First-order logic Second part: Interpretation of a formula

Frédéric Prost

Université Grenoble Alpes

March 2023

Formalize in first-order logic:

Some people love each other.

If two people are in love, then they are spouses.

No one can love two distinct persons.

Formalize in first-order logic:

Some people love each other. $\exists x \exists y \ (\ell(x,y) \land \ell(y,x))$

If two people are in love, then they are spouses.

No one can love two distinct persons.

Formalize in first-order logic:

Some people love each other.
 ∃x ∃y (ℓ(x,y) ∧ ℓ(y,x))

► If two people are in love, then they are spouses. $\forall x \ \forall y \ (\ell(x,y) \land \ell(y,x) \Rightarrow s(x) = y \land s(y) = x)$

No one can love two distinct persons.

Formalize in first-order logic:

Some people love each other.
∃x ∃y (ℓ(x,y) ∧ ℓ(y,x))

• If two people are in love, then they are spouses. $\forall x \ \forall y \ (\ell(x,y) \land \ell(y,x) \Rightarrow s(x) = y \land s(y) = x)$

No one can love two distinct persons.
 ∀x ∀y (ℓ(x,y) ⇒ ∀z (ℓ(x,z) ⇒ y = z))

Formalize in first-order logic:

Some people love each other.
 ∃x ∃y (ℓ(x,y) ∧ ℓ(y,x))

► If two people are in love, then they are spouses. $\forall x \ \forall y \ (\ell(x,y) \land \ell(y,x) \Rightarrow s(x) = y \land s(y) = x)$

► No one can love two distinct persons. $\forall x \ \forall y \ (\ell(x,y) \Rightarrow \forall z \ (\ell(x,z) \Rightarrow y = z)))$ $\forall x \ \forall y \ \forall z \ (\ell(x,y) \land \ell(x,z) \Rightarrow y = z))$

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion

Reminder: Interpretation and state

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

a non-empty domain D

every symbol s^{gn} is mapped to its value as follows:

(constant) s_I^{f0} is an element of D(function) s_I^{fn} is a function from $D^n \rightarrow D$ (propositional variable) s_I^{r0} is either 0 or 1(relation) s_I^{rn} is a set of n-uples in D

Reminder: Interpretation and state

Definition 4.3.16

An interpretation *I* over a signature Σ is defined by:

a non-empty domain D

every symbol s^{gn} is mapped to its value as follows:

- (constant) s_I^{f0} is an element of D(function) s_I^{fn} is a function from $D^n \to D$ (propositional variable) s_I^{r0} is either 0 or 1
 - s_l^{rn} is a set of *n*-uples in *D*

Definition 4.3.21

(relation)

A state *e* maps each variable to an element in the domain *D*.

Remark 4.3.24

► For a formula with free variables, we need an assignment (*I*, *e*) with a state *e*.

For a formula with no free variables, simply give an interpretation *I* of the symbols of the formula.

Indeed, (I, e) and (I, e') will yield the same value for any formula: thus, we will identify (I, e) and I.

Terms

Definition 4.3.25 Evaluation

The evaluation of a term *t* is inductively defined as:

- 1. if *t* is a variable, then $\llbracket t \rrbracket_{(l,e)} = e(t)$,
- 2. if *t* is a constant, then $\llbracket t \rrbracket_{(l,e)} = t_l^{f0}$,
- 3. if $t = s(t_1, ..., t_n)$ where *s* is a function symbol, then $[t_1]_{(l,e)} = s_l^{fn}([t_1]_{(l,e)}, ..., [t_n]_{(l,e)})$

Let the signature be a^{f0}, f^{f2}, g^{f2} .

Let *I* be the interpretation of domain \mathbb{N} which maps:

- a to the integer 1;
- f to the product;
- g to the sum.

Let *e* be the state such that e(x) = 2 and e(y) = 3. Let us compute $[f(x, g(y, a))]_{(l,e)}$.

Let the signature be a^{f0}, f^{f2}, g^{f2} .

Let *I* be the interpretation of domain \mathbb{N} which maps:

- a to the integer 1;
- f to the product;
- g to the sum.

Let *e* be the state such that e(x) = 2 and e(y) = 3. Let us compute $[f(x, g(y, a))]_{(l,e)}$.

$$\begin{split} \llbracket f(x,g(y,a)) \rrbracket_{(l,e)} &= \llbracket x \rrbracket_{(l,e)} * \llbracket g(y,a) \rrbracket_{(l,e)} \\ &= \llbracket x \rrbracket_{(l,e)} * (\llbracket y \rrbracket_{(l,e)} + \llbracket a \rrbracket_{(l,e)}) \\ &= e(x) * (e(y) + 1) \\ &= 2 * (3+1) = 8 \end{split}$$

Formulae

Definition 4.3.27 Truth value of an atomic formula

The truth value of an atomic formula is given by the following inductive rules:

1.
$$[\top]_{(l,e)} = 1$$
 and $[\bot]_{(l,e)} = 0$.

