Towards proof automation: Herbrand's Theorem and Skolemization

Frédéric Prost

Université Grenoble Alpes

March 2023

Every man is mortal.	
Socrates is a man.	
Hence Socrates is mortal.	

► Look for a counter-model using a 1-expansion then a 2-exp.

► What can you conclude?

Every man is mortal.	$\forall x (man(x) \Rightarrow mortal(x))$
Socrates is a man.	∧man(Socrates)
Hence Socrates is mortal.	⇒ mortal(Socrates)

▶ Look for a counter-model using a 1-expansion then a 2-exp.

► What can you conclude?

Every man is mortal.	$\forall x (man(x) \Rightarrow mortal(x))$
Socrates is a man.	∧man(Socrates)
Hence Socrates is mortal.	⇒ mortal(Socrates)

- ► Look for a counter-model using a 1-expansion then a 2-exp.
 - ▶ 1-expansion : $(man(0) \Rightarrow mortal(0)).man(Socrates) \Rightarrow mortal(Socrates)$ We can only interpret Socrates as 0 : no counter-model.

► What can you conclude ?

Every man is mortal.	$\forall x (man(x) \Rightarrow mortal(x))$
Socrates is a man.	∧man(Socrates)
Hence Socrates is mortal.	⇒ mortal(Socrates)

- ► Look for a counter-model using a 1-expansion then a 2-exp.
 - 1-expansion : (man(0) ⇒ mortal(0)).man(Socrates) ⇒ mortal(Socrates) We can only interpret Socrates as 0 : no counter-model.
 - 2-expansion : (man(0) ⇒ mortal(0)). (man(1) ⇒ mortal(1)).man(Socrates) ⇒ mortal(Socrates) We may interpret Socrates as 0 or 1, but neither yields a counter-model.
- What can you conclude ?

Every man is mortal.	$\forall x (man(x) \Rightarrow mortal(x))$
Socrates is a man.	∧man(Socrates)
Hence Socrates is mortal.	⇒ mortal(Socrates)

- ▶ Look for a counter-model using a 1-expansion then a 2-exp.
 - 1-expansion : (man(0) ⇒ mortal(0)).man(Socrates) ⇒ mortal(Socrates) We can only interpret Socrates as 0 : no counter-model.
 - 2-expansion : (man(0) ⇒ mortal(0)). (man(1) ⇒ mortal(1)).man(Socrates) ⇒ mortal(Socrates) We may interpret Socrates as 0 or 1, but neither yields a counter-model.
- What can you conclude ? Nothing! Except that this formula is satisfiable.

Overview

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization

Motivation, properties and examples

Definitions and procedure

Conclusion

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization

Motivation, properties and examples

Definitions and procedure

Conclusion

Introduction

In first-order logic, there is **no** algorithm for deciding whether a formula is valid or not.

Introduction

In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Semi-decision algorithm:

- 1. If it terminates then it correctly decides whether the formula is valid or not.
 - When the formula is valid, the decision generally comes with a proof.
- 2. If the formula is valid, then the program terminates. However, the execution can be long!

Introduction

In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Semi-decision algorithm:

- 1. If it terminates then it correctly decides whether the formula is valid or not.
 - When the formula is valid, the decision generally comes with a proof.
- 2. If the formula is valid, then the program terminates. However, the execution can be long!

Note that if the formula is not valid, termination is not guaranteed.

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization

Motivation, properties and examples

Definitions and procedure

Conclusion

Jacques Herbrand (1908-1931)

- Works in number fields
- ▶ 1930 : reduces the validity of a first-order formula to a set of propositional formulas
- Correspondence with Gödel about the consistency of arithmetic

A La Mémoire de
Jacques HERBRAND
12 fev 1908 - 27 juil 1931
célèbre mathématicien français
décédé accidentellement
à l'âge de 23 ans
dans la descente des Bans
à Joccasion du centenaire de sa naissance
La Société Mathématique de France
LE 20 07.2008

Universal closure

Definition 5.1.1

Let C be a formula with free variables x_1, \ldots, x_n .

