree (example 3.1.12)

Give the tree representation of the previous proof:

$$
\begin{gathered}
\frac{(i) A \Rightarrow B \quad(2) A}{(3) B} \vee \\
\frac{(1) \neg(\neg A \vee B)}{(4) \neg A \vee B} \vee 2
\end{gathered} \Rightarrow E
$$

The environment consists of formulae occurring at non-removed leaves.

Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intuitionist philosophy: the validity of mathematics should be verifiable by the human mind.

- refusal of infinite objects such as the ones of set theory

- in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume $P(0)$ and $\neg P(2)$.
Then $\exists x(P(x) \wedge \neg P(x+1))$

Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intuitionist philosophy: the validity of mathematics should be verifiable by the human mind.

- refusal of infinite objects such as the ones of set theory

- in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume $P(0)$ and $\neg P(2)$.
Then $\exists x(P(x) \wedge \neg P(x+1)) \quad$... but we don't know whether $x=0$ or $x=1$ is the "correct" witness for that property.

Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intuitionist philosophy: the validity of mathematics should be verifiable by the human mind.

- refusal of infinite objects such as the ones of set theory

- in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume $P(0)$ and $\neg P(2)$.
Then $\exists x(P(x) \wedge \neg P(x+1)) \quad$... but we don't know whether $x=0$ or $x=1$ is the "correct" witness for that property.
The introduction rules for \vee make it explicit which case is true:
following the reasoning step-by-step is an algorithm!

Intuitionism and constructivism (Brouwer, 1881-1966)

In the wake of Poincaré, he founded (in 1918) the intuitionist philosophy: the validity of mathematics should be verifiable by the human mind.

- refusal of infinite objects such as the ones of set theory

- in particular, notion of constructible real number = algorithm that produces its digits

Example of a non-constructive proof : assume $P(0)$ and $\neg P(2)$.
Then $\exists x(P(x) \wedge \neg P(x+1)) \quad$... but we don't know whether $x=0$ or $x=1$ is the "correct" witness for that property.
The introduction rules for \vee make it explicit which case is true:
following the reasoning step-by-step is an algorithm!
However the rule $\frac{\neg \neg A}{A}$ allows to override that constraint.

Our running example

context	number	proof	justification
1	1	Assume $(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m)$	
1	2	$\neg p \Rightarrow j$	$\wedge E 1$
1	3	$j \Rightarrow m$	$\wedge E 1$
1,4	4	Assume $\neg(m \vee p)$	
1,4,5	5	Assume p	
1,4,5	6	$m \vee p$	VI 5
1,4,5	7	\perp	$\Rightarrow E 4,6$
1,4	8	Therefore $\neg p$	$\Rightarrow 15,7$
1,4	9	j	$\Rightarrow E 2,8$
1,4	10	m	$\Rightarrow E 3,9$
1,4	11	$m \vee p$	VI 10
1,4	12	\perp	$\Rightarrow E 4,11$
1	13	Therefore $\quad \neg \neg(m \vee p)$	$\Rightarrow 14,13$
1	14	$m \vee p$	RAA 13

Correctness

Plan

Correctness

Completeness

Tactics

Conclusion

Theorem

Theorem 3.3.1

If a formula A is deduced from an environment $\Gamma(\Gamma \vdash A)$ then A is a consequence of $\Gamma(\Gamma \models A)$.

Every proof written in an environment Γ is correct!

Theorem

Theorem 3.3.1

If a formula A is deduced from an environment $\Gamma(\Gamma \vdash A)$ then A is a consequence of $\Gamma(\Gamma \vDash A)$.

Every proof written in an environment Γ is correct!
Proof by induction on the number of lines in the proof P :

- Let H_{i} be the context and C_{i} the conclusion of the $i^{\text {th }}$ line in P.
- We show that for every k we have $\Gamma, H_{k} \models C_{k}$.

Theorem

Theorem 3.3.1

If a formula A is deduced from an environment $\Gamma(\Gamma \vdash A)$ then A is a consequence of $\Gamma(\Gamma \models A)$.

Every proof written in an environment Γ is correct!
Proof by induction on the number of lines in the proof P :

- Let H_{i} be the context and C_{i} the conclusion of the $i^{\text {th }}$ line in P.
- We show that for every k we have $\Gamma, H_{k} \models C_{k}$.

