Before we begin

About the midterm exam

- 2 hours
- you're allowed to bring one A4 sheet of handwritten notes
- French version available (but you should answer in English)
- Topics covered: all of propositional logic
- Typical exercices, one of them taken straight from the handout

Before we begin

About the midterm exam

- 2 hours
- you're allowed to bring one A4 sheet of handwritten notes
- French version available (but you should answer in English)
- Topics covered: all of propositional logic
- Typical exercices, one of them taken straight from the handout

Before the midterms

Don't forget your project pre-report !

Before we begin

About the midterm exam

- 2 hours
- you're allowed to bring one A4 sheet of handwritten notes
- French version available (but you should answer in English)
- Topics covered: all of propositional logic
- Typical exercices, one of them taken straight from the handout

Before the midterms

Don't forget your project pre-report !

Schedule reminder, archives on

https://wackb.gricad-pages.univ-grenoble-alpes.fr/inf402/

F. Prostet al (UGA)

First-order logic

First-order logic Part one: Language and Semantics of Formulae

Frédéric Prost

Université Grenoble Alpes

March 2023

Overview of the course

- Propositional logic: $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$
- Interpretation: boolean functions
- Deductive systems: resolution, natural deduction
- Algorithms: Complete Strategy, DPLL, DN tactics

Overview of the course

- Propositional logic: $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$
- Interpretation: boolean functions
- Deductive systems: resolution, natural deduction
- Algorithms: Complete Strategy, DPLL, DN tactics
- ► First-order logic: ∀,∃
- Interpretation
- "First-order resolution"
- First-order natural deduction

First-order log	gic
Introduction	n

Overview

Introduction

Language (Strict) Formulae Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Finite interpretation

Conclusion

A non-empty domain (more than two elements)

A non-empty domain (more than two elements)

Three categories:

- Terms representing the elements of the domain
- Relations
- Formulae describing the interactions between relations

A non-empty domain (more than two elements)

Three categories:

- Terms representing the elements of the domain
- Relations
- Formulae describing the interactions between relations

Two new symbols (quantifiers) in the formulae :

 \forall (universal quantification) and \exists (existential quantification)

A non-empty domain (more than two elements)

Three categories:

- Terms representing the elements of the domain
- Relations
- Formulae describing the interactions between relations

Two new symbols (quantifiers) in the formulae :

 \forall (universal quantification) and \exists (existential quantification)

Examples:

- domain = members of a family
- the term father(x) refers to a domain element (the father of x),
- ► the relation brother which applies to two elements,
- ► the formula $\forall x \exists y \ brother(y, x)$ means "everyone has a brother".

First-order	logic
Introduct	ion

Syllogism

Every man is mortal. Socrates is a man. Hence Socrates is mortal.

First-order logi	С
Introduction	

Syllogism

Every man is mortal. Socrates is a man. Hence Socrates is mortal.

 $\forall x(man(x) \Rightarrow mortal(x))$ man(Socrates) mortal(Socrates)

First-order logic Introduction

Gottlob Frege's Begriffsschrift (ideography), 1879

Like Leibniz, attempt at a formal "universal" language B B B

 First-order logical system (which contains rules such as Modus Ponens already known by Stoicists, but also new rules for the quantifiers)

First-order logic Introduction

Gottlob Frege's Begriffsschrift (ideography), 1879

Like Leibniz, attempt at a formal "universal" language B B B

First-order logical system

(which contains rules such as Modus Ponens already known by Stoicists, but also new rules for the quantifiers)

 Contains only *reasoning* rules but allows to express every mathematical notion (using sets)

First-order logic Introduction

Gottlob Frege's Begriffsschrift (ideography), 1879

Like Leibniz, attempt at a formal "universal" language B B B

First-order logical system

(which contains rules such as Modus Ponens already known by Stoicists, but also new rules for the quantifiers)

- Contains only reasoning rules but allows to express every mathematical notion (using sets)
- Also containts second-order logic: a variable may represent a property ∀R∃xR(x)

First-order logic	
Language	

Overview

Introduction

Language (Strict) Formulae Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Finite interpretation

