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Herbrand’s Theorem

Reminder about expansion

Every man is mortal.

∀x(man(x)⇒mortal(x))

Socrates is a man.

∧man(Socrates)

Hence Socrates is mortal.

⇒mortal(Socrates)

I Look for a counter-model using a 1-expansion then a 2-exp.

I 1-expansion :
(man(0)⇒mortal(0)).man(Socrates)⇒mortal(Socrates)
We can only interpret Socrates as 0 : no counter-model.

I 2-expansion : (man(0)⇒mortal(0)).
(man(1)⇒mortal(1)).man(Socrates)⇒mortal(Socrates)
We may interpret Socrates as 0 or 1, but neither yields a
counter-model.

I What can you conclude ?

Nothing! Except that this formula is satisfiable.
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Herbrand’s Theorem

Introduction

Introduction

In first-order logic, there is no algorithm for deciding whether a formula
is valid or not.

Semi-decision algorithm:

1. If it terminates then it correctly decides whether the formula is
valid or not.
When the formula is valid, the decision generally comes with a
proof.

2. If the formula is valid, then the program terminates. However, the
execution can be long!

Note that if the formula is not valid, termination is not guaranteed.
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Herbrand’s Theorem

Herbrand Universe (domain) and Herbrand Base

Jacques Herbrand (1908-1931)

I Works in number fields

I 1930 : reduces the validity of a first-order
formula to a set of propositional formulas

I Correspondence with Gödel about the
consistency of arithmetic
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Herbrand’s Theorem

Herbrand Universe (domain) and Herbrand Base

Universal closure

Definition 5.1.1

Let C be a formula with free variables x1, . . . ,xn.

The universal closure of C, denoted by ∀(C), is the formula
∀x1 . . .∀xnC.

Example 5.1.2

∀(P(x)∧R(x ,y)) =

∀x∀y(P(x)∧R(x ,y)) or ∀y∀x(P(x)∧R(x ,y))

Let Γ be a set of formulae: ∀(Γ) = { ∀(A) | A ∈ Γ }.
For example: ∀( {P(x),Q(x)} ) = {∀xP(x), ∀xQ(x)}
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Herbrand Universe (domain) and Herbrand Base

Assumptions

We consider that

I the formulae do not contain neither =, nor > or ⊥ (since their
truth value is fixed)

I every signature contains at least one constant
(add an arbitrary constant a if need be.)
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Herbrand Universe (domain) and Herbrand Base

Herbrand universe (domain) and Herbrand base

Definition 5.1.4

1. The Herbrand universe DΣ is the set of closed terms (i.e., without
variable) over Σ.

Remark: this set is never empty, since a ∈ DΣ.

2. The Herbrand base BΣ is the set of closed atomic formulae over
Σ.

Example 5.1.5

1. Let Σ = {af0,bf0,Pr1,Qr1}: DΣ = {a,b} and

BΣ = {P(a),P(b),Q(a),Q(b)}.

2. Let Σ = {af0, f f1,Pr1}: DΣ = {f n(a) | n ∈ N} and

BΣ = {P(f n(a)) | n ∈ N}
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Herbrand Interpretation

Herbrand Interpretation

Definition 5.1.6

Let E ⊆ BΣ.
The Herbrand interpretation HΣ,E consists of the domain DΣ and:

1. Constants symbols s are mapped to themselves.

2. If s is a function symbol and if t1, . . . , tn ∈ DΣ then
sHΣ,E (t1, . . . , tn) = s(t1, . . . , tn).

3. If s is a propositional variable, sHΣ,E = 1 (true) iff s ∈ E .

4. If s is a relation symbol then
sHΣ,E = {(t1, . . . , tn) | s(t1, . . . , tn) ∈ E}.

Another way to put it:
I Terms are interpreted as themselves.
I E is the set of true atomic formulae.
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Herbrand Interpretation

Example 5.1.8

Let Σ = {af0,bf0,Pr1,Qr1}

The Herbrand universe is DΣ = {a,b}.

The set E = {P(b),Q(a)} defines the Herbrand interpretation H
where:

I constants a and b are mapped to themselves and

I PH = {b} and QH = {a}.
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Herbrand Interpretation

Universal closure and Herbrand model

Theorem 5.1.16

Let Γ be a set of formulae with no quantifier over the signature Σ.

