
First-order logic

Before we begin

About the midterm exam

I 2 hours

I you’re allowed to bring one A4 sheet of handwritten notes

I French version available (but you should answer in English)

I Topics covered: all of propositional logic

I Typical exercices, one of them taken straight from the handout

Before the midterms

I Don’t forget your project pre-report !

Schedule reminder, archives on
https://wackb.gricad-pages.univ-grenoble-alpes.fr/inf402/
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First-order logic

Introduction

Overview of the course

I Propositional logic: ∧,∨,¬,⇒,⇔
I Interpretation: boolean functions

I Deductive systems: resolution, natural deduction

I Algorithms: Complete Strategy, DPLL, DN tactics

I First-order logic: ∀,∃
I Interpretation

I “First-order resolution”

I First-order natural deduction
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First-order logic

Introduction

Structure of first-order logic

A non-empty domain (more than two elements)

Three categories:
I Terms representing the elements of the domain
I Relations
I Formulae describing the interactions between relations

Two new symbols (quantifiers) in the formulae :

∀ (universal quantification) and ∃ (existential quantification)

Examples:
I domain = members of a family
I the term father(x) refers to a domain element (the father of x),
I the relation brother which applies to two elements,
I the formula ∀x∃y brother(y ,x) means “everyone has a brother”.
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First-order logic

Introduction

Syllogism

Every man is mortal.
Socrates is a man.

Hence Socrates is mortal.

∀x(man(x)⇒mortal(x))
man(Socrates)

mortal(Socrates)
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First-order logic

Introduction

Gottlob Frege’s Begriffsschrift (ideography), 1879

I Like Leibniz, attempt at a formal “universal”
language A

B
B
A

x

I First-order logical system
(which contains rules such as Modus Ponens already known by
Stoicists, but also new rules for the quantifiers)

I Contains only reasoning rules but allows to express every
mathematical notion (using sets)

I Also containts second-order logic:
a variable may represent a property ∀R∃xR(x)
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First-order logic

Language

(Strict) Formulae

Vocabulary

I Two propositional constants: ⊥ and >
I Connectives: ¬,∧,∨,⇒,⇔

I Quantifiers: the universal ∀ and the existential ∃
I Variables: u,v ,w ,x ,y ,z,x1,x2 . . . ( 6= propositional vars.)

I Symbols: a,b,c,p,brother ,12...

I Punctuation: the comma and the parentheses
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First-order logic

Language

Example 4.1.1

I x ,x1,x2,y are variables,
I man, brother , succ, 12, 24, f1, itRains are symbols:

I functions with one, several or no arguments (constants)
I relations with one, several or no arguments (propositional

variables)

I For some (special) symbols
we may use the infix notation x = y or z > 3.
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First-order logic

Language

Term

Definition 4.1.2

A term is either :

I a symbol s alone

I or a variable

I or a symbol applied to terms s(t1, . . . , tn)

Example 4.1.3

x ; a ; f (x1,x2,g(y)) ; sum(5,product(x ,42)) are terms.

But f (⊥,2,y) is not a term.

Note that 42(1,y ,3) is also a term, but usually 42 is not used to denote a
function or a relation.
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First-order logic

Language

Atomic formula

Definition 4.1.4 atomic formulae

An atomic formula is either:

I > or ⊥
I or a symbol alone

I or a symbol applied to terms s(t1, . . . , tn)

Example 4.1.5:

I P(x), a and R(1,+(5,42),g(z)) are atomic formulae

I x and A∨ f (4,2,6) are not atomic formulae
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First-order logic

Language

Beware : two-level interpretation

The set of terms and the set of atomic formulae are not disjoint.

For example p(x) is both a term and an atomic formula.

I JtK will be the value of t seen as a term

I [t] will be the value of t seen as a formula.
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First-order logic

Language

(Strict) formula

Definition 4.1.6

A (strict) formula is either:

I an atomic formula

I ¬A
where A is a formula

I (A◦B)
where A and B are formulae and ◦ a connective ∨,∧,⇒,⇔

I ∀x A or ∃x A
where A is a formula and x is any variable
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First-order logic

Language

Example 4.1.7

I man(x), brother(son(y),mother(Alice)), = (x ,+(f (x),g(y)))

are atomic formulae, hence formulae.

