
DL-LITER in the Light of Propositional Logic for Decentralized Data Management

N. Abdallah and F. Goasdoúe
LRI: Univ. Paris-Sud, CNRS, and INRIA

{nada,fg}@lri.fr

M.-C. Rousset
LIG: Univ. of Grenoble, CNRS, and INRIA

Marie-Christine.Rousset@imag.fr

Abstract

This paper provides a decentralized data model
and associated algorithms for peer data manage-
ment systems (PDMS) based on the DL-LITER de-
scription logic. Our approach relies on reducing
query reformulation and consistency checking for
DL-LITER into reasoning in propositional logic.
This enables a straightforward deployment of DL-
LITER PDMSs on top of SomeWhere, a scalable
propositional peer-to-peer inference system. We
also show how to use the state-of-the-art Minicon
algorithm for rewriting queries using views in DL-
LITER in the centralized and decentralized cases.

1 Introduction

Ontologies are the backbone of the Semantic Web by pro-
viding a conceptual view of data and services made available
worldwide through the Web. Description logics are the for-
mal foundations of the OWL ontology web language recom-
mended by W3C. They cover a broad spectrum of logical lan-
guages for which reasoning is decidable with a computational
complexity varying depending on the set of constructors al-
lowed in the language. Answering conjunctive queries over
ontologies is a reasoning problem of major interest for the Se-
mantic Web the associated decision problem of which is not
reducible to (un)satisfiability checking. The DL-Lite family
[Calvaneseet al., 2007] has been specially designed for guar-
anteeing query answering to be polynomial in data complex-
ity. This is achieved by a query reformulation approach which
(1) computes the most general conjunctive queries which, to-
gether with the axioms in the Tbox, entail the initial query and
(2) evaluates each of those query reformulations against the
Abox seen as a relational database. Such an approach has the
practical interest that it makes possible to use an SQL engine
for the second step, thus taking advantage of well-established
query optimization strategies supported by standard relational
data management systems. The reformulation step is neces-
sary for guaranteeing the completeness of the answers but is
a reasoning step independent of the data. A major result in
[Calvaneseet al., 2007] is that DL-LITER is one of the max-
imal fragments of the DL-Lite family supporting tractable
query answering over large amounts of data. DL-LITER is a

fragment of OWL-DL1 which extends RDFS2 with interest-
ing contructors such as inverse roles and disjointness between
concepts and between roles. RDFS is the first standard of the
W3C concerning the Semantic Web. Its use for associating
semantic metadata to web resources is rapidly spreading at a
large scale, as shown by the Billion Triple Track of the Se-
mantic Web Challenge (http://challenge.semanticweb.org/).

For scalability and robustness but also for data protection,
it is important to investigate a fully decentralized model of
the Semantic Web, viewed as a huge peer data management
system (PDMS). Each peer may have its own local ontology
for describing its data, and interacts with some other peersby
establishing mappings with their ontologies. The result isa
network of peers with no centralized knowledge and thus no
global control on the data and knowledge distributed over the
web.

The contribution of this paper is a decentralized data model
and associated algorithms for data management in the Seman-
tic Web based on distributed DL-LITER. We revisit the cen-
tralized current approach of[Calvaneseet al., 2007] for data
consistency checking and query answering by reformulation
in order to design corresponding decentralized algorithms.
We also extend the current work on DL-Lite by providing
both a centralized and a decentralized algorithm for rewriting
queries using views when queries and views are conjunctive
queries over DL-LITER ontologies.

Our approach relies on reducing the above data manage-
ment problems for DL-LITER into decentralized reasoning in
distributed propositional logic, in order to deploy DL-LITER

PDMSs on top of the SomeWhere platform. SomeWhere is
a propositional P2P inference system for which experiments
have demonstrated the scalability[Adjimanet al., 2006].

The paper is organized as follows. In Section 2, we present
the distributed DL-LITER data model which is based on
bridging distributed DL-LITER ontologies with mappings. In
Section 3, we provide decentralized algorithms for query an-
swering by reformulation and for data consistency checking.
In Section 4, we investigate the problem of query rewriting
using views in DL-LITER in the centralized and decentral-
ized cases. Finally, we conclude with a short discussion on
related work in Section 5.

1http://www.w3.org/2004/OWL/
2http://www.w3.org/TR/rdf-schema/

2 Distributed DL-LITER

DL-LITER concepts and roles are of the following form:
B → A | ∃R, C → B | ¬B, R → P | P−, E → R | ¬R
whereA denotes anatomic concept, P an atomic role, and
P− the inverseof P . B denotes abasic concept(i.e., an
atomic conceptA or anunqualified existential quantification
on a basic role∃R) andR a basic role(i.e., an atomic role
P or its inverseP−). Finally, C denotes ageneral concept
(i.e., a basic concept or its negation) andE a general role
(i.e., a basic role or its negation).