2. Let *s* be a propositional variable, $[s]_{(l,e)} = s_l^{r0}$

- 3. Let $A = s(t_1, ..., t_n)$ where *s* is a relation symbol:
 - if $([[t_1]]_{(l,e)}, ..., [[t_n]]_{(l,e)}) \in s_l^{rn}$ then $[A]_{(l,e)} = 1$

Let us consider the following signature:

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: constants
- ℓ^{r^2} : a binary relation (we read $\ell(x, y)$ as "x loves y")
- s^{f_1} : a unary function (we read s(x) as the spouse of x).

Let us consider the following signature:

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: constants
- ℓ^{r^2} : a binary relation (we read $\ell(x, y)$ as "x loves y")
- s^{f_1} : a unary function (we read s(x) as the spouse of x).

Let us consider the following signature:

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: constants
- ℓ^{r^2} : a binary relation (we read $\ell(x, y)$ as "x loves y")
- s^{f_1} : a unary function (we read s(x) as the spouse of x).

A possible interpretation over this signature is the interpretation *I* of domain $D = \{0, 1, 2\}$ where:

• Anne $_{I}^{f0} = 0$, Bernard $_{I}^{f0} = 1$, and Claude $_{I}^{f0} = 2$.

Let us consider the following signature:

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: constants
- ℓ^{r^2} : a binary relation (we read $\ell(x, y)$ as "x loves y")
- s^{f_1} : a unary function (we read s(x) as the spouse of x).

- Anne $_{I}^{f0} = 0$, Bernard $_{I}^{f0} = 1$, and Claude $_{I}^{f0} = 2$.
- $\ell_I^{r2} = \{(0,1), (1,0), (2,0)\}.$

Let us consider the following signature:

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: constants
- ℓ^{r^2} : a binary relation (we read $\ell(x, y)$ as "x loves y")
- s^{f_1} : a unary function (we read s(x) as the spouse of x).

- Anne^{f0} = 0, Bernard^{f0} = 1, and Claude^{f0} = 2.
- $\ell_I^{r2} = \{(0,1), (1,0), (2,0)\}.$
- s_l^{f1} is a fonction from *D* to *D* defined as

$$\begin{array}{c|cccc} x & 0 & 1 & 2 \\ \hline s_l^{f1}(x) & 1 & 0 & 2 \end{array}$$

Let us consider the following signature:

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: constants
- ℓ^{r^2} : a binary relation (we read $\ell(x, y)$ as "x loves y")
- s^{f_1} : a unary function (we read s(x) as the spouse of x).

- Anne^{f0} = 0, Bernard^{f0} = 1, and Claude^{f0} = 2.
- $\ell_l^{r^2} = \{(0,1), (1,0), (2,0)\}.$
- s_l^{f1} is a fonction from *D* to *D* defined as

$$\begin{array}{c|cccc} x & 0 & 1 & 2 \\ \hline s_l^{f1}(x) & 1 & 0 & 2 \end{array}$$

We obtain:

 \blacktriangleright [ℓ (Anne, Bernard)]_I =

We obtain:

 \blacktriangleright [ℓ (Anne, Bernard)]_I =

true since $(\llbracket Anne \rrbracket_I, \llbracket Bernard \rrbracket_I) = (0, 1) \in \ell_I^{r2}$.

 \blacktriangleright [ℓ (Anne, Claude)]_I =

We obtain:

 \blacktriangleright [ℓ (Anne, Bernard)]_I =

true since $(\llbracket Anne \rrbracket_I, \llbracket Bernard \rrbracket_I) = (0, 1) \in \ell_I^{r2}$.

false since $(\llbracket Anne \rrbracket_I, \llbracket Claude \rrbracket_I) = (0,2) \notin \ell_I^{r2}$.

Let *e* be the state x = 0, y = 2. We have:

► $[\ell(x, s(x))]_{(I,e)} =$

Let *e* be the state x = 0, y = 2. We have:

 $\blacktriangleright \ [\ell(x,s(x))]_{(l,e)} =$

true since $(\llbracket x \rrbracket_{(l,e)}, \llbracket s(x) \rrbracket_{(l,e)}) = (0, s_l^{f1}(0)) = (0,1) \in \ell_l^{r2}.$

$$\blacktriangleright \ [\ell(y, s(y))]_{(l,e)} =$$

Example 4.3.29

Let *e* be the state x = 0, y = 2. We have:

 $\blacktriangleright \ [\ell(x,s(x))]_{(l,e)} =$

true since $(\llbracket x \rrbracket_{(l,e)}, \llbracket s(x) \rrbracket_{(l,e)}) = (0, s_l^{f1}(0)) = (0,1) \in \ell_l^{r2}.$

•
$$[\ell(y, s(y))]_{(l,e)} =$$

false since $(\llbracket y \rrbracket_{(l,e)}, \llbracket s(y) \rrbracket_{(l,e)}) = (2, s_l^{f1}(2)) = (2, 2) \notin \ell_l^{r2}.$

Here, we have used *true* and *false* instead of the truth values 0 and 1 in order to distinguish them from the elements 0 and 1 of the domain (beware of the ambiguity, use the context).

