
Enriching a Relational Data Warehouse by

Integrating XML Data: Report on the e.dot

Project Applied to Microbiology

Helene Gagliardi2, Ollivier Haemmerlé1, Damiano Migliori2, Nathalie
Pernelle2, Marie-Christine Rousset2 and Fatiha Säıs2

1 UMR MIA INA P-G/INRA 16 rue Claude Bernard,F-75231 Paris Cedex 05, France
2 Université de Paris-Sud, LRI, Bâtiment 490,

F-91405 Orsay Cedex, France

Abstract. In this paper we present two methods for integrating (and
querying) data in a relational setting. These methods have been moti-
vated and validated by a knowledge management application on Micro-
biology, the edot project. The aim of e.dot project is to enrich an ex-
isting relational database storing microbiological data dealing with food
risk assessment with data resulting from a continuous web technologic
watch. The data coming from the web are put in XML format and must
be queried by the same relational interface as the pre-existing relational
database.
The first method allows to integrate possibly heterogenous XML data
by relational views over the schema of the existing database. These re-
lational views are not materialized but we provide a query rewriting
algorithm which decompose a select-project-join query into a set of local
queries expressed in Xquery.
The second method focus on the data tables contained in the documents
found on the Web. The method takes advantage of the presence of rela-
tional structures to automatically transform these data in order to make
them compatible with the schema of the existing database . Those tables
are semantically enriched by means of tags and values coming from the
ontology of the application.

1 Introduction

Our work deals with the automatic construction of domain specific data ware-
houses. More precisely, our goal is to integrate automatically information found
on the Web with existing information stored in different databases.

Our application domain concerns the microbiological risk in food products. In
order to understand and to prevent such risks, the Sym’Previus project has been
launched by French governmental institutions. During the Sym’Previus project,
the MIEL++ system has been built [Buche et al.2004]. MIEL++ is a tool based
on a database, containing experimental results and industrial results about the
behaviour of pathogenic germs in food products depending on several parame-
ters, such as the temperature, the pH, etc. The Sym’Previus database is incom-
plete by nature since the number of possible experiments is potentially infinite.

The work presented in this article takes place within the e.dot project, which is a
cooperation between the INA P-G/INRA MIA group, the Xyleme start-up, the
IASI-Gemo team (LRI) and the Verso-Gemo team (INRIA-Futurs). The goal of
the e.dot project is to palliate the incompleteness of the database by comple-
menting it with data automatically extracted from the Web. The drawback of
such a technique is that the way the data are expressed on the Web is very het-
erogeneous. For example, the terms used in the scientific articles in microbiology
can be different from an article to another. A way of solving that heterogeneity
issue can be to query the existing database and the Web documents through a
mediated architecture based on a domain ontology.

Two methods have been adjusted in order to make possible the query pro-
cessing on the data extracted from the Web.

The first one proposes a generic information integration environment that
permits to query in a relational way a collection of heterogeneous data coming
from XML sources, giving the users the impression that they are interrogating
a centralized relational system. In contrast with most existing works on trans-
forming XML data into relational data (see [KKN03] for a survey), we do not
materialize the XML data into relational views, but we define relational views
that remain virtual: they are used to provide a relational schema to users who
thus can query it by relational queries while the data remain stored in XML
format possibly conform to heterogeneous DTDs. We define a relational view of
an XML source corresponding to a given DTD by associating an XQuery query
XV with a relation R(A1, ,An) of the relational Reference Schema. There can
be several views XV1, , XVk over the same given relation R(A1, ,An). A same
XML document doc.xml (or DTD doc.dtd) can correspond to different relations
R1,., Rp: for each relation Ri, there exists an XV(Ri) query and all those XR(Ri)
queries are executable against the same doc.xml (or doc.dtd). It is important to
point out that in this method such views remain virtual.

The second method propose to translate the data in order to make them
compatible with the Sym’Previus ontology used in the mediated schema. This
method exclusively focus on documents in Html or Pdf format which contain
data tables; actually data tables are very common presentation scheme for au-
thors in order to describe experimental results, statistical or other synthetic data
in scientific articles. In our system, these tables are extracted and transformed
in a generic XML representation called XTab. These documents are then seman-
tically enriched and stored in the data warehouse. In our approach, we want this
transformation to be as automatic and flexible as possible, only driven by the
ontology and the way the data have been structured in the original table. Thus,
we have defined a Document Type Definition named SML (Semantic Markup
Language) which can automatically be generated using the relational Reference
Schema of the ontology and which can deal with additional or incomplete infor-
mation in a semantic relation, ambiguities or possible interpretation errors. This
approach has been implemented and tested on real data from the e.dot project.

The paper is structured as follows. In Section 2, we present the first method.
We describe first the relational views of XML documents that we consider and

we explain how XQuery queries are automatically generated from manual map-
pings provided by the administrator. Then, we describe the relational queries
that we consider. Finally, we describe the reformulation algorithm that we have
implemented in order to transform a relational query into a union of XQuery
queries directly executable against the available XML data.

In Section 3, we present the second method. We first introduce the XTab
format, the Sym’Previus ontology, and a simple example in order to explain the
aims of the semantic enrichment task. Then we introduce the way we identify
the ontology terms represented by the columns of a table. We also present the
identification of semantic relations in data table and explain the instantiation of
such semantic relation. We then give an idea of the possible use of the semantic
enrichment during the query processing. Finally, some experimental results are
shown.

In the conclusion, we present related works and we give future directions for
both methods.

2 Information integration by querying relational views of

XML data

This first method allows to integrate heterogeneous XML data by relational
views over the schema of the existing database. This information integration
system can be illustrated by Figure 1. In Figure 2 we present two XML files con-
form to two different DTDs but related to the same domain (microbiology) and
the relational view of the content of those documents in terms of the Relational
Schema of reference of the e.dot application.