The universal closure of C, denoted by $\forall (C)$, is the formula $\forall x_1 ... \forall x_n C$.

Example 5.1.2

$$\forall (P(x) \land R(x,y)) =$$

Universal closure

Definition 5.1.1

Let C be a formula with free variables x_1, \ldots, x_n .

The universal closure of C, denoted by $\forall (C)$, is the formula $\forall x_1 ... \forall x_n C$.

Example 5.1.2

$$\forall (P(x) \land R(x,y)) =$$

$$\forall x \forall y (P(x) \land R(x,y))$$
 or $\forall y \forall x (P(x) \land R(x,y))$

Universal closure

Definition 5.1.1

Let C be a formula with free variables x_1, \ldots, x_n .

The universal closure of C, denoted by $\forall (C)$, is the formula $\forall x_1 \dots \forall x_n C$.

Example 5.1.2

$$\forall (P(x) \land R(x,y)) =$$

$$\forall x \forall y (P(x) \land R(x,y))$$
 or $\forall y \forall x (P(x) \land R(x,y))$

Let Γ be a set of formulae: $\forall (\Gamma) = \{ \forall (A) \mid A \in \Gamma \}$. For example: $\forall (\{ P(x), Q(x) \}) = \{ \forall x P(x), \forall x Q(x) \}$

Assumptions

We consider that

- ▶ the formulae do not contain neither =, nor \top or \bot (since their truth value is fixed)
- every signature contains at least one constant (add an arbitrary constant a if need be.)

Definition 5.1.4

1. The Herbrand universe D_{Σ} is the set of closed terms (*i.e.*, without variable) over Σ .

Remark: this set is never empty, since $a \in D_{\Sigma}$.

Definition 5.1.4

1. The Herbrand universe D_{Σ} is the set of closed terms (*i.e.*, without variable) over Σ .

Remark: this set is never empty, since $a \in D_{\Sigma}$.

2. The Herbrand base \boldsymbol{B}_{Σ} is the set of closed atomic formulae over Σ .

Definition 5.1.4

1. The Herbrand universe D_{Σ} is the set of closed terms (*i.e.*, without variable) over Σ .

Remark: this set is never empty, since $a \in D_{\Sigma}$.

2. The Herbrand base \boldsymbol{B}_{Σ} is the set of closed atomic formulae over Σ .

Example 5.1.5

1. Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$
: $D_{\Sigma} = \{a, b\}$ and

F. Prost et al (UGA) Herbrand's Theorem March 2023 10 / 43

Definition 5.1.4

1. The Herbrand universe D_{Σ} is the set of closed terms (*i.e.*, without variable) over Σ .

Remark: this set is never empty, since $a \in D_{\Sigma}$.

2. The Herbrand base \boldsymbol{B}_{Σ} is the set of closed atomic formulae over Σ .

Example 5.1.5

1. Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$
: $D_{\Sigma} = \{a, b\}$ and

$$B_{\Sigma} = \{P(a), P(b), Q(a), Q(b)\}.$$

2. Let
$$\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}: D_{\Sigma} = \{f^{n}(a) \mid n \in \mathbb{N}\}$$
 and

10 / 43

Definition 5.1.4

1. The Herbrand universe D_{Σ} is the set of closed terms (*i.e.*, without variable) over Σ .

Remark: this set is never empty, since $a \in D_{\Sigma}$.

2. The Herbrand base \boldsymbol{B}_{Σ} is the set of closed atomic formulae over Σ .

Example 5.1.5

1. Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$
: $D_{\Sigma} = \{a, b\}$ and

$$B_{\Sigma} = \{P(a), P(b), Q(a), Q(b)\}.$$

2. Let
$$\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}: D_{\Sigma} = \{f^{n}(a) \mid n \in \mathbb{N}\}$$
 and

$$B_{\Sigma} = \{ P(f^n(a)) \mid n \in \mathbb{N} \}$$

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization

Motivation, properties and examples

Definitions and procedure

Conclusion

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$.

