
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 1

Robust Module-based Data Management
François Goasdoué, LRI, Univ. Paris-Sud, and Marie-Christine Rousset, LIG, Univ. Grenoble

Abstract—The current trend for building an ontology-based data management system (DMS) is to capitalize on efforts made to design
a preexisting well-established DMS (a reference system). The method amounts to extracting from the reference DMS a piece of
schema relevant to the new application needs – a module –, possibly personalizing it with extra-constraints w.r.t. the application under
construction, and then managing a dataset using the resulting schema.
In this paper, we extend the existing definitions of modules and we introduce novel properties of robustness that provide means for
checking easily that a robust module-based DMS evolves safely w.r.t. both the schema and the data of the reference DMS. We carry
out our investigations in the setting of description logics which underlie modern ontology languages, like RDFS, OWL, and OWL2 from
W3C. Notably, we focus on the DL-liteA dialect of the DL-lite family, which encompasses the foundations of the QL profile of OWL2
(i.e., DL-liteR): the W3C recommendation for efficiently managing large datasets.

Index Terms—H.1 Models and Principles, H.2 Database Management, H.2.8.k Personalization, I.1.2.b Algorithms for data and
knowledge management, I.2 Artificial Intelligence, I.2.12 Intelligent Web Services and Semantic Web.

F

1 INTRODUCTION

In many application domains (e.g., medicine or biology),
comprehensive schemas resulting from collaborative ini-
tiatives are made available. For instance, SNOMED is
an ontological schema containing more than 400.000
concept names covering various areas such as anatomy,
diseases, medication, and even geographic locations.
Such well-established schemas are often associated with
reliable data that have been carefully collected, cleansed,
and verified, thus providing reference ontology-based
data management systems (DMSs) in different applica-
tion domains.

A good practice is therefore to build on the efforts
made to design reference DMSs whenever we have to
develop our own DMS with specific needs. A way to
do this is to extract from the reference DMS the piece
of schema relevant to our application needs, possibly to
personalize it with extra-constraints w.r.t. our application
under construction, and then to manage our own dataset
using the resulting schema.

Recent work in description logics (DLs, [1]) provides
different solutions to achieve such a reuse of a reference
ontology-based DMS. Indeed, modern ontological lan-
guages – like the W3C recommendations RDFS, OWL,
and OWL2 – are actually XML-based syntactic variants
of well-known DLs. All those solutions consist in ex-
tracting a module from an existing ontological schema
such that all the constraints concerning the relations of
interest for the application under construction are cap-

• F. Goasdoué is with the Laboratoire de Recherche en Informatique (LRI),
Bâtiment 490, Université Paris-Sud, 91405 Orsay Cedex, France.
E-mail: fg@lri.fr

• M.-C. Rousset is with the Laboratoire d’Informatique de Grenoble, Uni-
versité de Grenoble, 681 rue de la Passerelle, BP 72, 38402 St. Martin
d’Heres Cedex, France.
E-mail: Marie-Christine.Rousset@imag.fr

tured in the module [2]. Existing definitions of mod-
ules in the literature basically resort to the notion of
(deductive) conservative extension of a schema or of
uniform interpolant of a schema, a.k.a. forgetting about
non-interesting relations of a schema. [3] formalizes those
two notions for schemas written in DLs and discusses
their connection. Up to now, conservative extension has
been considered for defining a module as a subset of a
schema. In contrast, forgetting has been considered for
defining a module as only logically implied by a schema
(by definition forgetting cannot lead to a subset of a
schema in the general case). Both kinds of modules have
been investigated in various DLs, e.g., DL-lite [4], [5], EL
[6], [7], [8], and ALC [7], [9], [10].

In this paper, we revisit the reuse of a reference
ontology-based DMS in order to build a new DMS with
specific needs. We go one step further by not only
considering the design of a module-based DMS (i.e., how
to extract a module from a ontological schema): we also
study how a module-based DMS can benefit from the
reference DMS to enhance its own data management
skills. We carry out our investigations in the setting of
DL-lite, which is the foundation of the QL profile of
OWL2 recommended by the W3C for efficiently man-
aging large RDF datasets. RDF is the W3C’s Semantic
Web data model, which is rapidly spreading in more and
more applications, and can be seen as a simple relational
model restricted to unary and binary predicates. In ad-
dition, DL-lite comes with efficient inference algorithms
[11] for querying RDF data through (DL-lite) ontologies
and for checking data consistency w.r.t. integrity con-
straints expressed in DL-lite.

Our contribution is to introduce and study novel
properties of robustness for modules that provide means
for checking easily that a robust module-based DMS
evolves safely w.r.t. both the schema and the data of
the reference DMS. From a module robust to consistency

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 2

checking, for any data update in a corresponding module-
based DMS, we show how to query the reference DMS
for checking whether the local update does not bring
any inconsistency with the data and the constraints
of the reference DMS. From a module robust to query
answering, for any query asked to a module-based DMS,
we show how to query the reference DMS for obtaining
additional answers by also exploiting the data stored in
the reference DMS.

