
SomeRDFS in the Semantic Web

P. Adjiman1, F. Goasdoué1, and M.-C. Rousset2

1 LRI, bâtiment 490, Université Paris-Sud 11, 91405 Orsay Cedex, France
2 LSR-IMAG, BP 72, 38402 St Martin d’Heres Cedex, France

Abstract. The Semantic Web envisions a world-wide distributed archi-
tecture where computational resources will easily inter-operate to coor-
dinate complex tasks such as query answering. Semantic marking up of
web resources using ontologies is expected to provide the necessary glue
for making this vision work. Using ontology languages, (communities of)
users will build their own ontologies in order to describe their own data.
Adding semantic mappings between those ontologies, in order to seman-
tically relate the data to share, gives rise to the Semantic Web: data on
the web that are annotated by ontologies networked together by map-
pings. In this vision, the Semantic Web is a huge semantic peer data
management system. In this paper, we describe the SomeRDFS peer
data management systems that promote a ”simple is beautiful” vision of
the Semantic Web based on data annotated by RDFS ontologies.

1 Introduction

The Semantic Web [1] envisions a world-wide distributed architecture where
computational resources will easily inter-operate to coordinate complex tasks
such as query answering. Semantic marking up of web resources using ontologies
is expected to provide the necessary glue for making this vision work.

Recent W3C efforts led to recommendations for annotating data with on-
tologies. The Resource Description Framework (RDF, http://www.w3.org/RDF)
allows organizing data using simple taxonomies of classes and properties with
RDF Schema (RDFS), the ontology language that comes with RDF. The Ontol-
ogy Web Language (OWL, http://www.w3.org/2004/OWL) is defined on top of
RDF and allows building more complex statements about data. It corresponds in
its decidable versions (OWL-lite and OWL-DL) to expressive description logics.

Using ontology languages, (communities of) users will build their own on-
tologies in order to describe their own data. Adding semantic mappings between
those ontologies, in order to semantically relate the data to share, gives rise to
the Semantic Web: data on the web that are annotated by ontologies networked
together by mappings. In this vision, the Semantic Web is a huge semantic peer
data management system (PDMS).

Some PDMSs have been developped for the Semantic Web like Edutella [2],
RDFPeers [3], GridVine [4] or SomeOWL [5]. Edutella, RDFPeers and Grid-
Vine use RDF while SomeOWL uses a fragment of OWL.
Edutella is made of a network of super-peers, the topology of which is a hy-
percube. Super-peers are mediators with the same schema: a reference ontology

(e.g., http://demoz.org). The data sources of a super-peer are its connected
peers. Therefore, data are distributed over the peers while the ontologies are
distributed over the super-peers. A peer must annotate its data in terms of the
ontology of the super-peer to which it is connected. To answer queries, there is
no need of mappings between the super-peer ontologies since they are identical:
queries are efficiently routed in the network, using its topology of hypercube, in
order to find super-peers that can provides answers with their peers.
In RDFPeers and GridVine PDMSs, the peers are organized according to a
Distributed Hash Table using CHORD [6]. As in Edutella, such a fixed struc-
ture allows efficient routing of messages between peers. While RDFPeers only
addresses the problem of query answering without taking into account the on-
tologies that annotate the data, GridVine takes into account the ontologies. On
each GridVine peer, data are annotated with an RDFS ontology and mappings
with ontologies of other peers are stated by equivalences between properties of
peer ontologies.
In SomeOWL PDMSs3 [5], peers are not organized according to a fixed topol-
ogy: the topology is induced by the mappings between the peers ontologies.
SomeOWL PDMSs are based on a simple data model: the ontologies and map-
pings are expressed in a fragment of OWL-DL that corresponds to the CLU
description logic (¬, u, and t). Query answering takes into account the ontolo-
gies and is achieved using a rewrite and evaluate strategy. The rewriting part is
reduced to a consequence finding problem in distributed propositional theories. It
is performed by SomeWhere, a peer-to-peer inference system that implements
DeCA: Decentralized Consequence finding Algorithm [5]. Query answering in
a SomeOWL PDMS is sound, complete and terminates. Moreover, the detailed
experiments reported in [7] show that it scales up to 1000 peers.

The contribution of this paper is to show how to deploy a PDMS using
a data model based on RDF on top of the SomeWhere infrastructure: we
will call such a PDMS a SomeRDFS PDMS. To express the ontologies and
mappings, we consider the core fragment of RDFS allowing to state (sub)classes,
(sub)properties, typing of domain and range of properties. A mapping is an
inclusion statement between classes or properties of two distinct peers, or a
typing statement of a property of a given peer with a class of another peer.
Therefore, mappings are RDFS statements involving vocabularies of different
peers which thus establish semantic correspondances between peers.

Like in a SomeOWL PDMS, the topology is induced by the mappings
between the peers’ ontologies. We show that query answering in SomeRDFS

PDMSs can be achieved using a rewrite and evaluate strategy, and that the cor-
responding rewriting problem can be reduced to the same consequence finding
problem in distributed propositional theories as in [5]. SomeWhere can then
be used to compute the rewritings, with the same properties as mentionned
above. We thus provide an operational solution for deploying a Semantic Web
of data annotated with RDFS ontologies related by mappings. Moreover, the

3 In this article, we denote by SomeOWL PDMSs the PDMSs based on OWL that
have been designed in [5].

consequence finding problem resulting from the propositional encoding of the
fragment of RDFS that we consider is tractable since the resulting propositional
theories are reduced to clauses of length 2 for which the reasoning problem is in
P. The experiments reported in [7] show that it takes in mean 0.07s to Some-

Where for a complete reasoning on randomly generated sets of clauses of length
2 distributed on 1000 peers.

The paper is organized as follows. Section 2 defines the fragment of RDFS
that we consider as data model for SomeRDFS. Section 3 relates the problems
of query answering and query rewriting, and shows how query rewriting can be
reduced to a consequence finding problem in distributed propositional theories.
Section 4 presents the query rewriting algorithm which is built on top of the
DeCA algorithm of SomeWhere. We conclude with related work in Section 5
and a discussion in Section 6.

2 Data model of a SomeRDFS PDMS

We consider the core constructors of RDFS based on unary relations called
classes and binary relations called properties. Those constructors are: class in-
clusion, property inclusion, and domain/range typing of a property. We denote
this language core-RDFS.

While the logical semantics of the whole RDFS raises non trivial problems
[8–11], core-RDFS has a first-order logical semantics which is clear and intuitive.
This semantics can be defined in terms of interpretations or can be given by the
first-order formulas expressing the logical meaning of each constructor. Based
on the FOL semantics, it can be seen that core-RDFS is a fragment of DL-
LiteR, which is a description logic (DL) of the DL-Lite family [12, 13]. The
DL-Lite family has been designed for allowing tractable query answering over
data described w.r.t ontologies.

The following table provides the logical semantics of core-RDFS by giving
the DL notation and the corresponding first-order logical (FOL) translation of
the core-RDFS constructors.

Constructor DL notation FOL translation

Class inclusion C1 v C2 ∀X(C1(X) ⇒ C2(X))
Property inclusion P1 v P2 ∀X∀Y (P1(X, Y) ⇒ P2(X, Y))
Domain typing of a property ∃P v C ∀X∀Y (P (X, Y) ⇒ C(X))
Range typing of a property ∃P− v C ∀X∀Y (P (X, Y) ⇒ C(Y))

Ontologies, data descriptions and mappings of SomeRDFS peers are stated in
core-RDFS. To make the semantics clear, we have chosen to use the FOL notation
to denote ontologies, data and mappings as (possibly distributed) sets of FOL
formulas. As seen in the previous table, the correspondence with the DL notation
is obvious. It is important to note that core-RDFS belongs to the intersection
of two logical languages that have been extensively studied: Horn rules without
function and description logics. Therefore, core-RDFS is a fragment of DLP [14].

2.1 Peer ontologies

Peer ontologies are made of core-RDFS statements involving only relations of
a peer vocabulary. A peer vocabulary is the union of a set of classe names and
a set of property names that are disjoint. The class and property names are
unique to each peer. We use the notation P :R for identifying the relation (class
or property) R of the ontology of the peer P .