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$.

The Herbrand interpretation $H_{\Sigma,E}$ consists of the domain D_{Σ} and:

1. Constants symbols s are mapped to themselves.

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$.

- 1. Constants symbols s are mapped to themselves.
- 2. If **s** is a function symbol and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma}} = (t_1, \ldots, t_n) = s(t_1, \ldots, t_n)$.

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$.

- 1. Constants symbols s are mapped to themselves.
- 2. If **s** is a function symbol and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma}, F}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n)$.
- 3. If *s* is a propositional variable, $s_{H_{\Sigma}} = 1$ (true) iff $s \in E$.

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$.

- 1. Constants symbols s are mapped to themselves.
- 2. If s is a function symbol and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma, E}}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n)$.
- 3. If s is a propositional variable, $s_{H_{\Sigma,E}} = 1$ (true) iff $s \in E$.
- 4. If s is a relation symbol then $s_{\mathcal{H}_{\Sigma,E}} = \{(t_1,\ldots,t_n) \mid s(t_1,\ldots,t_n) \in E\}.$

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$.

The Herbrand interpretation $H_{\Sigma,E}$ consists of the domain D_{Σ} and:

- 1. Constants symbols *s* are mapped to themselves.
- 2. If s is a function symbol and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma, \mathcal{E}}}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n)$.
- 3. If s is a propositional variable, $s_{H_{\Sigma,E}} = 1$ (true) iff $s \in E$.
- 4. If s is a relation symbol then $s_{H_{\Sigma,E}} = \{(t_1,\ldots,t_n) \mid s(t_1,\ldots,t_n) \in E\}.$

Another way to put it:

- ► Terms are interpreted as themselves.
- E is the set of true atomic formulae.

Example 5.1.8

Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$

The Herbrand universe is $D_{\Sigma} = \{a, b\}$.

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation H where:

Example 5.1.8

Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$

The Herbrand universe is $D_{\Sigma} = \{a, b\}$.

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation H where:

- constants a and b are mapped to themselves and
- ▶ $P_H = \{b\}$ and $Q_H = \{a\}$.

Universal closure and Herbrand model

Theorem 5.1.16

Let Γ be a set of formulae with no quantifier over the signature Σ .

 $\forall (\Gamma) \text{ has a model} \\ \textit{if and only if} \\ \forall (\Gamma) \text{ has a model which is a Herbrand interpretation}.$

- ► Proof: Cf. handout course notes (just choose the "right" E)
- ► Consequence: no need to look for another model!

Example

Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$

Let I be the interpretation of domain $\{0,1\}$ where:

- ► $a_l = 0, b_l = 1,$
- $ightharpoonup P_l = \{1\} \text{ and } Q_l = \{0\}.$

Example

Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$

Let *I* be the interpretation of domain $\{0,1\}$ where:

- ► $a_l = 0, b_l = 1,$
- $ightharpoonup P_l = \{1\} \text{ and } Q_l = \{0\}.$

The Herbrand universe is still $D_{\Sigma} = \{a, b\}$.

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation H where:

- Constants a and b are mapped to themselves
- ► $P_H = \{b\}$ and $Q_H = \{a\}$.

I is a model of a set $\forall (\Gamma)$ of formulae iff *H* is a Herbrand model of $\forall (\Gamma)$.

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization

Motivation, properties and examples

Definitions and procedure

Conclusion

Herbrand's Theorem

Theorem 5.1.17

Let Γ be a set of formulae with no quantifiers over signature Σ .

 $\forall (\Gamma)$ has a model if and only if

Every finite set of closed instances of formulae of Γ has a propositional model $B_{\Sigma} \to \{0,1\}$.

