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First-order logic

A few examples

Formalize in first-order logic:

> Some people love each other.

» If two people are in love, then they are spouses.

» No one can love two distinct persons.
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First-order logic
Truth value of formulae

Reminder: Interpretation and state

Definition 4.3.16
An interpretation / over a signature X is defined by:
» a non-empty domain D
» every symbol s9” is mapped to its value as follows:
(constant) s{o is an element of D
(function) s is a function from D" — D
(propositional variable) s,fo is either O or 1
(

relation) s;" is a set of n-uples in D
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An interpretation / over a signature X is defined by:
» a non-empty domain D
» every symbol s9" is mapped to its value as follows:
(constant) s{o is an element of D
(function) s is a function from D" — D
(propositional variable) s,’o is either O or 1
(

relation) s;" is a set of n-uples in D

Definition 4.3.21
A state e maps each variable to an element in the domain D.
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First-order logic
Truth value of formulae

Remark 4.3.24

» For a formula with free variables, we need an assignment (/, )
with a state e.

» For a formula with no free variables, simply give an interpretation
| of the symbols of the formula.

Indeed, (/,e) and (/, €") will yield the same value for any formula:

thus, we will identify (/,e) and /.
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First-order logic
Truth value of formulae

Terms

Definition 4.3.25 Evaluation

The evaluation of a term t is inductively defined as:
1. if tis a variable, then [t] ;) = e(t),
2. if tis a constant, then [t] ¢y = t/°,

3. if t=s(t4,...,t;) where s is a function symbol,
then [t](.e) = s/"([t1](1e)s- - > [l (1e))
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First-order logic
Truth value of formulae

Example 4.3.26

Let the signature be a'°, 12, g'.
Let / be the interpretation of domain N which maps:
> ato the integer 1;
» fto the product;
> g to the sum.
Let e be the state such that e(x) =2 and e(y) = 3.
Let us compute [f(x,9(y,a))].e)-
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First-order logic
Truth value of formulae

Example 4.3.26

Let the signature be a'°, 12, g'.
Let / be the interpretation of domain N which maps:
> ato the integer 1;
» fto the product;
> g to the sum.
Let e be the state such that e(x) =2 and e(y) = 3.
Let us compute [f(x,9(y,a))].e)-

Hf(x7g(y7a))]](l7e) = [[X]](Le)*[[g(y’a)]](he)

= [Xlg.e)* (v re) +al(1e))
e(x)*(e(y)+1)
2%(3+1)=8
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First-order logic
Truth value of formulae

Formulae

Definition 4.3.27 Truth value of an atomic formula

The truth value of an atomic formula is given by the following inductive
rules:

1. [T](I,e) =1and [J—](I,e) =0.
2. Let s be a propositional variable, [s](; ¢) = s/°
3. Let A=s(t,...,t,) where s is a relation symbol:

> if ([[t1ﬂ(/,e)7 ceey [[tn]](l.,e)) S S,m then [A](IAe) =1
> otherwise [A](je) =0

F. Prost et al (UGA) First-order logic March 2023 9/42



First-order logic
Truth value of formulae

Example 4.3.19

Let us consider the following signature:
» Anne®, Bernard™ and Claude’: constants
» (2: a binary relation (we read /(x,y) as “x loves y”)
» s a unary function (we read s(x) as the spouse of x).
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First-order logic
Truth value of formulae

Example 4.3.29

We obtain:
» [¢(Anne, Bernard)], =

F. Prost et al (UGA) First-order logic

March 2023

11/42



First-order logic
Truth value of formulae

Example 4.3.29

We obtain:
» [¢(Anne, Bernard)], =

true since ([Anne];, [Bernard];) = (0,1) € (72

> [¢(Anne, Claude)], =

F. Prost et al (UGA) First-order logic March 2023 11/42



First-order logic
Truth value of formulae

Example 4.3.29

We obtain:
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First-order logic
Truth value of formulae

Example 4.3.29

Let e be the state x =0,y = 2. We have:

> [U(x,5(x))](1e) =
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First-order logic
Truth value of formulae

Example 4.3.29

Let e be the state x =0,y = 2. We have:
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First-order logic
Truth value of formulae

Example 4.3.29

Let e be the state x =0,y = 2. We have:
> [U(x,8(x))](re) =

true since ([x[ (1), [s(x)](1.¢)) = (0,5 (0)) = (0,1) € £,

> [y.s()]ie) =

faise since ([y].e). [s()]0)) = (2.5/'(2)) = (2.2) & (2

Here, we have used true and false instead of the truth values 0 and 1
in order to distinguish them from the elements 0 and 1 of the domain
(beware of the ambiguity, use the context).
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First-order logic
Truth value of formulae

Example 4.3.29

We have:
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First-order logic
Truth value of formulae

Example 4.3.29

We have:
» [(Anne = Bernard)]; =

false, since ([Anne],, [Bernard];) = (0,1) and (0,1) & =/2.