2.2 Peer storage descriptions

The specification of the data stored in a peer is done through the declaration of
assertional statements relating data of a peer to relations of its vocabulary. The
DL notation and the FOL translation of assertional statements is the following
(a and b are constants):

Constructor DL notation and FOL translation

Class assertion C(a)
Property assertion P (a, b)

2.3 Peer mappings

Mappings are the key notion for establishing semantic connections between on-
tologies in order to share data. We define them as core-RDFS statements involv-
ing relations of two different peer vocabularies. The DL notation and the FOL
translation of the mappings that are allowed in SomeRDFS are given in the
following table.

Mappings between P1 and P2 DL notation FOL translation

Class inclusion P1:C1 v P2:C2 ∀X(P1:C1(X) ⇒ P2:C2(X))
Property inclusion P1:P1 v P2:P2 ∀X∀Y (P1:P1(X, Y) ⇒ P2:P2(X, Y))
Domain typing of a property ∃P1:P v P2:C ∀X∀Y (P1:P (X, Y) ⇒ P2:C(X))
Range typing of a property ∃P1:P

− v P2:C ∀X∀Y (P1:P (X, Y) ⇒ P2:C(Y))

The definition of shared relations follows from that of mappings.

Definition 1 (Shared relation). A relation is shared between two peers if it
belongs to the vocabulary of one peer and it appears in a mapping in the second
peer.

2.4 Schema & data of a SomeRDFS PDMS

In a PDMS, both the schema and data are distributed through respectively the
union of the peer ontologies and mappings, and the union of the peer storage
descriptions. The important point is that each peer has a partial knowledge of
the PDMS. In a SomeRDFS PDMS, a peer just knows its ontology, its mappings
with other peers and the relations shared with them, and its own data.
The schema of a SomeRDFS PDMS S, denoted schema(S), is the union of the
ontologies and the sets of mappings of all the peers.
The data of a SomeRDFS PDMS S, denoted data(S), is the union of the peers
data descriptions.
A SomeRDFS knowledge base is the union of its schema and data.

2.5 Queries

Many query languages have been recently developped for RDF [15] (e.g., RDQL,
SPARQL,. . .). Most of them offer select-project-join queries which are known
as the core relational query language in the database literature, namely the
conjunctive queries.

Conjunctive queries can be expressed in first-order logic as open formulas
with free variables X̄ and made of conjunction of atoms. The free variables are
called the distinguished variables of the query and they correspond to the vari-
ables of interest for the users. The other variables are existential variables that
appear in the atoms of the query. The conjunction of atoms models the request
of a user. For example, the following query expresses that the user is interested
in knowing which artists have created paintings belonging to the cubism move-
ment. The existential variable Y is just there to denote the existence of paintings
created by the artist denoted by the variable X : the user wants to get as answers
the instances of X satisfying the formula but he/she is not interested to know
the instances of Y .

Q(X) ≡ ∃Y Artist(X)∧Creates(X, Y)∧Painting(Y)∧BelongsTo(Y, cubism)

The FOL translation for a conjunctive query is given in the following table.

Conjunctive query FOL translation

Q : {(X̄) |
Vn

i=1
ri(X̄i, Ȳi)} Q(X̄) ≡ ∃Ȳ

Vn

i=1
ri(X̄i, Ȳi), where

X̄ =
Sn

i=1
X̄i are free variables and

Ȳ =
Sn

i=1
Ȳi are existential variables.

The most general queries that we will consider, the SomeRDFS queries, are
conjunctive queries that may involve the vocabularies of several peers. In con-
trast, the users’ queries involve the vocabulary of a single peer, since a user
interrogates the PDMS through a peer of his choice.

Definition 2 (Query). A query is a conjunctive query in terms of relations of
peer vocabularies.

Definition 3 (User query). A user query is a query in terms of relations of
a single peer vocabulary.

2.6 Semantics

In a SomeRDFS PDMS, ontologies, storage descriptions, mappings, and queries
have all a FOL correspondence. From a logical point of view, a SomeRDFS

PDMS is a FOL knowledge base made of Horn rules (the schema) and ground
atoms (the data). As mentioned before, it could also be equivalently seen as a
DL knowledge base made of a Tbox (the schema) and an Abox (the data).

Two main semantics have been investigated for a PDMS based on FOL: the stan-
dard FOL semantics and the epistemic FOL semantics (see Section 5). Roughly

speaking, the standard FOL semantics does not distinguish mappings from on-
tology formulae, i.e., they are interpreted in the same way. In contrast, the
epistemic FOL semantics restricts the expressivity of mapping formulae.
In a SomeRDFS PDMS, we adopt the standard FOL semantics. As for data, we
stick to the usual information integration assumption, namely the unique name
assumption.

Semantics of a query While a user query is given in terms of the relations of
a single peer, its expected answers may be found all over the PDMS. An answer
is a tuple made of constants stored in the PDMS for which it can be logically
inferred (from the union of ontologies, storage descriptions and mappings) that
it satisfies the expression defining the query. It corresponds to an extension of
the notion of certain answer in information integration systems.

Definition 4 (Answer set of a query). Let S be a SomeRDFS PDMS and
Q a n-ary query. Let C be a set of constants appearing in data(S). The answer
set of Q is: Q(S) = {t̄ ∈ Cn | S |= Q(t̄)}.

Subsumption The subsumption (a.k.a. containment) relation allows to com-
pare two relations (classes, properties and queries) of the same arity.
A relation r1 subsumes (respectively strictly subsumes) a relation r2, iff for every
interpretation I, rI

2 ⊆ rI
1 (respectively rI

2 ⊂ rI
1).

Given a SomeRDFS PDMS S, a relation r1 subsumes (respectively strictly
subsumes) a relation r2 w.r.t. S, iff for every model I of schema(S), rI

2 ⊆ rI
1

(respectively rI
2 ⊂ rI

1).

2.7 Graphical conventions

In the following, we adopt some graphical conventions in order to represent a
SomeRDFS schema.

A class is denoted by a node labeled with the class name. A property is a
directed edge labeled with the property name. Such an edge is directed from
the domain to the range of the property. A relation inclusion is denoted by a
directed dotted edge labeled with the subsumption symbol v. Such an edge is
directed from the subsumee to the subsumer. A peer ontology is a subgraph
totally contained in a box labeled with a peer name. A mapping is a directed
edge from a peer ontology to another peer ontology. The owner of the mapping
is the peer the box of which contains the corresponding edge label. Moreover,
since there is no ambiguity with the owners of the ontology relations, we omit to
prefix a relation name with its owner name in order to alleviate the notations.

For instance, let consider the mapping ∀X(P1:Artifact(X) ⇒ P2:Works(X))
between a peer P1 and a peer P2. This mapping is a class inclusion: the class
P1:Artifact of P1 is contained in the class P2:Work of P2. If we suppose that
it belongs to P2, its graphical notation is the one in Figure 1. In that case,
P1:Artifact is a shared relation between P1 and P2.

Artifact Work
v

P1 P2

Fig. 1. Class inclusion mapping

Let consider another mapping ∀X∀Y (P1:paints(X, Y) ⇒ P2:painting(Y))
between P1 and P2. This mapping is a range typing of the property P1:paints

of P1, the domain of which is typed with the class P1:Painter of P1. The range
typing is made with the class P2:Painting of P2. If we suppose that this map-
ping belongs to P1, its graphical notation is the one in Figure 2. In that case,
P2:Painting is a shared relation between P1 and P2.

PaintingpaintsPainter

P2P1

Fig. 2. Range typing mapping

2.8 Illustrative example

We will illustrate our contributions throughout the article on the following simple
SomeRDFS S consisting of two peers P1 and P2.

P1 can store data about artists (some of them being sculptors and/or painters),
artifacts artists have created, and the artistic movements the artifacts belong
to. Some artist creations are distinguished according to whether their creators
are sculptors or painters. P2 can store data about works (some of them being
paintings, sculptures or musics) and the artistic period they refer to. The FOL
notation of their ontologies is given in Figure 3.