An interpretationI = (∆I , .I) consists of a nonemptyin-
terpretation domain∆I and aninterpretation function.I that
assigns a subset of∆I to each atomic concept, and a binary
relation over∆I to each atomic role. The semantics of non
atomic concepts and roles is defined as follows:

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(∃R)I = {o1 | ∃o2 (o1, o2) ∈ RI}
(¬B)I = ∆I\BI and(¬R)I = ∆I × ∆I\RI

An interpretationI is amodel of a conceptC (resp. a roleE)
if CI 6= ∅ (resp.EI 6= ∅).

DL-LITER knowledge bases. A DL- LITER knowledge
base (KB) is made of aTboxrepresenting a conceptual view
of the domain of interest (i.e., an ontology), and either an
Abox(a local set of facts)[Calvaneseet al., 2007] or view ex-
tensions(predefined queries over the Tbox together with their
answers)[Calvaneseet al., 2008b] for representing the data.

A DL- LITER Tbox is a finite set of inclusion statements of
the formB ⊑ C and/orR ⊑ E. General concepts or roles
are only allowed on the right hand side of inclusion state-
ments whereas only basic concepts or roles may occur on the
left hand side of inclusion statements. Inclusions of the form
B1 ⊑ B2 or of the formR1 ⊑ R2 are calledpositive inclu-
sions (PIs), whereas inclusions of the formB1 ⊑ ¬B2 or of
the formR1 ⊑ ¬R2 are callednegative inclusions (NIs). An
interpretationI = (∆I , .I) is amodel of an inclusionB ⊑ C
(resp.R ⊑ E) if BI ⊆ CI (resp.RI ⊆ EI). It is amodel of
a Tboxif it satisfies all of its inclusion statements. A TboxT
logically entailsan inclusion statementα, writtenT |= α, if
every model ofT is a model ofα.

A DL- LITER Abox consists of a finite set of membership
assertions on atomic concepts and roles of the formA(a) and
P (a, b), stating respectively thata is an instance ofA and that
the pair of constants(a, b) is an instance ofP . The interpre-
tation function of an interpretationI = (∆I , .I) is extended
to constants by assigning to each constanta a distinct object
aI ∈ ∆I (i.e., the so calledunique name assumptionholds).
An interpretationI is a model of the membership assertion
A(a) (resp.P (a, b)) if aI ∈ AI (resp.,(aI , bI) ∈ P I). It is a
model of an Aboxif it satisfies all of its assertions.

When the extensional knowledge is modeled using view
extensions, the KB is of the form〈T ,V , E〉 such thatE is a
set of facts of the formv(t̄) wherev is aviewof V .

Queries and views over a DL-LITER KB. We con-
sider (unions of)conjunctive queriesof the form q(x̄) :
∃ȳ conj(x̄, ȳ) whereconj(x̄, ȳ) is a conjunction of atoms,
the variables of which areonly the free variables̄x and the
existential variables̄y, and the predicates of which are either

atomicconcepts or roles of the KB. Thearity of a query is the
number of its free variables, e.g.,0 for aboolean query.

Given an interpretationI = (∆I , .I), the semanticsqI of
a boolean queryq is defined astrue if [∃ȳ conj(∅, ȳ)]I =
true, andfalse otherwise, while the semanticsqI of a query
q of arity n ≥ 1 is the relation of arityn defined on(∆I) as
follows: qI = {ē ∈ (∆I)n | [∃ȳ conj(ē, ȳ)]I = true}.

A viewv is defined by a queryv(x̄) : ∃ȳ conj(x̄, ȳ), and
has an extensionE(v) which is a set of facts of the formv(t̄).

Following theopen world assumption, we adopt thesound
semantics, i.e., for every interpretationI for eachv(t̄) ∈
E(v), t̄I ∈ vI .

A model of a KBK = 〈T ,A〉 (resp.K = 〈T ,V , E〉) is an
interpretationI that is a model of bothT andA (resp. ofT ,
V andE). A KB K is consistentif it has at least one model.
K logically entailsa membership assertionβ, writtenK |=

β, if every model ofK is a model ofβ.

(Certain) answers of a query over aDL-LITER KB. For
defining the answers of a query over a KB, it is needed to
distinguish the case where the extensions of the query predi-
cates are given in an Abox, from the case where they just can
be (partially) inferred from extensions of views. In the latter
case, they are called thecertain answers.

The answer set of a non boolean queryq overK = 〈T ,A〉
is defined as:ans(q,K) = {t̄ ∈ Cn | K |= q(t̄)} whereC is
the set of the constants appearing in the KB, andq(t̄) is the
closed formula obtained by replacing in the query definition
the free variables in̄x by the constants in̄t.

The certain answer set of a non boolean queryq overK =
〈T ,V , E〉, is defined as:cert(q,K) = {t̄ ∈ Cn | K |= q(t̄)}.