2.1 Mapping XML documents in relations of the Reference Schema

There are different classes of XML-to-relational mappings. User-defined: where
the user specifies the mapping. Generic: fixed mappings, data and schema inde-
pendent, like storing all the edges in a single table [Florescu & Kossman1999].
Data-driven: mappings inferred from data, mining the document looking for com-
mon regular patterns, building on such patterns. Schema/DTD-driven: using the
DTD or the schema to decompose the document in tables [Lee & Chu2001]. Cost-
based: mapping inferred from schema, query workload and data [Bohannon et al.2002].
No solution is broadly better then the others: it depends strongly on the infor-
mation system requirements. Our mapping is a trade-off between a user-defined
and a DTD-driven mapping. We are given a set of XML documents (conform to
some DTDs) and the relational Reference Schema RS. Mappings from a relation
of RS to XML documents are expressed by queries defined in XQuery. The user
defined aspect is to choose which DTD tree’s nodes (N1,, Nn) associate with a
relation R(A1,,An) in RS. We will not consider this aspect here, since it is out
of the scope of this paper. Once associated the attributes A1,,An to n nodes on

Fig. 1. A top-view of the mediator

the DTD tree (see figure 4 for an example), we automatically build the XQuery
query referring to the DTD structure, ensuring the integrity of the representa-
tion of the hierarchical XML information in flat 1-to-1 tuples’ relations. XQuery
is a standard XML query language [Chamberlin et al.2005] elaborated by the
W3C. The XQuery data model views an XML document as an ordered labelled
tree. For navigating in a document, XQuery uses path expressions, whose syntax
is borrowed from the abbreviated syntax of XPath [Clark & DeRose1999]. The
evaluation of a path expression on an XML document returns a list of informa-
tion items, whose order is dictated by the order of the corresponding elements
in the document. Typical query expressions of XQuery are FLWR expressions
(for-let-where-return). Typically, a let binds a variable to a (path) expression,
possibly nested for expressions make variables iterate over the result of (path)
expressions, a where specifies restrictions on the variables, and the return con-
structs new XML elements as output of the query.

Describing relational views using XQuery is an emerging approach that presents
several positive features. We have chosen it as mapping language mainly for its
declarative key aspect because separating the logic of the mapping from where
and how it is processed makes the mediator flexible to the evolution of the infor-
mation system. Furthermore the rich XQuery expressive power makes it possible
to extend the general mapping lines defined in this paper to the special cases
represented by an atypical use of XML syntax. The downside of using XQuery as

Fig. 2.

mapping language is that at the execution time it could bring very poor results

in terms of performance. In section 2.3 we describe in more details the criteria
we adopt to improve performances.

Fig. 3.

A mapping from a relation R(A1,,An) of RS to an XML document my-
Doc.xml conforming a DTD d is a query XV(R(A1,, An),d) defined in XQuery
as follows :

An XQuery variable $Ai is associated with each attribute Ai from relation
R(A1,,An). The FOR clauses (lines 3-6) define how to navigate the document,
the LET clauses (lines 7-9) bind the $Ai variables to the appropriate paths. The
dependencies between the paths expressions path1,...pathk, path’1,...,path’n are
defined in order to fix the context of the tuple we want to extract. When in
a DTD Z there is a ’*’ or a ’+’ operator associated with a node Y, it means
that a document valid on the DTD Z can present many nodes Y. Each subtree
having Y as root node represents the formal context we want to preserve. For
example in the document lab-data2004.xml presented in Figure 2 (its DTD is
in Figure 3), there are two <ANALYSIS-RECORD> nodes. The relation Food-
productMicroorganismTemperature is mapped on three nodes belonging to the
subtree having <ANALYSIS-RECORD> as root (see Figure 3). We want all
the triples of values in the tuples (Foodproduct, Microorganism, Temperature)

XV(R(A1,, An) ,d):

1. <TABLE>
2. let $R := doc(myDoc.xml)/root
3. for $L1 in $R/path1
4. for $L2 in path2
5. 6. for $Lk in pathk
7. let $A1 in path’n
8.
9. let $An in path’n
10. return
11. <TUPLE>
12. <A1> $A1/text() </A1>
13. <A2> $A2/text() </A2>
14.
15. <An> $An/text() </An>
16. <TUPLE>
17. </TABLE>

belonging to the same sub-trees. Still referring to our example we consider as
a result from a wrong mapping the tuple (”Tomato sauce“, ”listeria monocyto-
genes“, ”16 C“) where the first two values come from the subtree <ANALYSIS-
RECORD idNum=”2003/01“> and the third value, the temperature, from the
subtree <ANALYSIS-RECORD idNum=”2004/08“>. Such dependencies be-
tween paths are defined by visiting the DTD’s tree. Once associated a node in
the DTD’s tree with each attribute in the relation R(A1,,An), as in the exam-
ple in figure 9, the mapping XV(R(A1,,An),d) is generated automatically by
applying the DTD tree recursive visit algorithm as follows:

DTD tree recursive visit algorithm:
BEGIN from the root node: VisitNode(root, root)

VisitNode(actual node , branching ancestor):

IF actual node is a ’+’ or a ’*’ node
Add a for clause on path from
branching ancestor to actual node;
branching ancestor := actual node;

IF actual node is associated with a relational attribute
Add a let clause on path from branching ancestor to ac-
tual node;

IF actual node is not a leaf
FOR EACH child k of actual node VisitNode(child k ,
branching ancestor);

In Figure 9 there is an example of the result of the algorithm above used
to produce the view XV(FoodproductMicroorganismTemperature, labData.dtd).
A view generated by the DTD tree recursive visit algorithm could present some
redundancies due to the fact that the visit associates an XQuery FOR with each
’+’ or ’*’ node in the DTD tree. Considering the tree that represents the mapping
visit strategy (see Figure 4), such redundancies can be eliminated respecting the
rules described above. In Figure 4, the nodes ”Branching-level-k” are related to
the homonym XQuery variables in XV, and a continuous arch between two nodes
B1 and B2 represents a FOR statement on variable V2 and a path depending
on V1 from the view XV

Rule 1 If between two nodes ”Branching-level-i” and ”Branching-level-j” there
is a simple path composed by h nodes, all the FOR instruction compos-
ing that path can be replaced in XV by a single FOR instruction between
”Branching-level-i” and ”Branching-level-j”.

Rule 2 If, given a node ”Branching-level-i”, in the subtree having ”Branching-
level-i” as root there is no LET arch, all the FOR instruction under ”Branching-
level-i” can be eliminated.

Fig. 4.

2.2 Queries over the Induced Relational Global Schema

In the previous section we have seen that given a set of XML documents, we
can define a set V of relational views of some of those documents: a (possibly
empty) set of relational views V(R)={XV(R(a1, , an), f1), , XV(R(a1, , an),
fm)} is associated with each relation R of the Reference Schema RS. The Global
Schema induced by those views is a subset of the Reference Schema RS defined
as follows.

