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First-order logic

A few examples

Formalize in first-order logic:

I Some people love each other.

∃x ∃y (`(x ,y)∧ `(y ,x))

I If two people are in love, then they are spouses.

∀x ∀y (`(x ,y)∧ `(y ,x)⇒ s(x) = y ∧ s(y) = x)

I No one can love two distinct persons.

∀x ∀y (`(x ,y)⇒∀z (`(x ,z)⇒ y = z))

∀x ∀y ∀z (`(x ,y)∧ `(x ,z)⇒ y = z)
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First-order logic

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion
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First-order logic

Truth value of formulae

Reminder: Interpretation and state

Definition 4.3.16

An interpretation I over a signature Σ is defined by:

I a non-empty domain D

I every symbol sgn is mapped to its value as follows:

(constant) sf0
I is an element of D

(function) sfn
I is a function from Dn→ D

(propositional variable) sr0
I is either 0 or 1

(relation) srn
I is a set of n-uples in D

Definition 4.3.21

A state e maps each variable to an element in the domain D.
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First-order logic

Truth value of formulae

Remark 4.3.24

I For a formula with free variables, we need an assignment (I,e)
with a state e.

I For a formula with no free variables, simply give an interpretation
I of the symbols of the formula.

Indeed, (I,e) and (I,e′) will yield the same value for any formula:
thus, we will identify (I,e) and I.
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First-order logic

Truth value of formulae

Terms

Definition 4.3.25 Evaluation

The evaluation of a term t is inductively defined as:

1. if t is a variable, then JtK(I,e) = e(t),

2. if t is a constant, then JtK(I,e) = t f0
I ,

3. if t = s(t1, . . . , tn) where s is a function symbol,
then JtK(I,e) = sfn

I (Jt1K(I,e), . . . ,JtnK(I,e))
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First-order logic

Truth value of formulae

Example 4.3.26

Let the signature be af0, f f2,gf2.
Let I be the interpretation of domain N which maps:

I a to the integer 1;

I f to the product;

I g to the sum.

Let e be the state such that e(x) = 2 and e(y) = 3.
Let us compute Jf (x ,g(y ,a))K(I,e).

Jf (x ,g(y ,a))K(I,e) = JxK(I,e) ∗ Jg(y ,a)K(I,e)
= JxK(I,e) ∗ (JyK(I,e) + JaK(I,e))
= e(x)∗ (e(y) + 1)
= 2∗ (3 + 1) = 8

F. Prost et al (UGA) First-order logic March 2023 8 / 42
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First-order logic

Truth value of formulae

Formulae

Definition 4.3.27 Truth value of an atomic formula

The truth value of an atomic formula is given by the following inductive
rules:

1. [>](I,e) = 1 and [⊥](I,e) = 0.

2. Let s be a propositional variable, [s](I,e) = sr0
I

3. Let A = s(t1, . . . , tn) where s is a relation symbol:
I if (Jt1K(I,e), . . . ,JtnK(I,e)) ∈ srn

I then [A](I,e) = 1
I otherwise [A](I,e) = 0
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First-order logic

Truth value of formulae

Example 4.3.19

Let us consider the following signature:

I Annef0, Bernard f0 and Claudef0: constants

I `r2: a binary relation (we read `(x ,y) as “x loves y ”)

I sf1: a unary function (we read s(x) as the spouse of x).

A possible interpretation over this signature is the interpretation I of
domain D = {0,1,2} where:

I Annef0
I = 0, Bernard f0

I = 1, and Claudef0
I = 2.

I `r2
I = {(0,1),(1,0),(2,0)}.

I sf1
I is a fonction from D to D defined as

x 0 1 2
sf1

I (x) 1 0 2
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First-order logic

Truth value of formulae

Example 4.3.29

We obtain:

I [`(Anne,Bernard)]I =

true since (JAnneKI ,JBernardKI) = (0,1) ∈ `r2
I .