Reminders:

- $ightharpoonup \Sigma$ contains at least one constant *a* and no = sign
- ► Instantiate = substitute each variable by a term

Other version of Herbrand's Theorem

Corollary 5.1.18

Let Γ be a set of formulae without quantifier over signature Σ .

 $\forall (\Gamma)$ is unsatisfiable

if and only if

There is a finite unsatisfiable set of closed instances. of formulae taken from F

Proof.

Negate each side of the equivalence of the previous statement of Herbrand's theorem.

F. Prost et al (UGA) Herbrand's Theorem March 2023 18 / 43

Let Γ be a finite set of formulae with no quantifier.

We enumerate the set of closed instances of the formulae of Γ and:

Let Γ be a finite set of formulae with no quantifier.

We enumerate the set of closed instances of the formulae of Γ and:

1. if we find an unsatisfiable set, then $\forall (\Gamma)$ is unsatisfiable.

Let Γ be a finite set of formulae with no quantifier.

We enumerate the set of closed instances of the formulae of Γ and:

- 1. if we find an unsatisfiable set, then $\forall (\Gamma)$ is unsatisfiable.
- 2. if we have enumerated all of them without contradiction (for a Σ *without functions*), then $\forall (\Gamma)$ is satisfiable.

Let Γ be a finite set of formulae with no quantifier.

We enumerate the set of closed instances of the formulae of Γ and:

- 1. if we find an unsatisfiable set, then $\forall (\Gamma)$ is unsatisfiable.
- 2. if we have enumerated all of them without contradiction (for a Σ *without functions*), then $\forall (\Gamma)$ is satisfiable.
- 3. in the meantime, we cannot conclude:
 - \blacktriangleright either $\forall (\Gamma)$ is satisfiable (and we will never stop);
 - ightharpoonup or $\forall (\Gamma)$ is unsatisfiable but we haven't enumerated enough instances to reach a contradiction.

Let
$$\Gamma = \{P(x), Q(x), \neg P(a) \lor \neg Q(b)\}$$
 and $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}.$

Let
$$\Gamma = \{ P(x), Q(x), \neg P(a) \lor \neg Q(b) \}$$
 and $\Sigma = \{ a^{f0}, b^{f0}, P^{r1}, Q^{r1} \}.$

$$D_{\Sigma} = \{a,b\}.$$

The set $\{P(a), Q(b), \neg P(a) \lor \neg Q(b)\}$ of instances over the D_{Σ} is unsatisfiable, hence $\forall (\Gamma)$ is unsatisfiable.

Let
$$\Gamma = \{P(x) \lor Q(x), \neg P(a), \neg Q(b)\}$$

Let
$$\Gamma = \{P(x) \lor Q(x), \neg P(a), \neg Q(b)\}$$

The set of all the instances over D_{Σ} is:

$$\{P(a) \lor Q(a), P(b) \lor Q(b), \neg P(a), \neg Q(b)\}$$

It has a propositional model characterised by $E = \{P(b), Q(a)\}.$

Hence the Herbrand interpretation associated to *E* is a model of $\forall (\Gamma)$.

Let
$$\Gamma = \{P(x), \neg P(f(x))\}$$
 and $\Sigma = \{a^{f0}, f^{f1}, P^{f1}\}.$

Let
$$\Gamma = \{P(x), \neg P(f(x))\}$$
 and $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}.$

$$D_{\Sigma} = \{ f^n(a) | n \in \mathbb{N} \}.$$

The set $\{P(f(a)), \neg P(f(a))\}$ is unsatisfiable, hence $\forall (\Gamma)$ is unsatisfiable.