P1 ontology P2 ontology
∀X(P1:Sculptor(X) ⇒ P1:Artist(X)) ∀X(P2:Painting(X) ⇒ P2:Work(X))
∀X(P1:Painter(X) ⇒ P1:Artist(X)) ∀X(P2:Sculpture(X) ⇒ P2:Work(X))
∀X∀Y (P1:creates(X, Y) ⇒ P1:Artist(X)) ∀X(P2:Music(X) ⇒ P2:Work(X))
∀X∀Y (P1:creates(X, Y) ⇒ P1:Artifact(Y)) ∀X∀Y (P2:refersTo(X, Y) ⇒ P2:Work(X))
∀X∀Y (P1:paints(X, Y) ⇒ P1:creates(X, Y)) ∀X∀Y (P2:refersTo(X, Y) ⇒ P2:Period(Y))
∀X∀Y (P1:sculpts(X, Y) ⇒ P1:creates(X, Y))
∀X∀Y (P1:sculpts(X, Y) ⇒ P1:Sculptor(X))
∀X∀Y (P1:paints(X, Y) ⇒ P1:Painter(X))
∀X∀Y (P1:belongsTo(X, Y) ⇒ P1:Artifact(X))
∀X∀Y (P1:belongsTo(X, Y) ⇒ P1:Movement(Y))

Fig. 3. Ontologies of P1 and P2

P1 actually stores that Picasso has painted “Les demoiselles d’Avignon”
which belongs to the Picasso’s pink movement, and has sculpted “La femme
au chapeau” which belongs to the Modern art movement. P2 stores that “Le

déjeuner des canotiers” is a painting and that “Les demoiselles d’Avignon” refers
to the Cubism artistic period. It also stores that “The statue of David” is a sculp-
ture and that “Nutcracker” is a music. The storage description of P1 and P2 is
given in Figure 4.

P1 Data P2 Data
P1:paints(Picasso,Les-demoiselles-d-Avignon) P2:Painting(Le-dejeuner-des-canotiers)
P1:sculpts(Picasso,La-femme-au-chapeau) P2:refersTo(Les-demoiselles-d-Avignon,Cubism)
P1:belongsTo(Les-demoiselles-d-Avignon,Picasso-pink) P2:Sculpture(The-statue-of-David)
P1:belongsTo(La-femme-au-chapeau,Modern-art) P2:Music(Nutcracker)

Fig. 4. Data of P1 and P2

In order to share data with P2, P1 has established two mappings to distin-
guish sculptor and painter creations from artist creations. This is done by the
range typing of P1:sculpts and P1:paints with respectively the classes of sculp-
tures and paintings of P2. P2 has also established mappings with P1 in order to
state that the class of artifacts of P1 is contained in its class of artistic works,
and that the property P1:belongsTo is contained in its property P2:refersTo.
Their mappings are given in Figure 5. Those mappings indicate that the shared
relations of P1 are P1:Artifact and P1:belongsTo, while the shared relations of
P2 are P2:Painting and P2:Sculpture.

P1 mappings P2 mappings
∀X∀Y (P1:paints(X, Y) ⇒ P2:Painting(Y)) ∀X(P1:Artifact(X) ⇒ P2:Work(X))
∀X∀Y (P1:sculpts(X, Y) ⇒ P2:Sculpture(Y)) ∀X∀Y (P1:belongsTo(X, Y) ⇒ P2:refersTo(X, Y))

Fig. 5. Mappings of P1 and P2

Following our graphical conventions, the above SomeRDFS schema is given
in Figure 6.

creates belongsTo

Painter

Artist

refersTo

Music

Period

sculpts

paints

Work

property

relation inclusionArtifact

Sculptor

SculpturePainting

Movement

v
vv

v
v v

v

v

v

v

P2
P1

Fig. 6. Graphical representation of schema(S)

3 Query answering through query rewriting

Query answering is the main inference in a PDMS. Finding all the answers of a
user query is, in general, a critical issue [16]. It has been shown in [17] that when
a query has a finite number of maximal conjunctive rewritings, then its answer
set can be obtained as the union of the answer sets of its rewritings.

Definition 5 (Conjunctive rewriting). Given a SomeRDFS PDMS S, a
query R is a conjunctive rewriting of a query Q iff Q subsumes R w.r.t. S.
R is a maximal conjunctive rewriting of Q if there does not exist another con-
junctive rewriting R′ of Q strictly subsuming R.

Theorem 1 shows that query answering in a SomeRDFS PDMS can be done
through query rewriting.

Theorem 1. Query answering of a user query can be achieved by a rewrite and
evaluate strategy. The rewriting complexity is polynomial w.r.t. the size of the
schema of the SomeRDFS PDMS and exponential w.r.t. the number of atoms
in the query. The evaluation complexity is polynomial w.r.t. the size of the data
of the SomeRDFS PDMS.

Proof. The schema of a SomeRDFS PDMS forms a knowledge base R of function-
free Horn rules with single conditions (see the FOL axiomatization of core-RDFS
in Figure 2). A simple backward chaining algorithm [18] with cycle detection ap-
plied to each atom of a user query Q ensures to find all the maximal conjunctive
rewritings of each atom of Q with atmost n chaining steps, if n is the number of
rules in the schema. The reason is that each rule in a schema can only be used
at most once (assuming cycle detections) because they have a single condition.
Therefore, there are at most n maximal conjunctive rewritings (each one being
reduced to one atom) for each of the k atoms of the user query.

It follows from [19] that when views, queries and rewritings are conjunctive
queries, the set of all the (maximal) rewritings using views of a query can be
obtained from the conjunctions of the rewritings of each atom of the query. In
order to apply that result to our setting, we just have to reformulate the rewriting
problem that we consider into the rewriting problem using views considered in
[19]. For doing so, for each atom p(X̄) we create a view, named p(X̄), the body
of which is the conjunction of the different atoms that can be derived (e.g., by
standard forward-chaining) from p(X̄) using the set R of rule:

p(X̄) ≡
∧

{p(X̄)}∪R`a(Ȳ)

a(Ȳ).

Those views have no existential variable (for every a(Ȳ) such that {p(X̄)}∪R `
a(Ȳ), Ȳ ⊆ X̄) because the FOL axiomatization of core-RDFS (see Figure 2) is
made of safe rules only. Therefore, conjuncting views that are relevant to each
atom of the query provides rewritings of the query. As shown in [20], it is not
true in the general case where the conjunctions of views relevant to each atom

of the query are just candidate rewritings for which subsumption with the query
must be checked.

By construction, there are at most n views relevant for each atom of the
query. Therefore, there are at most nk maximal conjunctive rewritings of the user
query, obtained by conjuncting rewritings of each atom of the query. Therefore,
rewriting complexity in SomeRDFS is in O(nk). Note that in practice the value
of n might be quite large while the one of k should be small.
Finally, evaluating a conjunctive query is in P w.r.t. data complexity [21]. Since
a user query has a finite number of maximal conjunctive rewritings to evaluate,
answering such a query is in P w.r.t. data complexity. �

The proof of Theorem 1 provides a solution in order to deploy a SomeRDFS

PDMS: one needs a peer-to-peer reasoner that performs backward chaining in
distributed knowledge bases of FOL function-free Horn rules. To the best of our
knowledge such a FOL peer-to-peer reasoner does not exist. However, there exists
a propositional peer-to-peer reasoner: SomeWhere [5]. We will show that it is
possible to encode FOL reasoning in SomeRDFS into propositional reasoning
in SomeWhere.

Before presenting the corresponding reduction, we illustrate the rewrite and
evaluate strategy for query answering in a SomeRDFS PDMS on the example
of Section 2.8.

3.1 Illustrative example (continued)

Let us consider the user query Q1(X) ≡ P2:Work(X) asked to the peer P2. It
is easy to see that its maximal rewritings are (e.g., using backward chaining on
the Horn rules of schema(S)):

1. R1
1(X) ≡ P2:Work(X)

2. R1
2(X) ≡ P2:Painting(X)

3. R1
3(X) ≡ P2:Sculpture(X)

4. R1
4(X) ≡ P2:Music(X)

5. R1
5(X) ≡ ∃Y P2:refersTo(X, Y)

6. R1
6(X) ≡ P1:Artifact(X)

7. R1
7(X) ≡ ∃Y P1:belongsTo(X, Y)

8. R1
8(X) ≡ ∃Y P1:creates(Y, X)

9. R1
9(X) ≡ ∃Y P1:paints(Y, X)

10. R1
10(X) ≡ ∃Y P1:sculpts(Y, X)

The answer set of Q1 is obtained by evaluating those rewritings.
Q1(S) = ∅

︸︷︷︸

R1
1(S)

∪{Le-dejeuner-des-canotiers}
︸ ︷︷ ︸

R1
2(S)

∪{The-statue-of-David}
︸ ︷︷ ︸

R1
3(S)

∪{Nutcracker}
︸ ︷︷ ︸

R1
4(S)

∪{Les-demoiselles-d-Avignon}
︸ ︷︷ ︸

R1
5(S)

∪ ∅
︸︷︷︸

R1
6(S)

∪{Les-demoiselles-d-Avignon,La-femme-au-chapeau}
︸ ︷︷ ︸

R1
7(S)

∪ ∅
︸︷︷︸

R1
8(S)

∪{Les-demoiselles-d-Avignon}
︸ ︷︷ ︸

R1
9(S)

∪{La-femme-au-chapeau}
︸ ︷︷ ︸

R1
10(S)

.