» [(s(Anne) = Anne)], =

false, since ([s(Anne)],, [Anne],) = (s!'(0),0) = (1,0).

» [(s(s(Anne)) = Anne)]; =

true, since ([s(s(Anne))];, [Anne],) = (s!'(s]'(0)),0) = (0,0)
and (0,0) € =2
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First-order logic
Truth value of formulae

Truth value of a formula 4.3.30

1. Propositional connectives have the same meaning as in propositional logic.
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2. Let e[x = d] be the state that is identical to e, except for x.

[VxBl 1,6y = Minae[Bl (1 ex=a)) = [ ] [Bl(1,e[x=d]):
deD

i.e. itis true if and only if [B], sy = 1 for every state f identical to e, except for x.
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Truth value of formulae

Truth value of a formula 4.3.30

1. Propositional connectives have the same meaning as in propositional logic.

2. Let e[x = d] be the state that is identical to e, except for x.
[VxBl 1,6y = Minae[Bl (1 ex=a)) = [ ] [Bl(1,e[x=d]):
deb

i.e. itis true if and only if [B], sy = 1 for every state f identical to e, except for x.

[3xB](1.e) = Maxaen[Bl(1ejx=d]) = Y [Bl(1.e[x=d]):
deD

i.e. itis true if there is a state f identical to e, except for x, such that [B](; ;) = 1.
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First-order logic
Truth value of formulae

Example 4.3.32

Let us use the interpretation / given in example 4.3.19.

(Reminder D = {0,1,2})
> [3x (x,x)]s =
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First-order logic
Truth value of formulae

Example 4.3.32

Let us use the interpretation / given in example 4.3.19.
(Reminder D = {0,1,2})
> [3x ((x.x)]; =

= max{[¢(0,0)],,[¢(1,1)],[¢(2,2)],} = false
= [€(0,0)],+ [¢(1,1)], + [£(2,2)], = false + false + false = false.

> [Vx3Jy L(x,y)]i =
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First-order logic
Truth value of formulae

Example 4.3.32

Let us use the interpretation / given in example 4.3.19.
(Reminder D = {0,1,2})
> [3x ((x.x)]; =

= max{[¢(0,0)],,[¢(1,1)],[¢(2,2)],} = false
= [€(0,0)],+ [¢(1,1)], + [£(2,2)], = false + false + false = false.

> [Vx3Jy L(x,y)]i =

= min{max{[£(0,0)];, [¢(0,1)]s, [¢(0,2)],},
max{[¢(1,0)],, [¢(1, 1)), [¢(1,2)]/},
max{[£(2,0)], [£(2,1)], [£(2,2)]/}}

= min{max{ false, true, false}, max{true, false, false},
max{true, false, false} }

= min{true, true, true} = true.
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First-order logic
Truth value of formulae

Example 4.3.32

> [Byvx £(x,y)li=
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First-order logic
Truth value of formulae

Example 4.3.32

> [Byvx £(xy)li =

= [£(070)]/-[£(1 70)]/-[8(270)]1"" [£(07 1)]/-[6(1 ) 1)]/-[“27 1 )]l
+[€(072)]I~ [6(1’2)]# [6(272)]1

= false.true.true + true.false.false + false.false.false

= false + false + false = false.

F. Prost et al (UGA) First-order logic March 2023

16/42



First-order logic
Truth value of formulae

Example 4.3.32

> [Byvx £(x,y)li=

= [£(0,0)],-[€(1,0)],-[£(2, 0)],+ [0, 1)]-[£(1, 1] [¢(2,1)]s
+[(0,2)]- [(1,2)]1- [6(2,2)]s

= false.true.true + true.false.false + false.false.false

= false + false + false = false.

Remark 4.3.33

The formulae Vx3y ¢(x,y) and JyVx £(x,y) do not have the same value.
Exchanging a 3 and a V does not preserve the truth value of a formula.