Let
$$\Gamma = \left\{ \begin{array}{l} \neg P(a), \\ P(x) \lor \neg P(f(x)), \\ P(f(f(a))) \end{array} \right\}$$

Let
$$\Gamma = \left\{ \begin{array}{l} \neg P(a), \\ P(x) \lor \neg P(f(x)), \\ P(f(f(a))) \end{array} \right\}$$

$$\left\{\begin{array}{l} \neg P(a), \\ P(a) \lor \neg P(f(a)), \\ P(f(a)) \lor \neg P(f(f(a))), \\ P(f(f(a))) \end{array}\right\} \text{ is unsatisfiable, hence } \forall (\Gamma) \text{ too.}$$

Let
$$\Gamma = \left\{ \begin{array}{l} \neg P(a), \\ P(x) \lor \neg P(f(x)), \\ P(f(f(a))) \end{array} \right\}$$

$$\left\{ \begin{array}{l} \neg P(a), \\ P(a) \lor \neg P(f(a)), \\ P(f(a)) \lor \neg P(f(f(a))), \\ P(f(f(a))) \end{array} \right\} \text{ is unsatisfiable, hence } \forall (\Gamma) \text{ too.}$$

Remark: note that we had to consider 2 instances (x := a then x := f(a)) of the second formula of Γ to obtain a contradiction.

Let
$$\Gamma = \left\{ \begin{array}{l} R(x,s(x)), \\ R(x,y) \wedge R(y,z) \Rightarrow R(x,z), \\ \neg R(x,x) \end{array} \right\}$$
 and $\Sigma = \{a^{f0}, s^{f1}, R^{f2}\}.$

Let
$$\Gamma = \left\{ egin{aligned} R(x,s(x)), \\ R(x,y) \wedge R(y,z) &\Rightarrow R(x,z), \\ \neg R(x,x) \end{aligned} \right\}$$
 and $\Sigma = \{a^{f0}, s^{f1}, R^{f2}\}.$

$$D_{\Sigma} = \{s^n(a) \mid n \in \mathbb{N}\}$$
. This is an infinite domain.

Every finite set of instances of formulae of Γ has a model: the enumeration will never stop.

$$\text{Let } \Gamma = \left\{ \begin{array}{l} R(x,s(x)), \\ R(x,y) \wedge R(y,z) \Rightarrow R(x,z), \\ \neg R(x,x) \end{array} \right\} \begin{array}{l} n < n+1 \\ x < y < z \Rightarrow x < z \\ \neg (x < x) \end{array}$$
 and $\Sigma = \{ a^{f0}, s^{f1}, R^{r2} \}.$

 $D_{\Sigma} = \{s^n(a) \mid n \in \mathbb{N}\}$. This is an infinite domain.

Every finite set of instances of formulae of Γ has a model: the enumeration will never stop.

Indeed, $\forall (\Gamma)$ has an infinite model: the interpretation I of domain \mathbb{N} with $a_I = 0$, $s_I(n) = \frac{n+1}{n}$ and $R_I(x,y) = \frac{x}{n} < \frac{y}{n}$.

Let
$$\Gamma = \left\{ egin{aligned} R(x,s(x)), & \\ R(x,y) \wedge R(y,z) \Rightarrow R(x,z), \\ \neg R(x,x) & \end{aligned} \right\}$$
 and $\Sigma = \{a^{f0}, s^{f1}, R^{f2}\}.$

$$D_{\Sigma} = \{s^n(a) \mid n \in \mathbb{N}\}$$
. This is an infinite domain.

Every finite set of instances of formulae of Γ has a model: the enumeration will never stop.

Indeed, $\forall (\Gamma)$ has an infinite model: the interpretation I of domain $\mathbb N$ with $a_I = \mathbf 0$, $s_I(n) = \frac{n+1}{n}$ and $R_I(x,y) = \frac{x}{n} < \frac{y}{n}$.

Remark: $\forall (\Gamma)$ has no finite model, i.e., it is useless to look for one by n-expansions.

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization

Motivation, properties and examples

Definitions and procedure

Conclusion

Introduction

Herbrand's theorem applies to the universal closure of a set of formulae with no quantifier.