Definition 1. (Induced Global Schema) Let RS be a relational Reference Schema
and V be a set of relational views over RS of a set of documents. The Global
Schema induced by V, denoted R(V,RS), is the set of relations from RS having
a non-empty associated set of relational views. In other words, R(V,RS) is com-
posed of all the relations of RS which have been mapped in at least one XML
document. For example, the induced global schema corresponding to the views on
XML documents presented in Figure 2 is:

R(V,RS) = { FoodproductMicroorganismTemperature, FoodproductFactor,
MicroorganismAtmpressure }

The induced global schema that is composed of the relations of interest for the
user of the XML base is the ”relational point of view” that the user has on the
XML base. It is presented to the user by means of a graphical user interface (see
Figure 5-interface A).

We propose to query the induced Global Schema by means of a standard
join-selection-projection query language. To be more precise, we propose to use
the following operations of the relational algebra: given RA(A1, , An) R, RB(B1,
, Bm) R(V,RS)

– RA Join RB on condition (Ai = Bj) for a given couple i,j
– Projection RA on {A’} subset of { A1, , An}
– Selection RA on (Boolean condition on Ak)

In the current version of the application, a Join is possible between two
tables and the user can set up multiple selection clauses on equi-conditions. The
queries are expressed by the user through a graphical user interface (see Figure
5-interface B) that passes to the underlying mediator the following elements: ”

– The two join operand relations RA(A1, , An) and RB(B1, , Bm) chosen
among those in the Induced Global Schema ”

– The list of attributes to project among {A1, , An,B1, , Bm} ”
– The (eventually empty) list of selection conditions.

The next section presents the way a relational query over the induced Global
Schema is reformulated into a union of XQuery queries, whose execution using
an XQuery engine provides the complete set of answers of the initial relational
query.

Fig. 5. Two GUI screenshots

2.3 Reformulation and evaluation of a relational query in XQuery

Using XQuery to map the XML documents to the relational views is very useful
in terms of logical independence of the mediator from the XML sources, but it
could easily bring to nested queries that tend to alter the system’s efficiency. In
addition it is important to pay attention in executing navigational queries over
very large amount of data because it can be critical even in native XML reposi-
tory that adopt sophisticated indexing techniques. Our query-reformulation al-
gorithm tries to respond to these performance requirements in two ways. We
decompose the Global query in the union of several local queries that can be
executed in parallel. Each local query involves locally no more than two docu-
ments with a significant optimisation in the context of a native XML repository.
Moreover every local query does not present nested queries. While the user can
access only the Induced Global Schema, the mediator keeps an internal repre-
sentation on how the Induced Global Schema is built on a composition of Local
Views, as in Figure 6. In addition it keeps information on how each relation R
from the Induced Global Schema is mapped in views XV(R,s)3 on each source s
where R has been mapped. Referring to figure 6.A it means that, for example,
the mediator knows how to map the relation RelA on the XML sources 1,2 and
4 in XQuery.

The Global extension of a relation from the Induced Global Schema corre-
sponding to the set of tuples that can be extracted from the available XML data
is defined as follows:

3 A view of the Relation R on a XML source s XV(R,s) is analogue to a view of the
Relation R on a document f XV(R,f) considered in section 2, considering the XML
source equivalent to an XML document.

Induced Global Schema RelA RelB RelC ... Relβ

XML source s1 XV(RelA,s1) XV(RelC,s1)

XML source s1 XV(RelA,s1) XV(RelC,s1)

XML source s1 XV(RelB,s3) XV(RelC,s1)

XML source s1 XV(RelA,s1) XV(RelC,s1) XV(Relβ,s4)

...

XML source sn XV(RelB,s3) XV(Rel,s4)

Fig. 6. A representation the way the Induced Global Schema is built on a composition
of local views.

Definition 2. (Global Extension) Let R(A1, , An) R(V,RS) be a relation of
the Global Schema induced by a set V(R(A1, , An)) of relational views over the
reference schema RS, where

V (R(A1, , An)) = XV 1(R(a1, , an), d1), ,XV m(R(a1, , an), dm)

The Global Extension GE(R) of R is the set of tuples :

GE(R) =
⋃

(1≤i≤m)

exec(XV (R(a1, , an), di),

where exec(XV(R(a1, , an)), di) is the set of tuples resulting from the ex-
ecution of the queries in XQuery defining the mapping XV on the document
di.

The Query Decomposition Algorithm is the core of the information integra-
tion system and the one we propose here makes it possible to produce joins
between data coming from different XML sources. Considering what we already
said we can decompose a join operation (RelA Join RelB) defined by the user by
a relational query on the Induced Global Schema into the operation on the global
extensions (GE(RelA) Join GE(RelB)), which are sets of tuples, as follows:

GE(RelA)JoinGE(RelB) =

⋃

(1≤i≤m)

exec(XV (RelA, di)) Join(
⋃

(1≤j≤m)

exec(XV (RelB, dj)))

in view of the fact that a join operation is a Cartesian product on two col-
lections of tuples plus a selection we can produce the subsequent equivalent
decomposition:

GE(RelA)JoinGE(RelB) =
⋃

i,j

(exec(XV (RelA, si)Joinexec(XV (RelB, sj))

The initial relational query (RelA Join RelB) defined by the user on the
Induced Global Schema, (and consequently to be executed on the whole set of
XML sources) is now reformulated in the union of several XQuery queries which
accomplish the (exec(XV(RelA,si) Join exec(XV(RelB,sj)) basic operation over
no more than two sources; we call such queries atomic join queries. (See Query
10 for an example)

Fig. 7.

The execution of the k atomic queries generated from the initial relational
query over the Global Schema generate k sets of matching tuples; these k sets of
tuples are put together by the mediator and returned to the user as an answer
table. The mediator internal functioning is summed up in Figure 7.

The execution of an atomic join query involves two nested queries:
exec(XV(RelA,si)) and ‡exec (XV(RelB,sj)) with an undesired temporary ma-
terialization of the Relational Views XV(RelA,si) and XV(RelB,sj) (example in
Query 9 and in Query 10). Using the XQuery equivalence rules, such a query can
be easily rearranged in an equivalent query where there is no temporary materi-
alization of the Relational Views XV. We use the same navigational statements
of the relational views XV(RelA,si) and XV(RelA,sj) (an example in Query 9
lines 3-10, Query 10 lines 3-7) directly in the navigational context of a single opti-
mized atomic-join-query (see Query 11). Our mediator implementation starting

from a relational query on the Global Schema produces directly a set of k opti-
mized atomic queries with no nested queries, that means materializing only the
tuples returned to the user in the answer table. An atomic join query can also
take care of the projection and selection specifications of the relational query set
up by the user by: 1) adding the selection Boolean condition in and-cascade to
the join condition into the WHERE clause (line 16 in the Query 11). 2) Choosing
which attributes return in the RETURN clause (lines 19-22 in the Query 11).