Hence, for the last line n of the proof: $\Gamma \models A$
(H_{n} is empty and $C_{n}=A$)

Base case

Assume that A is derived from Г by an empty proof.

That is, A is a member of Γ.

Hence $\Gamma \models A$.

Induction hypothesis

Assume that for every line $i<k$ of the proof we have $\Gamma, H_{i} \models C_{i}$.
Let us prove that $\Gamma, H_{k} \vDash C_{k}$.

Induction hypothesis

Assume that for every line $i<k$ of the proof we have $\Gamma, H_{i} \models C_{i}$.
Let us prove that $\Gamma, H_{k} \vDash C_{k}$.
Three possible cases:

- Line k is "Assume C_{k} ".
- Line k is "Therefore C_{k} ".
- Line k is " C_{k} ".

Line k is "Assume C_{k} "

The formula C_{k} is the last formula of H_{k}.
Then $\Gamma, H_{k} \models C_{k}$.

The line k is "Therefore C_{k} "

C_{k} is the formula $B \Rightarrow D$ where:

- B is the last formula of H_{k-1} and $H_{k-1}=H_{k}, B$
- D is usable on the previous line.

The line k is "Therefore C_{k} "

C_{k} is the formula $B \Rightarrow D$ where:

- B is the last formula of H_{k-1} and $H_{k-1}=H_{k}, B$
- D is usable on the previous line.

Hence there exists a line $i<k$ such that $D=C_{i}$ and H_{i} is a prefix of H_{k-1}.
By induction hypothesis, $\Gamma, H_{i}=D$.

The line k is "Therefore C_{k} "

C_{k} is the formula $B \Rightarrow D$ where:

- B is the last formula of H_{k-1} and $H_{k-1}=H_{k}, B$
- D is usable on the previous line.

Hence there exists a line $i<k$ such that $D=C_{i}$ and H_{i} is a prefix of H_{k-1}.
By induction hypothesis, $\Gamma, H_{i}=D$.
Since H_{i} is a prefix of H_{k-1}, we have $\Gamma, H_{k-1} \models D$ which can also be written $\Gamma, H_{k}, B \models D$.
Therefore $\Gamma, H_{k} \models B \Rightarrow D$.

Line k is " C_{k} "

C_{k} is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

Line k is " C_{k} "

C_{k} is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge \mathrm{I}$, the other cases being similar.
$C_{k}=(D \wedge E)$ and the premises of the rule are D and E.

Line k is " C_{k} "

C_{k} is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge I$, the other cases being similar.
$C_{k}=(D \wedge E)$ and the premises of the rule are D and E.
By induction hypothesis, we have:
$\Gamma, H_{k-1}=D$ and $\Gamma, H_{k-1} \models E$.
Since the line k does not change the hypotheses, we have $H_{k-1}=H_{k}$.

Line k is " C_{k} "

C_{k} is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge I$, the other cases being similar.
$C_{k}=(D \wedge E)$ and the premises of the rule are D and E.
By induction hypothesis, we have:
$\Gamma, H_{k-1}=D$ and $\Gamma, H_{k-1} \models E$.
Since the line k does not change the hypotheses, we have $H_{k-1}=H_{k}$.
Finally $D, E \models D \wedge E$. Transitively, $\Gamma, H_{k} \models C_{k}$.

Line k is " C_{k} "

C_{k} is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge I$, the other cases being similar.
$C_{k}=(D \wedge E)$ and the premises of the rule are D and E.
By induction hypothesis, we have:
$\Gamma, H_{k-1} \models D$ and $\Gamma, H_{k-1} \models E$.
Since the line k does not change the hypotheses, we have $H_{k-1}=H_{k}$.
Finally $D, E \notin D \wedge E$. Transitively, $\Gamma, H_{k} \models C_{k}$.
For the other rules, it is the same proof, you just have to prove that the conclusion is a consequence of the premises.

Plan

Correctness

Completeness

Conclusion

Theorem

We prove the completeness of the rules only for formulas containing the following logic symbols: $\perp, \wedge, \vee, \Rightarrow$.