∀(Γ) has a model
if and only if

∀(Γ) has a model which is a Herbrand interpretation.

I Proof: Cf. handout course notes (just choose the “right” E)

I Consequence: no need to look for another model!
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Herbrand Interpretation

Example

Let Σ = {af0,bf0,Pr1,Qr1}

Let I be the interpretation of domain {0,1} where:

I aI = 0, bI = 1,

I PI = {1} and QI = {0}.

The Herbrand universe is still DΣ = {a,b}.

The set E = {P(b),Q(a)} defines the Herbrand interpretation H
where:

I Constants a and b are mapped to themselves

I PH = {b} and QH = {a}.

I is a model of a set ∀(Γ) of formulae iff H is a Herbrand model of ∀(Γ).
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Herbrand’s Theorem

Herbrand’s Theorem

Theorem 5.1.17

Let Γ be a set of formulae with no quantifiers over signature Σ.

∀(Γ) has a model

if and only if

Every finite set of closed instances of formulae of Γ
has a propositional model BΣ→{0,1}.

Reminders:
I Σ contains at least one constant a and no = sign

I Instantiate = substitute each variable by a term
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Herbrand’s Theorem

Other version of Herbrand’s Theorem

Corollary 5.1.18

Let Γ be a set of formulae without quantifier over signature Σ.

∀(Γ) is unsatisfiable

if and only if

There is a finite unsatisfiable set of closed instances
of formulae taken from Γ

Proof.

Negate each side of the equivalence of the previous statement of
Herbrand’s theorem. 2
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Herbrand’s Theorem

Semi-decision procedure: unsatisfiability of ∀(Γ)

Let Γ be a finite set of formulae with no quantifier.
We enumerate the set of closed instances of the formulae of Γ and:

1. if we find an unsatisfiable set, then ∀(Γ) is unsatisfiable.

2. if we have enumerated all of them without contradiction (for a Σ
without functions), then ∀(Γ) is satisfiable.

3. in the meantime, we cannot conclude:
I either ∀(Γ) is satisfiable (and we will never stop);
I or ∀(Γ) is unsatisfiable but we haven’t enumerated enough

instances to reach a contradiction.
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Herbrand’s Theorem

Example 5.1.19 (1/5)

Let Γ = {P(x),Q(x),¬P(a)∨¬Q(b)} and Σ = {af0,bf0,Pr1,Qr1}.

DΣ = {a,b}.

The set {P(a),Q(b),¬P(a)∨¬Q(b)} of instances over the DΣ is
unsatisfiable, hence ∀(Γ) is unsatisfiable.
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Example 5.1.19 (2/5)

Let Γ = {P(x)∨Q(x),¬P(a),¬Q(b)}

The set of all the instances over DΣ is :
{P(a)∨Q(a),P(b)∨Q(b),¬P(a),¬Q(b)}
It has a propositional model characterised by E = {P(b),Q(a)}.

Hence the Herbrand interpretation associated to E is a model of ∀(Γ).
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Example 5.1.19 (3/5)

Let Γ = {P(x),¬P(f (x))} and Σ = {af0, f f1,Pr1}.

DΣ = {f n(a)|n ∈ N}.

The set {P(f (a)),¬P(f (a))} is unsatisfiable,
hence ∀(Γ) is unsatisfiable.
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Example 5.1.19 (4/5)

Let Γ =


¬P(a),
P(x)∨¬P(f (x)),
P(f (f (a)))




¬P(a),
P(a)∨¬P(f (a)),
P(f (a))∨¬P(f (f (a))),
P(f (f (a)))

 is unsatisfiable, hence ∀(Γ) too.

Remark: note that we had to consider 2 instances (x := a then
x := f (a)) of the second formula of Γ to obtain a contradiction.
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Example 5.1.19 (5/5)

Let Γ =


R(x ,s(x)),
R(x ,y)∧R(y ,z)⇒ R(x ,z),
¬R(x ,x)



n < n + 1
x < y < z⇒ x < z
¬(x < x)

and Σ = {af0,sf1,Rr2}.