Conclusion

First-order logic Language (Strict) Formulae

Vocabulary

• Two propositional constants: \perp and \top

Connectives: \neg , \land , \lor , \Rightarrow , \Leftrightarrow

First-order logic Language (Strict) Formulae

Vocabulary

- Two propositional constants: \perp and \top
- Connectives: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
- Quantifiers: the universal \forall and the existential \exists
- ► Variables: $u, v, w, x, y, z, x1, x2... (\neq \text{propositional vars.})$
- Symbols: *a*, *b*, *c*, *p*, *brother*, 12...
- Punctuation: the comma and the parentheses

Example 4.1.1

▶ man, brother, succ, 12, 24, f1, itRains are symbols:

- functions with one, several or no arguments (constants)
- relations with one, several or no arguments (propositional variables)
- For some (*special*) symbols we may use the infix notation x = y or z > 3.

Term

Definition 4.1.2

A term is either :

or a variable

• or a symbol applied to terms $s(t_1, \ldots, t_n)$

Term

Definition 4.1.2

A term is either :

or a variable

• or a symbol applied to terms $s(t_1, \ldots, t_n)$

Example 4.1.3 x; a; f(x1,x2,g(y)); sum(5, product(x,42)) are terms. But $f(\perp, 2, y)$ is not a term.

Term

Definition 4.1.2

A term is either :

or a variable

• or a symbol applied to terms $s(t_1, \ldots, t_n)$

Example 4.1.3

x; a; f(x1,x2,g(y)); sum(5, product(x, 42)) are terms.

But $f(\perp, 2, y)$ is not a term.

Note that 42(1, y, 3) is also a term, but usually 42 is not used to denote a function or a relation.

F. Prostet al (UGA)

First-order logic

Atomic formula

Definition 4.1.4 atomic formulae

An atomic formula is either:

- ▶ \top or \bot
- or a symbol alone
- or a symbol applied to terms $s(t_1, \ldots, t_n)$

Atomic formula

Definition 4.1.4 atomic formulae

An atomic formula is either:

- \blacktriangleright \top or \bot
- or a symbol alone
- or a symbol applied to terms $s(t_1, \ldots, t_n)$

Example 4.1.5:

►
$$P(x)$$
, a and $R(1, +(5, 42), g(z))$ are atomic formulae

• x and $A \lor f(4,2,6)$ are not atomic formulae

First-order logic	
Language	

Beware : two-level interpretation

The set of terms and the set of atomic formulae are not disjoint.

For example p(x) is **both** a term **and** an atomic formula.

First-order logic	
Language	

Beware : two-level interpretation

The set of terms and the set of atomic formulae are not disjoint.

For example p(x) is **both** a term **and** an atomic formula.

- [t] will be the value of t seen as a term
- \blacktriangleright [t] will be the value of t seen as a formula.

(Strict) formula

Definition 4.1.6

A (strict) formula is either:

- an atomic formula
- ► ¬A

where A is a formula

► (A ∘ B)

where A and B are formulae and \circ a connective $\lor, \land, \Rightarrow, \Leftrightarrow$

 $\blacktriangleright \forall x A \text{ or } \exists x A$

where A is a formula and x is any variable

First-order logic Language

Example 4.1.7

man(x), brother(son(y), mother(Alice)), = (x, +(f(x), g(y)))are atomic formulae, hence formulae.

On the opposite

 $\forall x (man(x) \Rightarrow man(Socrate))$

is a non-atomic formula.