Fig. 8. Query1 -atomic join query (exec (XV(RelA, si) Join exec(XV(RelA,sj))

3 Information integration by semantically enriching data

tables

This second method focus on the data tables contained in the documents found
on the Web. The method takes advantage of the presence of relational structures
to automatically transform these data in order to make them compatible with
the schema of the existing database .

3.1 Preliminary notions

We first present the generic XML representation of tables – called XTab. Then
we introduce the ontology of the application domain. That section ends with a
very preliminary example of what the result of the semantic enrichment is.

Fig. 9. Query2-view XV(FoodproductMicroorganismTemperature , lab-data2004.xml)

Fig. 10. Query3 - view XV(FoodproductFactor, catalog.xml)

The XTab format The data tables are first represented in XML, using purely
syntactic tags that are domain-independent. The tables are automatically rep-
resented using a list of lines, each line being composed of a list of cells. Besides,
when it is possible, titles are extracted. This format called XTab has been de-
fined in the e.dot project [e.dot2004]. More complex structures of tables need
heuristics such as [Pivk, Cimiano, & Sure2004] in order to be translated into

Fig. 11. Query4 - optimized atomic join query (XV(RelA,si) Join XV(RelA,sj))

this simple XTab structure. These heuristics are not presented here. The XTab
representation of Figure 12 is shown in Figure 13.

Products pH values

Cultivated mushroom 5.00
Crab 6.60

Fig. 12. approximative pH of some food products

The Sym’Previus ontology The Sym’Previus project [sym] has developed an
ontology dedicated to the risk assessment domain. In order to exploit the data
tables and query them through the MIEL++ system – which is based on the
Sym’Previus ontology – we have to express data using the vocabulary stored in
that ontology. The Sym’Previus ontology is composed of:

<?xml version=”1.0” encoding=”UTF-8”
standalone=”no”?>
<table><title> <table-title>
approximative pH of some food products</table-title>
<column-title>Products</column-title>
<column-title>pH values</column-title></title>
<nb-col>2</nb-col>

<content>
<line>
<cell>cultivated mushroom</cell>
<cell>5.00</cell>
</line>
<line>
<cell>crab</cell>
<cell>6.60</cell>
</line>
</content></table>

Fig. 13. XTab Representation of figure 1

1. a term taxonomy which contains 428 terms of the domain (food, microor-
ganism, experimental factors, ...) which are organized by the specialization
relation �;

2. a relational Reference schema that contains 25 semantic relations between
terms of the taxonomy. A semantic relation r is characterized by its signa-
ture attrs(r) composed of the set of attributes of the relation. The elements
of attrs(r) belong to the term taxonomy. For instance, the relation foodFac-
torMicroorganism has the signature (food, factor, microorganism).

3.2 Very preliminary example

Thus, we enrich XTab documents with tags and values provided by the ontol-
ogy. More precisely, we have defined a representation formalism named SML
– Semantic Markup Language – where table lines are not represented by cells
anymore but by a set of semantic relations between columns.

Let us consider the semantic relation named foodPH which links a food prod-
uct with its pH value in the ontology. The aim of the enrichment is to reformulate
an XTab document such as Figure 13 in an SML document such as Figure 14.
In this SML document, the semantic relation foodPH which has been recognized
in the table is represented and instantiated using the table values.

In order to instantiate the relation, we try to associate one or several terms of
the taxonomy with each value of the table. If the value does not appear directly
in the taxonomy, we use mapping techniques in order to find similar terms. In
the example, the first column value crab belongs to the taxonomy. But the value
cultivated mushroom does not appear in the taxonomy; nevertheless, we propose
to associate mushroom with it thanks to a mapping procedure. This value is
represented in the SML tag < ontoV al > while the original value is kept using
the tag < originalV al >. Thus, the original value can be shown in the result of
a query, even if the query is asked on a value belonging to the ontology. This

<table> <title><table-title>
approximative pH of some food products </table-title>
<column-title> Products </column-title>
<column-title>pH values</column-title>...
</title> <content>
<rowRel>
<foodPH>
<food><ontoVal>mushroom</ontoVal>
<originalVal> cultivated mushroom </originalVal>
</food>
<ph><ontoVal/>
<originalVal>5.00</originalVal></ph> </foodPH>
</rowRel>
<rowRel>
<foodPH>
<food><ontoVal>crab</ontoVal>
<originalVal>crab</originalVal></food>
<ph> <ontoVal/><originalVal>6.60</originalVal> </ph>
</foodPH> </rowRel>
</content> </table>

Fig. 14. Simplified SML Representation of Figure 1

SML representation conforms to the SML DTD (Document Type Definition) we
have defined in [e.dot2004].

3.3 Identification of the columns of the data table

In order to extract the relations of the table, we perform two steps. The first
one, presented in this section, consists in identifying a term of the taxonomy
which represents each column of the data table. The second step, presented in
the next section, will consist in discovering semantic relations between data table
organized in columns.

The identification of the columns of the data table is based on two pieces of
information: the content of the column which is mainly used, and the title of the
column, which is used in case the content of the column is not helpful enough.

The content of the column is used as follows: we try to associate a term of
the ontology taxonomy with each value belonging to the column. Then we search
for common generalizers – ”subsumers“ of these terms. The use of a threshold
allows us to associate a generalizer with a given column even if we have not
recognized all the values of that column.

Definition 3. An A-term is a term of the taxonomy that appears at least one
time as an attribute of a relation signature in the relational reference schema of
the ontology. The set of all A-terms is noted AT.

We first try to find values of the columns that belong to the taxonomy or
that are included4 in one term of the taxonomy. We then look for an A-term
which subsumes almost all the values in the term taxonomy. First, an A-term

4 in the sense of the inclusion of sets of words, after a lemmatization step and without
taking the “empty” words (determiners or prepositions) into account

can be associated with a column Col if and only if the rate of the subsumed
values is greater than a given threshold th. The set of all A-terms that verify
this constraint is noted ATCandidate(Col, th):

ATCandidate(Col, th) = {t |t in AT and
|sub(t, Col)|

|Col|
≥ th}

where sub(t,Col) is the set of values of Col that are subsumed by the A-term
t.