This is enough because additional symbols \top, \neg and \Leftrightarrow can be regarded as abbreviations.

Theorem

We prove the completeness of the rules only for formulas containing the following logic symbols: $\perp, \wedge, \vee, \Rightarrow$.

This is enough because additional symbols \top, \neg and \Leftrightarrow can be regarded as abbreviations.

Theorem 3.4.1

Let Γ be a finite set of formulae and A a formula.
If $\Gamma \models A$ then $\Gamma \vdash A$.

Definitions

A literal is either a variable x or an implication $x \Rightarrow \perp$. x and $x \Rightarrow \perp$ (abbreviated as $\neg x$) are complementary literals.

Definitions

A literal is either a variable x or an implication $x \Rightarrow \perp$.
x and $x \Rightarrow \perp$ (abbreviated as $\neg x$) are complementary literals.
We define a measure m of formulae and of lists of formulae as:

- $m(\perp)=0$
- $m(x)=1$
- $m(A \Rightarrow B)=1+m(A)+m(B)$
- $m(A \wedge B)=1+m(A)+m(B)$
- $m(A \vee B)=2+m(A)+m(B)$
- $m(\Gamma)=\sum_{A \in \Gamma} m(A)$

Definitions

A literal is either a variable x or an implication $x \Rightarrow \perp$.
x and $x \Rightarrow \perp$ (abbreviated as $\neg x$) are complementary literals.
We define a measure m of formulae and of lists of formulae as:

- $m(\perp)=0$
- $m(x)=1$
- $m(A \Rightarrow B)=1+m(A)+m(B) \quad$ (thus $m(\neg A)=m(A)+1)$
- $m(A \wedge B)=1+m(A)+m(B)$
- $m(A \vee B)=2+m(A)+m(B)$
- $m(\Gamma)=\sum_{A \in \Gamma} m(A)$

Definitions

A literal is either a variable x or an implication $x \Rightarrow \perp$. x and $x \Rightarrow \perp$ (abbreviated as $\neg x$) are complementary literals.

We define a measure m of formulae and of lists of formulae as:

- $m(\perp)=0$
- $m(x)=1$
- $m(A \Rightarrow B)=1+m(A)+m(B) \quad$ (thus $m(\neg A)=m(A)+1)$
- $m(A \wedge B)=1+m(A)+m(B)$
- $m(A \vee B)=2+m(A)+m(B)$
- $m(\Gamma)=\sum_{A \in \Gamma} m(A)$

For example, let $A=(a \vee \neg a)$.
$m(\neg a)=2, \quad m(A)=5 \quad$ and $m(A,(b \wedge b), A)=13$.

Induction

We define $P(n)$ to be the following property: If $m(\Gamma, A)=n$, then if $\Gamma \neq A$ then $\Gamma \vdash A$.

Induction

We define $P(n)$ to be the following property:
If $m(\Gamma, A)=n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.
To show that $P(n)$ holds for every integer n, we use "strong" induction:

Induction

We define $P(n)$ to be the following property:
If $m(\Gamma, A)=n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.
To show that $P(n)$ holds for every integer n, we use "strong" induction:
Assume that for every $i<k$, property $P(i)$ holds. Assume that $m(\Gamma, A)=k$ and $\Gamma \models A$.
Let us show that $\Gamma \vdash A$.

Decomposition

Idea: we decompose Γ, A in order to apply the induction hypothesis.

Decomposition

Idea: we decompose Γ, A in order to apply the induction hypothesis.
A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp.

Decomposition

Idea: we decompose Γ, A in order to apply the induction hypothesis.
A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp.

We study three cases:
Case 1: Neither A, nor Γ is decomposable.

Decomposition

Idea: we decompose Γ, A in order to apply the induction hypothesis.
A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp.

We study three cases:
Case 1: Neither A, nor Γ is decomposable.
Case 2: A is decomposable.
We decompose A in two sub-formulae B and C.
We obtain $m(\Gamma, B)<m(\Gamma, A)$ and $m(\Gamma, C)<m(\Gamma, A)$.

Decomposition

Idea: we decompose Γ, A in order to apply the induction hypothesis.
A is undecomposable if A is \perp or a variable and Γ is undecomposable if Γ is a list of literals or contain the formula \perp.