We have:

 \blacktriangleright [(Anne = Bernard)]_l =

We have:

 \blacktriangleright [(Anne = Bernard)]_I =

false, since $(\llbracket Anne \rrbracket_I, \llbracket Bernard \rrbracket_I) = (0, 1)$ and $(0, 1) \notin =_I^{r2}$.

We have:

► [(Anne = Bernard)]_I =

false, since $(\llbracket Anne \rrbracket_I, \llbracket Bernard \rrbracket_I) = (0, 1)$ and $(0, 1) \notin =_I^{r2}$.

false, since $([s(Anne)]_{I}, [Anne]_{I}) = (s_{I}^{f1}(0), 0) = (1, 0).$

$$\blacktriangleright [(s(s(Anne)) = Anne)]_{I} =$$

We have:

 $\blacktriangleright [(Anne = Bernard)]_{I} =$

false, since $(\llbracket Anne \rrbracket_I, \llbracket Bernard \rrbracket_I) = (0,1)$ and $(0,1) \notin =_I^{r2}$.

false, since $([s(Anne)]_{I}, [Anne]_{I}) = (s_{I}^{f1}(0), 0) = (1, 0).$

$$\blacktriangleright [(s(s(Anne)) = Anne)]_{I} =$$

true, since $([[s(s(Anne))]]_I, [[Anne]]_I) = (s_I^{f1}(s_I^{f1}(0)), 0) = (0, 0)$ and $(0,0) \in =_I^{r2}$.

Truth value of a formula 4.3.30

1. Propositional connectives have the same meaning as in propositional logic.

Truth value of a formula 4.3.30

- 1. Propositional connectives have the same meaning as in propositional logic.
- 2. Let e[x = d] be the state that is identical to e, except for x.

$$[\forall xB]_{(I,e)} = min_{d \in D}[B]_{(I,e[x=d])} = \prod_{d \in D} [B]_{(I,e[x=d])},$$

i.e. it is true if and only if $[B]_{(I,f)} = 1$ for every state *f* identical to *e*, except for *x*.

Truth value of a formula 4.3.30

- 1. Propositional connectives have the same meaning as in propositional logic.
- 2. Let e[x = d] be the state that is identical to e, except for x.

$$[\forall xB]_{(I,e)} = \min_{d \in D}[B]_{(I,e[x=d])} = \prod_{d \in D}[B]_{(I,e[x=d])},$$

i.e. it is true if and only if $[B]_{(l,f)} = 1$ for every state *f* identical to *e*, except for *x*.

$$[\exists xB]_{(l,e)} = max_{d \in D}[B]_{(l,e[x=d])} = \sum_{d \in D} [B]_{(l,e[x=d])},$$

i.e. it is true if there is a state *f* identical to *e*, except for *x*, such that $[B]_{(I,f)} = 1$.

3.

Let us use the interpretation *I* given in example 4.3.19. (Reminder $D = \{0, 1, 2\}$)

$$\blacktriangleright [\exists x \ \ell(x,x)]_I =$$

Let us use the interpretation *I* given in example 4.3.19. (Reminder $D = \{0, 1, 2\}$)

$$[\exists x \ \ell(x,x)]_{l} =$$

 $= \max\{[\ell(0,0)]_{I}, [\ell(1,1)]_{I}, [\ell(2,2)]_{I}\} = \textit{false} \\ = [\ell(0,0)]_{I} + [\ell(1,1)]_{I} + [\ell(2,2)]_{I} = \textit{false} + \textit{false} + \textit{false} = \textit{false}.$

$$\blacktriangleright \ [\forall x \exists y \ \ell(x,y)]_{l} =$$

Example 4.3.32

Let us use the interpretation *I* given in example 4.3.19. (Reminder $D = \{0, 1, 2\}$)

$$[\exists x \ \ell(x,x)]_{l} =$$

 $= \max\{[\ell(0,0)]_{I}, [\ell(1,1)]_{I}, [\ell(2,2)]_{I}\} = false$ = $[\ell(0,0)]_{I} + [\ell(1,1)]_{I} + [\ell(2,2)]_{I} = false + false + false = false.$

$$[\forall x \exists y \ \ell(x,y)]_{I} =$$

```
= \min\{\max\{[\ell(0,0)]_{I}, [\ell(0,1)]_{I}, [\ell(0,2)]_{I}\}, \\ \max\{[\ell(1,0)]_{I}, [\ell(1,1)]_{I}, [\ell(1,2)]_{I}\}, \\ \max\{[\ell(2,0)]_{I}, [\ell(2,1)]_{I}, [\ell(2,2)]_{I}\}\}
```

```
= min{max{false, true, false}, max{true, false, false}, max{true, false, false}
```

```
= \min\{true, true, true\} = true.
```