By convention, the (certain) answer set of a boolean query
is {()}, () is the empty tuple, ifK |= q(), and∅ otherwise.

DL-LITER PDMSs A DL- LITER PDMSS is a set of peers
{Pi}i=1..n, where the indexi models the identifier of the
peerPi (e.g., its IP address). Each peerPi manages its own
DL-LITER KB Ki written in terms of its ownvocabulary,
i.e., atomic concepts and roles. We will noteAi (resp.Pi) the
atomic conceptA (resp. the atomic roleP) of Pi.

Mappingsare here inclusion assertions (PIs and/or NIs) in-
volving concepts and/or roles of two different peers. For sim-
plifying the presentation, we consider that mappings are in
both KBs.

From a logical viewpoint, a PDMSS = {Pi}i=1..n is
a standard (yet distributed) DL-LITER KB K =

⋃n

i=1 Ki,
i.e., in contrast with other approaches ([Calvaneseet al.,
2008a], [Franconiet al., 2004], [Serafiniet al., 2005]) we
adopt a standard logical semantics for the mappings.

3 Decentralized Query Answering
We first recall theAnswer, Consistent, andPerfectRef
algorithms of[Calvaneseet al., 2007] that are used for an-
swering queries over a DL-LITER KB K = 〈T ,A〉 in the
centralized case (Section 3.1). Then we provide their decen-
tralized versions (in Sections 3.3 and 3.4). They are based
on the propositional encoding summarized in Section 3.2 and
the use of the DeCa algorithm[Adjiman et al., 2006] which
is the decentralized algorithm for propositional reasoning im-
plemented in the SomeWhere platform.

3.1 Existing DL-LITER algorithms: reminder
Given a union of conjunctive queriesQ over a KB K =
〈T ,A〉, Answer (Algorithm 1) first checks whetherK is in-
consistent (line 1). In that case, it returns all the tuples of
the arity ofQ that can be generated from the constants occur-
ring in A (line 2). Otherwise, it getsans(Q,K) by evaluat-
ing againstA considered as a relational database the union of
conjunctive queries obtained by reformulation ofQ (line 3).
Algorithm 1: The originalAnswer algorithm
Answer(Q,K)
Input: a union of conjunctive queriesQ and a KBK = 〈T ,A〉
Output: ans(Q,K)
(1) if notConsistent(K)
(2) return Alltup(Q,K)

(3) else return(
S

qi∈Q
PerfectRef(qi, T))db(A)

Consistent (Algorithm 2) builds a boolean queryqunsat

that checks that the DL-LITER formulae that must be disjoint,
according to the intentional knowledge modeled inT , indeed
have disjoint instances inA. qunsat is obtained as the union
of the first-order logic (FOL) translations of the NI-closure of
T , denotedcln(T), i.e., the set of all the NIs entailed byT .
The FOL translations of NIs are defined by:
δ(B1 ⊑ ¬B2) = ∃x γ1(x) ∧ γ2(x) such that

γi(x) = Ai(x) if Bi = Ai

γi(x) = ∃yi Pi(x, yi) if Bi = ∃Pi

γi(x) = ∃yi Pi(yi, x) if Bi = ∃P−
i

δ(R1 ⊑ ¬R2) = ∃x, y ρ1(x, y) ∧ ρ2(x, y) such that
ρi(x, y) = Pi(x, y) if Ri = Pi

ρi(x, y) = Pi(y, x) if Ri = P−
i

Algorithm 2: The originalConsistent algorithm
Consistent(K)
Input: a KB K = 〈T ,A〉
Output: true if K is satisfiable,false otherwise
(1) qunsat = ⊥ (i.e.,qunsat is false)
(2) foreachα ∈ cln(T)
(3) qunsat = qunsat ∨ δ(α)

(4) if q
db(A)
unsat = ∅

(5) return true
(6) else returnfalse

Finally, PerfectRef (Algorithm 3) reformulates each
conjunctive queryq in Q by using the PIs inT as rewrit-
ing rules. PIs are seen as logical rules that can be applied in
backward-chaining to query atoms in order to expand them.
More specifically, a PII is applicable to an atomA(x) of a
query if I hasA in its right-hand side, and a PII is appli-
cable to an atomP (x1, x2) of a query if (i)x2 = and the
right-hand side ofI is ∃P ; or (ii) x1 = and the right-hand
side ofI is ∃P−; or (iii) I is a role inclusion assertion and its
right-hand side is eitherP or P−. Note that denotes here an
unbounded existential variable of a query.

The following definition (Definition 32 from[Calvanese
et al., 2007]) defines the resultgr(g, I) of the (backward)
application of the PII to the atomg, which is the core of
PerfectRef (loop (a), lines 5 to 7).

