
DRYADEPARENT, An Efficient and Robust
Closed Attribute Tree Mining Algorithm

Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara, Member, IEEE,

Takashi Washio, Member, IEEE Computer Society, and

Hiroshi Motoda, Member, IEEE Computer Society

Abstract—In this paper, we present a new tree mining algorithm, DRYADEPARENT, based on the hooking principle first introduced in

DRYADE. In the experiments, we demonstrate that the branching factor and depth of the frequent patterns to find are key factors of

complexity for tree mining algorithms, even if often overlooked in previous work. We show that DRYADEPARENT outperforms the

current fastest algorithm, CMTreeMiner, by orders of magnitude on data sets where the frequent tree patterns have a high branching

factor.

Index Terms—Data mining, mining methods and algorithms, mining tree structured data.

Ç

1 INTRODUCTION

IN the last 10 years, the frequent pattern discovery task of
data mining has expanded from simple item sets to more

complex structures, for example, sequences [1], episodes
[2], trees [3], or graphs [4], [5]. In this paper, we focus on tree
mining, that is, finding frequent tree-shaped patterns in a
database of tree-shaped data. Tree mining can lead to many
practical applications in the areas of computer networks [6],
bioinformatics [7], [8], and XML documents databases
mining [9], [10] and hence have received a lot of attention
from the research community in recent years. Most of the
well-known algorithms use the same generate-and-test
principle that made the success of frequent item set
algorithms. The main adaptation to the tree case is the
design of efficient candidate tree enumeration algorithms in
order to avoid generating redundant candidates and to
enable efficient pruning. However, the search space of tree
candidates is huge, particularly when the frequent trees to
find have both a high depth and a high branching factor.
Especially, the high branching factor case has received very
little attention in the tree mining community. However, the
performances of existing algorithms are dramatically

affected by the branching factor of the tree patterns to find,
as shown in our experiments.

Starting from this observation, we have developed the
DRYADEPARENT algorithm. This algorithm is an adaptation
of our earlier algorithm DRYADE [11]. DRYADE is based on
a more general tree inclusion definition appropriate for
mining highly heterogeneous collections of tree data.
DRYADEPARENT follows the same principles of DRYADE

but uses a standard inclusion definition [12], [13] to make
possible performance comparisons with other existing
systems based on different principles. We will show in this
paper that DRYADEPARENT outperforms the up-to-date
CMTreeMiner algorithm [13] and conduct a thorough study
on the influence of structural characteristics of the tree
patterns to find, like depth and branching factor, on the
computation time performance of both algorithms.

The paper is outlined as follows: Section 2 introduces the
notations and definitions used throughout the paper.
Section 3 presents and discusses the state of the art in tree
mining. Section 4 gives an overview of the DRYADEPARENT

algorithm. Section 5 reports detailed comparative experi-
ments, both on real and artificial data sets, as well as an
application example with XML data. In Section 6, we
conclude and give some directions for future work.

2 FORMAL BACKGROUND

Intuitively, the objective task of the DRYADEPARENT

algorithm that we present in this paper is, given a set of
trees and an arbitrary threshold ", to discover the biggest
tree substructures common to at least " trees of the input set
of trees. This is illustrated in the example in Fig. 1. The
substructure CS containing the nodes B, C, and D appears
in T1 and T2, that is, two trees of the input: For a support
threshold of " ¼ 2, it is the only desired result. In this
section, we give the graph theory background necessary to
formally define the task described before. We will first
formally define what a tree is. Then, we will show how to
define a tree substructure of a tree (tree inclusion definition)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008 1

. A. Termier and M.-C. Rousset are with the Laboratoire d’Informatique de
Grenoble, University of Grenoble, 681 rue de la Passerelle, BP 72, 38402
St. Martin d’Heres Cedex, France.
E-mail: {alexandre.termier, marie-christine.rousset}@imag.fr.

. M. Sebag is with the Laboratoire de Recherche en Informatique (LRI),
Université Paris-Sud, Bat 490, 91405 Orsay, France.
E-mail: michele.sebag@lri.fr.

. K. Ohara and T. Washio are with the Institute of Scientific and Industrial
Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047
Japan. E-mail: {ohara, washio}@ar.sanken.osaka-u.ac.jp.

. H. Motoda is with the Asian Office of Aerospace Research and
Development, Air Force Office of Scientific Research, Air Force Research
Laboratory, 7-23-17 Roppongi, Minato-ku, Tokyo 106-0032, Japan.
E-mail: hiroshi.motoda.JP@aoard.af.mil or
motoda@ar.sanken.osaka-u.ac.jp.

Manuscript received 19 Jan. 2006; revised 16 Feb. 2007; accepted 13 Sept.
2007; published online 1 Oct. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0021-0106.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

and under which conditions a given tree substructure is
considered common to several other trees (frequent trees
definition). Last, we will characterize the “biggest” of these
tree substructures (closed frequent trees definition).

2.1 Trees

Let L ¼ fl1; . . . ; lng be a set of labels. A labeled tree T ¼
ðN;A; rootðT Þ; ’Þ is an acyclic connected graph, where N is
the set of nodes, A � N �N is a binary relation over N
defining the set of edges, rootðT Þ is a distinguished node
called the root, and ’ is a labeling function ’ : N 7!L
assigning a label to each node of the tree. We assume
without loss of generality that edges are unlabeled: As each
edge connects a node to its parent, the edge label can be
considered as part of the child node label. A tree is an
attribute tree if ’ is such that two sibling nodes cannot have
the same label (more details on attribute trees can be found
in [12]). Let u 2 N and v 2 N be two nodes of a tree. If there
exists an edge ðu; vÞ 2 A, then v is a child of u, and u is the
parent of v. For two nodes u 2 N and v 2 N , if there exists a
set of nodes fu1; . . . ; ukg such that

ðu; u1Þ 2 A; ðu1; u2Þ 2 A; . . . ; ðuk; vÞ 2 A;

then fu; u1; . . . ; uk; vg form a path in T . The length of the path
fu; u1; . . . ; uk; vg is jfu; u1; . . . ; uk; vgj � 1. If there exists a
path from u to v in the tree, then v is a descendant of u, and u

is an ancestor of v. Let u 2 N be a node of a tree T . The
length of the path from rootðT Þ to u is the depth of u,
denoted by depthðuÞ.

Tree truncation. Our DRYADEPARENT algorithm has
the specificity to discover its objective trees one level of
depth at a time. Consider, for example, the tree T in
Fig. 2 and suppose that it is the objective of DRYADE-

PARENT: Each iteration will discover one more of its

depth level, discovering first Tj0 and Tj1 (the first iteration

discovers the depth levels 0 and 1), then Tj2 in the second

iteration, and Tj3 ¼ T in the last iteration. To characterize

these intermediate levels Tj0, Tj1, and Tj2, we introduce

the tree truncation concept: The truncation of a tree at a

given depth level consists only of the nodes of that tree

having a lesser or equal depth level and the correspond-

ing edges. The formal definition is given as follows: Let

T ¼ ðN;A; rootðT Þ; ’Þ be a tree and d be an integer such

that d � depthðT Þ. The truncation of T at the depth level d

is the tree Tjd ¼ ðNjd; Ajd; rootðT Þ; ’Þ such that Njd ¼ fn 2
N j depthðnÞ � dg and Ajd ¼ fðu; vÞ 2 A j u; v 2 Njdg.

2.2 Tree Inclusion

The essential problem for discovering frequent patterns is to

be able to determine if a given pattern appears or not in the

input data. In the case of tree mining, this means determin-

ing if a pattern tree is included in any tree of the data. There

are many different ways to define such a tree inclusion; the

interested reader is referred to [14] for an extensive study. In

this paper, we use the following definition, which is the basis

of many other tree mining algorithms.
Let AT ¼ ðN1; A1; rootðAT Þ; ’1Þ be an attribute tree and

T ¼ ðN2; A2; rootðT Þ; ’2Þ be a tree. AT is included in T if

there exists an injective mapping � : N1 7!N2 such that

1. � preserves the labels: 8u 2 N1 ’1ðuÞ ¼ ’2ð�ðuÞÞ.
2. � preserves the parent relationship:

8u; v 2 N1ðu; vÞ 2 A1 , ð�ðuÞ; �ðvÞÞ 2 A2:

This relation will be written as AT v T . In the tree mining

literature, AT is also said to be an induced subtree of T when

using the inclusion definition stated above. Fig. 3 shows the

inclusion of an attribute tree AT in a tree T , along three

possible mappings �1, �2, and �3.
If we have AT v T and T 6v AT , then we say that AT is

strictly included into T , and we denote it by AT j
�
� T . If

AT v T , the set of mappings supporting the inclusion is

denoted by EMðAT; T Þ. In the example, we have

EMðAT; T Þ ¼ f�1; �2; �3g. The set of occurrences of AT in

T , denoted by LoccðAT; T Þ, is the set of nodes of T onto

which the root of AT is mapped by a mapping of

EMðAT; T Þ. In the example, LoccðAT; T Þ ¼ f3; 11g, this

corresponds to the identifiers of nodes labeled by A

mapped by mappings �1, �2, and �3.

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 1. A set of trees and their common substructure for " ¼ 2.

Fig. 2. A tree T and its truncations.

We also introduce the notion of image of an attribute tree
AT in a tree T . The set of images of AT into T is the set of
(attribute) trees obtained by mapping AT onto T by
applying the mappings from EMðAT; T Þ. In the example,
we can see that the image of AT in T consists of the nodes of
T mapped from AT by �1, �2, and �3.

2.3 Frequent Attribute Trees

We can now define the problem of finding frequent attribute
trees in a tree database. Let TD ¼ fT1; . . . ; Tmg be a tree
database. The datatree DTD is the tree whose root is an
unlabeled node, having the trees fT1; . . . ; Tmg as its direct
subtrees. Such a datatree is shown in Fig. 4a, where
TD ¼ fT1; T2g.

The support of an attribute tree AT in the datatree can be
defined in two ways:

. supportdðAT Þ ¼
Pm

i¼1 �dðAT; TiÞ, where �dðAT; TiÞ ¼
1 if AT v Ti and 0 otherwise (document support).

. supportoðAT Þ ¼
Pm

i¼1 �oðAT; TiÞ, where �oðAT; TiÞ ¼
jLoccðAT; TiÞj (occurrence support).