First-order logic Truth value of formulae

Example 4.3.32

Example 4.3.32

$$\blacktriangleright [\exists y \forall x \ \ell(x,y)]_I =$$

 $= [\ell(0,0)]_{I} [\ell(1,0)]_{I} [\ell(2,0)]_{I} + [\ell(0,1)]_{I} [\ell(1,1)]_{I} [\ell(2,1)]_{I} + [\ell(0,2)]_{I} [\ell(1,2)]_{I} [\ell(2,2)]_{I}$ = false.true.true + true.false.false + false.false.false = false + false + false = false.

$$\blacktriangleright \ [\exists y \forall x \ \ell(x,y)]_I =$$

 $= [\ell(0,0)]_{I} \cdot [\ell(1,0)]_{I} \cdot [\ell(2,0)]_{I} + [\ell(0,1)]_{I} \cdot [\ell(1,1)]_{I} \cdot [\ell(2,1)]_{I}$ $+ [\ell(0,2)]_{I} \cdot [\ell(1,2)]_{I} \cdot [\ell(2,2)]_{I}$ = false.true.true + true.false.false + false.false.false= false + false + false = false.

Remark 4.3.33

The formulae $\forall x \exists y \ \ell(x, y)$ and $\exists y \forall x \ \ell(x, y)$ do not have the same value. Exchanging a \exists and a \forall does not preserve the truth value of a formula. Model, validity, consequence, equivalence

Defined as in propositional logic but...

What's needed to evaluate a formula

- ▶ In propositional logic: an assignment $V \rightarrow \{0, 1\}$
- ▶ In first-order logic: (*I*, *e*) where
 - I is a symbol interpretation
 - e a variable state.

Model, validity, consequence, equivalence

Defined as in propositional logic but...

What's needed to evaluate a formula

- ▶ In propositional logic: an assignment $V \rightarrow \{0, 1\}$
- ▶ In first-order logic: (*I*, *e*) where
 - I is a symbol interpretation
 - e a variable state.

... we use an interpretation instead of an assignment.

Model, validity, consequence, equivalence

Defined as in propositional logic but...

What's needed to evaluate a formula

- ▶ In propositional logic: an assignment $V \rightarrow \{0, 1\}$
- ▶ In first-order logic: (*I*, *e*) where
 - I is a symbol interpretation
 - e a variable state.

... we use an interpretation instead of an assignment. The truth value of a formula only depends on

- the state of its free variables
- and the interpretation of its symbols.

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion

Reminders about finite expansions

We look for models with *n* elements **by reduction to the propositional case Base case:** a formula with no function symbol and no constant, except integers less than *n*.

Building the *n*-elements model

- 1. eliminate the quantifiers by expansion over a domain of *n* elements,
- 2. replace equalities with their value
- 3. search for a propositional assignment of atomic formulae which is a model of the formula.

Property of the *n*-expansion

Theorem 4.3.41

Let *A* be a formula containing only integers < n. Let *B* be the *n*-expansion of *A*. Any interpretation over the domain $\{0, ..., n-1\}$ assigns the same value to *A* and *B*.

F. Prost et al (UGA)

Property of the *n*-expansion

Theorem 4.3.41

Let *A* be a formula containing only integers < n. Let *B* be the *n*-expansion of *A*. Any interpretation over the domain $\{0, \ldots, n-1\}$ assigns the same value to *A* and *B*.

Proof : by induction on the height of formulae.

Assignment VS interpretation

Let A be a formula:

- closed,
- with no quantifier,
- with no equality nor function symbol,
- ▶ with no constant except the integers less than n.
- Let *P* be the set of atomic formulae in *A* (except \top and \perp).

Theorem 4.3.42

For any propositional assignment $v : P \to \{ false, true \}$ there exists an interpretation *I* of *A* such that $[A]_I = [A]_v$.

Assignment VS interpretation

Let A be a formula:

- closed,
- with no quantifier,
- with no equality nor function symbol,
- ▶ with no constant except the integers less than n.
- Let *P* be the set of atomic formulae in *A* (except \top and \perp).

Theorem 4.3.42

For any propositional assignment $v : P \to \{ false, true \}$ there exists an interpretation *I* of *A* such that $[A]_I = [A]_v$.

Theorem 4.3.44

For any interpretation I

there exists an assignment $v : P \to \{ false, true \}$ such that $[A]_I = [A]_v$.

F. Prost et al (UGA)

Example 4.3.43

Let v be the assignment defined by $[p(0)]_v = true$ and $[p(1)]_v = false$.

v gives the value *false* to the formula $(p(0) + p(1)) \Rightarrow (p(0).p(1))$.