It is worth noticing that our investigations are
sustained by real use-cases. For instance, the MyCF
DMS (MyCorporisFabrica, www.mycorporisfabrica.org,
[12]) has been built by hand from the FMA
DMS (Foundational Model of Anatomy,
sig.biostr.washington.edu/projects/fm). The extraction
step has focused on particular parts of the human body
(e.g., hand, foot, and knee), while the personalization
step has enriched the descriptions of these parts with
both 3D geometrical and bio-mechanical information.
Notably, careful attention was paid so that MyCF still
conforms with FMA at the end of the manual process.

The paper is organized as follows. We start with an
illustrative example in Section 2 that highlights the issues
and solutions on which we elaborate in the rest of the
paper. In Section 3, we present the DL-lite description
logic, which provides the formal basis of Section 4, in
which we study robust modules and safe personaliza-
tion. In Section 5, we provide algorithms and complexity
results for extracting robust modules from schemas and
for checking the safe personalization of modules. We
conclude in Section 6 with related work and perspec-
tives.

2 ILLUSTRATIVE EXAMPLE
Consider a reference DMS for scientific publications (like
DBLP) defined by the ontological schema O and the
dataset D in Figure 1.

The schema O is built upon the unary rela-
tions Publication, ConfPaper, ShortPaper, FullPaper,
JournPaper, Survey, and the binary relations hasTitle,
hasDate, hasVenue, and hasAuthor. It consists of inclu-
sion constraints and of integrity constraints (disjointness
and functional constraints). These constraints are written
in Figure 1 using DL-lite, in which ∃r denotes the
usual (relational) projection on the first attribute of the
binary relation r and (funct r) denotes the functional
dependency from the first attribute of the binary relation
r to the second one. The constraints in O state that
any publication has a single title [1.], a single date of
publication [2.], a single venue [3.], and at least one
author [4.]. In addition, only publications have a title
[5.], papers in conference proceedings or in journals
(which are disjoint) are publications [6.], short papers or
full papers (which are disjoint) are papers in conference
proceedings, and surveys are journal papers [7.].

The dataset D consists of instances for the relations
in O. It is expressed as relational tables in Figure 1. In
particular, those tables state that:

O:
1) Publication v ∃hasTitle, (funct hasTitle)
2) Publication v ∃hasDate, (funct hasDate)
3) Publication v ∃hasVenue, (funct hasVenue)
4) Publication v ∃hasAuthor
5) ∃hasTitle v Publication
6) ConfPaper v Publication, JournPaper v Publication,

ConfPaper v ¬JournPaper
7) ShortPaper v ConfPaper, FullPaper v ConfPaper,

FullPaper v ¬ShortPaper, Survey v JournPaper

D:
Publication

· · ·
hasTitle

doi1 ”CAQUMV”
doi2 ”AQUVAS”
doi3 ”MC : ASAAQUV”
· · · · · ·

hasDate
doi1 ”1998”
doi2 ”2001”
doi3 ”2001”
· · · · · ·

hasVenue
doi1 ”PODS”
doi2 ”VLDBJ”
doi3 ”VLDBJ”
· · · · · ·

hasAuthor
doi1 ”SA”
doi1 ”OD”
doi2 ”AH”
doi3 ”AH”
doi3 ”RP”
· · · · · ·

ConfPaper
· · ·

JournPaper
doi3
· · ·

ShortPaper
· · ·

FullPaper
doi1
· · ·

Survey
doi2
· · ·

Fig. 1. A reference DMS defined by the schema O and
the dataset D.

• doi1 is the Digital Object Identifier1 (DOI) of the
full paper entitled ”Complexity of Answering
Queries Using Materialized Views” and published
in PODS’98 by Serge Abiteboul (”SA”) and Oliver
M. Duschka (”OD”),

• doi2 is the DOI of the survey entitled ”Answering
queries using views: A survey” and published in
VLDB Journal in 2001 by Alon Y. Halevy (”AH”),
and

• doi3 is the DOI of the journal paper entitled ”Mini-
Con: A scalable algorithm for answering queries
using views” and published in VLDB Journal in
2001 by Rachel Pottinger (”RP”) and Alon Y. Halevy
(”AH”).

It is worth noticing here that in contrast with the
relational model, data management in DLs needs some
reasoning to exhibit all the relevant implicit data regard-
ing a given task, e.g., consistency checking or query an-
swering. For instance, doi1 does not have to be explicitly
stored in the ConfPaper and Publication tables due to
the inclusion constraints in O, while it implicitly belongs
to those relations due to these constraints.

1. http://www.doi.org

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 3

O′: JournPaper v ∃hasAuthor

D′: JournPaper
doi1
· · ·

hasAuthor
doi1 ”SA”
doi1 ”OD”
· · · · · ·

Fig. 2. A module-based DMS defined by the schema O′
and the dataset D′.

2.1 Designing a module-based DMS
Suppose that we have to develop a DMS about scientific
publications, e.g., for a company or a university. If we are
interested in managing journal papers and their authors
only, we can extract a module from O w.r.t. the relations
of interest JournPaper and hasAuthor. A possible module
O′ consists of the constraint JournPaper v ∃hasAuthor.