In this paper, we are interested in finding attribute trees
frequent by document support. The term support will now
be used for document support. However, for the sake of
completeness, our algorithm needs to keep track of all
frequent occurrences and will use the occurrence support
for processing.

Let " be an absolute frequency threshold. AT is a frequent

attribute tree of DTD if supportdðAT Þ � ". The set of all

frequent attribute trees is denoted by FðDTD; "Þ, and by the

abuse of notation, we will only denote it as F in the rest of

this paper.
The example in Fig. 4 shows all the frequent attribute

trees for a support threshold of " ¼ 2.

2.4 Closed Trees

The problem with frequent trees is that usually, there are
many of them, which implies long computation time.
Moreover, lots of these frequent trees contain redundant
information. For example, consider Fig. 4: Trees
P1; P2; . . . ; P9 are frequent, but this is just a byproduct of
the fact that tree P10 is frequent (if a tree is frequent, all its
subtrees are also frequent). When examining the mappings,
we can see that the mappings of P1; P2; . . . ; P9 are included in
the corresponding mappings of P10: Trees P1; P2; . . . ; P9 do
not bring any new information compared to P10. Therefore, if
we could characterize trees such as P10 and only compute
those trees without generating trees like P1; P2; . . . ; P9, a lot
of computation time would be saved.

Such a characterization exists and has been pioneered by
Pasquier et al. [15] for frequent item sets and by Chi et al.
[13] for trees. It is based on the closure property: P10 is a closed
frequent tree; intuitively, this means that for its set of
mappings, it is the maximal tree according to inclusion.
Formally, we have the following definition:

Definition 1. A frequent attribute tree AT 2 F is closed if either

. AT 2 F is not included into any other frequent
attribute tree AT 0 2 F or

. AT is included into a frequent attribute tree AT 0 2 F ,
in which case there exists a mapping in EMðAT;DTDÞ
that is not in the mappings of EMðAT 0; DTDÞ.

We will denote the set of all closed frequent attribute trees

as C, with the same abuse of notation as before.

2.5 Closed Set of Trees

Let S � F . The set S is said to be closed if all the trees of S
are closed relative to the other trees of S, that is, in
Definition 1, F is replaced by S.

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 3

Fig. 3. Tree inclusion example (node identifiers are subscripts of node labels in T).

Fig. 4. (a) A datatree with two trees. (b) All the frequent trees for " ¼ 2.

2.6 Tree Mining Problem

The tree mining problem we are interested in is to find all
the closed frequent attribute trees for a given datatree and
support threshold. The merit of this problem is that the
number of closed frequent attribute trees is much smaller
than the number of all frequent attribute trees, but the
amount of information is the same in both cases: All of the
frequent attributes trees can be easily deduced from the
closed frequent attribute trees. Thus, finding such closed
trees enables faster mining without loss of information.

3 RELATED WORK

In this section, we will first recall the seminal works about
frequent item set mining and show how they have been
extended to perform frequent tree mining.

3.1 Item Set Mining

The pioneering works for the mining of frequent item sets
have been made by Agrawal and Srikant, who introduced
the Apriori algorithm for mining frequent item sets in a
propositional database [16]. The settings are much simpler
than the problem in this paper: The data consists of
transactions, which are sets of items. The problem is to find
frequent item sets, that is, the sets of items that occur
frequently in the data. To find these frequent item sets,
Apriori uses a generate-and-test method, which means that it
will proceed by generating candidate item sets and then test
these candidate item sets against the data to check if they
are frequent or not. The enumeration of these candidate
item sets is done in a levelwise manner: First, the candidate
item sets of size 1 are generated, then the candidate item
sets of size 2, and so on and so forth. The candidate item
sets of size iþ 1 are generated by combining together the
item sets of size i that passed the frequency test. To prune
the search space and hence improve the performances, the
algorithm uses an antimonotonicity property: If a candidate
item set I1 is found to be infrequent, then it is not necessary
to build a bigger candidate item set I2 such that I1 � I2, as
by definition, this candidate will necessarily be also
infrequent.

Fig. 5 shows an example execution of the Apriori
algorithm. The data is first transformed into a matrix
representation, which is easier to use for counting fre-
quency. In the first iteration, the candidates of size 1 are
generated (all the single items), and their support is
computed. The frequency threshold being set to 2, only
item E is not frequent and does not make it to the next
iteration. All the other candidates of size 1 are frequent item
sets and are combined together in an iteration to make
candidate item sets of size 2. The frequency of these
candidates is computed, and it is found that only fB;Dg is
not frequent. The other candidates are frequent item sets
and are combined together in the third and last iteration to
give the candidates of size 3. Note that even if fB;Cg and
fC;Dg are frequent, candidate fB;C;Dg is not constructed.
This comes from the fact that fB;Dg � fB;C;Dg, and
fB;Dg is known to be infrequent. Therefore, necessarily,
fB;C;Dg is also infrequent and need not be generated. The
support of the candidates of size 3 is evaluated, and
fA;B;Dg is eliminated as infrequent. The other candidates

are frequent, and there are no ways to combine them for a
fourth iteration: the algorithm stops.

Among the many improvements to this algorithm,
Pasquier et al. [15] were the first to design an algorithm
for discovering only the closed frequent item sets and
showed performance improvements of around one order of
magnitude. These results were improved by Zaki and
Hsiao’s CHARM algorithm [17]. Today, the fastest algorithm
for discovering closed frequent item sets is LCM2 [18], the
winner of the Second Workshop on Frequent Itemset
Mining Implementations (FIMI ’04) contest.

3.2 Tree Mining

Most tree mining algorithms are adaptations of the Apriori
principle to tree-structured data. They usually deal with
finding all the frequent subtrees from a collection of trees.
One pioneering work is Asai et al.’s Freqt algorithm [3],
which discovers all frequent subtrees with the preservation
of the order of the siblings. The other pioneering work is
Zaki’s TreeMiner [19], which uses a more relaxed inclusion
definition where the order still has to be preserved, but
instead of the parent relationship, the mapping has only to
preserve the ancestor relationship.

Both of these algorithms, like the Apriori algorithm
described before, are levelwise generate-and-test algorithms
and make use of the antimonotonicity property. The size of
a candidate tree is expressed as its number of nodes, so
these algorithms first generate all the candidate trees with
one node, then, from those of these candidates that are
frequent, generate the candidate trees with two nodes, and
so on and so forth. Each candidate’s frequency has to be
assessed by testing its inclusion in all the trees of the data,
which is a very computation-time expensive operation.
Another difficult part is the candidate enumeration method.
Unlike in the case of item sets, here, the extensions of two
different candidates of size i can lead to the same candidate
of size iþ 1, as seen in Fig. 6: there are two different
candidates of size 2, A�B and A� C. To create candidates
of size 3, one possibility is to join A� C to A�B; the other
is to join A�B to A� C. Obviously, these two possibilities
lead to the same candidate of size 3. This introduces
redundancies in the enumeration process, which must be

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 5. An example of Apriori execution.

avoided at all costs as testing the frequency for one
candidate or testing for duplicates inside the candidates
set are computationally expensive operations.

The authors of the two previous papers prevent this by
setting an order on the generation of candidates, which
imposes to add new nodes only on the rightmost branch of
the frequent tree of size i used as a basis. This enumeration
strategy avoids duplicates, thus enabling a better efficiency
than naive methods. It is illustrated in Fig. 7.

The second generation of tree mining algorithms has been
designed to get rid of the order preservation constraint. This
was realized by basing the enumeration procedures on
canonical forms, one canonical form representing all the
trees that are isomorphic except for the order of siblings.
Such work includes the Unot algorithm by Asai et al. [20],
the work of Nijssen and Kok [21], the PathJoin algorithm
[22], and the recent Sleuth algorithm by Zaki [23].

There are still very few algorithms mining closed frequent
trees. We already mentioned our DRYADE algorithm [11],
which relies on a very general tree inclusion definition and a

new hooking principle. The only algorithm mining closed
frequent induced subtrees is the CMTreeMiner algorithm of
Chi et al. [13]. It uses the same generate-and-test principle as
other tree mining algorithms, extended to handle closure.
This algorithm has shown excellent experimental results.
Recently, Arimura and Uno proposed the CLOTT algorithm
[12] for mining closed frequent attribute trees, in the same
settings as those in this paper. This algorithm has a proved
output-polynomial time complexity, which should also give
excellent performances. Up to now, there is not yet an
implementation available.

It is clear that the generate-and-test method used by all
these algorithms (except DRYADE) has an efficiency that
depends heavily on the structure of the tree patterns to find.
In case of big tree patterns with a high depth and a high
branching factor, many edge-adding steps are needed to
find these tree patterns, and each step can be computation-
ally expensive because of the number of possible expan-
sions and of the necessary frequency testing.

4 THE DRYADEPARENT ALGORITHM

4.1 Idea of the Algorithm

Before going into the details of the DRYADEPARENT

algorithm, we will first explain the intuition behind our
method. For sake of readability, we will use the term closed
frequent tree to designate the closed frequent attribute trees
that the DRYADEPARENT algorithm discovers.

Briefly stated, the principle of our algorithm is to
discover parts of the frequent trees and then assemble
these parts together to get the frequent trees. The parts that
we are interested in are the closed frequent trees of depth 1.
The interesting characteristic of these closed frequent trees
of depth 1 with respect to the final result is that either

. they are closed frequent trees as is or

. they represent one node and its children in one or
more closed frequent trees (a formal proof will come
later in Lemma 1), for example, in Fig. 8, the closed
frequent trees of depth 1 and of roots A, B, and C
assembled together make a single tree of depth two,
which is the closed frequent tree to find.

It is quite simple to find these closed frequent trees of
depth 1 by using a standard closed frequent item set

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 5

Fig. 6. Three steps of candidate generation. The two candidates of size

2 lead to a single candidate of size 3.

Fig. 7. Candidate generation via the rightmost branch enumeration

method.

Fig. 8. A closed frequent tree and its tiles.

algorithm: for any label x 2 L, create a matrix whose
transactions are the nodes of labels x in the trees of the data
and whose items are the labels of the children of these
nodes. The resulting closed frequent item sets will be sets of
edges fðx; y1Þ; . . . ; ðx; ynÞg rooted on the same node, that is,
closed frequent trees of depth 1. By iterating on all the labels
x, all the closed frequent trees of depth 1 can be found by
this method. An example of discovery of closed frequent
trees of depth 1 is shown in Fig. 9.