We study three cases:
Case 1: Neither A, nor Γ is decomposable.
Case 2: A is decomposable.
We decompose A in two sub-formulae B and C.
We obtain $m(\Gamma, B)<m(\Gamma, A)$ and $m(\Gamma, C)<m(\Gamma, A)$.
Case 3: 「 is decomposable.
We choose a decomposable formula (other than $x \Rightarrow \perp$) in Γ.

Case 1 : neither A, nor Γ are decomposable

Then:

- 「 is a list of literals or contains the formula \perp.
- A is \perp or a variable.

Case 1 : neither A, nor Γ are decomposable

Then:

- 「 is a list of literals or contains the formula \perp.
- A is \perp or a variable.
(a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule Efq.

Case 1 : neither A, nor Γ are decomposable

Then:

- 「 is a list of literals or contains the formula \perp.
- A is \perp or a variable.
(a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule Efq.
(b) If Γ is a list of literals then we have two cases:

Case 1 : neither A, nor Γ are decomposable

Then:

- 「 is a list of literals or contains the formula \perp.
- A is \perp or a variable.
(a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule Efq.
(b) If Γ is a list of literals then we have two cases:
- $A=\perp$.

Since $s(\Gamma) \models A$, there are two complementary literals in Γ.
Therefore A can be derived from Γ by the rule $\Rightarrow \mathrm{E}$.

Case 1 : neither A, nor Γ are decomposable

Then:

- 「 is a list of literals or contains the formula \perp.
- A is \perp or a variable.
(a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule Efq.
(b) If Γ is a list of literals then we have two cases:
- $A=\perp$.

Since $s(\Gamma) \models A$, there are two complementary literals in Γ.
Therefore A can be derived from Γ by the rule $\Rightarrow \mathrm{E}$.

- A is a variable.

Since $\Gamma \models A$:

Case 1 : neither A, nor Γ are decomposable

Then:

- 「 is a list of literals or contains the formula \perp.
- A is \perp or a variable.
(a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule Efq.
(b) If Γ is a list of literals then we have two cases:
- $A=\perp$.

Since $s(\Gamma) \models A$, there are two complementary literals in Γ.
Therefore A can be derived from Γ by the rule $\Rightarrow \mathrm{E}$.

- A is a variable.

Since $\Gamma \models A$:

- either Γ contains two complementary literals, and similarly $\Gamma \vdash A$

Case 1 : neither A, nor Γ are decomposable

Then:

- 「 is a list of literals or contains the formula \perp.
- A is \perp or a variable.
(a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule Efq.
(b) If Γ is a list of literals then we have two cases:
- $A=\perp$.

Since $s(\Gamma) \models A$, there are two complementary literals in Γ.
Therefore A can be derived from Γ by the rule $\Rightarrow \mathrm{E}$.

- A is a variable.

Since $\Gamma \models A$:

- either Γ contains two complementary literals, and similarly $\Gamma \vdash A$
- or $A \in \Gamma$ and in this case $\Gamma \vdash A$ (by empty proof).

Case 2: A is decomposable into B and C

A is decomposed into $B \wedge C, B \vee C$, or $B \Rightarrow C$.

We only study the case $A=B \wedge C$, the other cases are similar.

Case 2: A is decomposable into B and C

A is decomposed into $B \wedge C, B \vee C$, or $B \Rightarrow C$.

We only study the case $A=B \wedge C$, the other cases are similar.
Since $\Gamma \models A$ and $A=B \wedge C$, we have $\Gamma \vDash B$ and $\Gamma \vDash C$.

Case 2: A is decomposable into B and C

A is decomposed into $B \wedge C, B \vee C$, or $B \Rightarrow C$.
We only study the case $A=B \wedge C$, the other cases are similar.
Since $\Gamma \models A$ and $A=B \wedge C$, we have $\Gamma \models B$ and $\Gamma \models C$.
The measures of B and C are strictly less than the measure of A, hence $m(\Gamma, B)<k$ and $m(\Gamma, C)<k$.