First-order logic Language

Among these expressions, which ones are strict formulae:

First-order logic Language

Among these expressions, which ones are strict formulae:

x not a formula

🕨 a

First-order logic Language

Among these expressions, which ones are strict formulae:

- x not a formula
- ► a

yes

 $\blacktriangleright (a(x) \Rightarrow b) \land a(x) \Rightarrow b$

First-order logic Language

Among these expressions, which ones are strict formulae:

- x not a formula
- ► a
 - yes
- $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$ no, missing parentheses
- $\blacktriangleright \exists x((\bot \Rightarrow a(x)) \land b(x))$

First-order logic Language

Among these expressions, which ones are strict formulae:

- x not a formula
- ► a

yes

- $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$ no, missing parentheses
- $\blacktriangleright \exists x((\bot \Rightarrow a(x)) \land b(x))$ yes
- $\blacktriangleright \exists x \exists y < (-(x,y),+(a,y))$

First-order logic Language

Among these expressions, which ones are strict formulae:

- x not a formula
- ► a

yes

- $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$ no, missing parentheses
- $\blacktriangleright \exists x((\bot \Rightarrow a(x)) \land b(x))$ yes

Infix notations

Prioritized formulae: the symbols of the functions +, -, *, / and the symbols of the relations $=, \neq, <, >, \leq, \geq$ are written in the usual manner.
Infix notations

Prioritized formulae: the symbols of the functions +, -, *, / and the symbols of the relations $=, \neq, <, >, \leq, \geq$ are written in the usual manner.

Example 4.1.9

•
$$\leq (*(3,x),+(y,5))$$
 is abbreviated as

Infix notations

Prioritized formulae: the symbols of the functions +, -, *, / and the symbols of the relations $=, \neq, <, >, \leq, \geq$ are written in the usual manner.

Example 4.1.9

- $\leq (*(3,x),+(y,5))$ is abbreviated as $3 * x \leq y + 5$
- ► +(x,*(y,z)) is abbreviated as

Infix notations

Prioritized formulae: the symbols of the functions +, -, *, / and the symbols of the relations $=, \neq, <, >, \leq, \geq$ are written in the usual manner.

Example 4.1.9

- $\leq (*(3,x),+(y,5))$ is abbreviated as $3 * x \leq y + 5$
- +(x,*(y,z)) is abbreviated as x + y * z

First-order logic Language

Prioritized formulae

Definition 4.1.10

A prioritized formula is either:

an atomic formula

► ¬A

► A ∘ B with a binary connective ∘

 $\blacktriangleright \forall x A \text{ or } \exists x A$

► (A)

First-order logic	
Language	

Inverse transformation

Precedence

- Quantifiers have the same precedence as negation.
- Connectives have a lower precedence than relations.
- ▶ =, \neq ,<,≤,>,≥ have a lower precedence than +,-,*,/

Table 4.1 summary of priorities

Decreasing precedence from top to bottom.

F. Prostet al (UGA)

First-order logic

First-order logic Language

Tree representation

Example 4.1.12 $\forall x P(x) \Rightarrow Q(x)$

 \forall has higher priority: the left-hand side operand of \Rightarrow is $\forall x P(x)$.

First-order logic Language

Tree representation

Example 4.1.12 $\forall x P(x) \Rightarrow Q(x)$

 \forall has higher priority: the left-hand side operand of \Rightarrow is $\forall x P(x)$.

Overview

Introduction

Language (Strict) Formulae Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Finite interpretation

Conclusion

First-or	der	logic
Free	vs.	bound

ldea

 The meaning of the formula x + 2 = 4 depends on x. The formula is not true (in arithmetics) unless x = 2.
 x is free in the previous formula.

First-order logic Free vs. bound

Idea

- The meaning of the formula x + 2 = 4 depends on x. The formula is not true (in arithmetics) unless x = 2.
 x is free in the previous formula.
- ∀x(x+2=4) is unsatisfiable (in arithmetics)
 ∀x(x+0=x) is valid
 x does not need to be assigned a value.
 There is no free variable in these two formulae.

First-order logic Free vs. bound

Idea

- The meaning of the formula x + 2 = 4 depends on x. The formula is not true (in arithmetics) unless x = 2.
 x is free in the previous formula.
- ∀x(x+2=4) is unsatisfiable (in arithmetics)
 ∀x(x+0=x) is valid
 x does not need to be assigned a value.
 There is no free variable in these two formulae.
- ► Then the name of the variable doesn't matter. Frequent situation in mathematics $\int_0^1 f(x) dx$... and in computer science

```
int Toto(int x) {
  return x + 1;
}
```

First-order	logic
Free vs.	bound

Definition 4.2.1

A quantifier binds a variable locally.