F. Prost et al (UGA) First-order logic March 2023

16/42



First-order logic
Truth value of formulae

Model, validity, consequence, equivalence
Defined as in propositional logic but...

What's needed to evaluate a formula

» In propositional logic: an assignment V — {0,1}
» In first-order logic: (/,e) where

» |is a symbol interpretation
» ¢ avariable state.
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First-order logic
Truth value of formulae

Model, validity, consequence, equivalence
Defined as in propositional logic but...

What's needed to evaluate a formula

» In propositional logic: an assignment V — {0,1}
» In first-order logic: (/,e) where

» |is a symbol interpretation
» ¢ avariable state.

... We use an interpretation instead of an assignment.
The truth value of a formula only depends on

P the state of its free variables
» and the interpretation of its symbols.
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First-order logic
Finite interpretation by expansion (continued)

Overview

Finite interpretation by expansion (continued)
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First-order logic
Finite interpretation by expansion (continued)

Reminders about finite expansions

We look for models with n elements by reduction to the
propositional case

Base case: a formula with no function symbol and no constant, except
integers less than n.

Building the n-elements model
1. eliminate the quantifiers by expansion over a domain of n
elements,
2. replace equalities with their value

3. search for a propositional assignment of atomic formulae which is
a model of the formula.

F. Prost et al (UGA) First-order logic March 2023 19/42



First-order logic
Finite interpretation by expansion (continued)

Property of the n-expansion

Theorem 4.3.41

Let A be a formula containing only integers < n.

Let B be the n-expansion of A.

Any interpretation over the domain {0,...,n— 1} assigns the same
value to A and B.
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First-order logic
Finite interpretation by expansion (continued)

Property of the n-expansion

Theorem 4.3.41

Let A be a formula containing only integers < n.

Let B be the n-expansion of A.

Any interpretation over the domain {0,...,n— 1} assigns the same
value to A and B.

Proof : by induction on the height of formulae.
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First-order logic
Finite interpretation by expansion (continued)

Assignment VS interpretation

Let A be a formula:
» closed,
» with no quantifier,
» with no equality nor function symbol,
P> with no constant except the integers less than n.
Let P be the set of atomic formulae in A (except T and L).

Theorem 4.3.42

For any propositional assignment v : P — {false, true}
there exists an interpretation / of A such that [A], = [A],.
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First-order logic
Finite interpretation by expansion (continued)

Assignment VS interpretation

Let A be a formula:
» closed,
» with no quantifier,
» with no equality nor function symbol,
P> with no constant except the integers less than n.
Let P be the set of atomic formulae in A (except T and L).

Theorem 4.3.42

For any propositional assignment v : P — {false, true}
there exists an interpretation / of A such that [A], = [A],.

Theorem 4.3.44
For any interpretation /

there exists an assignment v : P — {false, true} such that [A], = [A],.
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.43

Let v be the assignment defined by [p(0)], = true and [p(1)], = false.

v gives the value false to the formula (p(0) + p(1)) = (p(0).p(1)).
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.43

Let v be the assignment defined by [p(0)], = true and [p(1)], = false.
v gives the value false to the formula (p(0) + p(1)) = (p(0).p(1)).

The interpretation / defined by p; = {0} gives the same value to the
same formulae.

This example shows that v and / are two analogous ways of
presenting an interpretation.
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First-order logic
Finite interpretation by expansion (continued)

Correctness of the method

n-expansion simplifications
A — B — C — C
(1st order) (without V3) (without const.) (propos.)
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First-order logic
Finite interpretation by expansion (continued)

Correctness of the method

n-expansion simplifications
A — B — C — C
(1st order) =n (without V3) (without const.) (propos.)

» [A]; = [B], for any / over a domain of n elements
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First-order logic
Finite interpretation by expansion (continued)

Correctness of the method

n-expansion simplifications
A — B — C — C
(1st order) (without V3) = (without const.) (propos.)

» [A]; = [B], for any / over a domain of n elements
» B = C by construction (hence [B], = [C], for any /)
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First-order logic
Finite interpretation by expansion (continued)

Correctness of the method

n-expansion simplifications
A — B — C — C
(1st order) (without V3) (without const.) ~ (propos.)
» [A]; = [B], for any / over a domain of n elements
» B = C by construction (hence [B], = [C], for any /)

» > Forany vthereis an / such that [C], = [C],.
» For any / there is a v such that [C], = [C],.
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First-order logic

Finite interpretation by expansion (continued)

Correctness of the method

n-expansion
A — B
(1st order)

simplifications
— C — C
(without V3) (without const.)