That is why, from now on, we will call the closed
frequent trees of depth 1 with the shorter name of tiles, as
like in mosaics or in puzzles, they are the small parts that
are assembled together to make a closed frequent tree of C.
Remark. Another advantage of the tiles is that they follow

the dynamic programming as defined in [24], in the
sense that they are solutions to subproblems of the main
problem, which are computed only once and can then be
reused any number of times. This allows for better
performances, especially in the cases where the closed
frequent trees share many common tiles.

The most obvious hint to determine how to combine the
tiles together is to look at their labels. If a leaf label of a tile
Ti1 matches with the root label of a tile Ti2, then it is
possible for these two tiles to be “hooked” together and
create a bigger tree. This is shown in Fig. 10. However,
nothing guarantees that in the mappings of Ti1 and Ti2 in
the data, the leaf of Ti1 and the root of Ti2 are the same
node. If this is not the case in at least " trees of the data, then

the tree constructed by combining Ti1 and Ti2 will not be

frequent and so cannot be part of the final result. For

example, consider Fig. 11. The tiles are the same tiles Ti1
and Ti2 as those in Fig. 10, so from the labels, they can be

hooked. By analyzing the mappings, we can see that in T1,

the nodes for B in Ti1 and Ti2 are the same (node 3), so this

mapping supports the hooking of Ti2 on Ti1. However, in

T2, the nodes for B are different: node 9 for Ti1 and node 11

for Ti2. Therefore, the mapping from T2 does not support

the hooking. The hooking being supported in only one tree

and the frequency threshold being " ¼ 2, the hooking is not

frequent and so must not be done.
Ensuring that the mappings of the data support the tile

combinations is a necessary step. However, this is not

sufficient. There can be many tiles Ti2; . . . ; T in whose root

node label matches a leaf node label of Ti1, such matching

being supported by mappings in the data. Thus, many new

trees can be constructed: combining Ti1 with Ti2, Ti1 with

Ti3, or even Ti1 with Ti2 and Ti3 . . . This is illustrated on

the example in Fig. 12, where three tiles fTi2; T i3; T i4g can

hook on Ti1.
However, few of these combinations correspond to what

can actually be found in a closed frequent attribute tree of

the result. In fact, the tiles Ti2; . . . ; T in combined with Ti1
do not only need to verify a frequency criterion but also

need to verify a closure criterion. This means that we will

hook on T1 only the closed frequent sets of tiles of

fT2; . . . ; Tng whose combination with T1 to make a new

tree is supported by the data. We will show later that this

corresponds exactly to what is found in the closed frequent

attribute trees. We call the operation consisting of finding

the closed frequent sets of tiles hooking on other tiles and

creating new trees from them a hooking. This is the basis of

our algorithm. Such operations allow for a simple level-by-

level breadth-first strategy:

1. Find the tiles that represent the top level of the
closed frequent trees; they will be called root tiles.

2. For each of these tiles, iteratively perform hookings
to grow them by one level at each iteration.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 9. Example of discovery of closed frequent trees of depth 1.

Fig. 10. A simple hooking between two tiles and the resulting tree.

4.2 Algorithm Details

Until now, we have given an intuitive overview of our
method. We now give thorough explanations over the
concepts of tiles and hookings, as well as the detailed
pseudocode of our algorithm. As a running example, we
use the datatree in Fig. 13 with a support threshold of " ¼ 2.
The closed frequent attribute trees to find (that is, the
elements of C) are also represented in this figure as P1, P2,
P3, and P4, along with their occurrences in the datatree.

The whole algorithm is summed up in Algorithm 1. Note
that in Algorithms 1 and 2, closed_frequent_itemset_algorithm
is a general algorithm mining closed frequent item sets; it
can be any closed frequent item set miner. We assume that
this closed frequent item set miner is sound and complete.
In our implementation, we use the algorithm LCM2 [18].

Algorithm 1. The DRYADEPARENT algorithm

Input: A datatree DTD and an absolute frequency

threshold "

Output: The set CDryade of all the closed frequent trees in

DTD with frequency � "
1: T IðCÞ Computation of all the tiles

2: RP0 initial root tiles of DTD

3: i 0; CDryade ;
4: HookingBase ;
5: while RPi 6¼ ; do

6: RPiþ1 ;
7: for all RT 2 RPi do

8: if no hooking is possible on RT then

9: CDryade CDryade [RT
10: else

11: RPiþ1 RPiþ1 [HookingsðRT;HookingBaseÞ
12: end if

13: end for

14: RPiþ1 RPiþ1 [DetectNewRootTilesðT IðCÞ;
HookingBaseÞ

15: i iþ 1

16: end while

17: Return CDryade

Algorithm 2. The Hookings function

Input: A closed frequent attribute tree AT , hooking

database HookingBase
Output: All the new closed frequent attribute trees found

by hooking tiles on the leaves of AT

1: Result ;
2: M matrix whose transactions are the occurrences

of AT , and whose columns are the tiles that can be

hooked on AT .

3: FIS closed frequent itemset algorithmðMÞ
4: for all ðf;OÞ 2 FIS do

5: if 6 9HK 2 HookingBase st ðAT; f;OÞ � HK then

6: Result Result [new attribute tree resulting

from the hooking of the tiles of f on AT

7: Add ðAT; f;OÞ to HookingBase

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 7

Fig. 11. A case where the hooking of tiles is not backed up by the mappings.

Fig. 12. Multiple hooking possibilities on a tile Ti1 and the resulting trees.

8: if 9fHK1; . . . ; HKxg 2 HookingBase st

8i 2 ½1; x� HKi � ðAT; f;OÞ then

9: Suppress fHK1; . . . ; HKxg from

HookingBase, as well as the corresponding

attribute trees in RPi or CDryade
10: end if

11: end if

12: end for

13: Return Result

4.2.1 Computation of the Tiles

The definition of a tile is given as follows:

Definition 2 (tile). A tile is a frequent attribute tree made from a

node of a closed frequent tree of C and all its children. The set of

all tiles for the closed frequent trees of C is noted T IðCÞ.

We have seen before that we can use a closed frequent
item set mining algorithm to compute these tiles. We will
now detail how and prove that this method actually
computes the tiles of T IðCÞ.

For a given label l, let us consider the subproblem of
finding all the tiles of the closed frequent trees of C whose
root is labeled by l. We note the set of these tiles T IðCÞl.
Because these tiles come from closed frequent trees of C,
they are frequent in the datatree DTD. We can also infer that
the set of tiles T IðCÞl is closed; if it was not the case, it
would contradict the closure of C (see the proof of the
following lemma for more details). As all of these tiles share
the same root label, we have to find the sets of children
labels and the occurrences.

This problem can be reformulated as a propositional
closed frequent item set discovery problem (as in Sec-
tion 3.1) as follows: Consider a transaction matrix Ml whose
transactions are the nodes of DTD of label l and whose items
are the labels of the children of these nodes (we remind the
reader that as defined in Section 3.1, in a transaction matrix,
the transactions are the rows, and the items are the

columns). A “1” in the cell of the row corresponding to
the node o (of label l) and of the column corresponding to
the label x indicates that the node o of label l has a child of
label x. For example, in the datatree in Fig. 13, MB is

The closed frequent item sets for matrix Ml are noted
CFISðMlÞ. All of these closed frequent item sets satisfy the
occurrence frequency constraint defined before. Since we
are interested in document-frequent results, we suppress
from CFISðMlÞ all item sets whose occurrences appear in
less than " documents to get the set CFISdocðMlÞ. From each
item set f of CFISdocðMlÞ, a tile of root l is built whose
children are the items of f and whose occurrences are the
transactions supporting f . The set of such tiles is noted
T IðCFISdocðMlÞÞ.
Lemma 1. For any label l 2 L, we have

T IðCÞl ¼ T IðCFISdocðMlÞÞ:

Proof. ðT IðCÞl � T IðCFISdocðMlÞÞÞ. Consider a tile
T 2 T IðCÞl. Let H denote the set of the labels of the
leaves of T and O be the set of the occurrences of T . We
have to show that H appears in CFISdocðMlÞ. By
definition, the tile is frequent and so has at least "
occurrences inDTD. All of these occurrences appear inMl,
so H is frequent by document frequency, with support O.
Hence, to show that H appears in CFISdocðMlÞ, we only
have to show that H is closed (intuitively, H is closed if it
is the maximal for its set of occurrences. We refer the
interested reader to [15] for a formal definition of closed
item sets). Seeking a contradiction, suppose that H is not
closed; then, there would be, for the occurrences of O, an
item set H 0 such that H � H 0. From H 0, we can build a tile
T 0 that has the same occurrences as T but more leaves.
Considering the closed frequent tree of C from which T

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 13. Datatree example (node identifiers are subscripts of node labels) and closed frequent trees for " ¼ 2.

was extracted, it means that this closed frequent tree can
be replaced with a closed frequent tree including T 0, so it
means that C was not closed. This contradicts the
hypothesis, so we proved by negation that H is closed.
ðT IðCÞl 	 T IðCFISdocðMlÞÞ) Consider f a document-

frequent closed frequent item set of Ml. It has at least "
different occurrences O, so a tile T rooted by l and
having at least the labels of f as children exists in a
closed frequent tree of C; the occurrences of T include
those of O. If in the closed frequent tree of C the root of
the considered subtree had one more children than in f ,
then this would be reflected in Ml, and f would not be
closed. Hence the labels of the leaves of T are exactly the
labels in f . In the same way, if T had more occurrences
than O, then these occurrences would appear in Ml with
exactly the items of f , which is impossible as the only
occurrences for the item set f are those of O. tu

By iterating on the labels of L with the method
previously shown, all the tiles of T IðCÞ can be computed.
This is the first operation of our algorithm, so it is done on
line 1 of Algorithm 1.

In the example, from the matrix MB, the closed frequent
item sets fD;Eg and fGg are extracted, with respective
occurrences {2, 13} and {23, 28}. Both these item sets are
document frequent, the corresponding tiles appear in
Fig. 14a as Ti2 and Ti6, along with all the other tiles for
the datatree in Fig. 13.