Suppose now that the person in charge of populating
this module-based DMS stores by mistake doi1 in the
local JournPaper table, and its authors ”SA” and ”OD”
in the local hasAuthor table, as illustrated in Figure 2.

2.2 Global consistency: illustration
It is easy to see that though our module-based DMS is
consistent, it is inconsistent together with the reference
DMS: doi1 is a journal paper in our DMS, while it is a
conference paper in the reference DMS. This violates a
constraint of the reference schema ([6.] in O).

Detecting this kind of inconsistency, called a global
inconsistency, is important since it indicates that some
of our data contradicts the reference DMS, and thus is
probably erroneous. Our basic idea is therefore to use
the whole reference DMS (schema and data) as extra-
constraints to be satisfied by a module-based DMS. Of
course, we do not want to import the whole reference
DMS into our own DMS in order to do this. Instead, we
extend the notion of module to robustness to consistency
checking, so that global consistency checking can be
performed on demand or upon update: We ensure that
the module captures the (possibly implied) constraints in
the reference schema that are required to detect inconsis-
tency related to the relations of interest. Then, at global
consistency checking time, those constraints are verified
against the distributed dataset consisting of the dataset of
the module-based DMS plus that of the reference DMS.

Making our module O′ robust to consistency checking
requires adding (integrity) constraints like JournPaper v
¬FullPaper which allows detecting inconsistency
related to the relation of interest JournPaper. Note
that this constraint brings the relation FullPaper

into the module, while it is not of interest w.r.t. our
application needs. At global consistency checking time,
the constraints in the module that allow detecting
inconsistency w.r.t. the relation of interests are verified
by evaluating a boolean union of conjunctive queries
Q():- [∃x JournPaper(x) ∧ FullPaper(x)] ∨ · · · which
looks for the existence of counter-examples to any
of those constraints. Here, the first conjunctive

query in Q() looks for a possible counter-example
to JournPaper v ¬FullPaper. The subtle point is
that the evaluation of Q() is distributed among the
module-based DMS and the reference one. As a
result, the query to evaluate against the DMSs is
Q():- [∃x (JournPaper(x) ∨ JournPaperref(x)) ∧
FullPaperref(x)] ∨ · · · where the distributed evaluation
is reflected in the names of the relations: r denotes
a local relation, while rref denotes the corresponding
relation in the reference DMS. The above Q() exhibits a
global inconsistency due to doi1 belonging to the local
JournPaper table of our module-based DMS and to the
FullPaperref table of the reference DMS.

2.3 Global answers: illustration
Suppose now that our DMS can answer
conjunctive queries (a.k.a. select-project-join queries),
e.g., Q(x):- JournPaper(x)∧ hasAuthor(x, ”AH”) asking
for the journal papers written by Alon Y. Halevy. In
some situation, it is interesting to provide answers from
our DMS together with the reference one, called global
answers, typically when our own DMS provides no or
too few answers. To do so, we extend the notion of
module to robustness to query answering, so that global
query answering can be performed on demand. We
ensure that the module captures the knowledge in the
reference schema that is required to answer any query
built upon the relations of interest. Then, at global query
answering time, this knowledge is used to identify the
relevant data for a given query within the distributed
dataset consisting of the dataset of the module-based
DMS plus that of the reference DMS.

Making O′ robust to query answering requires adding
inclusion constraints like Survey v JournPaper which
allows exhibiting implicit tuples for the relation of inter-
est JournPaper: those explicitly stored for the relation
Survey. Again, such a constraint brings the relation
Survey into the module, while it is not of interest
w.r.t. our application needs. At global query answering
time, the contraints in the module that allow answering
a given query built upon relations of interest are used
to reformulate this query into a union of conjunctive
queries Q(x):- [JournPaper(x) ∧ hasAuthor(x, ”AH”)] ∨
[Survey(x)∧hasAuthor(x, ”AH”)]∨· · · which models all
the ways to answer it from a dataset. Here, the second
conjunctive query in Q(x) results from the inclusion con-
straint Survey v JournPaper. Again, since the dataset
is distributed among the module-based DMS and the
reference one, the query to evaluate in fact is Q(x):-
[(JournPaper(x) ∨ JournPaperref(x))
∧ (hasAuthor(x, ”AH”) ∨ hasAuthorref(x, ”AH”))]
∨ [Surveyref(x)
∧ (hasAuthor(x, ”AH”) ∨ hasAuthorref(x, ”AH”))] ∨ · · ·.
In particular, Q(x) finds doi2 and doi3 as global answers,
due to the presence in the reference DMS of: doi2 in the
Surveyref table, (doi2, ”AH”) in the hasAuthorref table,
doi3 in the JournPaperref table, and (doi3, ”AH”) in the
hasAuthorref table.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 4

2.4 Safe personalization: illustration
Suppose now that a (possibly robust) module does not
meet all the constraints for our application under de-
velopment. A personalization step – which amounts to
adding the appropriate constraints – is thus necessary.
However, it must be carefully done since personalizing
can lead to loose global data management skills (i.e., ro-
bustness) or even the essence of the notion of module.
To prevent this, we exhibit sufficient conditions for a safe
personalization.