Introduction

Herbrand's theorem applies to the universal closure of a set of formulae with no quantifier.

For formulae with existential quantification, we use skolemization (Thoralf Albert Skolem).

Introduction

Herbrand's theorem applies to the universal closure of a set of formulae with no quantifier.

For formulae with existential quantification, we use skolemization (Thoralf Albert Skolem).

Skolemization

- transforms a set of closed formulae to the universal closure of a set of formulae with no quantifier.
- preserves the existence of a model (satisfiability).

Example 5.2.1

The formula $\exists x P(x)$ is skolemized as P(a).

We note the following relations between the two formulae:

Example 5.2.1

The formula $\exists x P(x)$ is skolemized as P(a).

We note the following relations between the two formulae:

1. $\exists x P(x)$ is a consequence of P(a)

Example 5.2.1

The formula $\exists x P(x)$ is skolemized as P(a).

We note the following relations between the two formulae:

- 1. $\exists x P(x)$ is a consequence of P(a)
- 2. P(a) is not a consequence of $\exists x P(x)$, but a model of $\exists x P(x)$ "provides" a model of P(a).

(Just choose to interpret a as an element of P_{l} .)

A first-order formula is in normal form if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

A first-order formula is in normal form if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

A first-order formula is in normal form if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

Example 5.2.4

▶ The formula $\forall x P(x) \lor \forall x Q(x)$ is

A first-order formula is in normal form if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

- ► The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper.**
- ▶ The formula $\forall x P(x) \lor \forall y Q(y)$ is

A first-order formula is in normal form if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

- ► The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper.**
- ▶ The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper.**
- ▶ The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x,y))$ is

A first-order formula is in normal form if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

- ► The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper.**
- ▶ The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper.**
- ▶ The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x,y))$ is **not proper.**
- ► The formula $\forall x (P(x) \Rightarrow \exists y R(x, y))$ is

A first-order formula is in normal form if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

- ► The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper.**
- ▶ The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper.**
- ▶ The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x,y))$ is **not proper.**
- ► The formula $\forall x (P(x) \Rightarrow \exists y R(x,y))$ is **proper.**

Definition 5.2.5 (skolemization)

Let A be a closed formula:

Definition 5.2.5 (skolemization)

Let A be a closed formula:

1. B = Normalize A

Definition 5.2.5 (skolemization)

Let A be a closed formula:

- 1. B = Normalize A
- 2. C = Make B proper

Definition 5.2.5 (skolemization)

Let A be a closed formula:

- 1. B = Normalize A
- 2. C = Make B proper
- 3. D= Eliminate existential quantifiers from C. This transformation only preserves the existence of a model.

F. Prost et al (UGA) Herbrand's Theorem March 2023 29 / 43

How to skolemize a closed formula A?

Definition 5.2.5 (skolemization)

Let A be a closed formula:

- 1. B = Normalize A
- 2. C = Make B proper
- D= Eliminate existential quantifiers from C.
 This transformation only preserves the existence of a model.
- 4. E = Remove the universal quantifiers from D.

E is the Skolem form of A.

(E is a normal formula with no quantifier.)

1. Normalization

- Eliminate the equivalences
- 2. Eliminate the implications
- 3. Move the negations towards the atomic formulae

Rules

1. et 2. As in propositional logic:
$$\begin{cases} A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A) \\ A \Rightarrow B \equiv \neg A \lor B \end{cases}$$

3. As in propositional logic:
$$\begin{cases} \neg \neg A \equiv A \\ \neg (A \land B) \equiv \neg A \lor \neg B \\ \neg (A \lor B) \equiv \neg A \land \neg B \end{cases}$$

Furthermore
$$\begin{cases} \neg \forall xA \equiv \exists x \neg A \\ \neg \exists xA \equiv \forall x \neg A \end{cases}$$

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is:

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is:

First, elimination of \Leftrightarrow :

$$\forall y ((\neg \forall x P(x,y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x,y)))$$

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is:

First, elimination of \Leftrightarrow :

$$\forall y((\neg \forall x P(x,y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x,y)))$$

then, move \neg :

$$\forall y((\exists x \neg P(x,y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x,y)))$$

2. Transformation to a proper formula

Rename bound variables, e.g., by choosing new names.