Definition 1 (Backward application of a PI to an atom)
Let I be an inclusion assertion that is applicable to the atom
g. Then,gr(g, I) is the atom defined as follows:

- if g = A(x) andI = A1 ⊑ A, thengr(g, I) = A1(x)
- if g = A(x) andI = ∃P ⊑ A, thengr(g, I) = P (x,)

- if g = A(x) andI = ∃P− ⊑ A, thengr(g, I) = P (, x)
- if g = P (x,) andI = A ⊑ ∃P , thengr(g, I) = A(x)
- if g = P (x,) andI = ∃P1 ⊑ ∃P , thengr(g, I) = P1(x,)
- if g = P (x,) andI = ∃P−

1 ⊑ ∃P , thengr(g, I) = P1(, x)
- if g = P (, x) andI = A ⊑ ∃P−, thengr(g, I) = A(x)
- if g = P (, x) andI = ∃P1 ⊑ ∃P−, thengr(g, I) = P1(x,)
- if g = P (, x) andI = ∃P−

1 ⊑ ∃P−, thengr(g, I) = P1(, x)
- if g = P (x1, x2) and eitherI = P1 ⊑ P or I = P−

1 ⊑ P−

thengr(g, I) = P1(x1, x2)
- if g = P (x1, x2) and eitherI = P1 ⊑ P− or I = P−

1 ⊑ P
thengr(g, I) = P1(x2, x1)

The subtle point ofPerfectRef is the need of simplifying
the produced reformulations (loop (b), lines 8 to 10), so that
some PIs that were not applicable to a reformulation become
applicable to its simplifications. A simplification amountsto
unify two atoms of a reformulation using theirmost general
unifier(usingreduce, line 10) and then to switch the possibly
new unbounded existential variables to(usingτ , line 10).
Algorithm 3: The originalPerfectRef algorithm
PerfectRef (q,T)
Input: a conjunctive queryq and a TboxT
Output: a union of conjunctive queries
(1) PR := {q}
(2) repeat
(3) PR′ := PR
(4) foreach q ∈ PR′

(5) (a)foreachg ∈ q
(6) if I is applicable tog
(7) PR := PR ∪ {q[g/gr(g, I)]}
(8) (b) foreach g1, g2 ∈ q
(9) if g1 andg2 unify
(10) PR := PR ∪ {τ (reduce(q, g1, g2))}
(11) until PR′ = PR

3.2 Propositional encoding of aDL-LITER Tbox
The propositional encoding of a DL-LITER TboxT , denoted
Φ(T), is the formula of propositional logic (PL) that corre-
sponds to the union of the PL encoding of every inclusion
assersionI of T : Φ(T) =

⋃
I∈T Φ(I).

The PL encoding of a concept inclusionB ⊑ C, denoted
Φ(B ⊑ C) is inductively defined by{Φ(B) ⇒ Φ(C)} where
Φ(B) = A when B = A, Φ(B) = P ∃ whenB = ∃P ,
Φ(B) = P ∃−

whenB = ∃P−, Φ(C) = Φ(B) whenC = B,
andΦ(C) = ¬Φ(B) whenC = ¬B.

The PL encoding of a role inclusionR ⊑ E, denoted
Φ(R ⊑ E), is defined as follows:
Φ(P ⊑ Q)={P ⇒ Q, P− ⇒ Q−, P ∃ ⇒ Q∃, P ∃

−

⇒ Q∃
−

}

Φ(P− ⊑ Q)={P− ⇒ Q, P ⇒ Q−, P ∃−

⇒ Q∃, P ∃ ⇒ Q∃−

}

Φ(P ⊑ Q−)={P ⇒ Q−, P− ⇒ Q, P ∃ ⇒ Q∃
−

, P ∃
−

⇒ Q∃}

Φ(P− ⊑ Q−)={P− ⇒ Q−, P ⇒ Q, P ∃ ⇒ Q∃, P ∃
−

⇒ Q∃
−

}
Φ(P ⊑ ¬Q)={P ⇒ ¬Q, P− ⇒ ¬Q−}
Φ(P− ⊑ ¬Q)={P− ⇒ ¬Q,P ⇒ ¬Q−}
Φ(P ⊑ ¬Q−)={P ⇒ ¬Q−, P− ⇒ ¬Q}
Φ(P− ⊑ ¬Q−)={P− ⇒ ¬Q−, P ⇒ ¬Q}
Note also that in the followingΦ(E) = Φ(R) whenE = R,
Φ(E) = ¬Φ(R) whenE = ¬R, Φ(R) = P whenR = P ,
andΦ(R) = P− whenR = P−.

The PL encoding of the distributed Tbox
⋃n

i=1 Ti of a
DL-LITER PDMS is the distributed propositional theory⋃n

i=1 Φ(Ti) obtained by the encoding of each local TboxTi.