Consider now the user query Q2(X, Y) ≡ P2:Painting(X)∧P2:refersTo(X, Y)
asked to P2. Its maximal rewritings are:

1. R2
1(X, Y) ≡ P2:Painting(X)∧ P2:refersTo(X, Y)

2. R2
2(X, Y) ≡ P2:Painting(X)∧ P1:belongsTo(X, Y)

3. R2
3(X, Y) ≡ ∃Z P1:paints(Z, X) ∧ P2:refersTo(X, Y)

4. R2
4(X, Y) ≡ ∃Z P1:paints(Z, X) ∧ P1:belongsTo(X, Y)

The answer set of Q2 is obtained by evaluating those rewritings.
Q2(S) = ∅

︸︷︷︸

R2
1(S)

∪ ∅
︸︷︷︸

R2
2(S)

∪{(Les-demoiselles-d-Avignon, Cubism)}
︸ ︷︷ ︸

R2
3(S)

∪{(Les-demoiselles-d-Avignon, Picasso-pink)}
︸ ︷︷ ︸

R2
4(S)

.

Note that the above rewritings suggest the need of optimization in order to be
efficiently evaluated: some atoms appear in several rewritings and are thus eval-
uated several times. Standard caching techniques can be used for that purpose.

Q1 and Q2 highlight three kinds of rewritings.

– Local rewritings involve relations of the queried peer’s vocabulary. For exam-
ple, the rewriting R1

4 shows that the data Nutcraker of P2, which is known
as music, is an artistic work.

– Distant rewritings involve relations of a single distant peer’s vocabulary. For
example, the rewriting R2

4 shows that Les demoiselles d’Avignon is a painting
that refers to Cubism. It is worth noticing that Les demoiselles d’Avignon
is already known from P2, but not as a painting.

– Integration rewritings involve relations of several peer’s vocabularies. For
example, the rewriting R2

3 shows that Les demoiselles d’Avignon which is
already known from P2 to refer to Cubism, refers also to the Pink period of
Picasso.

3.2 Propositional reduction of query rewriting in a SomeRDFS

PDMS

In this section, we describe how to equivalently reduce query rewriting in a
SomeRDFS PDMS to consequence finding over logical propositional theories in
SomeWhere. To do this, we have to convert the distributed FOL knowledge
base that corresponds to a SomeRDFS PDMS into a distributed propositional
theory T that corresponds to a SomeWhere peer-to-peer inference system, and
to show that we obtain the maximal conjunctive rewritings of a query Q(X̄)
from the proper prime implicates of ¬Q w.r.t. T using the DeCA algorithm of
SomeWhere.

SomeWhere [5] is a peer-to-peer inference system (P2PIS), in which each
peer theory is a set of propositional clauses built from a set of propositional

variables. Any variable common to two connected peers can be stated as shared.
In that case, both peers know that they share that variable. Any variable of
a peer’s vocabulary can also be stated as target. When a peer is solicited for
computing consequences, the consequences it can send back are only those that
contain target variables. From a logical point of view, the global theory of a
SomeWhere P2PIS is the union of the propositional theories of its peers. From
a reasoning point of view, each SomeWhere peer runs DeCA [5] (Decentralized
Consequence finding Algorithm), which is a message-passing algorithm that
computes the proper prime implicates of literals w.r.t. the global theory of the
P2PIS. The point is that it does it in a fully decentralized manner, without
knowing the whole global theory. DeCA is sound, i.e., it computes only proper
implicates of the input literal w.r.t. the global theory. DeCA always terminates
and notifies the user of its termination. We have exhibited in [5] a sufficient con-
dition for DeCA to be complete, i.e., to return all the proper prime implicates
of the input literal (w.r.t. the global theory): for any two peers having a variable
in common, there is a path of connected peers sharing that variable.

The following definition recalls the notion of proper prime implicate of a
clause w.r.t. a propositional clausal theory.

Definition 6 (Proper prime implicate w.r.t. a theory). Let T be a clausal
theory and q be a clause. A clause m is said to be:

– a prime implicate of q w.r.t. T iff T ∪{q} |= m and for any other clause m′,
if T ∪ {q} |= m′ and m′ |= m then m′ ≡ m.

– a proper prime implicate of q w.r.t. T iff it is a prime implicate of q w.r.t.
T and T 6|= m.

The propositional encoding of a SomeRDFS that we consider is given in
Definition 7. It must translate appropriately the semantic connection between
classes and properties. In particular, the typing of the properties must distinguish
the typing of the domain from the typing of the range of a given property P . As
we will see, this distinction is important for rebuilding the FOL rewritings from
the propositional rewritings. In the FOL notation, the distinction relies on the
place of the typing variable as argument of the property: in ∀X∀Y (P (X, Y) ⇒
C(X)) the fact that the typing variable (i.e., X) appears as the first argument
of P indicates that the domain of the property is typed by the class C, while in
∀X∀Y (P (X, Y) ⇒ C(Y)) the fact that the typing variable (i.e., Y) appears as
the second argument of P indicates that the range of the property is typed by
the class C.

Therefore, for a given class C, we distinguish its two typing roles for prop-
erties by encoding it by two propositional variables Cdom and Crange. Thus, we
encode the domain typing of a property P by a class C with the clausal form
¬P ∨Cdom of the implication P ⇒ Cdom. Similarly, we encode the range typing
of a property P by a class C with the clausal form ¬P ∨Crange of the implication
P ⇒ Crange.

Definition 7 (Propositional encoding of SomeRDFS). We encode a
SomeRDFS S into a SomeWhere Prop(S) by encoding each SomeRDFS

peer P in S into a SomeWhere peer Prop(P) in Prop(S):

– if ∀X(C1(X) ⇒ C2(X)) is in P, ¬Cdom
1 ∨ Cdom

2 and ¬C
range
1 ∨ C

range
2 are

in Prop(P).
– if ∀X, Y (P (X, Y) ⇒ C(X)) is in P, ¬P prop ∨ Cdom is in Prop(P).
– if ∀X, Y (P (X, Y) ⇒ C(Y)) is in P, ¬P prop ∨ Crange is in Prop(P).
– if ∀X, Y (P1(X, Y) ⇒ P2(X, Y)) is in P, ¬P

prop
1 ∨ P

prop
2 is in Prop(P).

It is important to notice that a dual encoding would have been possible, con-
sisting in distinguishing the domain and range typing by encoding each property
P by two propositional variables P dom and P range: a clause ¬P dom ∨ C would
encode the domain typing of a property P by a class C, while ¬P range∨C would
encode the range typing of a property P by a class C.

All the propositional variables in Prop(P) are stated as target. A variable in
Prop(P) that corresponds to a relation shared with another peer P ′, is stated
as shared with Prop(P ′).

As an illustration, Figure 7 represents the two peers of the SomeRDFS

PDMS introduced in Section 2.8.