▶ In $\forall x A$ or $\exists x A$, the scope of the binding of x is A.

Definition 4.2.1

A quantifier binds a variable locally.

- ▶ In $\forall x A$ or $\exists x A$, the scope of the binding of x is A.
- An occurrence of x is bound if it is in the scope of a binding for x.
- Otherwise it is said to be free.

Definition 4.2.1

A quantifier binds a variable locally.

- In $\forall x A$ or $\exists x A$, the scope of the binding of x is A.
- An occurrence of x is bound if it is in the scope of a binding for x.
- Otherwise it is said to be free.

If we represent a formula by a tree:

An occurrence of x is bound if it is

Definition 4.2.1

A quantifier binds a variable locally.

- ▶ In $\forall x A$ or $\exists x A$, the scope of the binding of x is A.
- An occurrence of x is bound if it is in the scope of a binding for x.
- Otherwise it is said to be free.

If we represent a formula by a tree:

- An occurrence of x is bound if it is below a node $\exists x \text{ or } \forall x$.
- Any other occurrence of *x* is free.

First-order logic Free vs. bound

Example 4.2.2

 $\forall x P(\mathbf{x}, y) \land \exists z R(\underline{x}, z)$

First-order logic Free vs. bound

Example 4.2.2

 $\forall x P(\mathbf{x}, y) \land \exists z R(\underline{x}, z)$

First-order logic Free vs. bound

Example 4.2.2

 $\forall x P(\mathbf{x}, y) \land \exists z R(\underline{x}, z)$

F. Prostet al (UGA)

First-order logic

First-order logic Free vs. bound

Free, bound variables

Definition 4.2.3

A formula without free variables is also called a closed formula.

Free, bound variables

Definition 4.2.3

A formula without free variables is also called a closed formula.

Remark

In ∀xP(x) ∨ Q(x), the variable x is both free and bound (thus the formula is not closed).

Free, bound variables

Definition 4.2.3

A formula without free variables is also called a closed formula.

Remark

In ∀xP(x) ∨ Q(x), the variable x is both free and bound (thus the formula is not closed).

Example 4.2.6

The free variables of $\forall x P(x, y) \land \exists z R(x, z)$ are x and y.

Overview

Introduction

Language (Strict) Formulae Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Finite interpretation

Conclusion

First-order logic Truth value of formulae Declaring a symbol

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by *s^{gn}* where:

s is a symbol

- ▶ g is one of the letters f (for a function) or r (for a relation)
- *n* is a natural number.

First-order logic Truth value of formulae Declaring a symbol

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by *s^{gn}* where:

s is a symbol

- ▶ g is one of the letters f (for a function) or r (for a relation)
- *n* is a natural number.

Remark 4.3.3

If the context is clear, we omit g and n.

Example: **equal** is always a 2 arguments relation. Thus, we abbreviate the declaration $=^{r^2}$ as =. First-order logic Truth value of formulae Declaring a symbol

Symbol declaration: Example

Example 4.3.2

- brother^{r2} is a (r)elation with 2 arguments
- *^{f2} is a (f)unction with 2 arguments
- man^{r1} is a unary relation

First-order logic Truth value of formulae Signature

Signature

Definition 4.3.4

A signature Σ is a set of symbol declarations.

Depending on its declaration, a symbol s will be called:

- 1. for s^{fn} : a function symbol with *n* arguments
- 2. for s^{f0} : a constant
- 3. for s^{rn} : a relation symbol with n arguments
- 4. for s^{r0} : a propositional variable

Let us define a signature for arithmetic:

Let us define a signature for arithmetic:

Constants

Let us define a signature for arithmetic:

- ► Constants 0^{f0}, 1^{f0}
- Functions

Let us define a signature for arithmetic:

- ► Constants 0^{f0}, 1^{f0}
- Functions $+^{f2}, -^{f2}, *^{f2}$
- Relations

Let us define a signature for arithmetic:

- ► Constants 0^{f0}, 1^{f0}
- Functions $+^{f2}, -^{f2}, *^{f2}$
- Relations $=^{r_2}$

Remarques :

- The context being well-known, we write 0, 1, +, -, * and =.
- But note that requires two arguments (the symbol will not be used with only one argument).