DECA is a message-based algorithm implemented in the
SomeWhere platform ([Adjiman et al., 2006]) which com-
putes in a decentralized manner the logical consequences of
propositional clausal theories distributed in a P2P system.
More precisely, by a copy of DECA running locally on each
peer and transmitting forth and back messages conveying lit-
erals and clauses,DeCAi(li) (denoting DECA running on
the peerPi and triggered with an input literalli of thePi vo-
cabulary) produces the set of all theproper prime implicates
of li w.r.t. the distributed theory

⋃n

i=1 Φ(Ti), i.e., the set of
prime implicates of{li} ∪

⋃n

i=1 Φ(Ti), which are not impli-
cates of

⋃n

i=1 Φ(Ti) alone.

3.3 Decentralized Consistency Checking
Our approach relies on decentralizing the computation of the
NI-closure of a distributed Tbox

⋃n

i=1 Ti of a DL-LITER

PDMS without empty roles (the Tbox does not entail a NI
P ⊑ ¬P) by exploiting a property transfer of the propo-
sitional encoding (Theorem 1) and then by using DECA.
The subtle point is that in a decentralized setting, we have
to launch the computation of the NI-closure from each peer
and thus possibly start from local PIs and NIs that could lead
to the derivation of new NIs by interacting with NIs and PIs
of other peers. For doing so, we define (Definition 2) and
compute with DECA theNI-closure of a peerw.r.t a PDMS
without empty roles.

Theorem 1 (NI-entailment reduced to PL entailment)
LetT be the distributed Tbox of aDL-LITER PDMS without
empty roles, andΦ(T) its PL encoding. LetX and Y be
both distinct basic concepts or distinct basic roles:

cln(T) |= X ⊑ ¬Y iff Φ(T) |= ¬Φ(X) ∨ ¬Φ(Y).

The proof is by induction on the number of rules defining the
NI-closure (Definition 9 in[Calvaneseet al., 2007]) used for
producingX ⊑ ¬Y , for the if direction, and on the smallest
length of the resolution proof for producingΦ(X) ⇒ Φ(¬Y)
for the converse direction.

Definition 2 (NI-closure of a peer w.r.t. a PDMS) LetT =⋃n

i=1 Ti be the distributed Tbox of aDL-LITER PDMSS =
{Pi}i=1..n without empty roles. TheNI-closure ofPi w.r.t.S,
denotedcln(Pi), is obtained fromΦ(T) usingDECA as fol-
lows:

• for every PIZ ⊑ Y ∈ Ti such thatZ is in the vocabu-
lary of Pi andY in that ofPj (j may bei), Z ⊑ ¬X ∈

cln(Pi) for any¬Φ(X) ∈ DeCAj(Φ(Y)).

• for every NIZ ⊑ ¬Y ∈ Ti

– if Z is in the vocabulary ofPi andY in that ofPj (j
may bei), Z ⊑ ¬X ∈ cln(Pi) for any¬Φ(X) ∈
DeCAj(¬Φ(Y))

– if Y is in the vocabulary ofPi and Z is in that
of Pj (j may bei), X ⊑ ¬Y ∈ cln(Pi) for any
¬Φ(X) ∈ DeCAj(¬Φ(Z)).

The decentralized version of the originalConsistent al-
gorithm, denotedConsistenti when running on peerPi, is
simply obtained by replacingforeach α ∈ cln(T) in Line
2 of Algorithm 2 by foreach α ∈ cln(Pi), and where each

conjunctive query ofqunsat does not have to be evaluated by
Pi against the (unknown) global Abox of the whole PDMS.
Indeed, by construction ofqunsat, each of its conjunctive
queries has two conjuncts, one fromPi and another fromPj

(j may bei), the latter providing in its atomic concept or role
the identifierj of the peer to contact for the evaluation.

Theorem 2 states the correctness of locally running
Consistenti on each peerPi for global consistency checking
of a PDMS without empty roles.

Theorem 2 (Correctness of PDMS consistency checking)
Let S = {Pi}i=1..n be a DL-LITER PDMS without empty
roles. S is consistent iffConsistenti returnstrue for every
i = 1..n.

The proof relies first on Theorem 1 showing the equivalence
between logical entailement from a Tbox of a NI with en-
tailment in PL of the corresponding propositional encoding.
Then, both Lemma 12 in[Calvaneseet al., 2007] and the
completeness of DECA(proved in[Adjimanet al., 2006]) en-
sure thatcln(Pi) defined in Definition 2 contains all the NIs
entailed by the PDMS and involving a concept or role in the
vocabulary of the peerPi. Finally, it is easy to see that by run-
ningConsistenti for every peerPi of the PDMS, we obtain
all the NIs entailed by the PDMS. Therefore Theorem 15 and
Lemma 16 in[Calvaneseet al., 2007] ensure that consistency
checking can be made by evaluating the union of conjunc-
tive queries inqunsat against the relevant part of the Abox. It
is exactly what runningConsistenti on all the peers in the
PDMS does in a decentralized manner.