∀X∀Y (P1:paints(X, Y) ⇒ P2:Painting(Y))

∀X∀Y (P1:sculpts(X, Y) ⇒ P2:Sculpture(Y))

Shared

With P2: P1:Artifact(X), P1:belongsT o(X, Y)

∀X(P2:Music(X) ⇒ P2:Work(X))

∀X(P2:Sculpture(X) ⇒ P2:Work(X))

∀X(P2:Painting(X) ⇒ P2:Work(X))

∀X∀Y (P2:refersT o(X, Y) ⇒ P2:Work(X))

P2 :

∀X∀Y (P2:refersT o(X, Y) ⇒ P2:Period(Y))

∀X(P1:Artifact(X) ⇒ P2:Work(X))

Shared

With P1: P2:Painting(X), P2:Sculpture(X)

∀X∀Y (P1:belongsT o(X, Y) ⇒ P2:refersT o(X, Y))

∀X∀Y (P1:creates(X, Y) ⇒ P1:Artist(X))

∀X∀Y (P1:paints(X, Y) ⇒ P1:creates(X, Y))

∀X∀Y (P1:creates(X, Y) ⇒ P1:Artifact(Y))

∀X∀Y (P1:sculpts(X, Y) ⇒ P1:creates(X, Y))

∀X(P1:Painter(X) ⇒ P1:Artist(X))

∀X(P1:Sculptor(X) ⇒ P1:Artist(X))

∀X∀Y (P1:sculpts(X, Y) ⇒ P1:Sculptor(X))

∀X∀Y (P1:paints(X, Y) ⇒ P1:Painter(X))

∀X∀Y (P1:belongsT o(X, Y) ⇒ P1:Artifact(X))

∀X∀Y (P1:belongsT o(X, Y) ⇒ P1:Movement(Y))

P1 :

Fig. 7. The SomeRDFS PDMS of Section 2.8

Figure 8 corresponds to the encoding of this SomeRDFS PDMS into a
SomeWhere P2PIS. The Shared section in the Figure 7 (resp. 8) makes explicit
which local relations (resp. propositional variables) are known to be shared with
others peers.

Proposition 1 states that the propositional encoding of a SomeRDFS PDMS
leads to a SomeWhere P2PIS for which the DeCA algorithm is complete.

Proposition 1 (Completeness of DeCA for the propositional encoding
of a SomeRDFS PDMS). Let S be a SomeRDFS PDMS. Let Prop(S) be the
SomeWhere P2PIS resulting from the propositional encoding of S. DeCA is
complete for Prop(S).

¬P1 : Sculptorrange
∨ P1 : Artistrange

¬P1 : Painterdom
∨ P1 : Artistdom

¬P1 : sculptsprop
∨ P1 : createsprop

¬P1 : belongsT oprop
∨ P1 : Artifactdom

¬P1 : belongsT oprop
∨ P1 : Movementrange

¬P1 : paintsprop
∨ P2 : P aintingrange

¬P1 : paintsprop
∨ P1 : createsprop

¬P1 : Painterrange
∨ P1 : Artistrange

¬P1 : Sculptordom
∨ P1 : Artistdom

P1 :

¬P1 : createsprop
∨ P1 : Artistdom

¬P1 : createsprop
∨ P1 : Artifactrange

¬P1 : sculptsprop
∨ P1 : Sculptordom

¬P1 : paintsprop
∨ P1 : Painterdom

¬P1 : sculptsprop
∨ P2 : Sculpturerange

Shared

With P2: P1:Artifactdom, P1:Artifactrange

¬P2 : Sculpturedom
∨ P2 : W orkdom

¬P2 : Musicrange
∨ P2 : Workrange

¬P2 : refersT oprop
∨ P2 : Workdom

¬P2 : Sculpturerange
∨ P2 : W orkrange

¬P2 : Musicdom
∨ P2 : Workdom

¬P2 : P aintingdom
∨ P2 : W orkdom

¬P2 : refersT oprop
∨ P2 : P eriodrange

¬P1 : Artifactdom
∨ P2 : W orkdom

P2 :

¬P2 : P aintingrange
∨ P2 : Workrange

¬P1 : Artifactrange
∨ P2 : Workrange

Shared

P1:belongsT oprop

With P1: P2:Paintingrange , P2:Sculpturerange

¬P1 : belongsT oprop
∨ P2 : refersT oprop

Fig. 8. Propositional encoding of the SomeRDFS PDMS of Section 2.8

Proof. By definition, in a SomeRDFS PDMS, a relation which appears in two
peers comes from a mapping between those two peers and is shared between
those two peers. In the propositional encoding, the only variables that can be
common to two peer theories result from the encoding of a mapping. Therefore,
in a SomeWhere P2PIS resulting from the encoding of a SomeRDFS PDMS,
all the variables that are common to two peer theories are necessarily shared by
those two peers, and the sufficient condition for the completeness of DeCA is
obviously satisfied. �

Proposition 2 establishes the connection between maximal conjunctive rewrit-
ings of queries made of a single atom in a SomeRDFS PDMS and proper prime
implicates of a literal in a SomeWhere P2PIS. Note that Proposition 2 also
suggests an optimization of the propositional encoding when query rewriting is
used for query answering: the target variables should be only the ones resulting
from relations for which facts are stored. Doing this, each conjunctive rewriting
will be useful for query answering: it will provide at least one answer.

Proposition 2 (Propositional transfer). Let S be a SomeRDFS PDMS and
let Prop(S) be its propositional encoding into a SomeWhere P2PIS.

(i) R(X) ≡ C′(X) is a maximal conjunctive rewriting of a query Q(X) ≡
C(X) w.r.t. S iff ¬C′dom is a proper prime implicate of ¬Cdom w.r.t.
Prop(S)

(ii) R(X) ≡ ∃Y P (X, Y) is a maximal conjunctive rewriting of a query Q(X) ≡
C(X) w.r.t. S iff ¬P prop is a proper prime implicate of ¬Cdom w.r.t.
Prop(S).

(iii) R(X) ≡ ∃Y P (Y, X) is a maximal conjunctive rewriting of a query Q(X) ≡
C(X) w.r.t. S iff ¬P prop is a proper prime implicate of ¬Crange w.r.t.
Prop(S).

(iv) R(X, Y) ≡ P ′(X, Y) is a maximal conjunctive rewriting of a query Q(X, Y) ≡
P (X, Y) w.r.t. S iff ¬P ′prop is a proper prime implicate of ¬P prop w.r.t.
Prop(S).

Proof. We first exhibit some properties that will be used in the proof of the
proposition. Let S be a SomeRDFS PDMS and let Prop(S) be its propositional
encoding into a SomeWhere P2PIS. Let C and P be respectively a class and
a property of S, and Cdom, Crange, and P prop be their corresponding variables
in Prop(S).

Let I = (∆I , .I) be an interpretation of S and (o, o′) ∈ ∆I × ∆I . We build
an interpretation po,o′(I) of Prop(S) as follows:

α1. (Cdom)po,o′ (I) = true iff o ∈ CI and (Crange)po,o′ (I) = true iff o′ ∈ CI .
α2. (P prop)po,o′ (I) = true iff (o, o′) ∈ P I .

Let J be an interpretation of Prop(S). We build i(J) = (∆I = {dom, range}, .i(J))
an interpretation of S as follows:

β1. dom ∈ Ci(J) iff (Cdom)J = true and range ∈ Ci(J) iff (Crange)J = true.
β2. if (P prop)J = true then Ri(J) = {(dom, range)} else Ri(J) = ∅.

Properties 1. and 2. follow from the definition of the above interpretations:
For every interpretation I of S and (o, o′) ∈ ∆I ×∆I , for every interpretation J

of Prop(S):

1. I is a model of S iff po,o′(I) is a model of Prop(S).
2. i(J) is a model of S iff J is a model of Prop(S).

We now give the proof of the item (i) of the proposition. We do not provide
the proofs of the items (ii), (iii) and (iv) because they are very similar to that
of (i).

(i) (⇐) We have to prove that if ¬C′dom is a proper prime implicate of ¬Cdom

w.r.t. Prop(S) then R(X) ≡ C′(X) is a maximal conjunctive rewriting of a
query Q(X) ≡ C(X) w.r.t. S.

Suppose that ¬C′dom is a proper prime implicate of ¬Cdom w.r.t. Prop(S).
Let us first show that R(X) ≡ C′(X) is a conjunctive rewriting of Q(X) ≡ C(X)
w.r.t. S. If it is false, then there exists a model I of S and a constant b such that
b ∈ C′I and b 6∈ CI . Note that there always exists such a b since the core-RDFS
data model does not allow building unsatisfiable logical sentences (w.r.t. S).
According to property 1., pb,b(I) is a model of Prop(S). According to definition
α1 we have (C′dom)pb,b(I) = true and (Cdom)pb,b(I) = false, i.e., (¬Cdom)pb,b(I)

= true and (¬C′dom)pb,b(I) = false. This contradicts the fact that ¬C′dom is an
implicate of ¬Cdom w.r.t. Prop(S).