DΣ = {sn(a) | n ∈ N}. This is an infinite domain.

Every finite set of instances of formulae of Γ has a model: the
enumeration will never stop.

Indeed, ∀(Γ) has an infinite model: the interpretation I of domain N
with aI = 0, sI(n) = n + 1 and RI(x ,y) = x < y .

Remark: ∀(Γ) has no finite model, i.e., it is useless to look for one by
n-expansions.
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Herbrand’s Theorem

Skolemization
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Introduction

Herbrand Universe (domain) and Herbrand Base
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Herbrand’s Theorem

Skolemization

Motivation, properties and examples

Introduction

Herbrand’s theorem applies to the universal closure of a set of
formulae with no quantifier.

For formulae with existential quantification, we use skolemization
(Thoralf Albert Skolem).

Skolemization

I transforms a set of closed formulae to the universal closure of a
set of formulae with no quantifier.

I preserves the existence of a model (satisfiability).

F. Prost et al (UGA) Herbrand’s Theorem March 2023 26 / 43



Herbrand’s Theorem

Skolemization

Motivation, properties and examples

Introduction

Herbrand’s theorem applies to the universal closure of a set of
formulae with no quantifier.

For formulae with existential quantification, we use skolemization
(Thoralf Albert Skolem).

Skolemization

I transforms a set of closed formulae to the universal closure of a
set of formulae with no quantifier.

I preserves the existence of a model (satisfiability).

F. Prost et al (UGA) Herbrand’s Theorem March 2023 26 / 43



Herbrand’s Theorem

Skolemization

Motivation, properties and examples

Introduction

Herbrand’s theorem applies to the universal closure of a set of
formulae with no quantifier.

For formulae with existential quantification, we use skolemization
(Thoralf Albert Skolem).

Skolemization

I transforms a set of closed formulae to the universal closure of a
set of formulae with no quantifier.

I preserves the existence of a model (satisfiability).

F. Prost et al (UGA) Herbrand’s Theorem March 2023 26 / 43



Herbrand’s Theorem

Skolemization

Example 5.2.1

The formula ∃xP(x) is skolemized as P(a).

We note the following relations between the two formulae:

1. ∃xP(x) is a consequence of P(a)

2. P(a) is not a consequence of ∃xP(x), but a model of ∃x P(x)
“provides” a model of P(a).

(Just choose to interpret a as an element of PI .)
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Herbrand’s Theorem

Skolemization

Definitions

A first-order formula is in normal form if it does not contain⇔ nor⇒
and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two
distinct quantifiers.

Example 5.2.4

I The formula ∀xP(x)∨∀xQ(x) is

not proper.
I The formula ∀xP(x)∨∀yQ(y) is

proper.

I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is

not proper.

I The formula ∀x(P(x)⇒∃yR(x ,y)) is

proper.
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Herbrand’s Theorem

Skolemization

Definitions

A first-order formula is in normal form if it does not contain⇔ nor⇒
and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two
distinct quantifiers.

Example 5.2.4

I The formula ∀xP(x)∨∀xQ(x) is

not proper.
I The formula ∀xP(x)∨∀yQ(y) is

proper.

I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is

not proper.

I The formula ∀x(P(x)⇒∃yR(x ,y)) is

proper.

F. Prost et al (UGA) Herbrand’s Theorem March 2023 28 / 43



Herbrand’s Theorem

Skolemization

Definitions

A first-order formula is in normal form if it does not contain⇔ nor⇒
and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two
distinct quantifiers.

Example 5.2.4

I The formula ∀xP(x)∨∀xQ(x) is

not proper.
I The formula ∀xP(x)∨∀yQ(y) is

proper.

I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is

not proper.

I The formula ∀x(P(x)⇒∃yR(x ,y)) is

proper.

F. Prost et al (UGA) Herbrand’s Theorem March 2023 28 / 43



Herbrand’s Theorem

Skolemization

Definitions

A first-order formula is in normal form if it does not contain⇔ nor⇒
and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two
distinct quantifiers.

Example 5.2.4

I The formula ∀xP(x)∨∀xQ(x) is not proper.
I The formula ∀xP(x)∨∀yQ(y) is

proper.
I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is

not proper.