Among these candidates, we select the most specific A-terms that subsume
the largest set of values. This set of representative A-terms is noted ATRep:

ATRep(Col, th) = {t | t ∈ ATCandidate(Col, th),

¬∃ t′ such that t′ ∈ ATCandidate(Col, th)

and |sub(t′, Col)| > |sub(t, Col)|,

¬∃ t′′ such that t′′ ∈ ATCandidate(Col, th)

and |sub(t′′, Col)| = |sub(t, Col)| and t′′ � t}

If there is more than one A-Term in ATRep, we keep the first one. In fact,
experiments have shown that if the threshold is high enough there is zero or one
representative A-term.

If no representative A-term has been found by using this procedure, we ex-
ploit the title of the column if it is available.
We exploit the values of the column first because if we are able to identify an
important number of values, the A-term is often relevant. Besides, the treatment
of the title can lead us to a misunderstanding association. If no A-Term has been
found, we keep the column in the SML document and we associate the generic
A-term named attribute with it.

Products Qty Lipids Calories

whiting with lemon 100 g 7.8 g 92 kcal
ground crab 150 g 11.25 g 192 kcal

chicken 250 g 18.75 g 312 kcal

Fig. 15. Nutritional Composition of some food products

In the table of Figure 15, the terms crab and chicken belonging to the on-
tology have been associated with the values ground crab and chicken. If the
threshold is 0.5, the most specific A-term that subsumes these two terms is
the A-term Food. The second column has not been identified because it only
contains numeric values and the title is an abbreviation; the generic A-Term
attribute is associated with it. lipid and calorie have been associated with the
last two columns thanks to the exploitation of their titles.

Definition The schema tabSch of a table tab, noted tabSch(tab), is the finite
set of couples (col, ATRep(col, th)) that can be found for a given threshold th.

tabSch(Tab) = {(col, t)|t ∈ ATRep(col, th)

or [(t = attribute) and ATRep(col, th) = ∅]}

The schema of the table Tab2 shown in Figure 15 is:

tabSch(Tab2)={(1,food) (2,attribute) (3,lipid),(4,calorie)}

3.4 Identification of the semantic relations appearing in the data

table

We present now how we identify one or several semantic relations in the schema of
the table. That identification is done by comparing the “natures” of the columns
identified during the previous step with the attributes appearing in the signa-
tures of the semantic relations of the ontology of the domain. Of course, an exact
mapping between the schema of the table and the signature of a specific seman-
tic relation is the ideal case. In most of the cases, we will obtain several possible
mapping with subsets of the attributes of the schema of the table. Or we will
have only partial mapping, with only a subset of the attributes of the signature
of a relation, etc. So we will see that we propose an automatic identification of
the semantic relations as flexible as possible.

We say that a relation is completely represented if each attribute of its sig-
nature subsumes or is equal to a distinct A-term of the table schema.

Thus, suppose that the three relations foodLipid, foodCalorie, foodPh belong
to the ontology and that the two relations foodLipid and foodCalorie mean “the
number of lipid (or calories) contained in 100 g of the foodstuff”, because the
experts have considered that the weight is normalized. In table of Figure 15, the
relations are extracted in the following way:

Definition 4.– foodLipid, is completely represented by the values found in
the first and the third columns.

– foodCalorie is completely represented by the values found in the first and
the fourth columns.

Since the second column qty is not identified and does not participate to
any of these two relations, we add to each relation a generic attribute which will
contain values found in this second column. If this attribute was not represented,
for example, the third line of the table would be interpreted as “100g of chicken
correspond to 312 calories”. When the generic attribute is taken into account,

the interpretation is “250g of chicken correspond to 312 calories”. So, in such
cases, the representation of additional information leads to better interpretations
of the data.

Figure 16 proposes the SML representation of the relations foodLipid and food-
Calorie.

<table>
<content>

<rowRel additionalAttr=”yes”>
<foodLipid relType =”completeRel”>
<food>...</food> <lipid> ... </lipid>
<attribute> ...</attribute>
</foodLipid>

<foodCalorie relType =”completeRel”>
<food>...</food> <calorie> ... </calorie>
<attribute> ...</attribute>
</foodCalorie>

</rowRel> ...
</content> </table>

Fig. 16. SML representation of completely represented relations

We say that a relation is partially represented if it is not completely repre-
sented and if at least two attributes of its signature subsume or are equal to
different A-terms of the schema of the table. We have considered partially rep-
resented relations in order to take the following two cases into account.

Partially represented relations with Null attributes:

This is the case when an attribute of the semantic relation has not been
associated to column of the table schema. For example in the table of Figure 15,
the semantic relation foodAmountLipid, defined in the ontology on its attributes
food, amount and lipid, is partially represented in the table schema tabSch, since
the attribute amount is not represented in the table schema. Figure 17 presents
the SML representation of foodAmountLipid relation :

Note that when a relation is partially represented, the attributes that do not
appear in the schema are represented in the SML document by means of an
empty tag like
<amount attrType=”Null”/>. In this example, the generic attribute repre-
sents precisely the missing attribute Amount.

Partially represented relations with constant values:

This is the case when one of the relation attributes correspond to a constant
value which appears in the title of the table.

Let tabSch the table schema computed from the table tab3 of Figure 18:
tabSch(tab3)= {(1,food),(2,factor)}.

In this table schema, the relation foodFactorMicroorganism is partially repre-

<table>

<content>
<rowRel additionalAttr=”yes”>
...
<foodAmountLipid relType =”partialNull”>
<food attrType=”Normal”>...</food>
<amount attrType=”Null”/ >
<lipid attrType =”Normal”> ... </lipid>
<attribute attrType=”generic”> ...</attribute>
</foodLipid>

</rowRel> ...
</content> </table>

Fig. 17. SML representation of a partially represented relation with Null attributes

Products Doubling time (h)

Minced meat 301

Cured raw pork 3.61

Frankfurters 91

Fig. 18. Doubling times of Listeria monocytogenes in foodstuffs

sented: the attributes food and factor are represented in the table schema and
the attribute Microorganism is represented by a constant value Listeria Mono-
cytogenes which appears in the table title “Doubling time of Listeria Mono-

cytogenes in foodstuffs”.

This constant is used as a value for the corresponding attribute of the seman-
tic relation and it is propagated into all the instances of the relation. Figure 19
presents the SML representation of the foodFactorMicroorganism relation.

<table>
<content>
<rowRel additionalAttr=”no”>
...
<foodFactorMicroorganism relType =”partialConst”>
<food attrType=”Normal”>...</food>
<factor attrType=”Normal”> ... </factor>
<microorganism attrType =”Const”> listeria monocytogenes
</microorganism>
</foodFactorMicroorganism>
...