I [`(Anne,Claude)]I =

false since (JAnneKI ,JClaudeKI) = (0,2) 6∈ `r2
I .
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First-order logic

Truth value of formulae

Example 4.3.29

Let e be the state x = 0,y = 2. We have:

I [`(x ,s(x))](I,e) =

true since (JxK(I,e),Js(x)K(I,e)) = (0,sf1
I (0)) = (0,1) ∈ `r2

I .

I [`(y ,s(y))](I,e) =

false since (JyK(I,e),Js(y)K(I,e)) = (2,sf1
I (2)) = (2,2) 6∈ `r2

I .

Here, we have used true and false instead of the truth values 0 and 1
in order to distinguish them from the elements 0 and 1 of the domain
(beware of the ambiguity, use the context).
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First-order logic

Truth value of formulae

Example 4.3.29

We have:

I [(Anne = Bernard)]I =

false, since (JAnneKI ,JBernardKI) = (0,1) and (0,1) 6∈ =r2
I .

I [(s(Anne) = Anne)]I =

false, since (Js(Anne)KI ,JAnneKI) = (sf1
I (0),0) = (1,0).

I [(s(s(Anne)) = Anne)]I =

true, since (Js(s(Anne))KI ,JAnneKI) = (sf1
I (sf1

I (0)),0) = (0,0)
and (0,0) ∈ =r2

I .
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First-order logic

Truth value of formulae

Truth value of a formula 4.3.30

1. Propositional connectives have the same meaning as in propositional logic.

2. Let e[x = d] be the state that is identical to e, except for x .

[∀xB](I,e) = mind∈D[B](I,e[x=d]) = ∏
d∈D

[B](I,e[x=d]),

i.e. it is true if and only if [B](I,f ) = 1 for every state f identical to e, except for x .

3.
[∃xB](I,e) = maxd∈D[B](I,e[x=d]) = ∑

d∈D
[B](I,e[x=d]),

i.e. it is true if there is a state f identical to e, except for x , such that [B](I,f ) = 1.

F. Prost et al (UGA) First-order logic March 2023 14 / 42
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First-order logic

Truth value of formulae

Example 4.3.32

Let us use the interpretation I given in example 4.3.19.
(Reminder D = {0,1,2})
I [∃x `(x ,x)]I =

= max{[`(0,0)]I , [`(1,1)]I , [`(2,2)]I}= false
= [`(0,0)]I + [`(1,1)]I + [`(2,2)]I = false + false + false = false.

I [∀x∃y `(x ,y)]I =

= min{max{[`(0,0)]I , [`(0,1)]I , [`(0,2)]I},
max{[`(1,0)]I , [`(1,1)]I , [`(1,2)]I},
max{[`(2,0)]I , [`(2,1)]I , [`(2,2)]I}}

= min{max{false, true, false}, max{true, false, false},
max{true, false, false}}

= min{true, true, true}= true.

F. Prost et al (UGA) First-order logic March 2023 15 / 42



First-order logic

Truth value of formulae

Example 4.3.32

Let us use the interpretation I given in example 4.3.19.
(Reminder D = {0,1,2})
I [∃x `(x ,x)]I =

= max{[`(0,0)]I , [`(1,1)]I , [`(2,2)]I}= false
= [`(0,0)]I + [`(1,1)]I + [`(2,2)]I = false + false + false = false.

I [∀x∃y `(x ,y)]I =

= min{max{[`(0,0)]I , [`(0,1)]I , [`(0,2)]I},
max{[`(1,0)]I , [`(1,1)]I , [`(1,2)]I},
max{[`(2,0)]I , [`(2,1)]I , [`(2,2)]I}}

= min{max{false, true, false}, max{true, false, false},
max{true, false, false}}

= min{true, true, true}= true.

F. Prost et al (UGA) First-order logic March 2023 15 / 42



First-order logic

Truth value of formulae

Example 4.3.32

Let us use the interpretation I given in example 4.3.19.
(Reminder D = {0,1,2})
I [∃x `(x ,x)]I =

= max{[`(0,0)]I , [`(1,1)]I , [`(2,2)]I}= false
= [`(0,0)]I + [`(1,1)]I + [`(2,2)]I = false + false + false = false.