3.4 Decentralized Query Reformulation

Our approach relies on the propositional encoding and the use
of DECA for decentralizing thebackward-closure w.r.t. the
PIs of each atom in the query. Definition 3 defines the
backward-closureof an atom w.r.t. the PIs as the iteration
of the one-step backward application of PIs (Definition 1).
Proposition 1 states the termination of this iterative process.

Definition 3 (Backward-closure of an atom w.r.t. PIs) Let
PI be a set of PIs,g an atom, andA a set of atoms.
We define the backward-closure of g w.r.t. PI
as cl gr(g, PI) =

⋃
i≥1 cl gri({g}, P I) where

cl gri({g}, P I) is recursively defined as follows:

• cl gr1(A, P I) = {gr(g, I) | g ∈ A, I ∈ PI andI is
applicable tog}

• cl gri+1(A, P I) = cl gr1(cl gri(A, P I), P I)

Proposition 1 (Termination of backward-closure w.r.t. PIs)
The backward-closure of an atom w.r.t. a set of PIs
is finite, i.e., there exists a constantn such that
cl gr(g, PI) =

⋃n

i=1 cl gri({g}, P I).

The proof corresponds to the termination proof of
PerfectRef (Lemma 34 in[Calvaneseet al., 2007]).

Theorem 3 is the equivalent for the PIs of the transfer prop-
erty of the propositional encoding for the NIs stated in The-
orem 1. Its proof is also by induction (number of one-step
applications of a PI and smallest length of resolution proofs).

Theorem 3 (Backward-closure reduced to PL entailment)
Let T be a DL-LITER Tbox the PIs of which form the set
PI. Letg, g′ be atoms, andV1, V2 propositional variables.
g′ ∈ cl gr(g, PI) iff Φ(T) ∪ {¬V1} |= ¬V2 where:

- g = A(x), g′ = A′(x), V1 = A, andV2 = A′;
- g = A(x), g′ = P (x,), V1 = A, andV2 = P ∃;

- g = A(x), g′ = P (, x), V1 = A, andV2 = P ∃−

;
- g = P (x, y), g′ = Q(x, y), V1 = P , andV2 = Q;
- g = P (x, y), g′ = Q(y, x), V1 = P , andV2 = Q−;
- g = P (x,), g′ = A(x), V1 = P ∃, andV2 = A;
- g = P (x,), g′ = Q(x,), V1 = P ∃, andV2 = Q∃;

- g = P (x,), g′ = Q(, x), V1 = P ∃, andV2 = Q∃−

;

- g = P (, x), g′ = A(x), V1 = P ∃−

, andV2 = A;

- g = P (, x), g′ = Q(x,), V1 = P ∃−

, andV2 = Q∃;

- g = P (, x), g′ = Q(, x), V1 = P ∃−

, andV2 = Q∃−

.

Based on Theorem 3, the decentralized computation of
cl gr(g, PI) is straighforward using DECA: if g is built
from the vocabulary of the peerPi, g′ ∈ cl gr(g, PI) iff
¬V2 ∈ DeCAi(¬V1) for the same values ofg, g′, V1, andV2

of the corresponding cases of Theorem 3.
The decentralized version ofPerfectRef , denoted

PerfectRef i when running on peerPi, is given in Algo-
rithm 4. For each atom in the query, it computes first (in the
decentralized manner explained previously) the set of all of its
reformulations, and then it produces a first set of reformula-
tions of the original query by building all the conjunctionsbe-
tween the atomic reformulations (denoted?

n
i=1cl gr(gi, P I)

at Line 5). Those reformulations are then possibly simpli-
fied by unifying some of their atoms (Lines 8 to 11), and the
reformulation process is iterated on those newly produced re-
formulations until no simplification is possible (general loop
starting on Line 4).

Algorithm 4: The decentralizedPerfectRef algorithm run-
ning on the peerPi of the PDMSS
PerfectRef i(q)
Input: a conjunctive queryq over the TboxTi of the peerPi

Output: a union of conjunctive queries over the TboxT of the
PDMSS
(1) PR := {q}
(2) PR′ := PR
(3) while PR′ 6= ∅
(4) (a)foreach q′ = g1 ∧ g2 ∧ . . . ∧ gn ∈ PR′

(5) PR′′ = ?
n
i=1cl gr(gi, P I)

(6) PR′ = ∅
(7) (b) foreach q′′ ∈ PR′′

(8) foreachg′
1, g

′
2 ∈ q′′

(9) if g′
1 andg′

2 unify
(10) PR′ := PR′ ∪ {τ (reduce(q′′, g′

1, g
′
2))}

(11) PR = PR ∪ PR′ ∪ PR′′

(12) return PR

The following theorem states the correctness of the decen-
tralized reformulation algorithmPerfectRef i.