Example 5.2.8

▶ The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to

2. Transformation to a proper formula

Rename bound variables, e.g., by choosing new names.

Example 5.2.8

▶ The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to

$$\forall x P(x) \lor \forall y Q(y)$$

▶ The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x,y))$ is changed to

2. Transformation to a proper formula

Rename bound variables, e.g., by choosing new names.

Example 5.2.8

▶ The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to

$$\forall x P(x) \lor \forall y Q(y)$$

▶ The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x,y))$ is changed to

$$\forall x (P(x) \Rightarrow \exists z Q(z) \land \exists y R(x,y))$$

Reminder: renaming of bound variables

Theorem 4.4.3

Let Q be a quantifier.

If y does not appear in Qx A then: Qx $A \equiv Qy A < x := y > 0$

Reminder: renaming of bound variables

Theorem 4.4.3

Let Q be a quantifier.

If y does not appear in Qx A then : Qx $A \equiv Qy A < x := y > 0$

Example 4.4.4

- $\blacktriangleright \forall x \ p(x,z) \not\equiv \forall z \ p(z,z)$

3. Elimination of existential quantifiers

Let $\exists yB$ be a sub-formula of a closed normal and proper formula A. Let $x_1, \dots x_n$ be the free variables of $\exists yB$.

Let f be a new symbol (if n = 0, then f is a constant) and replace $\exists yB$ by $B < y := f(x_1, \dots x_n) > \text{in } A$.

3. Elimination of existential quantifiers

Let $\exists yB$ be a sub-formula of a closed normal and proper formula A. Let $x_1, \dots x_n$ be the free variables of $\exists yB$.

Let f be a new symbol (if n = 0, then f is a constant) and replace $\exists yB$ by $B < y := f(x_1, \dots x_n) > \text{in } A$.

Theorem 5.2.9

The resulting formula A' is a closed, normal and proper formula such that:

- 1. A is a consequence of A'
- 2. If A has a model then A' has an identical model (up to the truth value of f).

Remark 5.2.10

The resulting formula A' remains closed, normal and proper.

Hence, by repeatedly "applying" the theorem, choosing a **new** symbol for each eliminated quantifier, one can get:

- ▶ a closed, normal, proper formula B without ∃
- ▶ such that *A* has a model if and only if *B* has one.

By eliminating existential quantifiers in the formula $\exists x \forall y P(x,y) \land \exists z \forall u \neg P(z,u)$ we obtain

By eliminating existential quantifiers in the formula $\exists x \forall y P(x, y) \land \exists z \forall u \neg P(z, u)$ we obtain

$$\forall y P(a,y) \wedge \forall u \neg P(b,u).$$

It is easy to observe that this formula has a model.

By eliminating existential quantifiers in the formula $\exists x \forall y P(x,y) \land \exists z \forall u \neg P(z,u)$ we obtain

$$\forall y P(a, y) \land \forall u \neg P(b, u).$$

It is easy to observe that this formula has a model.

But if we mistakenly eliminate both \exists using the same constant a, we obtain $\forall y P(a, y) \land \forall u \neg P(a, u)$

which is unsatisfiable (it entails P(a, a) and $\neg P(a, a)$).