Example 4.3.43

Let v be the assignment defined by $[p(0)]_v = true$ and $[p(1)]_v = false$.

v gives the value *false* to the formula $(p(0)+p(1)) \Rightarrow (p(0).p(1))$.

The interpretation *I* defined by $p_I = \{0\}$ gives the same value to the same formulae.

This example shows that v and l are two analogous ways of presenting an interpretation.

C has a model v (and we can find I from v if need be).

Finding a finite model of a closed formula **with** a function symbol

Let *A* be a closed formula which can contain integers of value less than *n*.

Procedure

- Replace A by its expansion
- Enumerate the choices of symbol values, by propagating as much as possible each of the realized choices.

Similar to DPLL algorithm.

Finite interpretation by expansion (continued)

Example 4.3.46 :
$$A = \exists y P(y) \Rightarrow P(a)$$

Look for a counter-model with 2 elements.

Finite interpretation by expansion (continued)

Example 4.3.46 :
$$A = \exists y P(y) \Rightarrow P(a)$$

Look for a counter-model with 2 elements.

2-expansion of A

Example 4.3.46 : $A = \exists y P(y) \Rightarrow P(a)$

Look for a counter-model with 2 elements.

2-expansion of A

 $P(0) + P(1) \Rightarrow P(a)$

Find the values of P(0), P(1), *a*. We (arbitrarily) choose a = 0. Example 4.3.46 : $A = \exists y P(y) \Rightarrow P(a)$

Look for a counter-model with 2 elements.

2-expansion of A

 $P(0) + P(1) \Rightarrow P(a)$

Find the values of P(0), P(1), *a*. We (arbitrarily) choose a = 0.

 $P(0)+P(1) \Rightarrow P(0)$

Example 4.3.46 : $A = \exists y P(y) \Rightarrow P(a)$

Look for a counter-model with 2 elements.

2-expansion of A

 $P(0) + P(1) \Rightarrow P(a)$

Find the values of P(0), P(1), *a*. We (arbitrarily) choose a = 0.

 $P(0)+P(1) \Rightarrow P(0)$

 $P(0) \mapsto false, P(1) \mapsto true$ is a propositional counter-model, we deduce an interpretation *I* such that $P_I = \{1\}$.

Finite interpretation by expansion (continued)

Example 4.3.46 :
$$A = \exists y P(y) \Rightarrow P(a)$$

Look for a counter-model with 2 elements.

2-expansion of A

 $P(0) + P(1) \Rightarrow P(a)$

Find the values of P(0), P(1), *a*. We (arbitrarily) choose a = 0.

 $P(0)+P(1) \Rightarrow P(0)$

 $P(0) \mapsto false, P(1) \mapsto true$ is a propositional counter-model, we deduce an interpretation *I* such that $P_I = \{1\}$.

A counter-model is *I* over domain $\{0, 1\}$ such that $P_I = \{1\}$ and $a_I = 0$.

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

 $F = \{P(a), (P(0) \Rightarrow P(f(0))).(P(1) \Rightarrow P(f(1))), \neg P(f(b))\}.$

Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

- Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.
- 3. Let us choose a = 0

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

- Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.
- 3. Let us choose a = 0
 - From P(a) = true and a = 0, we deduce: P(0) = true

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

- Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.
- 3. Let us choose a = 0
 - From P(a) = true and a = 0, we deduce: P(0) = true
 - From P(0) = true and $(P(0) \Rightarrow P(f(0))) = true$, we deduce: P(f(0)) = true

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

- Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.
- 3. Let us choose a = 0
 - From P(a) = true and a = 0, we deduce: P(0) = true
 - From P(0) = true and $(P(0) \Rightarrow P(f(0))) = true$, we deduce: P(f(0)) = true
 - From P(f(b)) = false and P(f(0)) = true, we deduce $f(0) \neq f(b)$ therefore $b \neq 0$, hence: b = 1 and P(f(1)) = false.

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

- Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.
- 3. Let us choose a = 0
 - From P(a) = true and a = 0, we deduce: P(0) = true
 - From P(0) = true and $(P(0) \Rightarrow P(f(0))) = true$, we deduce: P(f(0)) = true
 - From P(f(b)) = false and P(f(0)) = true, we deduce $f(0) \neq f(b)$ therefore $b \neq 0$, hence: b = 1 and P(f(1)) = false.
 - From P(f(1)) = false and P(0) = true, we deduce f(1) ≠ 0 hence: f(1) = 1 and P(1) = false

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

- Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.
- 3. Let us choose a = 0
 - From P(a) = true and a = 0, we deduce: P(0) = true
 - From P(0) = true and $(P(0) \Rightarrow P(f(0))) = true$, we deduce: P(f(0)) = true
 - From P(f(b)) = false and P(f(0)) = true, we deduce $f(0) \neq f(b)$ therefore $b \neq 0$, hence: b = 1 and P(f(1)) = false.
 - From P(f(1)) = false and P(0) = true, we deduce f(1) ≠ 0 hence: f(1) = 1 and P(1) = false
 - From P(f(0)) = true and P(1) = false, we deduce: f(0) = 0