Let us show now that R(X) ≡ C′(X) is a maximal conjunctive rewriting. If
it is false, there exists a maximal conjunctive rewriting R′ of Q w.r.t. S strictly
subsuming R, i.e., there exists a model I of S and an element o ∈ ∆I such that
o ∈ (R′)I , o ∈ QI , and o 6∈ RI . Theorem 1 states that all the maximal conjunctive
rewritings of a user query can be obtained using a backward chaining algorithm
with cycle detection. Because of the form of the core-RDFS rules in schema(S)
(Section 2), any maximal conjunctive rewriting of a query made of a single atom
Q(X) ≡ C(X) is either of the form R′(X) ≡ A(X), or R′(X) ≡ ∃Y B(X, Y), or
R′(X) ≡ ∃Y B(Y, X):

– R′(X) ≡ A(X): According to property 1, po,o(I) is a model of Prop(S) and
according to definition α1 we have: (Adom)po,o(I) = true,
(Cdom)po,o(I) = true, and (C′dom)po,o(I) = false, i.e., (¬Adom)po,o(I) =
false, (¬Cdom)po,o(I) = false, and (¬C′dom)po,o(I) = true. This contradicts
the fact that ¬C′dom is a prime implicate of ¬Cdom w.r.t. Prop(S).

– R′(X) ≡ ∃Y B(X, Y): Since o ∈ R′ then there exists o′ ∈ ∆I such that
(o, o′) ∈ BI . According to property 1, po,o′(I) is a model of Prop(S) and ac-
cording to definition α1 and α2 we have: (Bprop)po,o′ (I) = true, (Cdom)po,o′ (I) =
true, and (C′dom)po,o′ (I) = false, i.e., (¬Bprop)po,o′ (I) = false, (¬Cdom)po,o′ (I) =
false, (¬C′dom)po,o′ (I) = true. This contradict the fact that ¬C′dom is a
prime implicate of ¬Cdom w.r.t. Prop(S).

– R′(X) ≡ ∃Y B(Y, X): This case is similar to the previous one.

(i) (⇒) We have to prove that if R(X) ≡ C′(X) is a maximal conjunctive
rewriting of a query Q(X) ≡ C(X) w.r.t. S then ¬C′dom is a proper prime
implicate of ¬Cdom w.r.t. Prop(S).

Suppose that R(X) ≡ C′(X) is a maximal conjunctive rewriting of a query
Q(X) ≡ C(X) w.r.t. S.
Let us first show that ¬C′dom is an implicate of ¬Cdom w.r.t. Prop(S). Since
C′(X) is a conjunctive rewriting of C(X), for every model I of S: (C′)I ⊆ (C)I . If
¬C′dom is not an implicate of ¬Cdom w.r.t. Prop(S), then {¬Cdom}∪Prop(S) 6|=
¬C′dom, i.e., {C′dom}∪Prop(S) 6|= Cdom, i.e., there exists a model J of {C′dom}
∪Prop(S) such that (Cdom)J = false and (C′dom)J = true. According to prop-
erty 2., i(J) is a model of S. According to definition β1 we have dom 6∈ (C)i(J)

and dom ∈ (C′)i(J) thus (C)i(J) 6⊆ (C′)i(J). This contradicts the fact that
R(X) ≡ C′(X) is a conjunctive rewriting of Q(X) ≡ C(X) w.r.t. S.

Let us show now that ¬C′dom is a proper implicate of ¬Cdom w.r.t. Prop(S).
Let I be a model of S such that RI 6= ∅. Note that such a model always exists
since the core-RDFS data model does not allow building unsatisfiable logical
sentences (w.r.t. S). Let o be in C′I . According to property 1, po,o(I) is a model
of Prop(S) and according to definition α1 we have (C′dom)po,o(I) = true, i.e.,
(¬C′dom)po,o(I) = false. Therefore, there exists a model of Prop(S) which is
not a model of ¬C′dom. That means that ¬C′dom is not an implicate of Prop(S)
alone.

Finally, let us show that ¬C′dom is a prime implicate of ¬Cdom w.r.t. Prop(S).
Suppose that there exists a clause cl such that Prop(S) ∪ {¬Cdom} |= cl and
cl |= ¬C′dom. Either cl is ¬C′dom since ¬C′dom is a literal and thus ¬C′dom is
prime, or cl is the empty clause and thus Prop(S) ∪ {¬Cdom} is unsatisfiable.
Let us show that the latter case is not possible. Let I be a model of S such that
o 6∈ (Cdom)I . It is always possible to build such a model: let K = (∆K , .K) be
a model of S such that o 6∈ ∆K , then I = (∆K ∪ {o}, .K) is a model of S such
that o 6∈ (Cdom)I . According to the property 1, po,o(I) is model of Prop(S),
and according to the definition α1 we have: (Cdom)po,o(I) = false. Therefore,
po,o(I) is a model of Prop(S)∪{¬Cdom} and thus Prop(S)∪{¬Cdom} is always
satisfiable. �

In the next section, we provide an algorithm built on top of DeCA which
computes all the maximal conjunctive rewritings of any user query.

4 Query rewriting algorithm of a SomeRDFS PDMS

The query rewriting algorithm of SomeRDFS, namely DeCArdfs, is designed
on top of DeCA. On each SomeRDFS peer P , DeCA

rdfs acts as an interface
between the user and DeCA which works on Prop(P).

The strategy of DeCArdfs is to rewrite the user query’s atoms indepen-
dently with DeCA, based on the result of Proposition 2, and then to combine
their rewritings in order to generate some conjunctive rewritings of the user
query w.r.t. a SomeRDFS PDMS. DeCArdfs guarantees that all the maximal
conjunctive rewritings of the user query w.r.t. a SomeRDFS PDMS are gener-
ated.

DeCArdfs is presented in Algorithm 1. It uses the conjunctive distribution
operator ? on sets of FOL formulas: S1 ? · · · ? Sn = ?

n
i=1Si = {F1 ∧ · · · ∧ Fn |

F1 ∈ S1, . . . , Fn ∈ Sn}. Note that if Si = ∅, i ∈ [1..n], then ?
n
i=1Si = ∅.

Algorithm 1 DeCArdfs

Require: A user query Q(X̄) ≡ ∃Ȳ
Vn

i=1
ri(X̄i, Ȳi) s.t. X̄ =

Sn

i=1
Xi and Ȳ =

Sn

i=1
Yi

Ensure: Output contains only conjunctive rewritings of Q w.r.t S , including all the
maximal conjunctive rewritings of Q w.r.t S

1: for i ∈ [1..n] do

2: AtomRewritingsi = ∅
3: if ri(X̄i, Ȳi) is of the form C(U) then

4: for imp ∈ DeCA(¬Cdom) do

5: if imp has the form ¬C′dom then

6: AtomRewritingsi = AtomRewritingsi ∪ {C′(U)}
7: else if imp has the form ¬P ′prop then

8: AtomRewritingsi = AtomRewritingsi ∪ {∃ZP ′(U,Z)} endif

9: end for

10: for imp ∈ DeCA(¬Crange) do

11: if imp has the form ¬P ′prop then

12: AtomRewritingsi = AtomRewritingsi ∪ {∃ZP ′(Z, U)} endif

13: end for

14: else if ri(X̄i, Ȳi) is of the form P (U1, U2) then

15: for imp ∈ DeCA(¬P prop) do

16: if imp has the form ¬P ′prop then

17: AtomRewritingsi = AtomRewritingsi ∪ {P ′(U1, U2)}
18: end for

19: end if

20: end for

21: return ?
n
i=1AtomRewritingsi

4.1 Illustrative example (continued)

Let us consider the user query Q1(X) ≡ P2:Work(X) asked to P2 in the exam-
ple of Section 2.8.
At Line 4 of DeCArdfs, ¬P2:Workdom is asked to DeCA:
DeCA(¬P2:Workdom) = {¬P2:Workdom, ¬P2:Paintingdom, ¬P2:Sculpturedom,

¬P2:Musicdom, ¬P2:refersToprop, ¬P1:Artifactdom, ¬P1:belongsToprop}.
At Line 10 of DeCArdfs, ¬P2:Workrange is asked to DeCA:
DeCA(¬P2:Workrange) = {¬P2:Workrange, ¬P2:Paintingrange,

¬P2:Sculpturerange, ¬P2:Musicrange, ¬P1:Artifactrange, ¬P1:createsprop,

¬P1:paintsprop, ¬P1:sculptsprop}.
It follows that, at Line 21, ?