</rowRel> ...
</content> </table>

Fig. 19. SML representation of partially represented relations with attributes in con-
stants

Because we want to keep unidentified data, we also add to the semantic rela-
tions we have found the set of generic attributes of the table schema. This is done
even if the relation is partial. Actually, one of these additional attributes may be
a missing attribute of the relation. Besides, this attribute can add a contextual
information which may modify the user’s interpretation of the relation.

When no relation has been found in the table schema, a generic relation
named relation is generated in the SML document. In this way, we keep se-
mantic links between values even if this link has not been identified. Thus, it is
possible to query the SML documents by means of lists of key-words.

3.5 Instantiation of the semantic relations

Once the relations are extracted, we instantiate them by the values contained
in the table. Besides, terms of the ontology are associated with each value when
it is possible. The SML formalism allows us to associate several terms that can
be found by different mapping mechanisms. We have considered two kinds of
mapping procedures.

The first one uses simple syntactic criteria. Each value is considered as a set
of lemmatized words Mv where empty words such as determiners or prepositions
are suppressed. The same treatment is applied to the terms of the ontology.
Then, we consider that there may exist a semantic similarity between a value v
and a term t if :

1. equality: (Mv = Mt)
2. inclusion: (Mv ⊂ Mt or Mt ⊂ Mv)
3. intersection: (Mt ⊂ Mv) or (Mv ∩ Mt 6= ∅).

These three criteria are applied using the previous order.

The second mapping procedure uses more semantic criteria. Actually, we
have chosen to use the unsupervised approach PANKOW – Pattern-based An-
notation trough Knowledge On the Web [Cimiano, Handschuh, & Staab2004]
where patterns are used to categorize proper nouns (instances) with regard to
an ontology. PANKOW applies a set of linguistic patterns including Hearst pat-
terns [Hearst1992] (i.e. the < concept > < instance >, < concept > such as
< instance >, ...) on the biggest corpus available: the World Wide Web. In
fact, they exploit the google API and take the number of pages in which pat-
terns appear as an indicator for the strength of the pattern. We have used the
same approach on data table even if they are not necessarily proper nouns. We
have applied the general pattern “< value > is a < term >” in order to dis-
cover specialization relations between values and terms of the ontology using the
Web corpus. For a given value, we instantiate the pattern with each term of the
domain ontology and keep the best term with regard to the number of pages.
Because of the specificity of our domain, the number of pages can be very low.
For instance, when we try to associate the value “ice cream” to a term of the

ontology, the pattern “ice cream is a dessert” is found in 35 pages. Happily, “ice
cream is a microorganism” is not found. Note that the term dessert cannot be
found by our syntactic criteria.

Figure 20 shows a part of the SML document which is automatically gener-
ated from the XTab document of Figure 15. This document is structured in the
following way:

<table>
<table-title>Nutritional Composition of some food products
</table-title >
<column-title> Product </column-title>
<column-title>Qty</column-title>
<column-title>lipids</column-title>
<column-title>calories</column-title>
<column-nb> 4 </column-nb>
<content>

<rowRel additionalAttr=”yes”>
<foodLipid relType=”completeRel”>
<food indProc=”yes” attrType=”Normal”>
<ontoVal indMap=”intersection”> whiting Provencale

</ontoVal>
<ontoVal indMap=”intersection”> green lemon </ontoVal>
<ontoVal> whiting fillets </ontoVal>
<originalVal> whiting with lemon </originalVal>
</food>
<lipid indProc=”no” attrType=”Normal”>
<ontoVal indMap=”notFound”/>
<originalVal> 7.8 g</originalVal>
</lipid>
<attribute indMap=”notFound” indProc=”no”
attrType=”Generic”>
<ontoVal/>
<originalVal> 100 g</originalVal></attribute>
</foodLipid>
<foodCalorie relType=”completeRel”> ... </foodCalorie>
<foodAmountLipid relType=”partialNull”> ...
</foodAmountLipid>
</rowRel>
...
</content> </table>

Fig. 20. SML Representation of the nutritional composition of food products

The main part of the document is inside the content element. It represents
the table like a set of lines where each line is now a set of semantic relations
(like, for example, foodLipide or foodCalories).
The SML representation of a relation is composed of the set of attributes that
appear in the signature of the relation described in the relational Reference
Schema of the ontology (e.g. foodLipid(food, lipid)). Each attribute subsumes the
representative term of the column or subsumes a term which has been found in
its title. A set of terms represented inside the XML tag ontoVal is associated with
each value. Thus, crab has been associated with ground crab while three different

terms are proposed for whiting with lemon : whiting Provencale, green lemon and
whiting fillets. The original value is kept inside the XML tag originalVal.

The generality of the SML representation is ensured by the possibility of
an automatic generation of the SML DTD from an ontology which contains a
taxonomy and a relational reference schema.

3.6 Interrogation of SML documents

Some indicators that can be exploited in the queries Our approach allows
one to extract data from tables even if we are not sure of their representation
using the vocabulary of the ontology. It is the reason why we have defined a
list of indicators that are represented in the SML document and that will be
exploited during the query evaluation.

We present now the two main treatment indicators represented in SML as
XML attributes attached to lines or to relation attributes. The first one is related
to the structure of the relations (presence or absence of additional attributes).

additionalAttr: it informs on the presence of one or several additional at-
tributes that represent the columns of the table which could not be associated
with an identified relation. It is added to the tags < rowRel > of SML doc-
ument. For example in the table of Figure 15, this indicator allows the query
engine to use the generic attribute associated with the Quantity column.

The following indicator make it possible to specify the kind of mapping pro-
cedure used to find a term of the ontology; it can thus be used to evaluate the
risk of a mapping error. It is added to the < ontoV al > tags of the SML docu-
ment.

indMap: it indicates the name of the mapping procedure (inclusion, intersection
or PANKOW) used to find the term of the ontology which corresponds to the
original value of the table. Several mapping operators can exist in the applica-
tion, this indicator allows us to modulate a trust degree, relating to enrichment,
according to mapping operators. Besides, it can be used to visualize the original
value if necessary.

These treatment indicators can be used by the query engine to adapt and find
other answers for the user in cases of dissatisfaction.

An example of interrogation To query SML documents, XQuery queries
have been written. They rely on the SML DTD. In the following, we describe a
query example where the user looks for the quantity of lipid in 100 g of crab.
The evaluation of this query consists in searching in the SML document for the
subtrees – SML fragments – such that the parent node is foodLipid and such
that there is an element ontoVal that contains the value “crab”. The indicators
indMap and indProc are used to check the validity of the semantic enrichment of

the data. As the indicator additionalAttr has the value “yes”, the query engine
displays the additional information 150g. This example shows how the unidenti-
fied attributes that are kept in the SML representation can increase the accuracy
of the user interpretation. Besides, the original value ground crab is displayed
since indProc indicates that a treatment was carried out on the original value.
The evaluation of this query performed on the document of Figure 20 is presented
in Figure 21.