Let us define a signature for arithmetic:

- ► Constants 0^{f0}, 1^{f0}
- Functions $+^{f2}, -^{f2}, *^{f2}$
- Relations $=^{r_2}$

Remarques :

- The context being well-known, we write 0, 1, +, -, * and =.
- But note that requires two arguments (the symbol will not be used with only one argument).

Unary relation : a relation with only 1 argument denotes a **property** of a term (for instance here *prime*^{r1}).

Atomic formula over a signature

Definition 4.3.9

An atomic formula over Σ is either:

• a constant \top or \bot

• or a propositional variable s^{r_0}

- or an expression $s(t_1, \ldots, t_n)$ where
 - ► s^{rn}
 - ▶ n ≥ 1
 - t_1, \ldots, t_n are **terms** over Σ

Formula over a signature

Definition 4.3.10

A formula over a signature Σ is a formula whose atomic sub-formulae are atomic formulae over Σ .
Formula over a signature

Definition 4.3.10

A formula over a signature Σ is a formula whose atomic sub-formulae are atomic formulae over Σ .

Example 4.3.11

 $\forall x \ (p(x) \Rightarrow \exists y \ q(x,y)) \text{ is a formula over } \Sigma = \{p^{r1}, q^{r2}, h^{f1}, c^{f0}\}.$

Formula over a signature

Definition 4.3.10

A formula over a signature Σ is a formula whose atomic sub-formulae are atomic formulae over Σ .

Example 4.3.11

 $\forall x \ (p(x) \Rightarrow \exists y \ q(x,y)) \text{ is a formula over } \Sigma = \{p^{r1}, q^{r2}, h^{f1}, c^{f0}\}.$

But it is also a formula over the signature $\Sigma' = \{p^{r1}, q^{r2}\}$, since the symbols *h* and *c* are not in the formula.

The signature associated to a formula is the smallest signature Σ such that the formula is correctly built.

First-ord	ler	logic	
Interp	reta	ation	

Overview

Introduction

- Language (Strict) Formulae Prioritized formulae
- Free vs. bound
- Truth value of formulae Declaring a symbol Signature

Interpretation

Finite interpretation

Conclusion

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

a non-empty domain D

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

- a non-empty domain D
- every symbol s^{gn} is mapped to its value s_1^{gn} as follows:

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

- a non-empty domain D
- every symbol s^{gn} is mapped to its value s_1^{gn} as follows:
 - (constant) s_l^{f0} is an element of D

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

a non-empty domain D

• every symbol s^{gn} is mapped to its value s_1^{gn} as follows:

(constant) s_I^{f0} is an element of D(function) s_I^{fn} is a function from $D^n \to D$

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

- a non-empty domain D
- every symbol s^{gn} is mapped to its value s_1^{gn} as follows:

 - (propositional variable) s_I^{r0} is either 0 or 1

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

- a non-empty domain D
- every symbol s^{gn} is mapped to its value s^{gn} as follows:
 - (constant) s_I^{f0} is an element of D(function) s_I^{fn} is a function from $D^n \rightarrow D$ (propositional variable) s_I^{r0} is either 0 or 1(relation) s_I^{rn} is a set of n-uples in D(the ones that satisfy this relation)

Let *friend* be a binary relation and the domain $D = \{1, 2, 3\}$. We consider the interpretation *I* where *friend*_{*I*}^{*r*2} = $\{(1, 2), (1, 3), (2, 3)\}$.

In this interpretation, friend(2,3) is true. On the other hand, friend(2,1) is false.

Let *friend* be a binary relation and the domain $D = \{1, 2, 3\}$. We consider the interpretation *I* where *friend*_{*I*}^{*r*2} = {(1,2), (1,3), (2,3)}.

In this interpretation, friend(2,3) is true. On the other hand, friend(2,1) is false.