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a), $\forall x(P(x) \Rightarrow P(f(x)))$, $\neg P(f(b))$

1. 2-expansion:

- Find values for P(0), P(1), a, b, f(0) and f(1) which provide a model of F.
- 3. Let us choose a = 0
 - From P(a) = true and a = 0, we deduce: P(0) = true
 - From P(0) = true and $(P(0) \Rightarrow P(f(0))) = true$, we deduce: P(f(0)) = true
 - From P(f(b)) = false and P(f(0)) = true, we deduce $f(0) \neq f(b)$ therefore $b \neq 0$, hence: b = 1 and P(f(1)) = false.
 - From P(f(1)) = false and P(0) = true, we deduce f(1) ≠ 0 hence: f(1) = 1 and P(1) = false
 - From P(f(0)) = true and P(1) = false, we deduce: f(0) = 0
- 4. Model: $a = 0, b = 1, P = \{0\}, f(0) = 0, f(1) = 1$

William McCune (1953-2011)

 Author of several automated reasoning systems: Otter, Prover9, Mace4

MACE

- expansion of first-order formulas
- efficient algorithms such as DPLL

http://www.cs.unm.edu/~mccune/mace4/examples/2009-11A/mace4-misc/

William McCune (1953-2011)

 Author of several automated reasoning systems: Otter, Prover9, Mace4

MACE

- expansion of first-order formulas
- efficient algorithms such as DPLL

http://www.cs.unm.edu/~mccune/mace4/examples/2009-11A/mace4-misc/

- 1996 : Proof of the Robbins conjecture using the automated theorem prover EQP
 - 8 days of computation on a 66 MHz processor, 30 Mo of memory
 - production of a proof witness by Otter, in turn checked by a third program

(Undecided conjecture since 1933)

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion

Substitution at the propositional level

Recall that substituting a propositional variable in a valid formula yields another valid formula. This extends to first-order logic.

Example:

Let $\sigma(p) = \forall x \ q(x)$. $p \lor \neg p$ is valid, the same holds for

 $\sigma(p \lor \neg p) = \forall x \ q(x) \lor \neg \forall x \ q(x)$

Substitution at the propositional level

Recall that substituting a propositional variable in a valid formula yields another valid formula. This extends to first-order logic.

Example:

Let $\sigma(p) = \forall x \ q(x)$. $p \lor \neg p$ is valid, the same holds for

$$\sigma(p \lor \neg p) = \forall x \ q(x) \lor \neg \forall x \ q(x)$$

The replacement principle extends to first-order logic as well since:

For any formulae A and B and any variable x :

- $\blacktriangleright (A \Leftrightarrow B) \models (\forall xA \Leftrightarrow \forall xB)$
- $\blacktriangleright (A \Leftrightarrow B) \models (\exists xA \Leftrightarrow \exists xB)$

Definition 4.3.34

A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.

Definition 4.3.34

A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.

Example 4.3.35

Let *A* be the formula $(\forall x P(x) \lor Q(\mathbf{x}))$, the formula A < x := b > is

 $(\forall x P(x) \lor Q(b))$ since only the bold occurrence of x is free.

Definition 4.3.34

A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.

Example 4.3.35

Let A be the formula $(\forall x P(x) \lor Q(x))$, the formula A < x := b > is

 $(\forall x P(x) \lor Q(b))$ since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:

Example 4.3.37

```
Let A be the formula \exists yp(x, y).
```

Definition 4.3.34

A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.

Example 4.3.35

Let A be the formula $(\forall x P(x) \lor Q(x))$, the formula A < x := b > is

 $(\forall x P(x) \lor Q(b))$ since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:

Example 4.3.37

Let *A* be the formula $\exists yp(x, y)$.

• A < x := y > =

Definition 4.3.34

A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.

Example 4.3.35

Let A be the formula $(\forall x P(x) \lor Q(x))$, the formula A < x := b > is

 $(\forall x P(x) \lor Q(b))$ since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:

Example 4.3.37

Let *A* be the formula $\exists yp(x, y)$.

$$\bullet A < x := y >= | \exists yp(y, y) |$$

Definition 4.3.34

A < x := t > is the formula obtained by replacing in A every free occurrence of x with the term t.

Example 4.3.35

Let A be the formula $(\forall x P(x) \lor Q(x))$, the formula A < x := b > is

 $(\forall x P(x) \lor Q(b))$ since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:

Example 4.3.37

Let *A* be the formula $\exists yp(x, y)$.

 $\blacktriangleright A < x := y >= | \exists yp(y, y) |$

(capture phenomenon)

F. Prost et al (UGA)

First-order logic

March 2023 30 / 42

Example 4.3.37

Let *p* be a binary relation interpreted over $\{0,1\}$ as $p_I = \{(0,1)\}$ Let *e* be a state where y = 0.