1
i=1AtomRewritingsi = {P2:Work(X),

P2:Painting(X), P2:Sculpture(X), P2:Music(X), ∃ZP2:refersTo(X, Z),
P1:Artifact(X), ∃TP1:belongsTo(X, T), ∃UP1:creates(U, X),
∃V P1:paints(V, X), ∃WP1:sculpts(W, X)}.
Therefore, DeCArdfs returns the maximal conjunctive rewritings of Q1 w.r.t.
S exhibited in the example of Section 3.1.

Let us consider now the user query Q2(X, Y) ≡ P2:Painting(X)
∧P2:refersTo(X, Y) asked to P2 in the example of Section 2.8.
In the first iteration of DeCArdfs, ¬P2:Paintingdom is asked to DeCA at
Line 4 and ¬P2:Paintingrange is asked to DeCA at Line 10 with the following
results:
DeCA(¬P2:Paintingdom) = {¬P2:Paintingdom},
DeCA(¬P2:Paintingrange) = {¬P2:Paintingrange, ¬P1:paintsprop}.
In the second iteration of DeCArdfs, ¬P2:refersToprop is asked to DeCA at
Line 15 with the following results:
DeCA(¬P2:refersToprop) = {¬P2:refersToprop,¬P1:belongsToprop}.
It follows that, at Line 21, ?

2
i=1AtomRewritingsi = {

P2:Painting(X)∧ P2:refersTo(X, Y), P2:Painting(X) ∧ P1:belongsTo(X, Y),
∃Z P1:paints(Z, X) ∧ P2:refersTo(X, Y),
∃Z P1:paints(Z, X) ∧ P1:belongsTo(X, Y)}.
Therefore, DeCArdfs returns the maximal conjunctive rewritings of Q2 w.r.t.
S exhibited in the example of Section 3.1.

4.2 Properties of DeCArdfs

The main properties of DeCArdfs are stated by the two following theorems.

Theorem 2 (Soundness of DeCArdfs). Let S be a SomeRDFS PDMS
and let P be one of its peers. Any user query Q asked to P will produce a
set DeCArdfs(Q) of queries containing only conjunctive rewritings of Q w.r.t.
S.

Proof. Theorem 1 in [5] states the soundness of DeCA. Therefore, according to
Proposition 2 in Section 3, AtomRewritingsi (i ∈ [1..n]) at Line 21 contains
only conjunctive rewritings of the ith atom of the user query Q.

The soundness of the output of DeCArdfs at Line 21 results from the fact
that, as we have shown in the proof of Theorem 1, we are in a setting where it
has been proved [19] that conjuncting conjunctive rewritings of each atom of the
query provides conjunctive rewritings of the query. �

Theorem 3 (Completeness of DeCArdfs). Let S be a SomeRDFS PDMS
and let P be one of its peers. Any user query Q asked to P will produce a set
DeCArdfs(Q) of queries containing all the maximal conjunctive rewritings of
Q w.r.t. S.

Proof. Theorem 2 in [5] states a sufficient condition for the completeness of
DeCA. Proposition 1 in Section 3 ensures that this condition is satisfied in
Prop(S). Therefore, the use of DeCA at Line 4, Line 10, and Line 15 produces
all the proper prime implicates of the given literals w.r.t. Prop(S).
According to Proposition 2 in Section 3, AtomRewritingsi (i ∈ [1..n]) at Line
21 contains all the maximal conjunctive rewritings of the ith atom of the user
query Q.
The completeness of the output of DeCArdfs at Line 21 results from the fact
that, as we have shown in the proof of Theorem 1, we are in a setting where it
has been proved [19] that conjuncting all the maximal conjunctive rewritings of
each atom of the query provides all the maximal conjunctive rewritings of the
query. �

Theorem 4 (Termination of DeCArdfs). Let S be a SomeRDFS PDMS
and let P be one of its peers. Any user query Q asked to P will produce a
computation that always terminates.

Proof. Theorem 1 in [5] states that DeCA always terminates after having pro-
duced a finite set of proper prime implicates of a given literal w.r.t. Prop(S).
Therefore, it is obvious that DeCA

rdfs always terminates. �

Other interesting properties are inherited from DeCA’s properties: anytime
computation and termination notification. Note that the latter property is crucial
for an anytime algorithm.

Theorem 5 (Anytime computation of DeCArdfs). Let S be a SomeRDFS

PDMS and let P be one of its peers. Any user query Q asked to P will return a
set DeCA

rdfs(Q) of query rewritings as a stream.

Proof. It is obvious that the n iterations at Line 1 are independent. Therefore,
they can be parallelized.
Within an iteration, if there are several calls to DeCA, those calls and the com-
putations that follows are independent: they only add results in the same variable
AtomRewritingi. Therefore, those calls can be parallelized. Moreover, since
DeCA performs an anytime computation, the feeding of the AtomRewritingi

can be made anytime: each time a result is produced by DeCA (at Line 4, Line
10, and Line 15), that result is processed (within the for loops at Line 4, Line
10, and Line 15).

It follows that the computation at Line 21 can also be made anytime: each time
an AtomRewritingk (k ∈ [1..n]) is fed with a formula F ,
?

k−1
i=1 AtomRewritingsi ? {F}??

n
i=k+1AtomRewritingsi is returned in the

output stream. �

Theorem 6 (Termination notification of DeCArdfs). Let S be a
SomeRDFS PDMS and let P be one of its peers. Any user query asked to
P will produce a computation, the end of which will be notified to the user.

Proof. Theorem 3 in [5] states that DeCA, which is anytime, notifies of its ter-
mination. Therefore, it is obvious that as soon as all the finite number of calls to
DeCA have notified of there termination and the AtomRewritingsi (i ∈ [1..n])
have been properly fed according to the results of these calls, DeCArdfs can no-
tifies the user of its termination after having returned ?

n
i=1AtomRewritingsi

at Line 21. �

4.3 Scalability of DeCA
rdfs

The scalability of DeCArdfs is directly related to the scalability of DeCA.
We can infer that DeCArdfs has good scalability properties from the DeCA

scalability experiments that are reported in [7]. Those experiments have been
performed on networks of 1000 peers deployed on a cluster of 75 heterogeneous
computers. The networks that have been considered have a topology of “small
world” [22] like in social networks: there are clusters of very connected peers
and a few connections between peers of different clusters. Each peer theory is
randomly generated as 70 clauses of length 2 from 70 variables, 40 of which
are ramdomly chosen as target variables. A peer is connected to 10 other peers
with which it shares 2 variables (randomly chosen). These connections take into
account the “small world” topology. From a peer point of view, these connec-
tions are done by adding in its theory 20 new clauses modeling the mappings
with its neighbours. Among the experiments performed on SomeWhere P2PISs
[7], the ones that are the most representative of the propositional encodings of
SomeRDFS PDMSs correspond to the very easy case for DeCA in which all
the mappings correspond to clauses of length 2. It is due to the simplicity of the
RDFS model (no class constructor and no negation). In that case, it has been
experimentally shown that all the proper prime implicates of a given literal are
computed in 0.07 second in mean (over more than 300 different input literals).
This lets envision a good scalability of DeCArdfs, since for any user query,
atoms are independently rewritten in parallel. Thus, the expected time to add
to the above 0.07 second in mean is the time needed to combine the rewritings
of the user query atoms (Line 21 in Algorithm 1).

5 Related work

We have already presented in the introduction some PDMSs that have been
developped for the Semantic Web: Edutella [2], RDFPeers [3], GridVine [4] or

SomeOWL [5]. Like a SomeRDFS PDMS, a GridVine PDMS is based on RDFS
and considers mappings between peer ontologies. However, the mappings consid-
ered in a GridVine PDMS are restricted to equivalence of properties, while we
allow in a SomeRDFS PDMS more expressive mappings that can be inclusion
of classes, inclusion of properties, and domain and range typing of properties. In
contrast with a GridVine PDMS, the topology of a SomeRDFS PDMS is not
fixed and results from the existence of mappings between peers.