Remark 4.3.18

In all interpretations, the symbol = maps to the set $\{(d, d) \mid d \in D\}$. In other words, the equality is always interpreted as the identity over *D*.

First-order logic Interpretation

State, assignment

An interpretation defines only the meaning of the signature (the symbols), never the variables nor the formulae.

State, assignment

An interpretation defines only the meaning of the signature (the symbols), never the variables nor the formulae.

Definition 4.3.21

A state *e* of an interpretation maps each variable to an element in the domain *D*.

State, assignment

An interpretation defines only the meaning of the signature (the symbols), never the variables nor the formulae.

Definition 4.3.21

A state *e* of an interpretation maps each variable to an element in the domain *D*.

Definition 4.3.22

An assignment is a pair (I, e) composed of an interpretation I and a state e.

Let the domain $D = \{1, 2, 3\}$ and the interpretation *I* where *friend*_{*I*}^{*r*2} = $\{(1, 2), (1, 3), (2, 3)\}$

The interpretation I alone does not give us the truth value of friend(x, y).

Let the domain $D = \{1, 2, 3\}$ and the interpretation *I* where *friend*_{*I*}^{*r*2} = $\{(1, 2), (1, 3), (2, 3)\}$

The interpretation I alone does not give us the truth value of friend(x, y).

Let *e* be the state which maps *x* to 2 and *y* to 1.

The assignment (I, e) makes the formula *friend*(x, y) false.

Let *I* be the interpretation of domain $D = \{1, 2, 3\}$ where *friend*^{*r*²} = {(1,2), (1,3), (2,3)}.

How to interpret the formula $friend(1,2) \land friend(2,3) \Rightarrow friend(1,3)$ in *I* ?

Let *I* be the interpretation of domain $D = \{1, 2, 3\}$ where *friend*_{*I*}^{*r*2} = {(1,2), (1,3), (2,3)}.

How to interpret the formula $friend(1,2) \land friend(2,3) \Rightarrow friend(1,3)$ in *I* ?

We know how to interpret the atomic formulae:

- $\blacktriangleright [friend(1,2)]_I = true$
- $\blacktriangleright [friend(2,3)]_l = true$
- $\blacktriangleright [friend(1,3)]_I = true$

Let *I* be the interpretation of domain $D = \{1, 2, 3\}$ where *friend*_{*I*}^{*r*2} = {(1,2), (1,3), (2,3)}.

How to interpret the formula $friend(1,2) \land friend(2,3) \Rightarrow friend(1,3)$ in /?

We know how to interpret the atomic formulae:

- $\blacktriangleright [friend(1,2)]_I = true$
- [friend(2,3)] $_{I}$ = true
- $\blacktriangleright [friend(1,3)]_{I} = true$

Then we proceed as usual with the connectives, hence $[friend(1,2) \land friend(2,3) \Rightarrow friend(1,3)]_I = true$. This formula is true in the interpretation *I*.

Overview

Introduction

- Language (Strict) Formulae Prioritized formulae
- Free vs. bound
- Truth value of formulae Declaring a symbol Signature

Interpretation

Finite interpretation

Conclusion

Finite model

Definition

A finite model of a closed formula is an interpretation of the formula in a *finite domain*, which makes the formula true.

Finite model

Definition

A finite model of a closed formula is an interpretation of the formula in a *finite domain*, which makes the formula true.

Remark

The name of the elements of the domain is not important.

Hence for a model with *n* elements, we'll use the domain of integers less than *n*.

Naive idea: In order to know whether a closed formula has a model of domain $\{0, ..., n-1\}$, just

- enumerate all the possible interpretations of the associated signature of the formula
- evaluate the formula for these interpretations.

Naive idea: In order to know whether a closed formula has a model of domain $\{0, ..., n-1\}$, just

- enumerate all the possible interpretations of the associated signature of the formula
- evaluate the formula for these interpretations.

Example

Let $\Sigma = \{a^{f0}, f^{f1}, P^{r2}\}$

Naive idea: In order to know whether a closed formula has a model of domain $\{0, ..., n-1\}$, just

- enumerate all the possible interpretations of the associated signature of the formula
- evaluate the formula for these interpretations.