<table>
<title> Nutritional composition of some food products
</title>
<food> ground crab</food> <lipid>11.25
g</lipid>

<validity>inclusion</validity>

<additionalattr>150 g</additionalattr>
<category> unknown</category> </table>

Fig. 21. A possible structure of the query answer

3.7 First results

We present in this section the results of the first experimentation of our method.
The approach has only be tested on the risk assessment domain represented
in the Sym’Previus ontology. In this evaluation, we show the capacity of our
system to recognize relations of the ontology in the XTab tables . Our goal
was to compare the results provided with our automatic method with a manual
one done by an expert. We compared the results in terms of the well-known
information retrieval measures Precision, Recall and F-Measure.

Test set Among two hundred real XTab tables collected from the Web, we have
selected 33 tables. One table is selected in the test set if and only if we identify,
among its columns at least one semantic relation attribute represented in the
ontology.

Evaluation methodology In order to evaluate our approach, we have dis-
tinguished the results found for the three kinds of semantic relations: the Com-
pletely represented Relations (CR), the Partially represented Relations where all
the missing attributes are identified by Constants in the table title (PRC) and
the Partially represented Relations which contain at least one attribute which

4 The XTab tables are the result of an automatic transformation applied on HTML
and PDF documents found on the Web

is not identified – Null attributes – (PRN). Note that PRC relation can only
found in the tables which are associated with a table title.

In first step we run our prototype on the real test set of XTab documents.
In second step a domain expert checks the relevance of each semantic relation
provided by our system.

To identify the semantic relations represented in the table represented in the
XTab document, the expert has access to the whole information of the original –
HTML or Pdf – document but he only considers information which are contained
in the XTab document (ie. the table title and the table content). The expert
considers that a semantic relation is correct if the relation is represented in the
table and if all its attributes are correctly identified. If he recognizes in the XTab
document one semantic relation which is not found by our system, he considers
that the relation is forgotten. By this way, he can determine which semantic
relations provided by our system are incorrect and which are forgotten.

In Figure 22, we show the result of this step for each kind of relation (CR,
PRC and PRN) : number of semantic relations which have been found by the
system, incorrect semantic relations and forgotten semantic relations.

Found rels Incorrect rels Forgotten rels

CR 30 22 11
PRC 6 3 5
PRN 23 2 3

Fig. 22. Expert results after semantic relations checking step

On these results we have computed Recall, Precision and F-Measure. Let T,
T’ be two variables that represent the semantic relation type considered in the
three measures calculations. It gets values in : {CR, (CR and PRN), (CR, PRN
and PRC)}. Let Correct Rels(T) be the number of semantic relations of type T,
correctly found by our system.

Correct Rels(T) = Found Rels(T) − Incorrect Rels(T)

Recall is the percentage of relations (all types) actually represented in the data
tables and correctly found by our system. Here we suppose that T’={CR,
PRN and PRC}.

Recall =
Correct Rels(T)

(Correct Rels(T’)) + Forgotten Rels(T’))

Precision Is the percentage of relations found in the data tables by our system
and with a correctly assigned relation signature.

Precision =
Correct Rels(T)

Found Rels(T)

F-Measure as usual we balance Recall and Precision against each other.

F − Measure =
2 ∗ Recall ∗ Precision

Recall + Precision

Results The diagram presented in Figure ?? gives the results in term of pre-
cision, recall and F-Measure of our semantic enrichment system approach. The
first interesting observation is that the recall value increases significantly when
our system takes into account partially represented relations. This result shows
clearly the interest of the partially identified semantic relations kept in the SML
documents, even when missing attributes are not identified by constants. If we
restrict the relation types on the complete relations, we would have only 0.15 for
the recall value, whereas in the case where we keep all the identified relations (ie.
completely and partially represented relations) we have 0.62 for the recall value.
Note that our aim is precisely to obtain a satisfying Recall value. Because we
have chosen to keep all the identified pieces of information as well as information
which are not completely identified such as partial relations, generic attributes
end partial relations. We can also note that the precision is increasing as well.
This result is globally shown by the increasing of the F-Measure value.

4 Conclusion

The two methods described in this paper for integrating and querying XML
data has been implemented in the setting of the e.dot project. The e.dot project
aimed at enriching an existing relational database (called Sym’Previus) deal-
ing with predictive microbiology with data extracted from the Web. One of the
specificities of the Sym’Previus database is its incompleteness, since the number
of experiments involving each bacterium with each food product in every exper-
imental condition is potentially infinite. So ways of complementing the database
with data automatically found on the Web as it is proposed in the e.dot project
is a real asset for such a database. The integration of the data coming from
the relational database and the documents coming from the Web by means of a
relational-like query language is a point of interest of our two approaches.

The first approach proposes a way to integrate new and possibly het-
erogeneous XML data by relational views over the schema of the existing
database, called the Reference Schema. Those relational views are composed
such that they form the so-called Global Relational Schema of the XML data.
To realize this, we provide a query rewriting algorithm which decomposes a
Global Query, which is a select-project-join query over the Global Relational
Schema, into a set of local queries expressed in Xquery to be directly executable
against the XML data. Many researchers have studied the problem of stor-
ing XML documents into relational tables [?],[Amer-Yahia, Du, & Freire2004],
[Florescu & Kossman1999], and also the converse problem of exporting rela-
tional data into XML [Halverson et al.2004], [Funderburk et al.2002]. The prac-
tical motivation of the former problem is that native XML storage and querying

technologies are still too young to offer performances and robustness comparable
to the mature DBMS systems. The practical motivation of the latter problem is
that XML is becoming the standard format for exchanging data. Our work is at
the confluence of those two lines of work. It makes cohabit nicely the two data
models by combining their respective advantages: the relational data model is
exploited for its logical simplicity thus providing a simple and synthetic query
interface for end-users while the XML format is exploited for extracting and inte-
grating possibly heterogeneous data coming from the Web. In our current work,
the instances of the relational views of XML documents are atomic textual data
(strings at the leaves of the trees representing the queried XML documents). We
plan to extend our work to allow that relational queries over XML documents
possibly deal with tree-structured fragments of XML documents.