4.2.2 Hooking the Tiles

Having found the tiles, the goal of DRYADEPARENT is to
compute efficiently all the closed frequent trees through the
hookings of these tiles. As stated before, we have chosen a
levelwise strategy, where each iteration computes the next
depth level for the closed frequent trees being constructed.

Initial root tiles. To begin with, the tiles that correspond
to the depth levels 0 and 1 of the closed frequent trees must
be found in the set of tiles. Such tiles are called root tiles for
they are the top level of the closed frequent trees of C. They
are the starting point of our algorithm.

As these tiles represent the top level of the closed
frequent trees, one naive way to discover them is to
discover the tiles that cannot be hooked on any other tile,
that is, which are never under any other tile whatever the
mappings. This method works partially and can discover
easily a subset of the root tiles, which we call initial root tiles.

This is done in line 2 of Algorithm 1. In our example, Ti1 is
the only initial root tile because its occurrences 1, 11, 22, and
27 are not leaves of any other tile.

Notations. In the following, we will denote by RPi the
frequent trees that are the starting points for the algorithm’s
ith iteration (RP0 being the initial root tiles) and by CRPi the
closed frequent trees that will be obtained by successive
hookings on the frequent trees of RPi at the end of the
algorithm. CRPi is for illustration purposes and is not
actually constructed by the algorithm. In the example,
RP0 ¼ fTi1g, and CRP0

¼ fP1; P2; P3g in Fig. 13.
Hooking. The initial root tiles are the entry point to the

main iteration of DRYADEPARENT. In iteration i, for each
element T of RPi, the algorithm will discover all the
possible ways to add one depth level to T with respect to
the closed frequent trees to get. This is done via the hooking

operation:

Definition 3 (hooking). For an integer i, let T be an element of

RPi and C 2 CRPi such that 9q � i such that T ¼ Cjq (T is
the truncation of C at depth q). The hooking operation

consists of constructing a new frequent tree T 0 by hooking a set

of hooking tiles fTi1; . . . ; T ikg on the leaves of T such that the
occurrences fo1; . . . ; opg of T 0 include those of C and

T 0 ¼ Cjqþ1.

Such a hooking will be denoted by

HKðT; T 0Þ ¼ ðT; fTi1; . . . ; T ikg; fo1; . . . ; opgÞ:

The subtle point is to find all the frequent hooking tile
sets for an element T of RPi. The potential hooking tiles on
T are all the tiles whose root is mapped to a leaf node of T .
In our example, the potential hooking tiles on Ti1 are
fTi2; T i4; T i6; T i7g. Among all of these potential hooking
tiles, we want to find those that frequently appear together
according to the occurrences of T . This is a propositional
closed frequent item set discovery problem, and we can
solve it by creating a matrix M where each line k

corresponds to an occurrence ok of T and each column j

corresponds to a potential hooking tile Tij. M½i; j� ¼ 1 if and
only if for the occurrence ok of T , a leaf of T is mapped to
the same node as the root of Tij. Applying a closed frequent
item set discovery algorithm on M enables discovering
efficiently all the closed frequent hooking tile sets. This is
done in lines 2 and 3 of Algorithm 2. The frequent trees
discovered must be inserted into RPiþ1 for further
expansion in the next iteration.

In our example, the matrix M for Ti1 is

We deduce that the frequent hooking tile sets on Ti1 are
fTi2; T i4g and fTi6; T i7g. These hookings are illustrated in
Fig. 14b. It can be seen that the closed frequent tree P2 has
been discovered.

Closure checking. However, in some cases, hooking can
lead to frequent trees that are not closed. Consider the
example in Fig. 15. Both tiles Ti01 and Ti02 are initial root
tiles, but Hooking 2 on tile Ti02 produces a frequent tree that

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 9

Fig. 14. Tiles and hookings. (a) Tiles of our example. (b) Hookings at

iteration 1.

is included in the frequent tree produced by Hooking 1 on
tile Ti01, thus being unclosed.

Such cases can be detected quickly by analyzing the
hookings already made in the previous iterations. For this
purpose, the hookings performed so far are stored in a
database denoted by HookingBase. Each hooking is
represented by a triplet

ðroot frequent tree; hooking tiles; occurrencesÞ;

where root frequent tree is the root attribute tree of the
hooking, hooking tiles are the t i les hooking on
root frequent tree for this hooking, and occurrences are
the occurrences of root frequent tree considered in this
hooking. As shown in lines 4-12 of Algorithm 2, when a
new hooking is proposed, the function Hookings checks
that this new hooking satisfies the closure property with
respect to the hookings of the database. Two nonclosure
cases can arise: 1) the new hooking is included into an
existing hooking, and then, the new hooking is discarded
(line 5), and 2) the new hooking includes an existing
hooking and, then, the existing hooking and the corre-
sponding closed frequent tree are erased from the database,
and a new closed frequent tree is created from the new
hooking, which is registered into the hooking database
(lines 8-9).

Preparing the next iteration. In the first iteration, the

seeds of the closed frequent trees to be discovered are the

initial root tiles, grouped into RP0. The frequent trees

grown by hooking tiles on these root tiles are inserted into

RP1 and will be used as the seed for the next iteration

(line 10 of Algorithm 1). However, this is not enough to

discover all of the closed frequent trees of C. We have seen

before that only a fraction of all the root tiles could be

discovered at the beginning of the algorithm; these were the

initial root tiles. The problem is that a tile T can both be the

root tile of a closed frequent tree P and a nonroot tile of

another closed frequent tree P 0. Therefore, for the mappings

of T corresponding to P 0, T will be hooked on other tiles,

preventing it from satisfying the same conditions as the

initial root tiles. In the example, Ti4 is both a subtree in P1

and the root tile of P4. The problem is that if we look at the

mappings of Ti4, this tile does not hook on any other tile,

only for the mapping rooted at occurrence 35: Its “root”

status does not appear frequent with so few information.

Therefore, for all these root tiles that are not initial root tiles,

their discovery is delayed to later iterations, at a moment

where we will have enough information to determine if this

tile was only the subtree of one or more closed frequent

trees or if it can also be the root tile of some other closed

frequent trees. Therefore, after our hooking step, we have to

analyze the hooked tiles to see if they belong to the category

of tiles that will always be hooked somewhere or if they can

become root tiles at the next iteration. This is done in the

DetectNewRootTiles function (Algorithm 3). In line 2 of

Algorithm 3, the tiles T that have been hooked on other tiles

in the current iteration (and so appear in HookingBasei) are

iterated over. In line 3, these tiles T are tested: the left part

of the AND checks that there does not exist any unknown

hooking between these tiles and a given tile T 0; this is done

for all the occurrences of T . If this left part is true, then we

are assured to know everything about the hookings of T .

Here comes the “root” part verification: In the right part of

the AND, we check that there exists at least one occurrence

of T where T does not hook on any other tile. If this part is

also true, then T can be not only a subtree of other closed

frequent trees but also a root tile. This is recorded in line 4.

In our example, Ti4 is one of these candidates to be a root

tile, it has been hooked on Ti1 for occurrences 7 and 19.

There are no other tiles where it can hook (left part of the

AND of line 3 satisfied), and for occurrence 35, it does not

hook on any other tile (right part of the AND also satisfied).

Therefore, Ti4 becomes a new root tile; this will allow the

discovery of closed frequent tree Pi4 in the next iteration.

Algorithm 3. The DetectNewRootTiles function

Input: Set of tiles T IðCÞ, hooking database HookingBase

where HookingBasej are the hookings performed in

iteration j

Output: Tiles of T IðCÞ that have become root

1: Result ;
2: for all T 2 T IðCÞ st T 2 HT where

ð
; HT;
Þ 2 HookingBasei do

3: if [8o 2 LoccðT;DTDÞ 6 9T 0 st T can hook on T 0 and

ððT 0; f. . . ; T ; . . .g;
Þ 62 HookingBaseÞ] AND

[9o 2 LoccðT;DTDÞ st T cannot hook on any other

tile for o] then

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 15. Example of the generation of an unclosed frequent tree.

4: Result Result [T
5: end if

6: end for

7: Return Result

4.3 Soundness and Completeness

Theorem 1. The algorithm DRYADEPARENT is sound and

complete, that is, CDryade ¼ C.
Proof. Completeness. Let P 2 C be a closed frequent tree. We

want to prove that P is found by DRYADEPARENT. Let

us prove by induction on the depth levels of P that for

every depth level d, Pjd is found at some iteration of

DRYADEPARENT.

For depth level 1, Pj1 is by definition a closed frequent

tree of depth 1, that is, a tile. Therefore, it is found in the

first step of DRYADEPARENT.

For depth level d, let us suppose that the induction

property is true, that is, that there exists an iteration i of

DRYADEPARENT where Pjd is found as an element of

RPiþ1. Let us show that Pjdþ1 is found in a later iteration
of DRYADEPARENT.

By the definition of the tiles, all the tiles correspond-

ing to the direct subtrees of Pjd in P have been found in

the first step of DRYADEPARENT, so all these tiles appear

as columns of M in the Hookings procedure. Let S

denote this set of tiles. Because P occurs in at least

" documents, P has at least " occurrences, so the closed

frequent item set algorithm in the Hookings finds a set of
tiles f , where at least f 	 S. Let us show that we cannot

have f � S. Suppose that f has one more tile T than S for

the same occurrences. This means that T can also be

hooked on Pjd with the other tiles of S, with occurrences

that include the occurrences of P . Therefore, for all the

mappings of P , new P þ T mappings can be found. This

contradicts the fact that P is closed. Hence, f ¼ S.

We must now show that the test on line 5 of the
Hookings function (Algorithm 2) is evaluated to true,

that is, that there are no hookings in the hooking base

that includes the hooking of the tiles of f on Pjd (else, no

frequent trees would be built from the hookings of f). In

the same way as we did previously, it is easy to show by

negation that if there was such a hooking, then P would

not be closed.

Hence, the closed frequent tree Pjdþ1, resulting from
the hookings of the tiles of f on Pjd, is correctly

constructed.

It is inserted intoRPiþ2; hence, the induction property

holds.
Therefore, DRYADEPARENT is complete.