Example

Let $\Sigma = \{a^{f0}, f^{f1}, P^{r2}\}$

Over a domain of 5 elements, Σ has $5 \times 5^5 \times 2^{25}$ interpretations!

Naive idea: In order to know whether a closed formula has a model of domain $\{0, ..., n-1\}$, just

- enumerate all the possible interpretations of the associated signature of the formula
- evaluate the formula for these interpretations.

Example

Let $\Sigma = \{a^{f0}, f^{f1}, P^{r2}\}$

Over a domain of 5 elements, Σ has $5 \times 5^5 \times 2^{25}$ interpretations!

This method is unusable in practice.

We look for models with *n* elements **by reduction to the propositional case**

Base case: a formula with no function symbol and no constant.

We look for models with *n* elements **by reduction to the propositional case Base case:** a formula with no function symbol and no constant.

Building the *n*-elements model

1. Quantifiers removal: replace A by its *n*-expansion B.

We look for models with *n* elements by reduction to the propositional case

Base case: a formula with no function symbol and no constant.

Building the *n*-elements model

- 1. Quantifiers removal: replace A by its *n*-expansion B.
- 2. In B.

replace equalities by their truth value (i = j is true iff i and j are identical)

Apply the usual simplifications

We look for models with *n* elements **by reduction to the propositional case**

Base case: a formula with no function symbol and no constant.

Building the *n*-elements model

- 1. Quantifiers removal: replace A by its *n*-expansion B.
- 2. In *B*,
 - replace equalities by their truth value (i = j is true iff i and j are identical)
 - Apply the usual simplifications

Let *C* be the obtained formula.

3. Look for a model of *C* by building a propositional assignment of the atomic formulae in *C*.

Expansion of a formula

Definition 4.3.39

The *n*-expansion of *A* consists in replacing:

• every sub-formula of *A* of the form $\forall xB$ with the conjunction $\bigwedge_{i < n} B < x := i >$

• every sub-formula of *A* of the form $\exists xB$ with the disjunction $\bigvee_{i < n} B < x := i >$

Expansion of a formula

Definition 4.3.39

The *n*-expansion of *A* consists in replacing:

• every sub-formula of *A* of the form $\forall xB$ with the conjunction $\bigwedge_{i < n} B < x := i >$

• every sub-formula of *A* of the form $\exists xB$ with the disjunction $\bigvee_{i < n} B < x := i >$

Example 4.3.40

The 2-expansion of the formula $\exists x P(x) \Rightarrow \forall x P(x)$ is

Expansion of a formula

Definition 4.3.39

The *n*-expansion of *A* consists in replacing:

• every sub-formula of *A* of the form $\forall xB$ with the conjunction $\bigwedge_{i < n} B < x := i >$

• every sub-formula of *A* of the form $\exists xB$ with the disjunction $\bigvee_{i < n} B < x := i >$

Example 4.3.40

The 2-expansion of the formula $\exists x P(x) \Rightarrow \forall x P(x)$ is

 $P(0) \lor P(1) \Rightarrow P(0) \land P(1)$

Example 4.3.45 $A = \exists x P(x) \land \exists x \neg P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y))$

Example 4.3.45 $A = \exists x P(x) \land \exists x \neg P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y))$ *A* has no model with one element. $(P(0) \land \neg P(0) \land (P(0) \land P(0) \Rightarrow 0 = 0) \text{ is unsatisfiable.})$ Example 4.3.45 $A = \exists x P(x) \land \exists x \neg P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y))$ *A* has no model with one element. $(P(0) \land \neg P(0) \land (P(0) \land P(0) \Rightarrow 0 = 0) \text{ is unsatisfiable.})$

2-expansion of A
2-expansion of A

 $\begin{array}{ll} (P(0)+P(1)). & (\overline{P(0)}+\overline{P(1)}). & (P(0).P(0) \Rightarrow 0=0).(P(0).P(1) \Rightarrow 0=1). \\ & (P(1).P(0) \Rightarrow 1=0).(P(1).P(1) \Rightarrow 1=1) \end{array}$