Theorem 4 (Correctness ofPerfectRef i) Let
T =

⋃n

i=1 Ti be a Tbox of a PDMS. Letq be a con-
junctive query overTi. PerfectRef i(q) returns the same
set of conjunctive queries asPerfectRef(q, T).

Its proof results (1) from the observation that the cen-
tralized version ofPerfectRef i (in which cl gr(gi, P I) is
computed by iterating the one-step application of PIs on each
atomgi of the query) produces the same results than the orig-
inalPerfectRef , and (2) from Theorem 3 and the complete-
ness of DECA, ensuring the decentralized computation of the
whole setcl gr(gi, P I).

In contrast with the originalAnswer algorithm, the global
consistency of the PDMS cannot be checked at query time
since the queried peerPi does not know all the peers in the
PDMS. However, it can get the identifiersid1, . . . , idk of
the peers involved in a reformulation of the query (to con-
tact them) from the identifiers used in the atomic concept and
role names involved in that reformulation. Algorithm 5 de-
scribes the decentralizedAnsweri algorithm that checks in a
decentralized manner whether

⋃k

j=1(Tidj
∪ Aidj

) is consis-
tent and computes the set of corresponding answers by eval-
uating each reformulation against the relevant Aboxes.

Algorithm 5: The decentralizedAnswer algorithm running
on the peerPi of the PDMSS
Answeri(Q)
Input: a union of conjunctive queriesQ over the KBKi = 〈Ti,Ai〉
of Pi

Output: ans(Q,K) whereK = 〈T ,A〉 is the KB of the PDMSS
(1) q =

S

q′∈Q
PerfectRef i(q′)

(2) if Consistentidj returns true for every peerPidj
involved inq

(3) return q
db(

Sk
j=1

Aidj
)

(4) else return the singleton{⊥}

In that algorithm⊥ replacesAllTup(Q,K) of the original
Answer algorithm.

The interest of Algorithm 5 is to providewell-foundedan-
swers, i.e., answers that can be entailed from a consistent sub-
set of the (possibly inconsistent) KB of the PDMS.

4 Query Answering using Views by Rewriting
We provide algorithms for computing the certain answers of
a query over a (centralized or decentralized) DL-LITER KB
K = 〈T ,V , E〉 whereE is the extension of views inV that are
conjunctive queries overT . For doing so, we make use of the
scalableMiniCon [Pottinger and Halevy, 2001] algorithm
which produces the maximally-contained conjunctive rewrit-
ings of a conjunctive queryq using a setV of conjunctive
views. A conjunctive rewritingof q is a conjunctive query
qv whose body predicates are the head predicates of views in
V such thatT ∪ V |= ∀x̄ (qv(x̄) ⇒ q(x̄)). In that setting
([Halevy, 2001]), the set of certain answers of a query can be
obtained by evaluating against the view extensions the (finite)
union of its maximally-contained conjunctive rewritings.
Centralized Case First V iewConsistent(K) checks the
consistency of the KB It is a variant of the original
Consistent algorithm obtained by replacing:

- qunsat = qunsat ∨ δ(α) in Line 3 of Algorithm 2
by qunsat = qunsat ∨ MiniCon(δ(α),V), where
MiniCon(δ(α),V) provides the maximally-contained
rewritings usingV of the FOL translationδ(α) of the NIα,

- q
db(A)
unsat in Line(4) of Algorithm 2 by the evaluation against

the view extensions:qdb(E)
unsat.

Algorithm 6 describes theCertainAnswer algorithm. If the
KB is inconsistent, the algorithm returnsAlltup(Q, E), the
set of all the tuples of the arity ofQ generated from the con-
stants inE . Otherwise, it computes (usingMiniCon(q′,V))
the rewritings in terms of the views of the conjunctive queries
q′ returned byPerfectRef as the different ways of unfold-
ing the initial query using the PIs ofT .

Algorithm 6: TheCertainAnswer algorithm
CertainAnswer(Q,K)
Input: a union of conjunctive queriesQ and a KBK = 〈T ,V, E〉
Output: cert(Q,K)
(1) if notV iewConsistent(K)
(2) return Alltup(Q,E)
(3) else
(4) Q′ =

S

q∈Q
PerfectRef(q,T)

(5) return (
S

q′∈Q′ MiniCon(q′,V))db(E)

Theorem 5 (Correctness ofCertainAnswer) Let K =
〈T ,V , E〉 be a DL-LITER consistent KB andQ a union of
conjunctive queries.cert(Q,K) = CertainAnswer(Q,K).