I On the opposite

∀x (man(x)⇒man(Socrate))

is a non-atomic formula.

F. Prostet al (UGA) First-order logic March 2023 15 / 50



First-order logic

Language

(Strict) formula: Examples

Among these expressions, which ones are strict formulae:
I x

not a formula

I a
yes

I (a(x)⇒ b)∧a(x)⇒ b
no, missing parentheses

I ∃x((⊥⇒ a(x))∧b(x))
yes

I ∃x∃y < (−(x ,y),+(a,y))
yes
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First-order logic

Language

Infix notations

Prioritized formulae: the symbols of the functions +,−,∗,/ and the
symbols of the relations =, 6=,<,>,≤,≥ are written in the usual
manner.

Example 4.1.9

I ≤ (∗(3,x),+(y ,5)) is abbreviated as 3∗ x ≤ y + 5

I +(x ,∗(y ,z)) is abbreviated as x + y ∗ z
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First-order logic

Language

Prioritized formulae

Definition 4.1.10

A prioritized formula is either:

I an atomic formula

I ¬A

I A◦B with a binary connective ◦
I ∀x A or ∃x A

I (A)
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First-order logic

Language

Inverse transformation

Precedence

I Quantifiers have the same precedence as negation.

I Connectives have a lower precedence than relations.

I =, 6=,<,≤,>,≥ have a lower precedence than +,−,∗,/
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First-order logic

Language

Table 4.1 summary of priorities
Decreasing precedence from top to bottom.

OPERATIONS

−,+ unary
∗,/ binary left associative

+,− binary left associative
RELATIONS

=, 6=,<,≤,>,≥
NEGATION, QUANTIFIERS

¬,∀,∃
BINARY CONNECTIVES

∧ left associative
∨ left associative
⇒ right associative
⇔ left associative
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First-order logic

Language

Tree representation

Example 4.1.12 ∀xP(x)⇒ Q(x)

∀ has higher priority: the left-hand side operand of⇒ is ∀xP(x).

⇒

}}   
∀x

��

Q

��
P

��

x

x
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First-order logic

Free vs. bound

Overview

Introduction

Language
(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae
Declaring a symbol
Signature
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Finite interpretation

Conclusion
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First-order logic

Free vs. bound

Idea

I The meaning of the formula x + 2 = 4 depends on x .
The formula is not true (in arithmetics) unless x = 2.
x is free in the previous formula.

I ∀x(x + 2 = 4) is unsatisfiable (in arithmetics)
∀x(x + 0 = x) is valid
x does not need to be assigned a value.
There is no free variable in these two formulae.

I Then the name of the variable doesn’t matter.
Frequent situation in mathematics

∫ 1
0 f (x)dx

... and in computer science

int Toto(int x) {
return x + 1;

}
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First-order logic

Free vs. bound

Free and bound occurrences

Definition 4.2.1

A quantifier binds a variable locally.

I In ∀x A or ∃x A, the scope of the binding of x is A.

I An occurrence of x is bound if it is in the scope of a binding for x .

I Otherwise it is said to be free.

If we represent a formula by a tree:

I An occurrence of x is bound if it is below a node ∃x or ∀x .

I Any other occurrence of x is free.
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First-order logic

Free vs. bound

Example 4.2.2

∀xP(x,y)∧∃zR(x ,z)

∧

ww ''
∀x

��

∃z

��
P

��   

R

�� ��
x y x z

I The occurrence of z is bound, the occurrence of y is free.

I The bold occurrence of x is bound.

I The underlined occurrence of x is free.
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First-order logic

Free vs. bound

Free, bound variables

Definition 4.2.3

I A formula without free variables is also called a closed formula.

Remark

I In ∀xP(x)∨Q(x), the variable x is both free and bound
(thus the formula is not closed).

Example 4.2.6

The free variables of ∀xP(x ,y)∧∃zR(x ,z) are x and y .
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First-order logic

Truth value of formulae

Declaring a symbol

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by sgn where:

I s is a symbol

I g is one of the letters f (for a function) or r (for a relation)

I n is a natural number.

Remark 4.3.3

If the context is clear, we omit g and n.