For instance, suppose that we personalize O′ with
the constraints hasAuthor v hasRightsOn− and
∃hasRightsOn− v JournPaper in order to express that
any author of a journal paper has some rights on that
paper, the notion of rights concerning only journal pa-
pers. Note that in DLs, r− denotes the inverse of the
binary relation r, i.e., the relation obtained by swapping
its two attributes. Thus, ∃r− denotes the usual (rela-
tional) projection on the second attribute of r. Adding the
above constraints to O′ leads to the implied constraint
∃hasAuthor v JournPaper, which makes sense w.r.t. the
reference DMS as it is built upon relations in O only.
Yet, this constraint does not hold in the reference DMS.
As a result, the personalization of O′ mentioned above
is not safe. In fact, the extra-constraint ∃hasAuthor v
JournPaper makes the reference DMS insconsistent: on
one hand, conference papers are declared disjoint from
journal papers, on the other hand, by having authors
they are inferred by the extra-constraint as beeing journal
papers, therefore making any dataset including a confer-
ence paper inconsistent.

2.5 Reducing data storage: illustration
Robust module-based DMSs offer an interesting pecu-
liarity w.r.t. data storage. Indeed, global data manage-
ment is performed on a dataset that is distributed among
the module-based DMS and the reference one. Notably,
redundancy can occur in the distributed dataset when
some same instances of the relations of interest are both
stored in the module-based DMS and stored – explicitly
or implicitly– in the reference DMS. Therefore, a way of
reducing data storage in a robust module-based DMS is
to store only data that are not already somehow stored in
the reference DMS. This can be easily checked by asking
queries to this DMS.

For instance, consider a robust version of the mod-
ule O′ that we safely personalize with the constraints
hasContactAuthor v hasAuthor and (funct hasContact

Author) stating that having a single contact author
is a particular case of having an author. If the pur-
pose of our DMS is only to store the contact au-
thors for the journal papers of the reference DMS, the
corresponding module-based DMS with minimal stor-
age is depicted in Figure 3. In particular, nothing is
stored in the local tables JournPaper and hasAuthor

for the sake of non-redundancy: doi2 and doi3 are not
stored locally in JournPaper because doi2 is explicitly

O′′:
JournPaper v ∃hasAuthor
· · ·
hasContactAuthor v hasAuthor,
(funct hasContactAuthor)

D′′:
JournPaper

��doi2

��doi3
��· · ·

hasAuthor

��doi2 ���”AH”

��doi3 ���”AH”

��doi3 ���”RP”
��· · · ��· · ·

hasContactAuthor
doi2 ”AH”
doi3 ”RP”
· · · · · ·

Fig. 3. A non-redundant robust module-based DMS de-
fined by the schema O′′ and the dataset D′′.

stored in JournPaperref and doi3 is implicitly stored in
JournPaperref since it is explicitly stored in Surveyref

and Survey v JournPaper holds in O.
It is worth noticing that distributing data storage

may be done in order to optimize the distributed
evaluation of queries on relations of interest over
the module-based DMS and the reference one. For
instance, consider the query asking for the authors
of journal papers whose contact author is Rachel
Pottinger: Q(x):- ∃y JournPaper(y) ∧ hasAuthor(y, x)
∧ hasContactAuthor(y, ”RP”). The possible paper
identifiers for whom Rachel Pottinger is the con-
tact author are obtained locally from the local table
hasContactAuthor: here, we obtain doi3 only. Verifying
that doi3 is a journal paper and getting its authors is not
done locally but by querying the reference DMS. In par-
ticular, the fact that doi3 is a journal paper is obtained by
inference from the storage of doi3 in the reference table
Surveyref and from the constraint Survey v JournPaper

declared in the reference schema. Sharing data storage
this way avoids redundancy in the distributed evalua-
tion of the query Q over the module-based DMS and the
reference one.

3 DL-LITE DATA MODEL

Generally speaking, in DLs [1], a schema is called a Tbox
and its associated dataset is called an Abox.

A Tbox T is defined upon a signature (a.k.a. vocabu-
lary), denoted sig(T), which is the disjoint union of a
set of unary relations called atomic concepts and a set
of binary relations called atomic roles. It consists of a
set of constraints called terminological axioms, typically
inclusion constraints between complex concepts or roles,
i.e., unary or binary DL formulae built upon atomic
relations using the constructors allowed in DL under
consideration.

An Abox defined upon sig(T) is a set of facts called
assertional axioms, relating DL formulae to their instances.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 5

A knowledge base (KB) K = 〈T ,A〉 is made of a Tbox T
and an Abox A. The legal KBs vary according to the DL
used to express terminological and assertional axioms,
and to the restrictions imposed on those axioms.

In this paper, we focus on DL-lite KBs.