Soundness. Let P be a frequent tree outputted by

DRYADEPARENT. We want to show that we have P 2 C,
that is, P is frequent, and P is closed with respect to the

set of all frequent trees.
Frequency. Suppose by negation that P is not

frequent. It means that either a tile of P is not frequent

or that there exists a depth level of P where the set of

tiles for this depth is not frequent. In both cases, it means

that the closed frequent item set algorithm gave a

nonfrequent result. It contradicts the soundness of

closed frequent itemset algorithm. Hence, P is frequent.

Closedness. Suppose by negation that P is not closed,

that is, there exists a closed frequent tree P 0 in which P is

included for all its occurrences. We consider all the

possible inclusion cases, as shown in Fig. 16:

1. One more sibling node. This case would mean that

the corresponding tile was not closed and, hence,

that the closed frequent item set gave a nonclosed

result. Once again, it contradicts the soundness of

the closed frequent item set mining algorithm.
2. One more leaf child node. This case would mean

that a tile hooking has not been discovered or not

been done. Because all the tiles are correctly

found thanks to Lemma 1 and the filling of the

hooking discovery matrix is trivial, it would mean

that either the closed frequent item set algorithm

was not complete, which contradicts the comple-

teness of closed frequent itemset algorithm, or

the hooking was found but later dismissed. Such

a dismissal could only be done by the closure

checking mechanism and only if there is a bigger

hooking for the same occurrences at the same

place. This would mean that P 0 itself is unclosed,

which contradicts the hypothesis.
3. One more root parent node. Let T be the root tile of

P as found by DRYADEPARENT. In this case, the

root tile of P 0 (containing P) is a tile T 0 6¼ T , and T

hooks on T 0. Suppose that there is such a tile T 0.

By definition, it cannot be an initial root tile (or

DRYADEPARENT would have found it), and

neither can it be T (because it hooks on T 0).

Because it was never considered as a root tile, the

hookings of T on T 0 have not been found and do
not appear in the hooking database. Therefore,

the condition on line 3 of DetectNewRootTiles

cannot be satisfied for all the occurrences of T ,

and so, T cannot be detected as a root tile.
By the definition of the root tile detection

procedure, this case cannot occur.

Hence, P is closed, and we can conclude that the
algorithm DRYADEPARENT is sound. tu

4.4 Complexity

We estimate the time complexity of the DRYADEPARENT

algorithm according to the following parameters:

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 11

Fig. 16. Three possible inclusion cases.

. kDTDk, the number of nodes of the input database,

. jCj, the number of closed frequent trees to find,

. d, the average depth of a closed frequent tree of C,
and

. jT IðCÞj, the total number of tiles in the closed
frequent trees of C.

Computation of tiles. The tiles are computed with the

LCM2 algorithm [18], whose time complexity is linear with

the number of closed frequent item sets to find. Therefore,

the time complexity of the tile computation step is linear

with the number of tiles:

ComplexityðTile computationÞ ’ OðjT IðCÞjÞ:

Computing the initial root tiles. To determine which tile

is an initial root tile, all the occurrences of all the tiles are

checked. This simple step hence has a time complexity of

ComplexityðInitial root tilesÞ ’ OðkDTDk:jT IðCÞjÞ:

Main iteration. The first step of the main iteration is a

loop repeated as many times as there are elements in RPi.
These elements are truncations of closed frequent trees of C,
so we have jRPij ¼ �:jCj, where � is a constant:

. “if” of line 7. Determining if there are hookings on
an element, RT 2 RPi comes to check all of its
occurrences; the time complexity is

ComplexityðCheck if hookingsÞ ’ OðkDTDkÞ:

. Hookings procedure. Building the transaction matrix
and running the LCM2 algorithm has a time
complexity of OðkDTDk:jT IðCÞjÞ. The hooking base
must then be checked; the time complexity of this
search operation is linear with the number of
hookings. An upper bound for the number of
hookings is the number of tiles. Hence,

ComplexityðHookingsÞ ’ OðkDTDk:jT IðCÞj
þ jT IðCÞjÞ
’ OðkDTDk:jT IðCÞjÞ:

The overall time complexity of the for loop is then

Complexityðfor loopÞ ’ OðjCj � ðkDTDk þ kDTDk:jT IðCÞjÞÞ
’ OðjCj:kDTDk:jT IðCÞjÞ:

Then, we have to compute the complexity of the

DetectNewRootTiles procedure. For each tile, there is a

search in the hooking base on line 2 and, then, on line 3,

there is a search on all the occurrences of the tile, which

needs another search in the hooking base. This gives an

overall complexity of

ComplexityðDetectNewRootTilesÞ ’ OðjT IðCÞj:jT IðCÞj:
kDTDk:jT IðCÞjÞ

’ OðkDTDk:jT IðCÞj3Þ:

The main iteration is repeated �:d times (with � as a

constant), so its time complexity is

ComplexityðIterationsÞ ’ d:ðComplexityðfor loopÞ
þ Complexity
ðDetectNewRootTilesÞÞ

’ Oðd:ðjCj:kDTDk:jT IðCÞj þ kDTDk:
jT IðCÞj3ÞÞ

’ Oðd:kDTDk:jT IðCÞj:
ðjT IðCÞj2 þ jCjÞÞ:

The overall time complexity of the whole DRYADEPAR-

ENT algorithm is then

ComplexityðDryadeParentÞ ’ ComplexityðTile computationÞ
þ Complexity
ðInitial root tilesÞ
þ ComplexityðIterationsÞ

’ OðjT IðCÞj þ kDTDk:jT IðCÞj
þ d:kDTDk:jT IðCÞj:ðjT IðCÞj2

þ jCjÞÞ
’ OðjT IðCÞj:ð1þ kDTDk þ d:
kDTDk:ðjT IðCÞj2 þ jCjÞÞÞ

’ OðjT IðCÞj:d:kDTDk:ðjT IðCÞj2

þ jCjÞÞ:

We have given our complexity formula in terms of the

number of tiles jT IðCÞj. This number of tiles can be

approximated by the number of internal nodes in the

closed frequent trees. With this, we can reformulate the

complexity in terms of kCk, the number of nodes in the

closed frequent trees, and b, the average branching factor of

the closed frequent trees of C. Let INðCÞ be the internal

nodes of the closed frequent trees of C. We have

b ¼ number of edges in C
number of internal nodes in C :

The number of edges in a single tree T with N nodes is

N � 1, we deduce that for the set of trees C

b ¼ kCk � jCjkINðCÞk :

Therefore,

kINðCÞk ¼ kCk � jCj
b

:

Hence,

jT IðCÞj ’ kINðCÞk ¼ kCk � jCj
b

:

The complexity formula can now be written as

ComplexityðDryadeParentÞ ’ O kCk � jCj
b

:d:kDTDk:
�

ðkCk � jCjÞ2

b2
þ jCj

 !!
:

From the above formulas, we can conclude that the

complexity of DRYADEPARENT is polynomial in the

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

number of tiles, polynomial on the number of nodes in the
closed frequent trees, inversely proportional to the square
of the average branching factor, linear with the size of the
data, and linear with the average depth of the closed
frequent trees. Such characteristics should allow good scale-
up properties; this will be investigated in the next section.

5 EXPERIMENTS

This section reports on the experimental validation of
DRYADEPARENT on artificial and real-world data sets, as
well as an application example on real XML data. The
DRYADEPARENT algorithm will be compared with the
state-of-the-art closed tree mining algorithm, CMTreeMiner
[13], using the original C++ implementation of its authors.
All runtimes are measured on a 2.8-GHz Intel Xeon
processor with 2 Gbytes of memory (Rocks 3.3.0 Linux).
DRYADEPARENT is written in C++, involving the closed
frequent item set algorithm LCM2 [18], kindly provided by
Takeaki Uno. The reported results are wall-clock runtimes,
including data loading and preprocessing.

5.1 Artificial Data Sets

In the usual tree mining algorithms studies, at most, the
length (that is, the number of nodes) of the found closed
frequent trees is reported, without any information about
the structure of these closed frequent trees. However, the
branching factor and the depth of the closed frequent trees
intervene directly in the candidate generation process, so

they are likely to play a major role with respect to the
computation time. To ascertain this hypothesis, we wrote a
random tree generator that can generate trees with a given
node number N and a given average branching factor b.
Nodes are labeled with their preorder identifier, so there are
no couples of nodes with the same label in a tree. We
generated trees with N ¼ 100 nodes and b 2 ½1:0; 5:0�, b
increasing by an increment of 0.1. For each value of b,
10,000 trees were generated. Let T be such a tree. For each
T , a data set DT was generated, consisting simply of
200 identical copies of T (we perform this 200-time
duplication of each T to increase the processing time for
DT and so reduce the error rate on time measurement).
Each DT was processed by both algorithms, with a support
threshold of 200 (hence, the closed frequent tree to find is
the tree T), and the processing time was recorded.
Eventually, for each value of b, we regrouped the trees by
their depth d and got a point ðb; dÞ by averaging the
processing times for all the trees of the average branching
factor b and depth d. Fig. 17a shows the logarithms of these
averaged time values with respect to the average branching
factor b, and Fig. 17b shows the logarithms of these
averaged time values with respect to the depth d.

Fig. 17a shows that DRYADEPARENT is orders of
magnitude faster than CMTreeMiner as long as the
branching factor exceeds 1.3, which is the case in most of
the experiments’ space. For lower branching factor values,
CMTreeMiner has a small advantage. Closed frequent trees
with such a low branching factor necessarily have a high
depth, this is confirmed in Fig. 17b. This figure shows that
DRYADEPARENT exhibits a linear dependency on the depth
of the closed frequent trees. This is not surprising: each
iteration of DRYADEPARENT computes one more depth
level of the closed frequent trees, so very deep closed
frequent trees will need more iterations.

CMTreeMiner, on the other hand, shows a dependency
on the average branching factor, but for a given value of b,
the computation time varies greatly, being especially high
for low depth values. Because of the constraints on the
random tree generator, a tree that has a low depth with a
high average branching factor will necessarily have some
nodes with a very large branching factor. We plotted in
Fig. 18 a new curve, showing the computation time with
respect to the maximal branching factor.

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 13

Fig. 17. Random trees with 100 nodes. (a) Log(time)/average branching

factor. (b) Log(time)/depth.

Fig. 18. Random trees with 100 nodes, log(time) with respect to the

maximal branching factor.