Example: equal is always a 2 arguments relation.
Thus, we abbreviate the declaration =r2 as =.
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First-order logic

Truth value of formulae

Declaring a symbol

Symbol declaration: Example

Example 4.3.2

I brother r2 is a (r)elation with 2 arguments

I ∗f2 is a (f)unction with 2 arguments

I manr1 is a unary relation
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First-order logic

Truth value of formulae

Signature

Signature

Definition 4.3.4

A signature Σ is a set of symbol declarations.

Depending on its declaration, a symbol s will be called:

1. for sfn : a function symbol with n arguments

2. for sf0 : a constant

3. for srn : a relation symbol with n arguments

4. for sr0 : a propositional variable
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First-order logic

Truth value of formulae

Example in mathematics

Let us define a signature for arithmetic:

I Constants 0f0,1f0

I Functions +f2,−f2,∗f2

I Relations =r2

Remarques :
I The context being well-known, we write 0, 1, +, −, ∗ and =.

I But note that − requires two arguments
(the symbol will not be used with only one argument).

Unary relation : a relation with only 1 argument denotes a property
of a term (for instance here primer1).
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First-order logic

Truth value of formulae

Term over a signature

Definition 4.3.8

A term over Σ is either:

I a variable,

I or a constant sf0,
I or a term s(t1, . . . , tn) where

I sf n

I n ≥ 1
I t1, . . . , tn are terms over Σ.

F. Prostet al (UGA) First-order logic March 2023 32 / 50



First-order logic

Truth value of formulae

Atomic formula over a signature

Definition 4.3.9

An atomic formula over Σ is either:

I a constant > or ⊥
I or a propositional variable sr0

I or an expression s(t1, . . . , tn) where
I srn

I n ≥ 1
I t1, . . . , tn are terms over Σ
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First-order logic

Truth value of formulae

Formula over a signature

Definition 4.3.10

A formula over a signature Σ is a formula whose atomic sub-formulae
are atomic formulae over Σ.

Example 4.3.11

∀x (p(x)⇒∃y q(x ,y)) is a formula over Σ = {pr1,qr2,hf1,cf0}.

But it is also a formula over the signature Σ′ = {pr1,qr2}, since the
symbols h and c are not in the formula.

The signature associated to a formula is the smallest signature Σ such
that the formula is correctly built.
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Interpretation

Overview

Introduction

Language
(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae
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First-order logic

Interpretation

Interpretation

Definition 4.3.16

An interpretation I over a signature Σ is defined by:

I a non-empty domain D

I every symbol sgn is mapped to its value sgn
I as follows:

(constant) sf0
I is an element of D

(function) sfn
I is a function from Dn→ D

(propositional variable) sr0
I is either 0 or 1

(relation) srn
I is a set of n-uples in D

(the ones that satisfy this relation)
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First-order logic

Interpretation

Example 4.3.17

Let friend be a binary relation and the domain D = {1,2,3}.
We consider the interpretation I where
friend r2

I = {(1,2),(1,3),(2,3)}.

In this interpretation, friend(2,3) is true.
On the other hand, friend(2,1) is false.

Remark 4.3.18

In all interpretations, the symbol = maps to the set {(d ,d) | d ∈ D}.
In other words, the equality is always interpreted as the identity over D.
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First-order logic

Interpretation

State, assignment

An interpretation defines only the meaning of the signature (the
symbols), never the variables nor the formulae.

Definition 4.3.21

A state e of an interpretation maps each variable to an element in the
domain D.

Definition 4.3.22

An assignment is a pair (I,e) composed of an interpretation I and a
state e.
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First-order logic

Interpretation

Example 4.3.23

Let the domain D = {1,2,3} and the interpretation I where
friend r2

I = {(1,2),(1,3),(2,3)}

The interpretation I alone does not give us the truth value of
friend(x ,y).

Let e be the state which maps x to 2 and y to 1.

The assignment (I,e) makes the formula friend(x ,y) false.
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First-order logic

Interpretation

Example 4.3.31

Let I be the interpretation of domain D = {1,2,3} where
friend r2

I = {(1,2),(1,3),(2,3)}.