For one direction, fromq′ ∈ PerfectRef(q, T) andqv ∈
Minicon(q′,V) we infer: T ∪ V |= ∀x̄ (qv(x̄) ⇒ q(x̄)),
and thusqv is a conjunctive rewriting ofq, the evaluation of
which provides certain answers. For the converse direction:
if t̄ is a certain answer, by adapting the notion of witness of a
tuple introduced in Lemma 39 of[Calvaneseet al., 2007] to
E instead ofA, we build from the witness of̄t a specific con-
junctive queryqv over view atoms such thatt̄ is in its answer
set and we show by induction that this query is a rewriting
of a reformulationq′ of q. SinceMinicon computes all the
maximally-contained rewritings (Theorem 1 in[Pottinger and
Halevy, 2001]), qv is contained in one of them, and̄t will be
returned by Line 5 of Algorithm 6.

Decentralized Case For space limitation, we just
sketch the approach: the decentralized versions of
V iewConsistent and of CertainAnswer are denoted
V iewConsistenti andCertainAnsweri when running on
a peerPi. They are extensions of the decentralized algo-
rithmsConsistenti andAnsweri presented in the previous
section. They use the functionfetchV iews(q) whereq is
a conjunctive query possibly involving the vocabulary of
different peers:fetchV iews(q) retrieves from those peers
the views a body atom of which can be unified with a body
atom of the query.

TheV iewConsistenti algorithm extendsConsistenti by
replacing the evaluation ofqunsat against the relevant Aboxes
by the evaluation ofQunsat against the relevant view exten-
sions, whereQunsat is obtained fromqunsat (which is com-
puted as inConsistenti) as follows:

Qunsat =
⋃

q∈qunsat
MiniCon(q, fetchV iews(q)).

TheCertainAnsweri algorithm extendsAnsweri by re-
placing the evaluation against the relevant Aboxes of the
unionq of conjunctive queries obtained by reformulation of
the initial query (Line 2 in Algorithm 5) by evaluating against
the relevant view extensions the following queryQ:

Q =
⋃

q′∈q MiniCon(q′, fetchV iews(q′)).

5 Conclusion
This papers builds on and extends existing work in data inte-
gration ([Calvaneseet al., 2007; 2008b] and[Pottinger and
Halevy, 2001]). For view-based query answering in DL-
LITER we provide a centralized and a decentralized algo-
rithm to compute the certain answers based on rewritings. For
the decentralized case, our work extends the data model of
the SOMEOWL and SOMERDFS PDMSs ([Adjiman et al.,
2006; 2007]). We follow the same approach based on limiting
the data model allowing to reduce consistency checking and
query reformulation to reasoning in propositional logic. It is a
way of getting the decidability for query answering in PDMS
which is not guaranteed in general ([Halevy et al., 2003]),
while adopting a standard logical semantics, in contrast with
other works (e.g., ([Calvaneseet al., 2008a], [Franconiet al.,
2004], [Serafiniet al., 2005]). It is also a distinguishing point
from the approach in[Bertossi and Bravo, 2007] (based on
answer set programs) for defining consistent answers in pos-
sibly inconsistent PDMSs.

References
[Adjimanet al., 2006] P. Adjiman, P. Chatalic, F. Goasdoué,

M.-C. Rousset, and L. Simon. Distributed reasoning in a
peer-to-peer setting.JAIR, 25, 2006.

[Adjimanet al., 2007] P. Adjiman, F. Goasdoué, and M.-C.
Rousset. Somerdfs in the semantic web.JODS, 8, 2007.

[Bertossi and Bravo, 2007] L. E. Bertossi and L. Bravo. The
semantics of consistency and trust in peer data exchange
systems. InLPAR, 2007.

[Calvaneseet al., 2007] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. Tractable rea-
soning and efficient query answering in description logics:
Thedl-lite family. JAR, 39(3):385–429, 2007.

[Calvaneseet al., 2008a] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. Inconsistency
tolerance in p2p data integration: An epistemic logic ap-
proach.Information Systems, 33(4-5), 2008.

[Calvaneseet al., 2008b] D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. View-based query answer-
ing over description logic ontologies. InKR, 2008.

[Franconiet al., 2004] E. Franconi, G. Kuper, A. Lopatenko,
and I. Zaihrayeu. Queries and updates in the coDB peer-
to-peer database system. InVLDB, 2004.

[Halevyet al., 2003] A. Y. Halevy, Z. G. Ives, D. Suciu, and
I. Tatarinov. Schema mediation in peer data management
systems. InICDE, 2003.

[Halevy, 2001] A. Y. Halevy. Answering queries using
views: A survey.VLDB J., 10(4):270–294, 2001.

[Pottinger and Halevy, 2001] R. Pottinger and A. Y. Halevy.
Minicon: A scalable algorithm for answering queries us-
ing views.VLDB J., 10(2-3):182–198, 2001.

[Serafiniet al., 2005] L. Serafini, A. Borgida, and
A. Tamilin. Aspects of distributed and modular on-
tology reasoning. InIJCAI, 2005.