2-expansion of A

 $\begin{array}{ll} (P(0)+P(1)). & (\overline{P(0)}+\overline{P(1)}). & (P(0).P(0) \Rightarrow 0=0).(P(0).P(1) \Rightarrow 0=1). \\ & (P(1).P(0) \Rightarrow 1=0).(P(1).P(1) \Rightarrow 1=1) \end{array}$

We replace equalities by their values

 $\begin{array}{l} (P(0)+P(1)). \quad (\overline{P(0)}+\overline{P(1)}). \\ (P(0).P(0) \Rightarrow \top). \quad (P(0).P(1) \Rightarrow \bot). \quad (P(1).P(0) \Rightarrow \bot). \quad (P(1).P(1) \Rightarrow \top) \end{array}$

2-expansion of A

 $\begin{array}{ll} (P(0)+P(1)). & (\overline{P(0)}+\overline{P(1)}). & (P(0).P(0) \Rightarrow 0=0).(P(0).P(1) \Rightarrow 0=1). \\ & (P(1).P(0) \Rightarrow 1=0).(P(1).P(1) \Rightarrow 1=1) \end{array}$

We replace equalities by their values

 $\begin{array}{l} (P(0) + P(1)). \quad (\overline{P(0)} + \overline{P(1)}). \\ (P(0).P(0) \Rightarrow \top). \quad (P(0).P(1) \Rightarrow \bot). \quad (P(1).P(0) \Rightarrow \bot). \quad (P(1).P(1) \Rightarrow \top) \end{array}$

Which simplifies to $(P(0) + P(1)) \cdot (\overline{P(0)} + \overline{P(1)})$

2-expansion of A

$$\begin{array}{ll} (P(0)+P(1)). & (\overline{P(0)}+\overline{P(1)}). & (P(0).P(0) \Rightarrow 0=0).(P(0).P(1) \Rightarrow 0=1). \\ & (P(1).P(0) \Rightarrow 1=0).(P(1).P(1) \Rightarrow 1=1) \end{array}$$

We replace equalities by their values

 $\begin{array}{l} (P(0) + P(1)). \quad (\overline{P(0)} + \overline{P(1)}). \\ (P(0).P(0) \Rightarrow \top). \quad (P(0).P(1) \Rightarrow \bot). \quad (P(1).P(0) \Rightarrow \bot). \quad (P(1).P(1) \Rightarrow \top) \end{array}$

Which simplifies to $(P(0) + P(1)) \cdot (\overline{P(0)} + \overline{P(1)})$ The assignment P(0) = true, P(1) = false is a propositional model of that, hence the interpretation *I* of domain $\{0, 1\}$ where $P_I = \{0\}$ is a model of *A*.

F. Prostet al (UGA)

Software for building a finite model

MACE

translation of first-order formulae in propositional formulae

 performant algorithms to find the satisfiability of a propositional formula (e.g., different versions of the DPLL algorithm)

http://www.cs.unm.edu/~mccune/mace4
An actual example:
http://www.cs.unm.edu/~mccune/mace4/examples/2009-11A/
mace4-misc/

First-order logic	
Conclusion	

Overview

Introduction

Language (Strict) Formulae Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Finite interpretation

Conclusion

First-order logic Conclusion

Today

- ► First-order logic uses the quantifiers ∀ et ∃
- We quantify over variables representing the elements of a domain
- The atomic formulae are built using function symbols and relations between the elements in the domain
- To give a truth value to a formula:
 - The symbols need to be interpreted in a domain
 - The free variables need to be evaluated referring to a state
- Method for finding (counter-)model by finite interpretation and expansion

First-order logic	
Conclusion	

Next lecture

- Interpretation of a first order formula
- Notion of model
- Important equivalences

Next lecture

- Interpretation of a first order formula
- Notion of model
- Important equivalences

Homework: formalize in first-order logic

- Some people love each other.
- If two people are in love, then they're spouses.
- No one can love two distinct persons.