Case 2: A is decomposable into B and C

A is decomposed into $B \wedge C, B \vee C$, or $B \Rightarrow C$.
We only study the case $A=B \wedge C$, the other cases are similar.
Since $\Gamma \models A$ and $A=B \wedge C$, we have $\Gamma \models B$ and $\Gamma \models C$.
The measures of B and C are strictly less than the measure of A, hence $m(\Gamma, B)<k$ and $m(\Gamma, C)<k$.
By induction hypothesis, there exist two proofs P and Q such that $\Gamma \vdash P: B$ and $\Gamma \vdash Q: C$.

Case 2: A is decomposable into B and C

A is decomposed into $B \wedge C, B \vee C$, or $B \Rightarrow C$.
We only study the case $A=B \wedge C$, the other cases are similar.
Since $\Gamma \models A$ and $A=B \wedge C$, we have $\Gamma \models B$ and $\Gamma \models C$.
The measures of B and C are strictly less than the measure of A, hence $m(\Gamma, B)<k$ and $m(\Gamma, C)<k$.
By induction hypothesis, there exist two proofs P and Q such that $\Gamma \vdash P: B$ and $\Gamma \vdash Q: C$.

Hence the proof " P, Q, A " is a proof of A in the environment Γ.

Case 3: Γ is decomposable

There is a decomposable formula in Γ which is either:

- $B \wedge C$
- $B \vee C$
- $B \Rightarrow C$ où $C \neq \perp$
- $(B \wedge C) \Rightarrow \perp$
- $(B \vee C) \Rightarrow \perp$
- $(B \Rightarrow C) \Rightarrow \perp$

We only study the first case.

Γ is a permutation of the list $(B \wedge C), \Delta$

Γ is a permutation of the list $(B \wedge C), \Delta$

Γ and $(B \wedge C), \Delta$ have the same measure.

Γ is a permutation of the list $(B \wedge C), \Delta$

Γ and $(B \wedge C), \Delta$ have the same measure.
Since $\Gamma \models A$, we have $B, C, \Delta \models A$.

Γ is a permutation of the list $(B \wedge C), \Delta$

Γ and $(B \wedge C), \Delta$ have the same measure.
Since $\Gamma \models A$, we have $B, C, \Delta \models A$.
The sum of the measures of B and C is strictly less than the measure of $B \wedge C$.

Γ is a permutation of the list $(B \wedge C), \Delta$

Γ and $(B \wedge C), \Delta$ have the same measure.
Since $\Gamma \models A$, we have $B, C, \Delta \models A$.
The sum of the measures of B and C is strictly less than the measure of $B \wedge C$.

Hence $m(B, C, \Delta, A)<m((B \wedge C), \Delta, A)=m(\Gamma, A)=k$, by induction hypothesis, there exist a proof P such that $B, C, \Delta \vdash P: A$.

Γ is a permutation of the list $(B \wedge C), \Delta$

Γ and $(B \wedge C), \Delta$ have the same measure.
Since $\Gamma \models A$, we have $B, C, \Delta \models A$.
The sum of the measures of B and C is strictly less than the measure of $B \wedge C$.

Hence $m(B, C, \Delta, A)<m((B \wedge C), \Delta, A)=m(\Gamma, A)=k$, by induction hypothesis, there exist a proof P such that $B, C, \Delta \vdash P: A$.

Since B can be derived from $(B \wedge C)$ by the rule $\wedge E 1$ and C can be derived from $(B \wedge C)$ by the rule $\wedge E 2$: " B, C, P " is a proof of A in the environment Γ.

Plan

Correctness

Completeness

Tactics

Conclusion

Remark 3.4.2

The proof of completeness is constructive, that is it provides an algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

Remark 3.4.2

The proof of completeness is constructive, that is it provides an algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

The tool
http://teachinglogic.univ-grenoble-alpes.fr/DN/ builds proofs more more efficiently.

Remark 3.4.2

The proof of completeness is constructive, that is it provides an algorithm to build a proof of a formula in an environment.

However, this algorithm can lead to long proofs.

The tool
http://teachinglogic.univ-grenoble-alpes.fr/DN/ builds proofs more more efficiently. It uses "optimised" tactics presented in section 3.2.