Example 4.3.37

Let *p* be a binary relation interpreted over $\{0,1\}$ as $p_I = \{(0,1)\}$ Let *e* be a state where y = 0.

•
$$[A < x := y >]_{(l,e)} =$$

Example 4.3.37

Let *p* be a binary relation interpreted over $\{0,1\}$ as $p_I = \{(0,1)\}$ Let *e* be a state where y = 0.

•
$$[A < x := y >]_{(l,e)} =$$

$$[\exists yp(y,y)]_{(l,e)} = [p(0,0)]_{(l,e)} + [p(1,1)]_{(l,e)} = false + false = false.$$

Example 4.3.37

Let *p* be a binary relation interpreted over $\{0,1\}$ as $p_l = \{(0,1)\}$ Let *e* be a state where y = 0.

•
$$[A < x := y >]_{(l,e)} =$$

 $[\exists yp(y,y)]_{(l,e)} = [p(0,0)]_{(l,e)} + [p(1,1)]_{(l,e)} = false + false = false.$

• Let d = 0.

In the assignment (I, e[x = d]), we have x = 0. Hence $[A]_{(I,e[x=d])} =$

Example 4.3.37

Let *p* be a binary relation interpreted over $\{0,1\}$ as $p_l = \{(0,1)\}$ Let *e* be a state where y = 0.

•
$$[A < x := y >]_{(l,e)} =$$

 $[\exists yp(y,y)]_{(l,e)} = [p(0,0)]_{(l,e)} + [p(1,1)]_{(l,e)} = false + false = false.$

• Let d = 0.

In the assignment (I, e[x = d]), we have x = 0. Hence $[A]_{(I,e[x=d])} =$

 $[\exists yp(x,y)]_{(l,e[x=d])} = [p(0,0)]_{(l,e)} + [p(0,1)]_{(l,e)} = false + true = true.$

Example 4.3.37

Let *p* be a binary relation interpreted over $\{0,1\}$ as $p_l = \{(0,1)\}$ Let *e* be a state where y = 0.

•
$$[A < x := y >]_{(l,e)} =$$

 $[\exists yp(y,y)]_{(l,e)} = [p(0,0)]_{(l,e)} + [p(1,1)]_{(l,e)} = false + false = false.$

► Let *d* = 0.

In the assignment (I, e[x = d]), we have x = 0. Hence $[A]_{(I,e[x=d])} =$

 $[\exists yp(x,y)]_{(l,e[x=d])} = [p(0,0)]_{(l,e)} + [p(0,1)]_{(l,e)} = false + true = true.$

Thus, $[A < x := y >]_{(l,e)} \neq [A]_{(l,e[x=d])}$, for $d = [[y]]_{(l,e)}$.

Solution: notion of a term *t* free for a variable

Definition 4.3.34

2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Solution: notion of a term *t* free for a variable

Definition 4.3.34

2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Example 4.3.35

The term f(z) is free for x in formula $\exists y p(x, y)$.

Solution: notion of a term *t* free for a variable

Definition 4.3.34

2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Example 4.3.35

- The term f(z) is free for x in formula $\exists y p(x, y)$.
- On the opposite, the terms y or g(y) are not free for x in this formula.

Solution: notion of a term *t* free for a variable

Definition 4.3.34

2. The term *t* is free for *x* in *A* if the variables of *t* are not bound in the free occurrences of *x*.

Example 4.3.35

- The term f(z) is free for x in formula $\exists y p(x, y)$.
- On the opposite, the terms y or g(y) are not free for x in this formula.
- By definition, the term x is free for x in any formula.

Properties

Theorem 4.3.36

Let *A* be a formula and *t* a free term for the variable *x* in *A*. For any assignment (I, e) we have $[A < x := t >]_{(I,e)} = [A]_{(I,e[x=d])}$ where $d = \llbracket t \rrbracket_{(I,e)}$.

Properties

Theorem 4.3.36

Let *A* be a formula and *t* a free term for the variable *x* in *A*. For any assignment (I, e) we have $[A < x := t >]_{(I,e)} = [A]_{(I,e[x=d])}$ where $d = \llbracket t \rrbracket_{(I,e)}$.

Corollary 4.3.38

Let *A* be a formula and *t* a free term for *x* in *A*. The formulae $\forall xA \Rightarrow A < x := t > and A < x := t > \Rightarrow \exists xA$ are valid.

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion

Relation between \forall and \exists

Lemma 4.4.1

Let *A* be a formula and *x* be a variable.