» [A]; = [B], for any / over a domain of n elements
» B = C by construction (hence [B], = [C], for any /)

» > Forany vthereis an / such that [C], = [C],.
» For any / there is a v such that [C], = [C],.

(propos.)

Thus A has a model / over a domain of n elements
if and only if
C has a model v (and we can find / from v if need be).
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First-order logic
Finite interpretation by expansion (continued)

Finding a finite model of a closed formula with a function
symbol

Let A be a closed formula which can contain integers of value less
than n.

Procedure

> Replace A by its expansion

» Enumerate the choices of symbol values, by propagating as
much as possible each of the realized choices.

Similar to DPLL algorithm.
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.46 : A = JyP(y) = P(a)

Look for a counter-model with 2 elements.
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.46 : A = JyP(y) = P(a)
Look for a counter-model with 2 elements.

2-expansion of A
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.46 : A = JyP(y) = P(a)
Look for a counter-model with 2 elements.

2-expansion of A
P(0)+ P(1) = P(a)

Find the values of P(0), P(1), a.
We (arbitrarily) choose a = 0.
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25/42



First-order logic
Finite interpretation by expansion (continued)

Example 4.3.46 : A = JyP(y) = P(a)
Look for a counter-model with 2 elements.
2-expansion of A
P(0)+ P(1) = P(a)

Find the values of P(0), P(1), a.
We (arbitrarily) choose a = 0.

P(0)+ P(1) = P(0)
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.46 : A = JyP(y) = P(a)
Look for a counter-model with 2 elements.

2-expansion of A
P(0)+ P(1) = P(a)

Find the values of P(0), P(1), a.
We (arbitrarily) choose a = 0.

P(0)+ P(1) = P(0)

P(0) ~— false, P(1) — true is a propositional counter-model,
we deduce an interpretation / such that P, = {1}.
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.46 : A = JyP(y) = P(a)

Look for a counter-model with 2 elements.

2-expansion of A
P(0)+ P(1) = P(a)

Find the values of P(0), P(1), a.
We (arbitrarily) choose a = 0.

P(0)+ P(1) = P(0)

P(0) ~— false, P(1) — true is a propositional counter-model,
we deduce an interpretation / such that P, = {1}.

A counter-model is / over domain {0, 1} such that P,= {1} and a, = 0.

F. Prost et al (UGA) First-order logic March 2023 25/42



First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),—P(f(b))

1. 2-expansion:
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First-order logic

Finite interpretation by expansion (continued)
Example 4.3.47 : P(a),Yx(P(x) = P(f(x))),~P(f(b))

1. 2-expansion:
F={P(a), (P(0) = P((0))).(P(1) = P(f(1))), ~P(f(b))}-

2. Find values for P(0), P(1), a, b, f(0) and f(1) which provide a
model of F.
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),—P(f(b))

1. 2-expansion:
F={P(a), (P(0) = P(#(0))).(P(1) = P((1))), =P(f(b))}-
2. Find values for P(0), P(1), a, b, f(0) and f(1) which provide a
model of F.
3. Let us choose a=0

F. Prost et al (UGA) First-order logic March 2023 26/42



First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),—P(f(b))

1. 2-expansion:
F={P(a), (P(0) = P(f(0))).(P(1) = P(f(1))), ~P((b))}.
2. Find values for P(0), P(1), a, b, f(0) and f(1) which provide a
model of F.
3. Letus choose a=0
» From P(a) = true and a = 0, we deduce: P(0) = true

F. Prost et al (UGA) First-order logic March 2023 26/42



First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),—P(f(b))

1. 2-expansion:
F={P(a), (P(0) = P(#(0))).(P(1) = P((1))), =P(f(b))}-
2. Find values for P(0), P(1), a, b, f(0) and f(1) which provide a
model of F.
3. Let us choose a=0

» From P(a) = true and a = 0, we deduce: P(0) = true
» From P(0) = true and (P(0) = P(f(0))) = true, we deduce:
P(f(0)) = true

F. Prost et al (UGA) First-order logic March 2023 26/42



First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),~P(f(b))

. 2-expansion:
F={P(a), (P(0) = P(f(0O
Find values for P(0), P(1),
model of F.
Let us choose a=20
» From P(a) =
» From P(0) =
P(f(0)) = true
» From P(f(b)) = false and P
therefore b = 0, hence: b =

)

true and a = 0, we deduce: P(0) =
true and (P(0) = P(f(0))) =

(
)

))-(P(1) = P(£(1))), =P((b))}.

a, b, f(0) and f(1) which provide a

true
true, we deduce:

f(0)) = true, we deduce f(0) # f(b)
and P(f(1)) = false.