3.1 DL-lite KBs

In DL-lite, the concepts and roles that can be built from
atomic concepts and atomic roles are of the following
form:
B → A | ∃R, C → B | ¬B, R→ P | P−, E → R | ¬R
where A denotes an atomic concept, P an atomic role, and
P− the inverse of P . B denotes a basic concept (i.e., an
atomic concept A or an unqualified existential quantification
on a basic role ∃R) and R a basic role (i.e., an atomic role
P or its inverse P−). Finally, C denotes a general concept
(i.e., a basic concept or its negation) and E a general role
(i.e., a basic role or its negation).

The (set) semantics of concepts and roles is given in
terms of interpretations. An interpretation I = (∆I , .I)
consists of a nonempty interpretation domain ∆I and an
interpretation function .I that assigns a subset of ∆I to
each atomic concept, and a binary relation over ∆I to
each atomic role. The semantics of non-atomic concepts
and non-atomic roles is defined as follows:
• (P−)I = {(o2, o1) | (o1, o2) ∈ P I},
• (∃R)I = {o1 | ∃o2 (o1, o2) ∈ RI}, and
• (¬B)I = ∆I\BI and (¬R)I = ∆I ×∆I\RI .
The axioms allowed in a Tbox of DL-lite2 are concept

inclusion constraints of the form B v C, role inclu-
sion constraints of the form R v E, and functionality
constraints on roles of the form (funct R). It is impor-
tant to note that general concepts or roles (i.e., with
negation) are only allowed on the right hand side of
inclusion constraints whereas only basic concepts or
roles (i.e., without negation) occur on the left hand side
of such constraints. Moreover, only basic roles occur in
functionality constraints.

Inclusions of the form B1 v B2 or R1 v R2 are called
positive inclusions (PIs), while inclusions of the form
B1 v ¬B2 or of the form R1 v ¬R2 are called negative
inclusions (NIs). PIs allow expressing inclusion depen-
dencies, while NIs and functionalities allow expressing
integrity constraints (ICs). For instance, in Figure 1, the
PI ∃hasTitle v Publication expresses that only pub-
lications have titles, the NI ConfPaper v ¬JournPaper
expresses that conference proceeding papers and journal
papers must be disjoint, and the functionality (funct
hasTitle) expresses the usual (relational) functional de-
pendency from the first attribute of hasTitle to the
second one.

An interpretation I = (∆I , .I) is a model of an inclusion
B v C (resp. R v E) if BI ⊆ CI (resp. RI ⊆ EI).
It is a model of a functionality constraint (funct R) if

2. These axioms actually correspond to the dialect DL-liteFR of DL-
lite.

the binary relation RI is a function, i.e., (o, o1) ∈ RI

and (o, o2) ∈ RI implies o1 = o2. I is a model of a
Tbox if it is a model of all of its constraints. A Tbox
is satisfiable if it has a model. A Tbox T logically entails
(a.k.a. implies) a constraint α, written T |= α, if every
model of T is a model of α. For instance, in Figure
1, the PI JournPaper v ∃hasAuthor is implied by O
due to the presence of JournPaper v Publication and
Publication v ∃hasAuthor in O. Finally, a Tbox T
logically entails (a.k.a. implies) a Tbox T ′, written T |= T ′,
if every model of T is a model of T ′; and two Tboxes T
and T ′ are logically equivalent, written T ≡ T ′, iff T |= T ′
and T ′ |= T .

An Abox consists of a finite set of membership as-
sertions of the form A(a) and P (a, b), i.e., on atomic
concepts and on atomic roles, stating respectively that
a is an instance of A and that the pair of constants (a, b)
is an instance of P . The interpretation function of an
interpretation I = (∆I , .I) is extended to constants by
assigning to each constant a a distinct object aI ∈ ∆I

(i.e., the so called unique name assumption holds). An
interpretation I is a model of the membership assertion A(a)
(resp. P (a, b)) if aI ∈ AI (resp., (aI , bI) ∈ P I). It is a model
of an Abox if it satisfies all of its assertions.

An interpretation I is a model of a KB K = 〈T ,A〉 if
it is a model of both T and A. A KB K is satisfiable
(a.k.a. consistent) if it has at least one model. A KB K
logically entails (a.k.a. implies) a constraint or assertion
β, written K |= β, if every model of K is a model of
β. For instance, in Figure 1, the KB 〈O,D〉 of the DMS
implies JournPaper(doi2) due to Survey v JournPaper

in O and Survey(doi2) in D.
Observe that any KB can be written equivalently as

a first order logic (FOL) KB and a relational database
following the open-world assumption (OWA). The cor-
respondences for Tbox constraints are summarized in
Figure 4 for PIs, in Figure 5 for NIs, and in Figure 6 for
functionalities. As for Abox assertions, they are simply
FOL facts (i.e., ground atoms) and instances for atomic
concepts and roles. Remark that, in constrast with usual
databases following the closed-world assumption (CWA),
databases following OWA have incompletely specified
data and their schemas (i.e., their constraints) are used
to infer implicit facts, in addition to detect data inconsis-
tencies. For example, we have seen above that 〈O,D〉 |=
JournPaper(doi2), while doi2 is not explicitly stored in
D in Figure 1. That is, doi2 is an implicit instance of
JournPaper in D. This peculiarity has an important
impact on most of the classical data management tasks
like consistency checking and query answering [13].