I The formula ∀x(P(x)⇒∃yR(x ,y)) is

proper.

F. Prost et al (UGA) Herbrand’s Theorem March 2023 28 / 43



Herbrand’s Theorem

Skolemization

Definitions

A first-order formula is in normal form if it does not contain⇔ nor⇒
and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two
distinct quantifiers.

Example 5.2.4

I The formula ∀xP(x)∨∀xQ(x) is not proper.
I The formula ∀xP(x)∨∀yQ(y) is proper.
I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is

not proper.
I The formula ∀x(P(x)⇒∃yR(x ,y)) is

proper.

F. Prost et al (UGA) Herbrand’s Theorem March 2023 28 / 43



Herbrand’s Theorem

Skolemization

Definitions

A first-order formula is in normal form if it does not contain⇔ nor⇒
and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two
distinct quantifiers.

Example 5.2.4

I The formula ∀xP(x)∨∀xQ(x) is not proper.
I The formula ∀xP(x)∨∀yQ(y) is proper.
I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is not proper.
I The formula ∀x(P(x)⇒∃yR(x ,y)) is

proper.

F. Prost et al (UGA) Herbrand’s Theorem March 2023 28 / 43



Herbrand’s Theorem

Skolemization

Definitions

A first-order formula is in normal form if it does not contain⇔ nor⇒
and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two
distinct quantifiers.

Example 5.2.4

I The formula ∀xP(x)∨∀xQ(x) is not proper.
I The formula ∀xP(x)∨∀yQ(y) is proper.
I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is not proper.
I The formula ∀x(P(x)⇒∃yR(x ,y)) is proper.

F. Prost et al (UGA) Herbrand’s Theorem March 2023 28 / 43



Herbrand’s Theorem

Skolemization

How to skolemize a closed formula A?

Definition 5.2.5 (skolemization)

Let A be a closed formula:

1. B = Normalize A

2. C = Make B proper

3. D= Eliminate existential quantifiers from C.
This transformation only preserves the existence of a model.

4. E = Remove the universal quantifiers from D.

E is the Skolem form of A.
(E is a normal formula with no quantifier.)
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Herbrand’s Theorem

Skolemization

1. Normalization

1. Eliminate the equivalences

2. Eliminate the implications

3. Move the negations towards the atomic formulae

Rules

1. et 2. As in propositional logic:

{
A⇔ B ≡ (A⇒ B)∧ (B⇒ A)
A⇒ B ≡ ¬A∨B

3. As in propositional logic:


¬¬A≡ A
¬(A∧B)≡ ¬A∨¬B
¬(A∨B)≡ ¬A∧¬B

Furthermore

{
¬∀xA≡ ∃x¬A
¬∃xA≡ ∀x¬A
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Herbrand’s Theorem

Skolemization

Example 5.2.7

The normal form of ∀y(∀xP(x ,y)⇔ Q(y)) is:

First, elimination of⇔ :

∀y((¬∀xP(x ,y)∨Q(y))∧ (¬Q(y)∨∀xP(x ,y)))

then, move ¬ :

∀y((∃x¬P(x ,y)∨Q(y))∧ (¬Q(y)∨∀xP(x ,y)))
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Herbrand’s Theorem

Skolemization

2. Transformation to a proper formula

Rename bound variables, e.g., by choosing new names.

Example 5.2.8

I The formula ∀xP(x)∨∀xQ(x) is changed to

∀xP(x)∨∀yQ(y)

I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is changed to

∀x(P(x)⇒∃zQ(z)∧∃yR(x ,y))
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Skolemization

Reminder: renaming of bound variables

Theorem 4.4.3

Let Q be a quantifier.
If y does not appear in Qx A then : Qx A ≡ Qy A < x := y >

Example 4.4.4

I ∀x p(x ,z)≡ ∀y p(y ,z)

I ∀x p(x ,z) 6≡ ∀z p(z,z)
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Herbrand’s Theorem

Skolemization

3. Elimination of existential quantifiers

Let ∃yB be a sub-formula of a closed normal and proper formula A.
Let x1, . . .xn be the free variables of ∃yB.