How to interpret the formula friend(1,2)∧ friend(2,3)⇒ friend(1,3)
in I ?

We know how to interpret the atomic formulae:

I [friend(1,2)]I = true

I [friend(2,3)]I = true

I [friend(1,3)]I = true

Then we proceed as usual with the connectives, hence
[friend(1,2)∧ friend(2,3)⇒ friend(1,3)]I = true.
This formula is true in the interpretation I.
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First-order logic

Finite interpretation

Finite model

Definition

A finite model of a closed formula is an interpretation of the formula in
a finite domain, which makes the formula true.

Remark

I The name of the elements of the domain is not important.

I Hence for a model with n elements, we’ll use the domain of
integers less than n.
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First-order logic

Finite interpretation

Building a finite model

Naive idea: In order to know whether a closed formula has a model of
domain {0, . . . ,n−1}, just

I enumerate all the possible interpretations of the associated
signature of the formula

I evaluate the formula for these interpretations.

Example

Let Σ = {af0, f f1,Pr2}

Over a domain of 5 elements, Σ has 5×55×225 interpretations!

This method is unusable in practice.
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First-order logic

Finite interpretation

Method for finding a finite model

We look for models with n elements by reduction to the
propositional case
Base case: a formula with no function symbol and no constant.

Building the n-elements model

1. Quantifiers removal: replace A by its n-expansion B.
2. In B,

I replace equalities by their truth value
(i = j is true iff i and j are identical)

I Apply the usual simplifications

Let C be the obtained formula.

3. Look for a model of C by building a propositional assignment of
the atomic formulae in C.
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First-order logic

Finite interpretation

Expansion of a formula

Definition 4.3.39

The n-expansion of A consists in replacing:

I every sub-formula of A of the form ∀xB with the conjunction∧
i<n

B < x := i >

I every sub-formula of A of the form ∃xB with the disjunction∨
i<n

B < x := i >

Example 4.3.40

The 2-expansion of the formula ∃xP(x)⇒∀xP(x) is

P(0)∨P(1)⇒ P(0)∧P(1)
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First-order logic

Finite interpretation

Example 4.3.45
A = ∃xP(x)∧∃x¬P(x)∧∀x∀y(P(x)∧P(y)⇒ x = y))

A has no model with one element.
(P(0)∧¬P(0)∧ (P(0)∧P(0)⇒ 0 = 0) is unsatisfiable.)

2-expansion of A

(P(0)+P(1)). (P(0)+P(1)). (P(0).P(0)⇒ 0 = 0).(P(0).P(1)⇒ 0 = 1).
(P(0) + P(1)). (P(0) + P(1)). (P(1).P(0)⇒ 1 = 0).(P(1).P(1)⇒ 1 = 1)

We replace equalities by their values

(P(0) + P(1)). (P(0) + P(1)).
(P(0).P(0)⇒>). (P(0).P(1)⇒⊥). (P(1).P(0)⇒⊥). (P(1).P(1)⇒>)

Which simplifies to (P(0) + P(1)).(P(0) + P(1))
The assignment P(0) = true, P(1) = false is a propositional model of that,
hence the interpretation I of domain {0,1} where PI = {0} is a model of A.
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First-order logic

Finite interpretation

Software for building a finite model

MACE

I translation of first-order formulae in propositional formulae

I performant algorithms to find the satisfiability of a
propositional formula (e.g., different versions of the DPLL
algorithm)

http://www.cs.unm.edu/˜mccune/mace4
An actual example:
http://www.cs.unm.edu/˜mccune/mace4/examples/2009-11A/
mace4-misc/
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First-order logic

Conclusion

Today

I First-order logic uses the quantifiers ∀ et ∃
I We quantify over variables representing the elements of a domain

I The atomic formulae are built using function symbols and
relations between the elements in the domain

I To give a truth value to a formula:
I The symbols need to be interpreted in a domain
I The free variables need to be evaluated refering to a state

I Method for finding (counter-)model by finite interpretation and
expansion
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First-order logic

Conclusion

Next lecture

I Interpretation of a first order formula

I Notion of model

I Important equivalences

Homework: formalize in first-order logic

I Some people love each other.

I If two people are in love, then they’re spouses.

I No one can love two distinct persons.
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