3.2 Queries over a KB

A query q is of the form q(x̄):- ∃ȳ φ(x̄, ȳ) where φ(x̄, ȳ)
is a FOL formula, the variables of which are only the
free variables x̄ and the bound variables ȳ, and the
predicates of which are either atomic concepts or roles
of the KB. The arity of a query is the number of its free

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 6

DL notation FOL notation Relational notation (OWA)
A v A′ ∀X[A(X)⇒ A′(X)] A ⊆ A′

A v ∃P ∀X[A(X)⇒ ∃Y P (X,Y)] A ⊆ Π1(P)

A v ∃P− ∀X[A(X)⇒ ∃Y P (Y,X)] A ⊆ Π2(P)
∃P v A ∀X[∃Y P (X,Y)⇒ A(X)] Π1(P) ⊆ A

∃P− v A ∀X[∃Y P (Y,X)⇒ A(X)] Π2(P) ⊆ A
∃Q v ∃P ∀X[∃Y Q(X,Y)⇒ ∃ZP (X,Z)] Π1(Q) ⊆ Π1(P)

∃Q v ∃P− ∀X[∃Y Q(X,Y)⇒ ∃ZP (Z,X)] Π1(Q) ⊆ Π2(P)

∃Q− v ∃P ∀X[∃Y Q(Y,X)⇒ ∃ZP (X,Z)] Π2(Q) ⊆ Π1(P)

∃Q− v ∃P− ∀X[∃Y Q(Y,X)⇒ ∃ZP (Z,X)] Π2(Q) ⊆ Π2(P)

P v Q− or P− v Q ∀X,Y [P (X,Y)⇒ Q(Y,X)] P ⊆ Π2,1(Q) or Π2,1(P) ⊆ Q

P v Q or P− v Q− ∀X,Y [P (X,Y)⇒ Q(X,Y)] P ⊆ Q or Π2,1(P) ⊆ Π2,1(Q)

Fig. 4. DL-lite PI axioms in FOL and relational notations. For the relational notation, which corresponds to unary and
binary inclusion dependencies, we assume that the first and second attributes of any atomic role are named 1 and 2
respectively.

DL notation FOL notation Relational notation (OWA)
A v ¬A′ ∀X[A(X)⇒ ¬A′(X)] A ∩ A′ ⊆ ⊥
A v ¬∃P ∀X[A(X)⇒ ¬∃Y P (X,Y)] A ∩ Π1(P) ⊆ ⊥
A v ¬∃P− ∀X[A(X)⇒ ¬∃Y P (Y,X)] A ∩ Π2(P) ⊆ ⊥
∃P v ¬A ∀X[∃Y P (X,Y)⇒ ¬A(X)] A ∩ Π1(P) ⊆ ⊥
∃P− v ¬A ∀X[∃Y P (Y,X)⇒ ¬A(X)] A ∩ Π2(P) ⊆ ⊥
∃Q v ¬∃P ∀X[∃Y Q(X,Y)⇒ ¬∃ZP (X,Z)] Π1(Q) ∩ Π1(P) ⊆ ⊥
∃Q v ¬∃P− ∀X[∃Y Q(X,Y)⇒ ¬∃ZP (Z,X)] Π1(Q) ∩ Π2(P) ⊆ ⊥
∃Q− v ¬∃P ∀X[∃Y Q(Y,X)⇒ ¬∃ZP (X,Z)] Π2(Q) ∩ Π1(P) ⊆ ⊥
∃Q− v ¬∃P− ∀X[Q(Y,X)⇒ ¬∃ZP (Z,X)] Π2(Q) ∩ Π2(P) ⊆ ⊥
P v ¬Q− or P− v ¬Q ∀X,Y [P (X,Y)⇒ ¬Q(Y,X)] P ∩ Π2,1(Q) ⊆ ⊥ or Π2,1(P) ∩Q ⊆ ⊥
P v ¬Q or P− v ¬Q− ∀X,Y [P (X,Y)⇒ ¬Q(X,Y)] P ∩Q ⊆ ⊥ or Π2,1(P) ∩ Π2,1(Q) ⊆ ⊥

Fig. 5. DL-lite NI axioms in FOL and relational notations. For the relational notation, which corresponds to
exclusion/disjointness dependencies, we assume that the first and second attributes of any atomic role are named
1 and 2 respectively. We also assume that ⊥ the empty relation.

DL notation FOL notation Relational notation (OWA)
(funct P) ∀X,Y, Z[P (X,Y) ∧ P (X,Z)⇒ Y = Z] P : 1→ 2

(funct P−) ∀X,Y, Z[P (Y,X) ∧ P (Z,X)⇒ Y = Z] P : 2→ 1

Fig. 6. DL-lite functionality axioms in FOL and relational notations. For the relational notation, which corresponds
to functional dependencies, we assume that the first and second attributes of any atomic role are named 1 and 2
respectively.

variables, e.g., 0 for a boolean query. When φ(x̄, ȳ) is of
the form conj(x̄, ȳ) where conj(x̄, ȳ) is a conjunction of
atoms, q is called a conjunctive query. Conjunctive queries,
a.k.a. select-project-join queries, are the core database
queries.