F. Prost et al (UGA)

First-order logic

March 2023

26/42



First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),~P(f(b))

1. 2-expansion:
F={P(a), (P(0) = P(f(0)
2. Find values for P(0), P(1),
model of F.
3. Letuschoose a=20
» From P(a) =
» From P(0) =
P(f(0)) = true
» From P(f(b)) = false and
therefore b = 0, hence: b =
» From P(f(1)) = false and

hence: f(1) =1 and P(1) =

true and a = 0, we deduce: P(0) =
true and (P(0) = P(f(0))) =

))-(P(1) = P(£(1))), =P((b))}.

a, b, f(0) and f(1) which provide a

true
true, we deduce:

P(f(0)) = true, we deduce f(0) # f(b)
1an (f( )) = false.

P(0) = true, we deduce f(1) #0
fa/se

F. Prost et al (UGA) First-

order logic March 2023
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),~P(f(b))

. 2-expansion:
F={P(a), (P(0) = P(f(0O

)

))-(P(1) = P(£(1))), =P((b))}.

2. Find values for P(0), P(1), a, b, f(0) and f(1) which provide a
model of F.
3. Letus choose a=0
» From P(a) = true and a = 0, we deduce: P(0) = true
» From P(0) = true and (P(0) = P(f(0))) = true, we deduce:
P(f(0)) = true
» From P(f(b)) = false and P(f(0)) = true, we deduce f(0) # f(b)
therefore b # 0, hence: b= 1 an (f( )) = false.
» From P(f(1)) = false and P(0) = true, we deduce f(1) #£0
hence: f(1) =1 and P(1) = false
» From P(f(0)) = true and P(1) = false, we deduce: f(0) =0
F. Prost et al (UGA) First-order logic March 2023
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First-order logic
Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),Vx(P(x) = P(f(x))),~P(f(b))

1. 2-expansion:
F={P(a), (P(0) = P(f(0)
2. Find values for P(0), P(1),
model of F.
3. Letus choose a=0
» From P(a) =
» From P(0) =
P(f(0)) = true
» From P(f(b)) = false and
therefore b = 0, hence: b =
» From P(f(1)) = false and
hence: f(1) =1 and P(1) =
» From P(f(0)) = true and

true and a = 0, we deduce: P(0) =
true and (P(0) = P(f(0))) =

4. Model: a=0,b=1,P = {0},£(0) = 0,f(1) =

))-(P(1) = P(£(1))), =P((b))}.

a, b, f(0) and f(1) which provide a

true
true, we deduce:

true, we deduce f(0) # f(b)
(f( )) = false.
e, we deduce f(1) #0

0)) =

P(f(
1an

P(0)

fa/se

P(1) =

false, we deduce: f(0) =0

1

F. Prost et al (UGA) First-

order logic March 2023
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First-order logic
Finite interpretation by expansion (continued)

William McCune (1953-2011)

» Author of several automated reasoning systems:
Otter, Prover9, Mace4

MACE

P> expansion of first-order formulas

» efficient algorithms such as DPLL

http://www.cs.unm.edu/~mccune/maced/examples/2009-11A/maced-misc/
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First-order logic
Finite interpretation by expansion (continued)

William McCune (1953-2011)

» Author of several automated reasoning systems:
Otter, Prover9, Mace4

MACE

P> expansion of first-order formulas

» efficient algorithms such as DPLL
http://www.cs.unm.edu/~mccune/maced/examples/2009-11A/maced-misc/
» 1996 : Proof of the Robbins conjecture using the automated

theorem prover EQP

» 8 days of computation on a 66 MHz processor, 30 Mo of memory
» production of a proof witness by Otter, in turn checked by a third
program

(Undecided conjecture since 1933)
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First-order logic
Interpretation and substitution

Overview

Interpretation and substitution
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First-order logic

Interpretation and substitution

Substitution at the propositional level

Recall that substituting a propositional variable in a valid formula yields
another valid formula. This extends to first-order logic.