For example, to prove $B \vee C$:

- First try to prove B
- If failure, then try to prove C
- Otherwise, use tactic 10 (prove C under the hypothesis $\neg B$)

Proof tactics

We wish to prove A in the environment Γ

The 13 following tactics must be used in the following order!

- Tactics 1 to 3 : the proof is over
- Tactics 4 to 6 : proof guided by the conclusion (Intro rules)
- Tactics 7 to 9 : proof guided by the environment (Elim rules)
- Tactics 10 to 13 : reasoning by absurd

Tactic 1

If $A \in \Gamma$ then the empty proof is obtained.

Tactic 2

If A is the consequence of a rule whose premises are in Γ, then the obtained proof is
" A ".

Tactic 3

If Γ contains a contradiction, that is a formula B and a formula $\neg B$, then the obtained proof is " \perp, A ".

Tactic 4

If A is $B \wedge C$ then:

contexte	preuve	justification
Γ	B	$\cdots P \cdots$
Γ	C	$\cdots Q \cdots$
Γ	$B \wedge C$	$\wedge I$

Tactic 4

If A is $B \wedge C$ then:

contexte	preuve	justification
Γ	B	$\cdots P \cdots$
Γ	C	$\cdots Q \cdots$
Γ	$B \wedge C$	$\wedge I$

The proofs can fail (if $\Gamma \not \vDash A$). Here, if the proof of B or C fails, the proof of A fails too.
In the remainder of the lecture, we do not highlight the failure cases anymore, unless another proof has to be tried.

Tactic 5

If A is $B \Rightarrow C$, then prove C under hypothesis B :

contexte	preuve	justification
Γ, B	Assume B	
Γ, B	C	$\ldots P \ldots$
Γ	Therefore $B \Rightarrow C$	$\Rightarrow I$

Tactic 6

If A is $B \vee C$, then prove B :

contexte	preuve	justification
Γ	B	$\cdots P \ldots$
Γ	$B \vee C$	$\vee / 1$

If the proof of B fails then prove C :

contexte	preuve	justification
Γ	C	$\cdots P \ldots$
Γ	$B \vee C$	$\vee / 2$

If the proof of C fails, try the following tactics.

Tactic 7

If $B \wedge C$ is in the environment, then prove A starting from formulae B, C, replacing $B \wedge C$ in the environment:

contexte	preuve	justification
$\Gamma, B \wedge C$	B	$\wedge E 1$
$\Gamma, B \wedge C$	C	$\wedge E 2$
$\Gamma, B \wedge C$	A	$\cdots P \ldots$

Tactic 8

If $B \vee C$ is in the environment, then:

- prove A in the environment where B replaces $B \vee C$.
- prove A in the environment where C replaces $B \vee C$.

contexte	preuve	justification
$\Gamma, B \vee C, B$	Assume B	
$\Gamma, B \vee C, B$	A	$\cdots P \ldots$
$\Gamma, B \vee C$	Therefore $B \Rightarrow A$	$\Rightarrow I$
$\Gamma, B \vee C, C$	Assume C	
$\Gamma, B \vee C, C$	A	$\cdots Q \cdots$
$\Gamma, B \vee C$	Therefore $C \Rightarrow A$	$\Rightarrow I$
$\Gamma, B \vee C$	A	$\vee E$

Tactic 9

If $\neg(B \vee C)$ is in the environment, then

- we derive $\neg B$ by the proof $P 4$ and
- $\neg C$ by the proof $P 5$ (proofs requested in exercise 59).
- Let P the proof of A in the environment where $\neg B, \neg C$ replace the formula $\neg(B \vee C)$.
The proof of A is " $P 4, P 5, P$ ".

Tactic 10

If A is $B \vee C$, then prove C under hypothesis $\neg B$: let P the obtained proof.
"Assume $\neg B$, P, Therefore $\neg B \Rightarrow C$ " is a proof of the formula $\neg B \Rightarrow C$ which is equivalent to A.

To obtain the proof of A, simply add the proof $P 1$, requested in exercise 59 of A in the environment $\neg B \Rightarrow C$.
The proof obtained from A is therefore "Assume $\neg B$, P, Therefore $\neg B \Rightarrow C, P 1$ ".