Given an interpretation I = (∆I , .I), the semantics qI

of a boolean query q is defined as true if [φ(∅, ȳ)]I =
true, and false otherwise, while the semantics qI of a
query q of arity n ≥ 1 is the relation of arity n defined
on ∆I as follows: qI = {ē ∈ (∆I)n | [φ(ē, ȳ)]I = true}.
An interpretation that evaluates a boolean query to true,
respectively a non-boolean query to a non empty set, is
a model of that query.

3.3 Answer set of a query over a KB
Let q be a query over a KB K = 〈T ,A〉.

If q is non-boolean, the answer set of q over K is
defined as: ans(q,K) = {t̄ ∈ Cn | K |= q(t̄)} where C is
the set of constants appearing in the KB, q(t̄) is the closed
formula obtained by replacing in the query definition the
free variables in x̄ by the constants in t̄, and K |= q(t̄)
means as usual that every model of K is a model of q(t̄).

If q is boolean, the answer set of q over K is by
convention either {true} or {false}: ans(q,K) = {true}

if and only if K |= q(), i.e., every model of K is a model
of q().

This corresponds to the so-called certain answers seman-
tics requiring that an answer to a query, given a set of
constraints (expressed here as a Tbox), to be an answer
in all the models satisfying the constraints.

3.4 FOL-reducibility of data management

The DL-Lite family [11] has been designed so that data
management is FOL-reducible. This property allows re-
ducing a data management task over a KB 〈T ,A〉 to
the evaluation against A only of a FOL query computed
using T only.

The main idea of FOL-reducibility is to be able to
perform a data management task in two separate steps:
a first reasoning step that produces the FOL query and
a second step which evaluates that query in a pure rela-
tional fashion. Indeed, FOL queries can be processed by
SQL engines, thus taking advantage of well-established
query optimization strategies supported by standard
relational database management systems.

In fact, FOL-reducibility of data management
holds in DL-lite only if we forbid functionality

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 7

constraints on roles involved in right-hand sides of
role inclusion constraints3. For instance, in Figure
3, having hasContactAuthor v hasAuthor and
(funct hasContactAuthor) in O′′ is legal, while having
hasContactAuthor v hasAuthor and (funct hasAuthor)
would be illegal. In the following, we only consider
DL-lite Tboxes and KBs in which this restriction holds.
Note that, as shown in [11], if we do not impose
the above restriction on DL-lite, instance checking (a
particular case of quey answering) is P -complete in
data complexity, rulling out FOL-reducibility of query
answering since data complexity of answering a FOL
query is in AC0 ⊂ P [13], [14].

3.4.1 Consistency
It has been shown in [11] that given a Tbox T , it is
always possible to construct a FOL query qunsat such that
ans(qunsat ,A) = {true}4 iff the KB 〈T ,A〉 is inconsistent,
for any Abox A associated with T .

Building the qunsat query relies on the computation of
the IC-closure of T , i.e., the set of the integrity constraints
(NI or functionality constraints) that are implied by T :
each constraint in the IC-closure is transformed into a
conjunctive boolean query looking for counter-examples
to it ; qunsat is the union of these unsat queries. The
transformation of the integrity constraints into unsat
queries corresponds in fact to their negation and is
summarized in Figure 7 for NIs and in Figure 8 for func-
tionalities. For instance, the unsat query corresponding
to the negation of the NI JournPaper v ¬ConfPaper is
q():- ∃xJournPaper(x) ∧ ConfPaper(x).

3.4.2 Query answering
It has been shown in [11] that given a Tbox T and for any
query q built upon atomic concepts and roles of T , it is
always possible to construct a FOL query qrew (called its
perfect rewriting) such that ans(q, 〈T ,A〉) = ans(qrew ,A)
for any Abox A associated with T .

Notably, [11] provides the PerfectRef(q, T) algorithm
which computes the perfect rewriting qrew of q using –
PIs of – T only (i.e., independently of A), which is a
union of conjunctive queries built upon atomic concepts
and roles of T .

4 MODULE-BASED DATA MANAGEMENT

The main idea underlying the notion of module of a
Tbox is to capture some constraints of the Tbox, including
all the (implied) constraints built upon a given signature,
denoted the signature of interest.

Our definition of module extends and encompasses the
existing definitions. In contrast with [3], [4], [7], [9], we
do not impose modules of a Tbox to be subsets of it. For

3. This corresponds to the dialect DL-liteA of DL-lite.
4. By a slight abuse of notation, we denote hereinafter the answer

set ans(q, 〈∅,A〉) of a query q over a KB 〈∅,A〉 by ans(q,A), which
corresponds exactly to the standard relational evaluation of q against
the relational database A.

a module to capture some constraints of the Tbox, it is
indeed sufficient to impose that it is logically entailed
by the Tbox. In contrast with [5], [6], [8], [10], we do not
impose the signature of modules to be restricted to the
signature of interest. In fact, as we have shown through
the illustrative example, the robustness properties may
enforce the signature of modules to contain additional
relations that are not relations of interest but that are
logically related to them.