I [∀x∃y `(x ,y)]I =

= min{max{[`(0,0)]I , [`(0,1)]I , [`(0,2)]I},
max{[`(1,0)]I , [`(1,1)]I , [`(1,2)]I},
max{[`(2,0)]I , [`(2,1)]I , [`(2,2)]I}}

= min{max{false, true, false}, max{true, false, false},
max{true, false, false}}

= min{true, true, true}= true.

F. Prost et al (UGA) First-order logic March 2023 15 / 42



First-order logic

Truth value of formulae

Example 4.3.32

I [∃y∀x `(x ,y)]I =

= [`(0,0)]I .[`(1,0)]I .[`(2,0)]I + [`(0,1)]I .[`(1,1)]I .[`(2,1)]I

+[`(0,2)]I . [`(1,2)]I . [`(2,2)]I

= false.true.true + true.false.false + false.false.false

= false + false + false = false.

Remark 4.3.33

The formulae ∀x∃y `(x ,y) and ∃y∀x `(x ,y) do not have the same value.
Exchanging a ∃ and a ∀ does not preserve the truth value of a formula.
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First-order logic

Truth value of formulae

Model, validity, consequence, equivalence

Defined as in propositional logic but...

What’s needed to evaluate a formula

I In propositional logic: an assignment V →{0,1}
I In first-order logic: (I,e) where

I I is a symbol interpretation
I e a variable state.

... we use an interpretation instead of an assignment.
The truth value of a formula only depends on

I the state of its free variables

I and the interpretation of its symbols.
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First-order logic

Finite interpretation by expansion (continued)

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion
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First-order logic

Finite interpretation by expansion (continued)

Reminders about finite expansions

We look for models with n elements by reduction to the
propositional case
Base case: a formula with no function symbol and no constant, except
integers less than n.

Building the n-elements model

1. eliminate the quantifiers by expansion over a domain of n
elements,

2. replace equalities with their value

3. search for a propositional assignment of atomic formulae which is
a model of the formula.
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First-order logic

Finite interpretation by expansion (continued)

Property of the n-expansion

Theorem 4.3.41

Let A be a formula containing only integers < n.
Let B be the n-expansion of A.
Any interpretation over the domain {0, . . . ,n−1} assigns the same
value to A and B.

Proof : by induction on the height of formulae.
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First-order logic

Finite interpretation by expansion (continued)

Assignment VS interpretation

Let A be a formula:
I closed,
I with no quantifier,
I with no equality nor function symbol,
I with no constant except the integers less than n.

Let P be the set of atomic formulae in A (except > and ⊥).

Theorem 4.3.42

For any propositional assignment v : P→{false, true}
there exists an interpretation I of A such that [A]I = [A]v .

Theorem 4.3.44

For any interpretation I
there exists an assignment v : P→{false, true} such that [A]I = [A]v .
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First-order logic

Finite interpretation by expansion (continued)

Example 4.3.43

Let v be the assignment defined by [p(0)]v = true and [p(1)]v = false.

v gives the value false to the formula (p(0) + p(1))⇒ (p(0).p(1)).

The interpretation I defined by pI = {0} gives the same value to the
same formulae.

This example shows that v and I are two analogous ways of
presenting an interpretation.
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First-order logic

Finite interpretation by expansion (continued)

Correctness of the method

n-expansion simplifications

A −→ B −→ C −→ C
(1st order)

≡n

(without ∀∃)

≡

(without const.)

u

(propos.)

I [A]I = [B]I for any I over a domain of n elements

I B ≡ C by construction (hence [B]I = [C]I for any I)
I I For any v there is an I such that [C]I = [C]v .

I For any I there is a v such that [C]I = [C]v .

Thus A has a model I over a domain of n elements
if and only if

C has a model v (and we can find I from v if need be).
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Finite interpretation by expansion (continued)
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First-order logic

Finite interpretation by expansion (continued)

Finding a finite model of a closed formula with a function
symbol

Let A be a closed formula which can contain integers of value less
than n.