Example:

Let o(p) = Vx g(x).
pV —pis valid, the same holds for

o(pV=p) = Vx q(x) Vv =Vx q(x)
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First-order logic
Interpretation and substitution

Substitution at the propositional level

Recall that substituting a propositional variable in a valid formula yields
another valid formula. This extends to first-order logic.

Example:
Let o(p) = Vx g(x).

pV —pis valid, the same holds for

o(pV=p) = Vx q(x) Vv =Vx q(x)

The replacement principle extends to first-order logic as well since:

For any formulae A and B and any variable x :
» (A< B) = (VxA < VxB)
» (A< B) = (3xA < 3xB)

F. Prost et al (UGA) First-order logic March 2023 29/42



First-order logic
Interpretation and substitution

Instantiation of a variable in a term

Definition 4.3.34

A < x :=t > is the formula obtained by replacing in A every free
occurrence of x with the term t.
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First-order logic
Interpretation and substitution

Instantiation of a variable in a term

Definition 4.3.34

A < x :=t > is the formula obtained by replacing in A every free
occurrence of x with the term t.

Example 4.3.35

Let A be the formula (VxP(x) V Q(x)), the formula A < x := b > is

’ (VxP(x)V Q(b)) since only the bold occurrence of x is free.
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First-order logic
Interpretation and substitution

Instantiation of a variable in a term

Definition 4.3.34

A < x :=t > is the formula obtained by replacing in A every free
occurrence of x with the term t.

Example 4.3.35
Let A be the formula (VxP(x) V Q(x)), the formula A < x := b > is

’ (VxP(x)V Q(b)) since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:
Example 4.3.37

Let A be the formula 3yp(x, y).
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First-order logic
Interpretation and substitution

Instantiation of a variable in a term

Definition 4.3.34

A < x :=t > is the formula obtained by replacing in A every free
occurrence of x with the term t.

Example 4.3.35
Let A be the formula (VxP(x) V Q(x)), the formula A < x := b > is

’ (VxP(x)V Q(b)) since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:
Example 4.3.37

Let A be the formula 3yp(x, y).
P AXx =y >=
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First-order logic
Interpretation and substitution

Instantiation of a variable in a term

Definition 4.3.34

A < x :=t > is the formula obtained by replacing in A every free
occurrence of x with the term t.

Example 4.3.35
Let A be the formula (VxP(x) V Q(x)), the formula A < x := b > is

’ (VxP(x)V Q(b)) since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:
Example 4.3.37

Let A be the formula 3yp(x, y).
> A<x:=y>=|3yp(y,y)
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First-order logic
Interpretation and substitution

Instantiation of a variable in a term

Definition 4.3.34

A < x :=t > is the formula obtained by replacing in A every free
occurrence of x with the term t.

Example 4.3.35
Let A be the formula (VxP(x) V Q(x)), the formula A < x := b > is

’ (VxP(x)V Q(b)) since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:
Example 4.3.37

Let A be the formula 3yp(x, y).
> A<x:=y>=| Jyp(y,y) (capture phenomenon)
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First-order logic

Interpretation and substitution

Capture changes the meaning of a formula

Example 4.3.37

Let p be a binary relation interpreted over {0,1} as p; = {(0,1)}
Let e be a state where y = 0.
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First-order logic

Interpretation and substitution

Capture changes the meaning of a formula

Example 4.3.37
Let p be a binary relation interpreted over {0,1} as p; = {(0,1)}
Let e be a state where y = 0.

> [A<x:i=y >](I,e) =
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First-order logic

Interpretation and substitution

Capture changes the meaning of a formula

Example 4.3.37

Let p be a binary relation interpreted over {0,1} as p; = {(0,1)}
Let e be a state where y = 0.

> [A<X::y>](le):

[Byp(y; ¥)l ey = [P(0,0)](1,6) + [P(1,1)](1,6) = false + false = false.
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First-order logic

Interpretation and substitution

Capture changes the meaning of a formula

Example 4.3.37

Let p be a binary relation interpreted over {0,1} as p; = {(0,1)}
Let e be a state where y = 0.

> [A<X::y>](le):

[Byp(y; ¥)l ey = [P(0,0)](1,6) + [P(1,1)](1,6) = false + false = false.