DRYADEPARENT is nearly unaffected by the maximal

branching factor, but the computation time of CMTreeMi-
ner depends strongly on this parameter. In order to

understand how much the behavior of CMTreeMiner and

DRYADEPARENT differ, we analyze below the reasons of
the dependency to the branching factor of CMTreeMiner

and of the variability of its performances in general.
We give a brief reminder of the candidate enumeration

technique of CMTreeMiner, the rightmost branch expan-

sion. To generate candidates with k nodes from a frequent
tree with k� 1 nodes, CMTreeMiner tries to add a new edge

connecting to a node of known frequent label and starting at

a node of the rightmost branch of the k� 1 node tree. All
the nodes of the rightmost branch are explored successively

in a top-down fashion, from the root to the rightmost leaf.

1. Branching factor leads CMTreeMiner to generate
more unclosed candidates by backtracking. For a
node with a high branching factor, finding correctly
the set of its frequent children is a classical frequent
item set mining problem, and the highly combina-
torial nature of this problem often leads to the
generation of useless candidates. CMTreeMiner is no
exception to this rule: its top-down rightmost branch
expansion technique finds very quickly all the
children of a node but then needs to systematically
backtrack to check for frequent subsets of these
children. In most cases, this leads to the generation
of nonclosed candidates. For example, compare the
two closed frequent trees in Fig. 19. The linear tree
P1 is found without generating any unclosed
candidates. However, the flat tree P2 is found after
the generation of three unclosed candidates, so
according to our experiments finding P2 needs
7 percent more time than finding P1 in this simple
setting with four nodes and 100 percent more time in
a similar setting with 11 nodes.

DRYADEPARENT also has to confront such a
combinatorial problem in high-branching-factor
cases, but it does so by using the LCM2 closed
frequent item set mining algorithm, which provides,

as of now, the most efficient way to explore the
search space of closed frequent item sets. Further-
more, by discovering the tiles once and for all at the
beginning of the algorithm, DRYADEPARENT avoids
to repeat these complex computations if the same tile
appears more than once in the closed frequent trees.

In this problem, CMTreeMiner could probably be
improved by modifying its enumeration technique
in order to use LCM2 for sibling enumeration. Such
a modified algorithm should be similar to the recent
CLOTT algorithm by Arimura and Uno, which is an
extension of the LCM2 principles to the closed
attribute tree case.

2. Candidate generation asymmetry. The previous
problem explains partly why CMTreeMiner is
slower than DRYADEPARENT in most cases. As we
have seen, this problem can theoretically be over-
come. However, another problem remains, that
cannot be overcome easily, and this problem is
essential to the superior performances of our
hooking strategy over any algorithm based on
rightmost branch expansion.

Consider the simple closed frequent tree in Fig. 20.
As it can be seen, during candidate enumeration,
unwanted candidates are generated, because the
rightmost leaf expansion technique has to test
“blindly” all the potential expansions on the right-
most branch but can only grow good candidates for
certain expansions. For example, the candidate C2

contains correct information: it corresponds to the
first level of the closed frequent tree to find.
However, as some expansions must be made on the
node labeled B, which is not on the rightmost branch
of C2, C2 is eliminated. In the same way, C4 is
computed for nothing. The children with label C of
the root node will have to be recomputed in
candidate C6, even if it could have been discovered
much earlier.

This behavior is not only suboptimal, it also
undermines the robustness of CMTreeMiner. Con-
sider the two closed frequent trees in Fig. 21. Except
for the names of the labels, both these closed
frequent trees exhibit the same tree structure, so it
is expected that they are discovered in exactly the

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 19. CMTreeMiner candidate enumeration for a linear tree and for a

flat tree.

Fig. 20. CMTreeMiner enumeration for a left-balanced closed frequent

tree.

same amount of time. However, assuming that the
sibling processing order is the ascending order of
labels (this is the case in the actual implementation
of CMTreeMiner), closed frequent tree R, which is
right-balanced, is the ideal case for enumeration by
rightmost tree expansion. CMTreeMiner will check
43 candidates to discover it. On the other hand, the
left-balanced closed frequent tree L is the worst case,
and CMTreeMiner will require to check 79 candi-
dates for its discovery. The computation times reflect
this difference in candidate checking: the time for
finding L is 50 percent higher than the time for
finding R, as shown in Table 1.

On the other hand, thanks to its tree-orientation
neutral hooking technique, DRYADEPARENT re-
quires exactly the same amount of time for proces-
sing these two closed frequent trees. For both L and
R, DRYADEPARENT will generate three candidates:
1) the initial tile with root A, 2) a candidate
generated by the hooking of a tile on respectively
B or E, and 3) the closed frequent tree L or R by the
hooking of another tile on, respectively, F or I.

Last, we compared the scalability of DRYADEPARENT

and CMTreeMiner in both time and space in Fig. 22. The
data set consists of 1,000 to 10,000 copies of a unique perfect
binary tree of depth 5. We can see that in both time and
space, DRYADEPARENT scales linearly. The memory usage
is higher for DRYADEPARENT, but here, the reason is
mostly implementation specific: for example, the DRYADE-

PARENT integer type is “integer,” whereas CMTreeMiner’s
one is “short,” which is four times smaller on our 64-bit
machine. Moreover, DRYADEPARENT’s internal representa-
tion for trees is based on trees of pointers, which uses the
most memory, especially on a machine where the pointers
are 8 bytes long.

Complexity issues. Here, we evaluate the validity of our
complexity analysis in Section 4 when compared to the
actual results for the artificial data set.

Fig. 23 compares the logarithm of the processing time for
the real algorithm with the logarithm of the complexity
formula in Section 4 with respect to 1) the number of tiles
and 2) the average branching factor (the linear behavior of
the algorithm with respect to the depth has already been
ascertained in Fig. 17b). For a given number of tiles

(Fig. 23a) or average branching factor (Fig. 23b), there are
several trees with different shapes satisfying this constraint,
leading to different processing times or estimates. The
shaded area in the figures represents all of these processing
times (for the real algorithm) or estimates (for the complex-
ity estimate).

In Fig. 23a, the estimated curve and the real times match
well for more than 50 tiles, but for a lesser number of tiles,
the real-time curve presents a gentler slope than the
complexity estimate. For a high number of tiles, DRYADE-

PARENT spends most of its time on hooking tiles, with a lot
of iterations. The start-up time needed for loading the data
and creating all the needed data structures is negligible
compared to the total time in these cases. However, for
lower numbers of tiles, there are fewer iterations, and
DRYADEPARENT is very fast at completing them. Therefore,
the start-up time is no longer negligible compared to the
total times in such cases. Such start-up processings are not
taken into account in the complexity formula; hence, the
difference occurs between the two curves.

The same behavior can be observed in Fig. 23b, for a high
branching factor cases the real algorithm performs fewer
hookings and hence is limited by the start-up time, which is
not reflected in the complexity estimate.

One can also note a visible discontinuity on the curves
for the complexity estimate. This discontinuity reflects the
behavior of our artificial data generator. For average
branching factors above 1.9, the generator is allowed to
produce nodes with a very high branching factor, whereas
it is not possible for branching factors below it. This allows
the efficient generation of artificial trees satisfying the given
constraints, at the price of smoothness. The curves for

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 15

Fig. 21. L: left-balanced closed frequent tree. R: right-balanced closed

frequent tree.

TABLE 1
Computation Time for Finding Closed Frequent Trees R and L

Fig. 22. Scalability tests on binary trees (time-memory).

DRYADEPARENT also present this discontinuity, although it

is less visible.
In conclusion, the complexity estimates that we provided

seem to capture well the behavior of the DRYADEPARENT

algorithm, especially when the algorithm has enough

hooking work to do.

5.2 Real Data Sets

In the tree mining literature, two real-world data sets are

widely used for testing: the NASA data set sampled by Chi

et al. from multicast communications during a shuttle

launch event [25] and the CSLOGS data set consisting of

Web logs collected over one month at the Computer Science

Department of Rensselaer Institute [19].
The runtimes obtained for various frequency thresholds

for both DRYADEPARENT and CMTreeMiner are displayed

in Fig. 24.
DRYADEPARENT is more than twice faster than CMTree-

Miner on the CSLOGS data set. For the NASA data set, the

performances are similar for high and medium support

values, DRYADEPARENT having a distinct advantage for

the lowest support values. Note that we obtained similar

results with simplified CSLOGS and NASA data sets

consisting only of attribute trees. We were interested to

know why DRYADEPARENT and CMTreeMiner have a

bigger performance difference on the CSLOGS data set than

on the NASA data set. Analyzing the structure of the

computed closed frequent trees in both cases, we found that

in the CSLOGS data set, for the support value 0.003 (lowest

value tested), there are 924 closed frequent trees, with three

nodes on the average, and an average branching factor of

1.6. For the NASA data set, the picture is different: at the

support value 0.1, there are 737 closed frequent trees, with

42 nodes on the average, an average depth of 12, and an
average branching factor of 1.2.

Discussion. Our artificial experiments have shown that
the structure of the closed frequent trees to find, especially
their branching factor, is a crucial performance factor. The
closed tree mining algorithm CMTreeMiner, based on
candidate enumeration by rightmost branch expansion,
has performances that vary considerably with the branching

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 23. Comparing real processing time and estimated complexity. (a) Log(time)/number of tiles. (b) Log(time)/average branching factor.

Fig. 24. Runtime with respect to support for the NASA/Multicast and

CSLOGS data sets.

factor of the closed frequent trees and even with their

balance. The fact that CMTreeMiner and DRYADEPARENT

have similar performances on the NASA data set, with

closed frequent trees having a quite low branching factor,

and that CMTreeMiner is slower than DRYADEPARENT on

the CSLOGS data set, with closed frequent trees having a

higher branch factor, is consistent with our experiments on

artificial data.
Experiments have shown that the new method for

finding closed frequent attribute trees of our DRYADEPAR-

ENT algorithm is not only computation-time efficient but

also robust with respect to the tree structure, delivering

good performances with most tree structure configurations.

Such robustness is a desirable feature for most applications,

especially the applications that deal with trees having a

great diversity of structure, for which the typical structure

of closed frequent trees cannot be predicted.