By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain

By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain

two possible solutions:

ightharpoonup is we eliminate first $\exists x$:

$$\forall y \exists z P(a, y, z)$$

By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain

two possible solutions:

ightharpoonup is we eliminate first $\exists x$:

$$\forall y \exists z P(a, y, z) \rightarrow \forall y P(a, y, f(y))$$

By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain

two possible solutions:

ightharpoonup is we eliminate first $\exists x$:

$$\forall y \exists z P(a, y, z) \rightarrow \forall y P(a, y, f(y))$$

▶ if we eliminate first $\exists z$:

$$\exists x \forall y P(x, y, g(x, y))$$

By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain

two possible solutions:

ightharpoonup is we eliminate first $\exists x$:

$$\forall y \exists z P(a, y, z) \rightarrow \forall y P(a, y, f(y))$$

▶ if we eliminate first $\exists z$:

$$\exists x \forall y P(x, y, g(x, y)) \rightarrow \forall y P(b, y, g(b, y))$$

By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain

two possible solutions:

ightharpoonup is we eliminate first $\exists x$:

$$\forall y \exists z P(a, y, z) \rightarrow \forall y P(a, y, f(y))$$

▶ if we eliminate first $\exists z$:

$$\exists x \forall y P(x, y, g(x, y)) \rightarrow \forall y P(b, y, g(b, y))$$

The existence of a model is preserved in both cases.

4. Transformation into a universal closure

Theorem 5.2.13

Let *A* be a closed, normal, proper formula without existential quantifier. Let *B* be the formula obtained by removing all the \forall from *A*.

A is equivalent to $\forall (B)$.

4. Transformation into a universal closure

Theorem 5.2.13

Let *A* be a closed, normal, proper formula without existential quantifier. Let *B* be the formula obtained by removing all the \forall from *A*.

A is equivalent to $\forall (B)$.

Proof.

What we are doing is actually applying repeatedly replacements such as

$$\blacktriangleright (\forall xC) \land D \equiv \forall x(C \land D)$$

$$(\forall xC) \lor D \equiv \forall x(C \lor D)$$

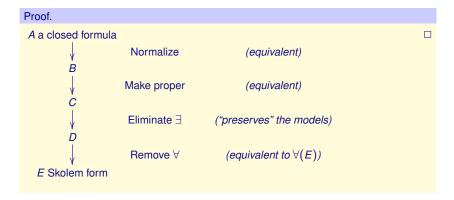
where x is not free in D

F. Prost et al. (UGA) Herbrand's Theorem March 2023 38 / 43

Property of skolemization

Property 5.2.14

Let A be a closed formula and E the Skolem form of A. A has a model if and only if $\forall (E)$ has a model.



Let
$$A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$$
. We skolemize $\neg A$.

Let
$$A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$$
. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

Let
$$A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$$
. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$$

Let
$$A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$$
. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$$

3. The existential quantifier is "replaced" by a constant:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$$

Let
$$A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$$
. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$$

3. The existential quantifier is "replaced" by a constant:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$$

4. The universal quantifiers are removed:

$$(\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(a).$$

Let
$$A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$$
. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$$

3. The existential quantifier is "replaced" by a constant:

$$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$$

4. The universal quantifiers are removed:

$$(\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(a).$$

The instantiation x := a, y := a yields $(\neg P(a) \lor Q(a)) \land P(a) \land \neg Q(a)$.

Hence (Herbrand's theorem) the Skolem form of $\neg A$ is unsatisfiable.

Since skolemization preserves satisfiability, $\neg A$ is unsatisfiable.

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization

Motivation, properties and examples Definitions and procedure

Conclusion

Today

- ► To prove that *A* is satisfiable :
 - ► Look for a (finite) model by *n*-expansions
- ► To prove that A est unsatisfiable :
 - Skolemisation
 - ▶ Look for a (finite) unsatisfiable set of instances over D_{Σ}
 - ► Herbrand's theorem: then A is unsatisfiable too
- These methods are non terminating and limited to finite interpretations
- ▶ To find a counter-model or to prove the validity of A, we proceed as before with $\neg A$

Next course

First-order deductive method:

- Clausal form
- Unification
- ► First-order resolution
- Consistency
- Completeness