- 1. $\neg \forall x A \equiv \exists x \neg A$
- 2. $\forall xA \equiv \neg \exists x \neg A$
- 3. $\neg \exists x A \equiv \forall x \neg A$
- 4. $\exists x A \equiv \neg \forall x \neg A$

Let us prove the first two equivalences, the other are in exercise 78

```
Proof of \neg \forall x A \equiv \exists x \neg A
```

Let us evaluate $[\neg \forall xA]_{(l,e)}$

```
Proof of \neg \forall x A \equiv \exists x \neg A
```

```
Let us evaluate [\neg \forall xA]_{(l,e)}
= 1 - [\forall xA]_{(l,e)}
```

Let us evaluate $[\neg \forall xA]_{(l,e)}$ = 1 - $[\forall xA]_{(l,e)}$ = 1 - min_{d \in D}[A]_{(l,e[x=d])}

Let us evaluate $[\neg \forall xA]_{(l,e)}$ = 1 - $[\forall xA]_{(l,e)}$ = 1 - min_{d\in D}[A]_{(l,e[x=d])} = max_{d\in D}(1 - [A]_{(l,e[x=d])})

Let us evaluate $[\neg \forall xA]_{(l,e)}$ = 1 - $[\forall xA]_{(l,e)}$ = 1 - min_{d \in D}[A]_{(l,e[x=d])} = max_{d \in D}(1 - [A]_{(l,e[x=d])}) = max_{d \in D}[\neg A]_{(l,e[x=d])}

Let us evaluate $[\neg \forall xA]_{(l,e)}$ = 1 - $[\forall xA]_{(l,e)}$ = 1 - min_{d \in D}[A]_{(l,e[x=d])} = max_{d \in D}(1 - $[A]_{(l,e[x=d])}$) = max_{d \in D}[$\neg A$]_{(l,e[x=d])} = $[\exists x \neg A]_{(l,e)}$

Let us evaluate $[\neg \forall xA]_{(l,e)}$ = 1 - $[\forall xA]_{(l,e)}$ = 1 - min_{d\in D}[A]_{(l,e[x=d])} = max_{d\in D}(1 - [A]_{(l,e[x=d])}) = max_{d\in D}[\neg A]_{(l,e[x=d])} = $[\exists x \neg A]_{(l,e)}$

Proof of $\forall xA \equiv \neg \exists x \neg A$:

Let us evaluate $\forall xA$ $\equiv \neg \neg \forall xA$ $\equiv \neg \exists x \neg A$ (see above)

Moving quantifiers

Let x, y be two variables and A, B be two formulae.

- 1. $\forall x \forall y A \equiv \forall y \forall x A$
- 2. $\exists x \exists y A \equiv \exists y \exists x A$

Moving quantifiers

Let x, y be two variables and A, B be two formulae.

- 1. $\forall x \forall y A \equiv \forall y \forall x A$
- 2. $\exists x \exists y A \equiv \exists y \exists x A$
- 3. $\forall x (A \land B) \equiv (\forall x A \land \forall x B)$
- $4. \exists x (A \lor B) \equiv (\exists x A \lor \exists x B)$

Moving quantifiers

Let x, y be two variables and A, B be two formulae.

- 1. $\forall x \forall y A \equiv \forall y \forall x A$
- 2. $\exists x \exists y A \equiv \exists y \exists x A$
- 3. $\forall x (A \land B) \equiv (\forall x A \land \forall x B)$
- 4. $\exists x (A \lor B) \equiv (\exists x A \lor \exists x B)$
- 5. Let *Q* be a quantifier and let \circ be a connective among \land, \lor . If *x* is not a free variable of *A* then:

5.1 $Qx A \equiv A$, 5.2 $Qx(A \circ B) \equiv A \circ QxB$ Example 4.4.2

Let us eliminate useless quantifiers from these two formulae:

Renaming of bound variables (1/3)

Theorem 4.4.3

Let *Q* be a quantifier. If *y* does not occur in *Qx A* then:

 $Qx A \equiv Qy A < x := y >$.

Renaming of bound variables (1/3)

Theorem 4.4.3

Let *Q* be a quantifier. If *y* does not occur in *Qx A* then:

 $Qx A \equiv Qy A < x := y >$.

Example 4.4.4

$$\forall x \ p(x,z) \equiv \forall y \ p(y,z)$$

 $\blacktriangleright \forall x \ p(x,z) \not\equiv \forall z \ p(z,z)$

First-order logic	
Conclusion	

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion

First-order logic Conclusion

Today

- To evaluate a formula = to choose an interpretation for its symbols and a state for its variables
- Method for finding (counter-)model by finite interpretation and expansion
- Important equivalences about quantifiers (beware, no usable notion of normal form)

First-order logic	
Conclusion	

Next time

Skolemisation

Semi-algorithm to prove that a formula is unsatisfiable.

Next time

Skolemisation

Semi-algorithm to prove that a formula is unsatisfiable.

Homework

Every man is mortal. Socrates is a man. Hence Socrates is mortal.

Look for a counter-model using 1-expansion then 2-expansion.

What is your conclusion ?