» lLetd=0.

In the assignment (/, e[x = d]), we have x = 0.
Hence [A](I,e[x:d]) =
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First-order logic

Interpretation and substitution

Capture changes the meaning of a formula

Example 4.3.37

Let p be a binary relation interpreted over {0,1} as p; = {(0,1)}
Let e be a state where y = 0.

> [A<x::y>](,e):

[Byp(y; ¥)l ey = [P(0,0)](1,6) + [P(1,1)](1,6) = false + false = false.
> Letd=0.

In the assignment (/, e[x = d]), we have x = 0.
Hence [A](I,e[x:d]) =

[Byp(x, )] 1,efx=d]) = [P(0,0)](1,6) +[P(0,1)](1,¢) = false+-true = true.
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First-order logic

Interpretation and substitution

Capture changes the meaning of a formula

Example 4.3.37

Let p be a binary relation interpreted over {0,1} as p; = {(0,1)}
Let e be a state where y = 0.

> [A<x::y>](,e):

[Byp(y; ¥)l ey = [P(0,0)](1,6) + [P(1,1)](1,6) = false + false = false.
> Letd=0.

In the assignment (/, e[x = d]), we have x = 0.
Hence [A](I,e[x:d]) =

[Byp(X, )] (1.elx=d)) = [P(0,0)](1.e) + [P(0,1)](1.e) = false+ true = true.
Thus, [A < x =y >](.6) # [Al(1,e[x=a])> or d = [¥](1,e)-
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First-order logic
Interpretation and substitution

Precautions for the instantiation of a variable in a term

Solution: notion of a term t free for a variable

Definition 4.3.34

2. The term tis free for x in A if the variables of t are not bound in
the free occurrences of x.
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First-order logic
Interpretation and substitution

Precautions for the instantiation of a variable in a term

Solution: notion of a term t free for a variable

Definition 4.3.34

2. The term tis free for x in A if the variables of t are not bound in
the free occurrences of x.

Example 4.3.35

» The term f(z) is free for x in formula 3y p(x, y).

F. Prost et al (UGA) First-order logic March 2023 32/42



First-order logic
Interpretation and substitution

Precautions for the instantiation of a variable in a term

Solution: notion of a term t free for a variable

Definition 4.3.34

2. The term tis free for x in A if the variables of t are not bound in
the free occurrences of x.

Example 4.3.35

» The term f(z) is free for x in formula 3y p(x, y).

» On the opposite, the terms y or g(y) are not free for x in this
formula.

F. Prost et al (UGA) First-order logic March 2023 32/42



First-order logic
Interpretation and substitution

Precautions for the instantiation of a variable in a term

Solution: notion of a term t free for a variable

Definition 4.3.34

2. The term tis free for x in A if the variables of t are not bound in
the free occurrences of x.

Example 4.3.35

» The term f(z) is free for x in formula 3y p(x, y).

» On the opposite, the terms y or g(y) are not free for x in this
formula.

» By definition, the term x is free for x in any formula.

F. Prost et al (UGA) First-order logic March 2023 32/42



First-order logic

Interpretation and substitution

Properties

Theorem 4.3.36

Let Abe a formula and t a free term for the variable x in A.
For any assignment (/, e) we have

[A<x:=t >](I,e) = [A](I,e[x=d]) where d = [[t]](l,e)-

F. Prost et al (UGA) First-order logic March 2023 33/42



First-order logic
Interpretation and substitution

Properties

Theorem 4.3.36

Let Abe a formula and t a free term for the variable x in A.
For any assignment (/, e) we have
[A<x:=t >](I,e) = [A](I,e[x=d]) where d = [[tﬂ(l,e)-

Corollary 4.3.38

Let A be a formula and t a free term for x in A.
The formulae VXA= A< x:=t>and A< x :=t >= JxA are valid.
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First-order logic

Important equivalences

Overview

Important equivalences

F. Prost et al (UGA) First-order logic

March 2023
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First-order logic

Important equivalences

Relation between V and -

Lemma 4.4.1

Let A be a formula and x be a variable.
1. -VxXA=dx—A

2. VXA =—-dx—-A
3. "IxA=Vx-A
4. IxA = -Vx-A

Let us prove the first two equivalences, the other are in exercise 78
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First-order logic