Tactic 11

If $\neg(B \wedge C)$ is in the environment, then we deduce from it $\neg B \vee \neg C$ by the proof $P 3$ requested in exercise 59 then we reason case by case as follows:

- prove A in the environment where $\neg B$ replaces $\neg(B \wedge C)$: Let P the obtained proof,
- prove A in the environment where $\neg C$ replaces $\neg(B \wedge C)$: Let Q the obtained proof.

The proof of A is " $P 3$, Assume $\neg B, P$, Therefore $\neg B \Rightarrow A$, Assume $\neg C, Q$, Therefore $\neg C \Rightarrow A, A^{\prime \prime}$.

Tactique 12

If $\neg(B \Rightarrow C)$ is in the environment, then

- we derive B by the proof $P 6$,
- $\neg C$ by the proof $P 7$ (proofs requested in exercise 59).
- Let P the proof of A in the environment where $B, \neg C$ replace the formula $\neg(B \Rightarrow C)$.
The proof of A is " $P 6, P 7, P$ ".

Tactic 13

If $B \Rightarrow C$ is in the environment and if $C \neq \perp$, i.e. if $B \Rightarrow C$ is not $\neg B$, then,
we derive $\neg B \vee C$ in the environment $B \Rightarrow C$ by proof $P 2$ from exercise 59, then we reason by cases:

- prove A in the environment where $\neg B$ replaces $B \Rightarrow C$: Let P the obtained proof,
- prove A in the environment where C replaces $B \Rightarrow C$: Let Q the obtained proof.
The proof of A is " $P 2$, Assume $\neg B, P$, Therefore $\neg B \Rightarrow A$, Assume C, Q, Therefore $C \Rightarrow A, A$ ".

Example

Proof of Peirce's formula:

$$
((p \Rightarrow q) \Rightarrow p) \Rightarrow p
$$

Proof plan

Tactic 5 is compulsory!

> Proof Q :
> Assume $(p \Rightarrow q) \Rightarrow p$
Q_{1} proof or p in the environment $(p \Rightarrow q) \Rightarrow p$
Therefore $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$
Proof Q_{1} necessarily uses tactic 13 (the environment is
$B \Rightarrow C=(p \Rightarrow q) \Rightarrow p)$.
Hence we have to prove p both:

- in the environment $\neg B=\neg(p \Rightarrow q)$
- in the environment $C=p$.

Plan of the proof of Q_{1}

```
Proof \(Q_{1}\) :
    \(Q_{11}\) is the proof of \(\neg B \vee C\) in the environment \(B \Rightarrow C\), see exercise 59
Assume \(\neg(p \Rightarrow q)\)
    \(Q_{12}\) proof of \(p\) in the environment \(\neg(p \Rightarrow q)\)
Therefore \(\neg(p \Rightarrow q) \Rightarrow p\)
Assume \(p\)
    \(Q_{13}\) proof of \(p\) in the environment \(p\)
Therefore \(p \Rightarrow p\)
\(p\)
```


Proof of Q_{1}

Q_{13} is the empty proof, since $A=C=p$.
Q_{12} is the proof of $C=p$ in the environment $\neg(p \Rightarrow q)$. Since $\neg A$ is an abbreviation of $A \Rightarrow \perp$, this proof is the proof P_{6} requested in exercise 59, where $B=p$ and $C=q$.

By gluing pieces $Q_{1}, Q_{11}, Q_{12}, Q_{13}$, we obtain the proof Q.
The proof Q_{12} can also be done without using the tactics.

Conclusion

Plan

Completeness

Tactics

Conclusion

Today

- Propositional Natural Deduction is correct and complete.
- Tactics for building a proof

Automated proofs

To automatically obtain the proofs in the system, we recommend the following software (implementing the 13 previous tactics):
http://teachinglogic.univ-grenoble-alpes.fr/DN/

People who prefer tree-like proofs can use the following software:
http://www-sop.inria.fr/marelle/Laurent.Thery/
peanoware/Nd.html

Overview of the Semester

TODAY

- Propositional logic
- Propositional resolution
- Natural deduction for propositional logic *
- First order logic

MIDTERM EXAM

- Logical basis for automated proving ("first-order resolution")
- First-order natural deduction

EXAM