Several peer-to-peer data management systems for other data models than
those of the Semantic Web have been proposed recently.
Piazza [16, 23], in contrast with Edutella, does not consider that the data dis-
tributed over the different peers must be described relatively to some existing
reference schemas. Each peer has its own data and schema and can mediate with
some other peers by declaring mappings between its schema and the schemas
of those peers. The topology of the network is not fixed (as in Edutella) but
accounts for the existence of mappings between peers (as in SomeOWL and
SomeRDFS PDMSs): two peers are logically connected if there exists a map-
ping between their two schemas. The underlying data model of the first version
of Piazza [16] is relational and the mappings between relational peer schemas are
inclusion or equivalence statements between conjunctive queries. Such a map-
ping formalism encompasses the Local-as-View and the Global-as-View [24] for-
malisms used in information integration systems based on single mediators. The
price to pay is that query answering is undecidable except if some restrictions are
imposed on the mappings or on the topology of the network [16]. The currently
implemented version of Piazza [23] relies on a tree-based data model: the data
is in XML and the mappings are equivalence and inclusion statements between
XML queries. Query answering implementation is based on practical (but not
complete) algorithms for XML query containment and rewriting. The scalability
of Piazza so far does not go up to more than about 80 peers in the published
experiments and relies on a wide range of optimizations (mappings composition
[25], paths pruning [26]), made possible by the centralized storage of all the
schemas and mappings in a global server.
The peer data management system considered in [27] is similar to that of [16]
but proposes an alternative semantics based on epistemic logic. With that se-
mantics it is shown that query answering is always decidable (even with cyclic
mappings). Answers obtained according to this semantics correspond to a sub-
set of those that would be obtained according to the standard FOL semantics.
However, to the best of our knowledge, these results are not implemented.
The Kadop system [28] is an infastructure based on distributed hash tables for
constructing and querying peer-to-peer warehouses of XML resources semanti-
cally enriched by taxonomies and mappings. The mappings that are considered
are simple inclusion statement between atomic classes.

We will end this section by relating the DeCArdfs rewriting algorithm
that we have described in Section 4, with the rewriting algorithm PerfectRef

used in [12] for reformulating a query w.r.t. DL-Lite Tboxes. The subtle step of
PerfectRef consists in rewriting each atom of the query by applying positive

inclusions. The result of the application of the two positive inclusion statements
expressing domain and range role typing corresponds exactly to respectively
Line 8 and Line 12 of the DeCA

rdfs algorithm (applied in the centralized case
for making the comparison meaningful). The difference is that while inclusion
statements are applied on first-order atoms in PerfectRef , we proceed in two
steps: first the variables of the query are removed and we compute propositional
rewritings, second we obtain the FOL rewritings by simply adding variables
(possibly fresh existential variables) appropriately, depending on whether the
propositional rewritings come from propositional atoms of the form Cdom or
Crange. The equivalent of the application of the positive inclusions is done in
the first step, which applies to propositional atoms. This is an advantage for
scalability issues in the decentralized case.

6 Conclusion anf future work

We have presented the SomeRDFS model of PDMSs based on RDFS. It is the
first work on distributed RDFS handling semantic heterogeneity between peers
through more complex mappings than equivalence statements. The mappings
that we have considered are RDFS statements involving classes or properties
of different peers. Our approach for query answering in this setting relies on
two steps: query rewriting results in a union of conjunctive queries over possibly
different peers ; the answers are then obtained by evaluating each of those con-
junctive queries on the appropriate peers. This paper has focused on the first
step which is crucial for scalablity issues since it is within this step that the dif-
ferent peers possibly relevant to the query are discovered. For the answering step,
we know which peers have to be interrogated and with which queries. The opti-
mization issues that are relevant to this evaluation step are out of the scope of
this paper. Query answering by rewriting is a standard approach in information
integration systems based on centralized mediators. It raises new problems in a
decentralized setting, in particular scalabiliy and even decidability [29]. The fact
that in our approach query rewritings can be obtained through a propositional
encoding step guarantees decidability and scalability.

In fact, we have shown how to deploy SomeRDFS PDMSs on top of the
SomeWhere infrastructure for which experiments [7] have shown good scala-
bility properties. As a comparison, a simple GridVine PDMS of 60 peers have
been deployed and experimented in [4]: peer ontologies are in core-RDFS, 15
ontologies are used (each of which is used by 4 peers), each peer has 2 mappings
and stores only 1 fact. On such a PDMS, a user query, which is similar to our user
query made of a single atom, is answered in more that 10 seconds. In contrast,
experiments presented in [7] show that on a more complex network with bigger
ontologies (1000 peers, 1000 ontologies, 10 mappings per peer), the rewritings
produced by DeCA for any user query made of a single atom are obtained in
0.07 second in mean. This lets envision that the whole query answering (rewrit-
ing and evaluation) could be made in less than 1 or 2 seconds. Such a hint must

be confirmed by a large-scale experimental study that we plan to conduct in the
near future.

We also plan to extend the current SomeRDFS model for handling more
complex ontologies and more complex mappings. In particular, it seems doable
to consider DL-Lite both for expressing local ontologies over RDF facts and
for expressing mappings between ontologies. Since the negation is supported at
the propositional level in SomeWhere the DeCA algorithm can be used to
check the satisfiability of the global schema. Then it should be straightforward
to extend the two-step DeCA

rdfs rewriting algorithm to handle the additional
constructors of DL-LiteR. As a consequence, by a slight extension of the ap-
proach presented in this paper we could obtain a fast deployment of PDMS
based on distributed DL-Lite (in which the mappings are interpreted in first-
order semantics).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001)

2. Nedjl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., al.: EDUTELLA: a P2P
networking infrastructure based on RDF. In: WWW. (2002)

3. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a
structured P2P network. In: WWW. (2004)

4. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: GridVine: Building
internet-scale semantic overlay networks. In: ISWC. (2004)

5. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed
reasoning in a P2P setting: Application to the semantic web. Journal of Artificial
Intelligence Research (JAIR) (2006)

6. Stoica, I., Morris, R., Karger, D., Kaasshoek, M., Balakrishnan, H.: CHORD a
scalable P2P lookup service for internet applications. In: ACM SIGCOMM. (2001)

7. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Scalability
study of P2P consequence finding. In: IJCAI. (2005)

8. ter Horst, H.J.: Extending the RDFS entailment lemma. In: ISWC. (2004)

9. de Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of normative RDF.
In: OWLED. (2005)

10. de Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of RDF and ontology
languages. In: PPSWR. (2005)

11. Farrugia, J.: Model-theoretic semantics for the web. In: WWW. (2003)

12. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: AAAI. (2005)

13. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: KR. (2006)

14. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: com-
bining logic programs with description logic. In: WWW. (2003)

15. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query
languages. In: ISWC. (2004)

16. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data
management systems. In: ICDE. (2003)

17. Goasdoué, F., Rousset, M.C.: Answering queries using views: a KRDB perspective
for the semantic web. ACM Journal - Transactions on Internet Technology (TOIT)
4(3) (2004)

18. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edition
edn. Prentice-Hall, Englewood Cliffs, NJ (2003)

19. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: PODS. (1995)

20. Pottinger, R., Halevy, A.Y.: MiniCon: A scalable algorithm for answering queries
using views. In: VLDB Journal 10(2-3). (2001)

21. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

22. Watts, D.J., Strogatz, S.H.: Models of the small world. Nature 393 (1998)
23. Halevy, A., Ives, Z., Tatarinov, I., Mork, P.: Piazza: data management infrastruc-

ture for semantic web applications. In: WWW. (2003)
24. Halevy, A.Y. In: Logic-based techniques in data integration. Kluwer Academic

Publishers (2000)
25. Madhavan, J., Halevy, A.: Composing mappings among data sources. In: VLDB.

(2003)
26. Tatarinov, I., Halevy, A.: Efficient query reformulation in peer data management

systems. In: SIGMOD. (2004)
27. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical fondation of P2P

data integration. In: PODS. (2004)
28. Abiteboul, S., Manolescu, I., Preda, N.: Constructing and querying P2P ware-

houses of XML resources. In: SWDB. (2004)
29. Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.,

Kadiyska, Y., Miklau, G., Mork, P.: The Piazza peer data management project.
In: SIGMOD Record. Volume 32. (2003)