The second approach proposes a way to integrate heterogeneous data tables
by transforming these data in order to make them as much as possible com-
patible with the ontology (composed of a relational Reference schema and a
taxonomy). The semantic enrichment is completely automatic and it is guided
by an ontology of the domain. Thus, that processing cannot lead to a perfect
and complete enrichment. The XML representation we propose keeps all the
possible interpretation in order to let the possibility of using them during the
query step, for example by allowing a query processing based on keywords or by
exhibiting some relevant information to the user in order to help him/her during
the interpretation of the results.

Then, in case of ambiguity, it is possible to associate several terms of the
ontology or several semantic relations with a same set of columns. In order to
allow the query processor to adapt its answers or to evaluate their relevance, we
log the processes by means of a set of indicators.

The approach we propose is currently under testing in the domain of the
food risk assessment, by means of a Java prototype. In order to query SML
documents, we wrote XQuery queries which take advantage of the treatment
indicators inserted in the SML documents. Those queries have been tested by
means of the MIEL++ query engine.

Some works like [Kushmerick2000], [Muslea, Minton, & Knoblock2001] and
[Hsu & Dung1998] allow to extract knowledge by learning rules from a sample
of manually annotated documents. Our goal is quite different since our approach
is completely automatic and exclusively guided by the ontology.

Moreover, the documents we use to fill the data warehouse are heterogeneous
and, contrarily to previous approaches like [Crescenzi, Mecca, & Merialdo2002]
and [Arasu & Garcia-Molina2003], we cannot base the search for information on
a common structure discovered among a set of homogeneous documents.

The techniques we use to identify the columns of the table are based
first on the values contained in those columns. [Rahm & Bernstein2001] and
[Doan et al.2003] showed that those techniques give good results in the frame-
work of the search for schema mappings for relational databases or XML. In our
case, we do not have the schema of the tables we work on: we have to discover it
first before searching for mappings with the semantic relations of the ontology.

We can now enhance our mapping operators, for example by using external
resources such as WordNet or by using more sophisticated similarity measures
[Robertson & Willett1998]. Moreover, we can think about using linguistic tools
allowing to process the table content (cells, titles) represented in a more complex
way.

Generality of both methods will be checked by applying them to another
application domain.

References

[Amer-Yahia, Du, & Freire2004] Amer-Yahia, S.; Du, F.; and Freire, J. 2004. A com-
prehensive solution to the xml-to-relational mapping problem. In WIDM ’04: Pro-
ceedings of the 6th annual ACM international workshop on Web information and
data management, 31–38. New York, NY, USA: ACM Press.

[Arasu & Garcia-Molina2003] Arasu, A., and Garcia-Molina, H. 2003. Extracting
structured data from web pages. In Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, 337–348. ACM Press.

[Bohannon et al.2002] Bohannon, P.; Freire, J.; Roy, P.; and Simeon, J. 2002. From
XML schema to relations: A cost-based approach to XML storage. In ICDE.

[Buche et al.2004] Buche, P.; Dibie-Barthélemy, J.; Haemmerlé, O.; and Houhou, M.
2004. Towards flexible querying of xml imprecise data in a dataware house opened
on the web. In Flexible Query Answering Systems (FQAS). Springer Verlag.

[Chamberlin et al.2005] Chamberlin, D.; Florescu, D.; Robie, J.; Simeon, J.; and Ste-
fanescu, M. 2005. Xquery: A query language for xml, w3c working draft.

[Cimiano, Handschuh, & Staab2004] Cimiano, P.; Handschuh, S.; and Staab, S. 2004.
Towards the self-annotating web. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, 462–471. ACM Press.

[Clark & DeRose1999] Clark, J., and DeRose. 1999. Xml path language (xpath),
version 1.0, w3c recommendation.

[Crescenzi, Mecca, & Merialdo2002] Crescenzi, V.; Mecca, G.; and Merialdo, P. 2002.
Automatic web information extraction in the roadrunner system. In Revised Papers
from the HUMACS, DASWIS, ECOMO, and DAMA on ER 2001 Workshops, 264–
277. Springer-Verlag.

[Doan et al.2003] Doan, A.; Lu, Y.; Lee, Y.; and Han, J. 2003. Profile-based object
matching for information integration. Intelligent Systems, IEEE 18(5):54– 59.

[e.dot2004] e.dot. 2004. Progress report of the e.dot project. http://www-
rocq.inria.fr/gemo/edot.

[Florescu & Kossman1999] Florescu, D., and Kossman, D. 1999. Storing and querying
xml data using an rdbms. IEEE Data Engineering Bulletin 22(3):27–34.

[Funderburk et al.2002] Funderburk, J. E.; Kiernan, G.; Shanmugasundaram, J.;
Shekita, E.; and Wei, C. 2002. XTABLES: Bridging relational technology and XML.
41(4):616–??

[Halverson et al.2004] Halverson, A.; Josifovski, V.; Lohman, G. M.; Pirahesh, H.; and
Mrschel, M. 2004. Rox: Relational over xml. In VLDB 2004, 264–275.

[Hearst1992] Hearst, M. A. 1992. Automatic acquisition of hyponyms from large text
corpora. In Proceedings of the 14th conference on Computational linguistics, 539–545.
Association for Computational Linguistics.

[Hsu & Dung1998] Hsu, C.-N., and Dung, M.-T. 1998. Generating finite-state trans-
ducers for semi-structured data extraction from the web. Inf. Syst. 23(9):521–538.

[Kushmerick2000] Kushmerick, N. 2000. Wrapper induction: efficiency and expres-
siveness. Artif. Intell. 118(1-2):15–68.

[Lee & Chu2001] Lee, D., and Chu, W. W. 2001. Constraints-preserving inlining
algorithm for mapping xml dtd to relational schema. Data Knowledge Engineering
39(1):3–25.

[Muslea, Minton, & Knoblock2001] Muslea, I.; Minton, S.; and Knoblock, C. A. 2001.
Hierarchical wrapper induction for semistructured information sources. Autonomous
Agents and Multi-Agent Systems 4(1-2):93–114.

[Pivk, Cimiano, & Sure2004] Pivk, A.; Cimiano, P.; and Sure, Y. 2004. From tables
to frames. In International Semantic Web Conference, 166–181.

[Rahm & Bernstein2001] Rahm, E., and Bernstein, P. A. 2001. A survey of approaches
to automatic schema matching. The VLDB Journal 10(4):334–350.

[Robertson & Willett1998] Robertson, A., and Willett, P. 1998. Applications of n-
grams in textual information systems. In Journal of Documentation, 48–69.

[sym] http://www.symprevius.net.