Procedure

I Replace A by its expansion

I Enumerate the choices of symbol values, by propagating as
much as possible each of the realized choices.

Similar to DPLL algorithm.
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First-order logic

Finite interpretation by expansion (continued)

Example 4.3.46 : A = ∃yP(y)⇒ P(a)

Look for a counter-model with 2 elements.

2-expansion of A

P(0) + P(1)⇒ P(a)

Find the values of P(0), P(1), a.
We (arbitrarily) choose a = 0.

P(0) + P(1)⇒ P(0)

P(0) 7→ false,P(1) 7→ true is a propositional counter-model,
we deduce an interpretation I such that PI = {1}.

A counter-model is I over domain {0,1} such that PI = {1} and aI = 0.
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First-order logic

Finite interpretation by expansion (continued)

Example 4.3.47 : P(a),∀x(P(x)⇒ P(f (x))),¬P(f (b))

1. 2-expansion:

F = {P(a), (P(0)⇒ P(f (0))).(P(1)⇒ P(f (1))), ¬P(f (b))}.
2. Find values for P(0), P(1), a, b, f (0) and f (1) which provide a

model of F .
3. Let us choose a = 0

I From P(a) = true and a = 0, we deduce: P(0) = true
I From P(0) = true and (P(0)⇒ P(f (0))) = true, we deduce:

P(f (0)) = true
I From P(f (b)) = false and P(f (0)) = true, we deduce f (0) 6= f (b)

therefore b 6= 0, hence: b = 1 and P(f (1)) = false.
I From P(f (1)) = false and P(0) = true, we deduce f (1) 6= 0

hence: f (1) = 1 and P(1) = false
I From P(f (0)) = true and P(1) = false, we deduce: f (0) = 0

4. Model: a = 0,b = 1,P = {0}, f (0) = 0, f (1) = 1
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First-order logic

Finite interpretation by expansion (continued)

William McCune (1953-2011)

I Author of several automated reasoning systems:
Otter, Prover9, Mace4

MACE

I expansion of first-order formulas

I efficient algorithms such as DPLL

http://www.cs.unm.edu/˜mccune/mace4/examples/2009-11A/mace4-misc/

I 1996 : Proof of the Robbins conjecture using the automated
theorem prover EQP
I 8 days of computation on a 66 MHz processor, 30 Mo of memory
I production of a proof witness by Otter, in turn checked by a third

program

(Undecided conjecture since 1933)
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First-order logic

Interpretation and substitution

Substitution at the propositional level

Recall that substituting a propositional variable in a valid formula yields
another valid formula. This extends to first-order logic.

Example:

Let σ(p) = ∀x q(x).
p∨¬p is valid, the same holds for

σ(p∨¬p) = ∀x q(x)∨¬∀x q(x)

The replacement principle extends to first-order logic as well since:

For any formulae A and B and any variable x :

I (A⇔ B) |= (∀xA⇔∀xB)

I (A⇔ B) |= (∃xA⇔∃xB)
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First-order logic

Interpretation and substitution

Instantiation of a variable in a term

Definition 4.3.34

A < x := t > is the formula obtained by replacing in A every free
occurrence of x with the term t .

Example 4.3.35

Let A be the formula (∀xP(x)∨Q(x)), the formula A < x := b > is

(∀xP(x)∨Q(b)) since only the bold occurrence of x is free.

But one cannot substitute any variable with anything:

Example 4.3.37

Let A be the formula ∃yp(x ,y).

I A < x := y >= ∃yp(y ,y) (capture phenomenon)
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First-order logic

Interpretation and substitution

Capture changes the meaning of a formula

Example 4.3.37

Let p be a binary relation interpreted over {0,1} as pI = {(0,1)}
Let e be a state where y = 0.

I [A < x := y >](I,e) =

[∃yp(y ,y)](I,e) = [p(0,0)](I,e) + [p(1,1)](I,e) = false + false = false.

I Let d = 0.
In the assignment (I,e[x = d]), we have x = 0.
Hence [A](I,e[x=d]) =

[∃yp(x ,y)](I,e[x=d]) = [p(0,0)](I,e) + [p(0,1)](I,e) = false + true = true.