Let f be a new symbol (if n = 0, then f is a constant)
and replace ∃yB by B < y := f (x1, . . .xn) > in A.

Theorem 5.2.9

The resulting formula A′ is a closed, normal and proper formula such
that:

1. A is a consequence of A′

2. If A has a model then A′ has an identical model (up to the truth
value of f ).
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Herbrand’s Theorem

Skolemization

Remark 5.2.10

The resulting formula A′ remains closed, normal and proper.

Hence, by repeatedly “applying” the theorem, choosing a new symbol
for each eliminated quantifier, one can get:

I a closed, normal, proper formula B without ∃
I such that A has a model if and only if B has one.
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Herbrand’s Theorem

Skolemization

Example 5.2.11

By eliminating existential quantifiers in the formula
∃x∀yP(x ,y)∧∃z∀u¬P(z,u) we obtain

∀yP(a,y)∧∀u¬P(b,u).
It is easy to observe that this formula has a model.

But if we mistakenly eliminate both ∃ using the same constant a, we
obtain ∀yP(a,y)∧∀u¬P(a,u)

which is unsatisfiable (it entails P(a,a) and ¬P(a,a)).
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Herbrand’s Theorem

Skolemization

Exemple 5.2.12

By eliminating the existential quantifiers in the formula
∃x∀y∃zP(x ,y ,z) we obtain

two possible solutions:

I is we eliminate first ∃x :
∀y∃zP(a,y ,z)

→ ∀yP(a,y , f (y))

I if we eliminate first ∃z :
∃x∀yP(x ,y ,g(x ,y))

→ ∀yP(b,y ,g(b,y))

The existence of a model is preserved in both cases.
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Herbrand’s Theorem

Skolemization

4. Transformation into a universal closure

Theorem 5.2.13

Let A be a closed, normal, proper formula without existential quantifier.
Let B be the formula obtained by removing all the ∀ from A.

A is equivalent to ∀(B).

Proof.

What we are doing is actually applying repeatedly replacements such
as

I (∀xC)∧D ≡ ∀x(C∧D)

I (∀xC)∨D ≡ ∀x(C∨D)

where x is not free in D 2
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Herbrand’s Theorem

Skolemization

Property of skolemization

Property 5.2.14

Let A be a closed formula and E the Skolem form of A.
A has a model if and only if ∀(E) has a model.

Proof.

A a closed formula

�� Normalize (equivalent)

B

�� Make proper (equivalent)

C

�� Eliminate ∃ (“preserves” the models)

D

�� Remove ∀ (equivalent to ∀(E))
E Skolem form

2
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Herbrand’s Theorem

Skolemization

Example 5.2.15

Let A = ∀x(P(x)⇒ Q(x))⇒ (∀xP(x)⇒∀xQ(x)). We skolemize ¬A.

1. ¬A is transformed into the normal formula:
∀x(¬P(x)∨Q(x))∧∀xP(x)∧∃x¬Q(x)

2. The normal formula is made proper:
∀x(¬P(x)∨Q(x))∧∀yP(y)∧∃z¬Q(z)

3. The existential quantifier is “replaced” by a constant:
∀x(¬P(x)∨Q(x))∧∀yP(y)∧¬Q(a)

4. The universal quantifiers are removed:
(¬P(x)∨Q(x))∧P(y)∧¬Q(a).

The instantiation x := a,y := a yields (¬P(a)∨Q(a))∧P(a)∧¬Q(a).

Hence (Herbrand’s theorem) the Skolem form of ¬A is unsatisfiable.

Since skolemization preserves satisfiability, ¬A is unsatisfiable.
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Herbrand’s Theorem

Conclusion

Today

I To prove that A is satisfiable :
I Look for a (finite) model by n-expansions

I To prove that A est unsatisfiable :
I Skolemisation
I Look for a (finite) unsatisfiable set of instances over DΣ

I Herbrand’s theorem: then A is unsatisfiable too

I These methods are non terminating and limited to finite
interpretations

I To find a counter-model or to prove the validity of A, we proceed
as before with ¬A
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Herbrand’s Theorem

Conclusion

Next course

First-order deductive method:

I Clausal form

I Unification

I First-order resolution

I Consistency

I Completeness
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