5.3 XML Application Example

In this last series of experiments, we show the analysis of a

corpus of real XML data. This corpus comes from the XML

Mining Challenge, compiled by Denoyer [26]. We used the

“Movie” corpus, initially designed for a mapping task. The

training part of this corpus has the advantage to contain

well-formed XML documents with meaningful tags, each

document describing one movie.
Preprocessing. We preprocessed this corpus in the

following way:

. To all leaf tags corresponded a PCDATA string
giving the value associated to this tag (for example, a
tag “name” could have as its associated PCDATA
“John Wayne”). All the PCDATA of these tags were
processed to get rid of punctuation signs and
convert the text into lowercases. In case of strings
with spaces, like in “John Wayne,” the spaces were
replaced by underscores, with a prefixing under-
score, like in “_john_wayne” (so that the Perl parser
we used could handle numeral strings like “_1941”).
These normalized strings were used as labels of new
nodes added as children of the labeled nodes that
the original strings were values of.

. We made minor alterations to the structure in order
to convert the original trees to attribute trees. For
this, tags that represented list items were replaced
with their children, that is, by their actual content.
For example, each actor in a movie was represented
by a tag named “entry” under a main “cast” tag, and
inside this “entry” tag were a “name” and one or
more “roles” tags. We suppressed these intermedi-
ary tags and instead created a new tag with the
actual name of the actor, which became a child of the
“cast” tag. The roles of this actor became children of
the tag bearing the name of the actor.

. There are two tags, “synopsis” and “review,” whose
data is a short text respectively describing the movie
and reviewing it. Each text was cut into words; the
stopwords like “the,” “and,” etc., were suppressed
from this list of words. For each word, only one of its
occurrences was kept, and all the remaining words

became new tags added as leaves of the “synopsis”
and “review” tags.

Performances. In the first experiment, we preprocessed
100 documents out of the 693 from the collection and fed
them as input to DRYADEPARENT and CMTreeMiner in
order to analyze the computation time performances. The
results are given in Fig. 25a, with the average branching
factor of the closed frequent trees given in Fig. 25b. There
are no results under a support value of 40 percent, as in this
case, DRYADEPARENT saturated the memory.

The closed frequent trees have a high branching factor:
as expected from the previous experiments, for high
support values, DRYADEPARENT largely outperforms
CMTreeMiner. Surprisingly, for lower support values, the
contrary happens. To understand why this was happening,
we analyzed carefully the time spent by DRYADEPARENT in
its various tasks. We found that for a support value of
40 percent, it was spending 74 percent of its computation
time making closure tests (which corresponds to line 5 of
Algorithm 2). The problem is that, as we stated in the
introduction, DRYADEPARENT has been designed with
heterogeneous data sets in mind, that is, data from various
organizations about the same topics. Because of the very
nature of such data sets, they are currently very difficult to
find. The publicly available data sets, like the one we use
here, usually come from the same organization and so are
very homogeneous. The consequence is that a lot of closed
frequent trees are nearly identical, and so, a lot of hookings
also resemble each other, with subtle differences. Our
closure test has been written in a rather naive way: it first
looks for exact hooking matches in the database and then
for bigger (the current hooking is included in a bigger

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 17

Fig. 25. Comparative results for DRYADEPARENT and CMTreeMiner with

the XMLMovie data set. (a) Computation time. (b) Average closed

frequent tree branching factor.

hooking of the database) and smaller matches (the current

hooking includes a smaller hooking of the database),

iterating on all the possible cases of bigger/smaller

matches. Usually, this is very fast because there are not

that many cases to examine, but with a very homogeneous

data set such as XMLMovie, it became a bottleneck. On the

other hand, the edge-adding strategy of CMTreeMiner

performs better here: the fact that all the closed frequent

trees resemble each other means that it has fewer

candidates to expand, so what is a bad case for DRYADE-

PARENT is a good case for CMTreeMiner.
To evaluate the behavior of both algorithms on more

heterogeneous data, we derived a new data set from

XMLMovie. The XMLMovie documents are all rooted with

the “movie” tag. We divided our 100 documents into

10 groups fG1; . . . ; G10g, chose 10 arbitrary tags ft1; . . . ; t10g,

and, in each group Gi, for all the documents of this group,
made the tag ti replace the tag “movie” at the root of the
tree so that for all i 2 ½1; 10�, the documents in Gi are rooted
by tag ti. The new data set, called XMLMovieHtr, is much
more heterogeneous: all documents are on the same topic
and share common tags; however, the small difference in
the roots avoids homogeneity and gives more importance to
the closed frequent trees not using this root.

The performances for the processing of XMLMovieHtr
are shown in Fig. 26a, with the average branching factor of
the closed frequent trees shown in Fig. 26b.

This time, both algorithms could correctly process the
data for all support values. The computation time difference
was important between DRYADEPARENT and CMTreeMi-
ner, so we had to use a logarithmic scale for the time in
Fig. 26a. For all support values, even if the closed frequent
trees to find were complex and numerous (more than 20,000
at support ¼ 2 percent), DRYADEPARENT could achieve a
several-order-of-magnitude improvement over CMTreeMi-
ner, processing the data in 45 seconds for a support of
2 percent, whereas CMTreeMiner needed 2,846 seconds.
Therefore, as expected, DRYADEPARENT is far better
adapted for heterogeneous data than CMTreeMiner.

Closed frequent trees analysis. We now show how the
closed frequent trees found could be useful in an XML data
mining application. Our first interest, in such homogeneous
data, is to find a schema common to all of the documents
analyzed, which could stand for a very basic DTD (the
Document Type Definition, or DTD, is the “grammar” of an
XML document. More resources about XML can be found in
[27]), especially in cases like XMLMovie where the docu-
ments are homogeneous, but no DTD was formally defined.
This is close to grammatical inference [28], but the goal of
grammatical inference on XML data is to find the complete
DTD of all the XML documents [29], which is beyond the
scope of frequent tree mining. Therefore, we ran DRYADE-

PARENT on XMLMovie with a support of 100 percent; the
closed frequent tree found is shown in Fig. 27. We are
assured that all the documents will contain this closed
frequent tree, which can, for example, be useful for
designing queries on these documents.

With lower support values, the closed frequent trees also
allow extracting precise information from the data. The next
closed frequent trees come from the mining of XMLMo-
vieHtr with a support value of 5 percent.

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 26. Comparative results for DRYADEPARENT and CMTreeMiner with

the XMLMovieHtr data set. (a) Logarithm of computation time. (b)

Average closed frequent tree branching factor.

Fig. 27. Common schema to all of the 100 documents of XMLMovie.

Following the node nesting, we have the following:

. The information can have a horizontal organization,
like in Fig. 28a. Here, the closed frequent tree could
have been found by a simple frequent item set
mining algorithm, it represents the frequent children
of the “categories” node. We learn that “features”
that are in black and white (“bw”) often are available
in a colorized version.

. The information can have a vertical organization,
like in Fig. 28b. Here, through the nesting of nodes
expressing data and of nodes expressing what this
data represents, we can learn that the individual
“Cedric Gibbons” was a member of the production
team of at least five movies and that his job was to be
the art director.

. Finally, most closed frequent trees, like in Fig. 28c,
combine vertically and horizontally organized in-
formation, which is the major advantage of tree
mining. Here, we learn that at least 5 percent of the
movies are nominated (“_nom” suffix after an award
name) for the following awards: best director for the
directors’ guild of America and best actor and best
picture for the Academy awards. This closed
frequent tree can lead to many interpretations, for
instance, that good movies are associated with the
combination of a good director and a good main
actor.

Some closed frequent trees can allow an even finer
analysis of the data. Consider the closed frequent tree in
Fig. 29, extracted from XMLMovieHtr with a support of
2 percent.

This big closed frequent tree is shared by two movies
“Rebel without a Cause” (1955) and “The Graduate” (1962).
Both of these films are American, were big successes, won
awards, and have a five-star AMG rating. However, more
importantly, the closed frequent tree was able to capture
well what is common to these movies: they are movies about
“coming of age” and “generation gap” (from the keywords),
words like “rebellion” and “parents” appear in the synopsis,
and words like “generation,” “parents,” “alienation,” and
“prosperity” appear in the review. Such words seem to
characterize well both films made in a prosperous America,
but where the young people were less and less attracted by
their parents’ model and tried to find another way of life.
Searching Google with these two film names together
confirmed that these two films are grouped together by
sociologists when analyzing the America of the 1950s and

1960s (see, for example, [30], available at http://www.lib.
berkeley.edu/MRC/nickray.html). The shopping site Ama-
zon.com also rates the two movies as similar. Therefore,
what is very interesting with that closed frequent tree is that
it could group together two similar movies and even provide
elements to describe what make them similar. Such kind of
closed frequent trees are particularly useful for conceptual
clustering, by grouping together similar elements and
characterizing the cluster. The particular advantage here,
due to the structural analysis of XML data, is that it provides
very fine grained information, which could be particularly
useful to people doing a detailed analysis of the data.

6 CONCLUSION AND PERSPECTIVES

In this paper, we have presented the DRYADEPARENT
algorithm, based on the computation of tiles (closed
frequent attribute trees of depth 1) in the data and on an
efficient hooking strategy that reconstructs the closed
frequent trees from these tiles. This hooking strategy is
radically different from current tree mining approaches like
CMTreeMiner. Whereas CMTreeMiner uses a classical
generate-and-test strategy to build candidate trees edge by
edge, the hooking strategy of DRYADEPARENT finds a
complete depth level at each iteration and does not need
expensive tree mapping tests.

Thorough experiments have shown that DRYADEPAR-
ENT is faster than CMTreeMiner in most settings. Moreover,
the performances of DRYADEPARENT are robust with
respect to the structure of the closed frequent trees to find,
whereas the performances of CMTreeMiner are biased
toward trees having most of their edges on their rightmost
branch.

We also have shown that in the analysis of XML data, as
long as the data is heterogeneous, DRYADEPARENT can
provide excellent performances, allowing a near-real-time
analysis. We also have shown that the closed frequent trees
found could capture very interesting information from the
data.

We have proposed new benchmarks, taking into account
the structure of the closed frequent trees, to test the
behavior of tree mining algorithms. As far as we know,
such kind of tests is new in the tree mining community.

Improving these benchmarks and making more detailed
analyses are some of our future research directions. We
think that our experiments proved that such tools are
valuable for the tree mining community. We also plan to
extend DRYADEPARENT to structures more general than
attribute trees.