Important equivalences

Proof of =VxA = dx—A

Let us evaluate [~VxA](/.¢)
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First-order logic

Important equivalences

Proof of =VxA = dx—A

Let us evaluate [~VxA](/.¢)
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First-order logic

Important equivalences

Proof of =VxA = dx—A

Let us evaluate [~VxA](/.¢)
=1 —mingep[A](/,e[x=d])
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First-order logic
Important equivalences

Proof of =VxA = dx—A

Let us evaluate [~VxA](; ¢
=1- [\V/XA](/,e)

=1 —mingep[A](1,ex=d])
= maxdeD(1 - [A](/,e[x:d]))
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First-order logic
Important equivalences

Proof of =VxA = dx—A

Let us evaluate [~VxA](; ¢
=1- [\V/XA](/,e)

=1- mindeD[A](Le[xzd])
= maxdeD(1 - [A](/,e[x:d]))
= maxgep[~A](1.e[x=d])
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First-order logic
Important equivalences

Proof of =VxA = dx—A

Let us evaluate [~VxA](; ¢
=1- [\V/XA](/,e)

=1 —mingep[A](/,e[x=d])
= maxdeD(1 - [A](/,e[x:d]))
= maxgep[=A] (1, e[x=d])

= [ElX_‘A](Le)
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First-order logic
Important equivalences

Proof of =VxA = dx—A

Let us evaluate [~VxA](; ¢
=1- [\V/XA](/,e)

=1 —mingep[A](/,e[x=d])
= maxgen(1 — [Al(e[x=a]))
= maxgep[~A](1.e[x=d])

= [ElX_‘A](Le)

Proof of VXA = —dx—A:

Let us evaluate VxA
= —\—|va
=-dx-A (see above)
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First-order logic

Important equivalences

Moving quantifiers

Let x, y be two variables and A, B be two formulae.
1. VxVyA=VyVxA
2. dxdyA=dydxA
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First-order logic

Important equivalences

Moving quantifiers

Let x, y be two variables and A, B be two formulae.
1. VxVyA=VyVxA
2. dxdyA=dydxA
3. Vx(AAB) = (VXAAVXB)
4. Ix(AV B) = (IxAV 3xB)
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First-order logic

Important equivalences

Moving quantifiers

Let x, y be two variables and A, B be two formulae.
1. VxVyA=VyVxA

dxdyA = dydxA

Vx(AAB) = (VxAAVXB)

Ix(AV B) = (IxAV IxB)

Let Q be a quantifier and let o be a connective among A, V.
If x is not a free variable of A then:

51 Qx A=A,

5.2 Qx(AoB)=AoQxB

1A S

F. Prost et al (UGA) First-order logic March 2023
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First-order logic

Important equivalences

Example 4.4.2

Let us eliminate useless quantifiers from these two formulae:
> Vx3IxP(x) =

’ AxP(x)

> Vx(IxP(x)V Q(x)) =

’ AxP(x) vV VxQ(x)
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First-order logic

Important equivalences

Renaming of bound variables (1/3)

Theorem 4.4.3

Let Q be a quantifier.
If y does not occur in Qx A then: XA=Qy A< x:=y>.
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First-order logic

Important equivalences

Renaming of bound variables (1/3)

Theorem 4.4.3

Let Q be a quantifier.
If y does not occur in Qx A then: XA=Qy A< x:=y>.

Example 4.4.4

> Vx p(x,z) =Vy p(y,2)
> Vx p(x,z) #Vz p(z,z)

F. Prost et al (UGA) First-order logic March 2023

39/42



First-order logic
Conclusion

Overview

Conclusion
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First-order logic

Conclusion

Today

» To evaluate a formula = to choose an interpretation for its
symbols and a state for its variables

> Method for finding (counter-)model by finite interpretation and
expansion

» Important equivalences about quantifiers
(beware, no usable notion of normal form)

F. Prost et al (UGA) First-order logic March 2023
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First-order logic
Conclusion

Next time

» Skolemisation
» Semi-algorithm to prove that a formula is unsatisfiable.
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First-order logic
Conclusion

Next time

» Skolemisation
» Semi-algorithm to prove that a formula is unsatisfiable.

Homework

Every man is mortal.
Socrates is a man.
Hence Socrates is mortal.

» Look for a counter-model using 1-expansion then 2-expansion.

» What is your conclusion ?

F. Prost et al (UGA) First-order logic March 2023
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