Thus, [A < x := y >](I,e) 6= [A](I,e[x=d]), for d = JyK(I,e).
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First-order logic

Interpretation and substitution

Precautions for the instantiation of a variable in a term

Solution: notion of a term t free for a variable

Definition 4.3.34

2. The term t is free for x in A if the variables of t are not bound in
the free occurrences of x .

Example 4.3.35

I The term f (z) is free for x in formula ∃y p(x ,y).

I On the opposite, the terms y or g(y) are not free for x in this
formula.

I By definition, the term x is free for x in any formula.
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First-order logic

Interpretation and substitution

Properties

Theorem 4.3.36

Let A be a formula and t a free term for the variable x in A.
For any assignment (I,e) we have
[A < x := t >](I,e) = [A](I,e[x=d]) where d = JtK(I,e).

Corollary 4.3.38

Let A be a formula and t a free term for x in A.
The formulae ∀xA⇒ A < x := t > and A < x := t >⇒∃xA are valid.
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First-order logic

Important equivalences

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution

Important equivalences

Conclusion
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First-order logic

Important equivalences

Relation between ∀ and ∃

Lemma 4.4.1

Let A be a formula and x be a variable.

1. ¬∀xA≡ ∃x¬A

2. ∀xA≡ ¬∃x¬A

3. ¬∃xA≡ ∀x¬A

4. ∃xA≡ ¬∀x¬A

Let us prove the first two equivalences, the other are in exercise 78
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First-order logic

Important equivalences

Proof of ¬∀xA≡ ∃x¬A

Let us evaluate [¬∀xA](I,e)

= 1− [∀xA](I,e)
= 1−mind∈D[A](I,e[x=d])

= maxd∈D(1− [A](I,e[x=d]))
= maxd∈D[¬A](I,e[x=d])

= [∃x¬A](I,e)

Proof of ∀xA≡ ¬∃x¬A :

Let us evaluate ∀xA
≡ ¬¬∀xA
≡ ¬∃x¬A (see above)
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First-order logic

Important equivalences

Moving quantifiers

Let x , y be two variables and A, B be two formulae.

1. ∀x∀yA≡ ∀y∀xA

2. ∃x∃yA≡ ∃y∃xA

3. ∀x(A∧B)≡ (∀xA∧∀xB)

4. ∃x(A∨B)≡ (∃xA∨∃xB)

5. Let Q be a quantifier and let ◦ be a connective among ∧,∨.
If x is not a free variable of A then:
5.1 Qx A≡ A,
5.2 Qx(A◦B)≡ A◦QxB
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First-order logic

Important equivalences

Example 4.4.2

Let us eliminate useless quantifiers from these two formulae:

I ∀x∃xP(x)≡
∃xP(x)

I ∀x(∃xP(x)∨Q(x))≡
∃xP(x)∨∀xQ(x)
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First-order logic

Important equivalences

Renaming of bound variables (1/3)

Theorem 4.4.3

Let Q be a quantifier.
If y does not occur in Qx A then: Qx A≡ Qy A < x := y >.

Example 4.4.4

I ∀x p(x ,z)≡ ∀y p(y ,z)

I ∀x p(x ,z) 6≡ ∀z p(z,z)
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First-order logic

Conclusion

Overview

Truth value of formulae

Finite interpretation by expansion (continued)

Interpretation and substitution
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Conclusion
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First-order logic

Conclusion

Today

I To evaluate a formula = to choose an interpretation for its
symbols and a state for its variables

I Method for finding (counter-)model by finite interpretation and
expansion

I Important equivalences about quantifiers
(beware, no usable notion of normal form)
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First-order logic

Conclusion

Next time

I Skolemisation

I Semi-algorithm to prove that a formula is unsatisfiable.

Homework

Every man is mortal.
Socrates is a man.
Hence Socrates is mortal.

I Look for a counter-model using 1-expansion then 2-expansion.

I What is your conclusion ?
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