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 19

Fig. 28. Some closed frequent trees extracted from XMLMovieHtr with a support value of 5 percent. (a) Horizontal closed frequent tree. (b) Vertical

closed frequent tree. (c) Hybrid closed frequent tree.

ACKNOWLEDGMENTS

The authors wish to thank especially Takeaki Uno for the
LCM2 implementation and Yun Chi for making available
the CMTreeMiner implementation and giving us the NASA
data set. This work was partly supported by the grant-in-
aid of scientific research No. 16-04734.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int’l Conf. Data Eng. (ICDE ’95), P.S. Yu and A.S.P. Chen, eds.,
pp. 3-14, citeseer.ist.psu.edu/agrawal95mining.html, 1995.

[2] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovery of
Frequent Episodes in Event Sequences,” Data Mining and Knowl-
edge Discovery, vol. 1, no. 3, pp. 259-289, citeseer.ist.psu.edu/
mannila97discovery.html, 1997.

[3] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S.
Arikawa, “Efficient Substructure Discovery from Large Semi-
Structured Data,” Proc. Second SIAM Int’l Conf. Data Mining (SDM
’02), pp. 158-174, Apr. 2002.

[4] A. Inokuchi, T. Washio, and H. Motoda, “Complete Mining of
Frequent Patterns from Graphs: Mining Graph Data,” Machine
Learning, vol. 50, no. 3, pp. 321-354, 2003.

[5] M. Kuramochi and G. Karypis, “An Efficient Algorithm for
Discovering Frequent Subgraphs,” IEEE Trans. Knowledge and Data
Eng., vol. 16, no. 9, pp. 1038-1051, Sept. 2004.

[6] J.-H. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla,
“Aggregated Multicast—A Comparative Study,” Proc. Second Int’l
IFIP-TC6 Networking Conf. (NETWORKING ’02): Networking
Technologies, Services, and Protocols; Performance of Computer and
Comm. Networks; and Mobile and Wireless Comm., pp. 1032-1044,
2002.

[7] D. Shasha, J.T.L. Wang, and S. Zhang, “Unordered Tree Mining
with Applications to Phylogeny,” Proc. 20th Int’l Conf. Data Eng.
(ICDE ’04), p. 708, 2004.

[8] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications,” IEEE Trans. Knowledge and Data
Eng., vol. 17, no. 8, pp. 1021-1035, Aug. 2005.

[9] L.H. Yang, M.L. Lee, W. Hsu, and S. Acharya, “Mining Frequent
Query Patterns from XML Queries,” Proc. Eighth Int’l Conf.
Database Systems for Advanced Applications (DASFAA ’03), p. 355,
2003.

[10] M.J. Zaki and C.C. Aggarwal, “XRules: An Effective Structural
Classifier for XML Data,” Proc. ACM SIGKDD ’03, citeseer.ist.
psu.edu/zaki03xrules.html, 2003.

[11] A. Termier, M. Rousset, and M. Sebag, “Dryade: A New Approach
for Discovering Closed Frequent Trees in Heterogeneous Tree
Databases,” Proc. Fourth IEEE Int’l Conf. Data Mining (ICDM ’04),
pp. 543-546, 2004.

[12] H. Arimura and T. Uno, “An Output-Polynomial Time Algorithm
for Mining Frequent Closed Attribute Trees,” Proc. 15th Int’l Conf.
Inductive Logic Programming (ILP ’05), 2005.

[13] Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz, “CMTreeMiner: Mining
Both Closed and Maximal Frequent Subtrees,” Proc. Eighth Pacific-
Asia Conf. Knowledge Discovery and Data Mining (PAKDD ’04), 2004.

[14] P. Kilpeläinen, “Tree Matching Problems with Applications to
Structured Text Databases,” PhD dissertation, Technical Report A-
1992-6, Dept. of Computer Science, Univ. of Helsinki, Nov. 1992.

[15] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
Frequent Closed Itemsets for Association Rules,” Proc. Seventh Int’l
Conf. Database Theory (ICDT ’99), 1999.

[16] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Data Bases
(VLDB ’94), 1994.

20 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 2, FEBRUARY 2008

Fig. 29. Biggest closed frequent tree from XMLMovieHtr with a support of 2 percent.

[17] M.J. Zaki and C.-J. Hsiao, “Charm: An Efficient Algorithm for
Closed Itemset Mining,” Proc. Second SIAM Int’l Conf. Data Mining
(SDM ’02), Apr. 2002.

[18] T. Uno, M. Kiyomi, and H. Arimura, “LCM v.2: Efficient Mining
Algorithms for Frequent/Closed/Maximal Itemsets,” Proc. Second
Workshop Frequent Itemset Mining Implementations (FIMI ’04), 2004.

[19] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest,” Proc.
Eighth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’02), July 2002.

[20] T. Asai, H. Arimura, T. Uno, and S. Nakano, “Discovering
Frequent Substructures in Large Unordered Trees,” Proc. Sixth
Int’l Conf. Discovery Science (DS ’03), pp. 47-61, 2003.

[21] S. Nijssen and J.N. Kok, “Efficient Discovery of Frequent
Unordered Trees,” Proc. First Int’l Workshop Mining Graphs, Trees
and Sequences (MGTS ’03), 2003.

[22] Y. Xiao, J.-F. Yao, Z. Li, and M.H. Dunham, “Efficient Data Mining
for Maximal Frequent Subtrees,” Proc. Third IEEE Int’l Conf. Data
Mining (ICDM ’03), p. 379, 2003.

[23] M.J. Zaki, “Efficiently Mining Frequent Embedded Unordered
Trees,” Fundamenta Informaticae, special issue on advances in
mining graphs, trees and sequences, vol. 65, nos. 1-2, pp. 33-52,
Mar./Apr. 2005.

[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Dynamic
Programming,” Introduction to Algorithms, second ed., pp. 323-369,
MIT Press, 2001.

[25] R. Chalmers and K. Almeroth, “Modeling the Branching Char-
acteristics and Efficiency Gains of Global Multicast Trees,” Proc.
IEEE INFOCOM ’01, Apr. 2001.

[26] L. Denoyer, “XML Mining Challenge,” http://xmlmining.lip6.fr/
Corpus, 2006.

[27] W. Consortium, Extensible Markup Language (XML) 1.0, fourth
ed., http://www.w3.org/TR/REC-xml/, 2006.

[28] E. Gold, “Language Identification in the Limit,” Information and
Control, vol. 10, pp. 447-474, 1967.

[29] Y. Papakonstantinou and V. Vianu, “DTD Inference for Views of
XML Data,” Proc. ACM SIGMOD, 2000.

[30] I.C. Jarvie, “America’s Sociological Movies,” Arts in Soc., vol. 10,
no. 2, pp. 171-181, Summer-Fall 1973.

Alexandre Termier received the PhD degree
from the University of Paris-South in 2004. He is
an assistant professor of computer science at
the University of Grenoble. His research inter-
ests include data mining, parallelism, and peer-
to-peer networks. For data mining, he is espe-
cially interested in mining trees and directed
acyclic graphs.

Marie-Christine Rousset is a professor of
computer science at the University of Grenoble.
Her research interests include knowledge repre-
sentation and information integration. In particu-
lar, she works on the following topics: logic-
based mediation between distributed data
sources, query rewriting using views, automatic
classification and clustering of semistructured
data (for example, XML documents), peer to
peer data sharing, distributed reasoning. She

has published more than 70 refereed international journal articles and
conference papers and participated in several cooperative industry-
university projects. She received a best paper award from AAAI in 1996
and has been nominated as an ECCAI Fellow in 2005. She has served
in many program committees of international conferences and work-
shops and on the editorial boards of several journals.

Michèle Sebag received the degree in Maths
from Ecole Normale Supérieure, Paris, and the
PhD degree in computer science in 1990 and
her Habilitation in 1997. She has been with the
Centre National de la Recherche Scientifique
(CNRS) since 1991, where she has been a
senior researcher (Directeur de Recherche)
since 2003. Primarily grounded in applications
for numerical engineering, her research interests
include relational learning and inductive logic

programming, ensemble methods, evolutionary computation and genet-
ic programming, and statistical learning. She is on the editorial boards of
the Machine Learning Journal and Genetic Programming and Evolvable
Hardware. She is an associate editor of Knowledge and Information
Systems and was an associate editor of the IEEE Transactions on
Evolutionary Computation from 1997 to 2003.

Kouzou Ohara received the ME degree in
information and computer sciences and the
PhD degree from Osaka University in 1995
and 2002, respectively. He is currently an
assistant professor in the Institute of Scientific
and Industrial Research, Osaka University. His
research interests include machine learning,
data mining, and personalization of intelligent
systems. He is a member of the IEEE, the AAAI,
the IEICE, the IPSJ, and the JSAI.

Takashi Washio received the PhD degree in
nuclear engineering from Tohoku University,
Japan, in 1983, on the topic of process plant
diagnosis based on qualitative reasoning. He is
a professor in the Institute of Scientific and
Industrial Research (ISIR), Osaka University. At
ISIR, he works on the study of scientific
discovery, graph mining, and high-dimensional
data mining. He received the best paper award
from the Atomic Energy Society of Japan in

1996, the best paper award from the Japanese Society for Artificial
Intelligence in 2001, and the Journal Award of Computer Aided
Chemistry in 2002. He is a member of the IEEE Computer Society.

Hiroshi Motoda received the BS, MS, and PhD
degrees in nuclear engineering from the Uni-
versity of Tokyo. He is a professor emeritus at
Osaka University and a scientific advisor of the
Asian Office of Aerospace Research and Devel-
opment, Air Force Office of Scientific Research,
US Air Force Research Laboratory (AFOSR/
AOARD). His research interests include ma-
chine learning, knowledge acquisition, scientific
knowledge discovery, and data mining. He is a

member of the steering committee of PAKDD, PRICAI, DS, and ALT. He
received the best paper award twice from the Atomic Energy Society of
Japan (in 1977 and 1984) and three times from JSAI (in 1989, 1992, and
2001), the outstanding achievement award from JSAI in 2000, and the
Okawa Publication Prize from the Okawa Foundation in 2007. He is a
member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TERMIER ET AL.: DRYADEPARENT, AN EFFICIENT AND ROBUST CLOSED ATTRIBUTE TREE MINING ALGORITHM... 21