Definition 1 (Module): Let T be a Tbox and Γ ⊆ sig(T)
a signature of interest. A module of T w.r.t. Γ is a Tbox
TΓ such that:

• Γ ⊆ sig(TΓ) ⊆ sig(T),
• T |= TΓ, and
• for any Tbox constraint α built upon Γ, T |= α iff
TΓ |= α.

Notations. For distinguishing the relations of interest in
the signature of a module TΓ from those possibly im-
ported from the reference Tbox for robustness purposes,
we use the following notations: r denotes a relation of
interest (i.e., in Γ), while rref denotes a relation of the
reference Tbox.

We denote sig+(TΓ) the set difference between the
signature of TΓ and Γ, i.e., the set of relations r1

ref , . . . , r
k
ref

of the reference Tbox that are involved in constraints of
the module TΓ. Later on, we will denote rmod the novel
relations that may be added to the signature of a module
for personalization purposes.
Example (continued) Consider the reference Tbox O of
the running example. Consider the signature of interest
Γ = {JournPaper, HasAuthor}. Let T 1

Γ and T 2
Γ be the

following Tboxes: T 1
Γ = {JournPaper v ∃hasAuthor}

and T 2
Γ = {JournPaper v ∃hasAuthor, JournPaper v

¬ConfPaperref}.
T 1

Γ and T 2
Γ are both modules of O w.r.t. Γ: they use

relations from O only ; without being subsets of O, they
are implied by O (JournPaper v ∃hasAuthor is implied
by JournPaper v Publicationref and Publicationref v
∃hasAuthor in O, and JournPaper v ¬ConfPaperref is
equivalent to ConfPaperref v ¬JournPaper in O) ; the
only constraint built upon Γ that is implied by O is
JournPaper v ∃hasAuthor, which is in both T 1

Γ and T 2
Γ

(and thus implied by them).
Here, sig+(T 1

Γ) = ∅ since T 1
Γ involves only relations of

interest (i.e., in Γ), while sig+(T 2
Γ) = {ConfPaperref}. �

It is worth noticing that, as the above example shows,
a module of a Tbox w.r.t. a signature of interest may not
be unique.

4.1 Robust module-based data management

We define now the two notions of robustness for modules
that have been illustrated in Section 2.
Notations. From now on, A/sig denotes the restriction of
an Abox A to the assertions of A built upon the signature
sig only.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 8

NI Corresponding unsat query
A v ¬A′ or A′ v ¬A ∃X[A(X) ∧ A′(X)]
A v ¬∃P or ∃P v ¬A ∃X,Y [A(X) ∧ P (X,Y)]

A v ¬∃P− or ∃P− v ¬A ∃X,Y [A(X) ∧ P (Y,X)]
∃Q v ¬∃P or ∃P v ¬∃Q ∃X,Y, Z[Q(X,Y) ∧ P (X,Z)]

∃Q v ¬∃P− or ∃P− v ¬∃Q ∃X,Y, Z[Q(X,Y) ∧ P (Z,X)]

∃Q− v ¬∃P or ∃P v ¬∃Q− ∃X,Y, Z[Q(Y,X) ∧ P (X,Z)]

∃Q− v ¬∃P− ∃X,Y, Z[Q(Y,X) ∧ P (Z,X)]

P v ¬Q− or Q− v ¬P or P− v ¬Q or Q v P− ∃X,Y [P (X,Y) ∧Q(Y,X)]

P v ¬Q or Q v ¬P or P− v ¬Q− or Q− v ¬P− ∃X,Y [P (X,Y) ∧Q(X,Y)]

Fig. 7. From NI axioms to unsat queries.

Functionality Corresponding unsat query
(funct P) ∃X,Y, Z[P (X,Y) ∧ P (X,Z) ∧ Y 6= Z)]

(funct P−) ∃X,Y, Z[P (Y,X) ∧ P (Z,X) ∧ Y 6= Z)]

Fig. 8. From functionality axioms to unsat queries.

4.1.1 Robustness to consistency checking
A module of a Tbox T w.r.t. a signature Γ is robust to
consistency checking (Definition 2) if it contains enough
constraints to detect data inconsistency due to Γ.

Definition 2 (Robustness to consistency checking): Let TΓ

be a module of a Tbox T w.r.t. a signature Γ ⊆ sig(T).
TΓ is robust to consistency checking iff for every Abox AΓ

built upon Γ and for every Abox AΓ̄ built upon sig(T)\Γ
that is consistent with T : 〈T ,AΓ ∪ AΓ̄〉 is consistent iff
〈TΓ, (AΓ ∪ AΓ̄)/sig(TΓ)〉 is consistent.
Example (continued) Consider again the above
two modules T 1

Γ and T 2
Γ of O w.r.t. Γ =

{JournPaper, hasAuthor}.
Neither T 1

Γ nor T 2
Γ is robust to consistency checking,

as shown by the following counter-example. Let
TΓ be either T 1

Γ or T 2
Γ , AΓ be {Publication(a)},

and AΓ̄ be {FullPaperref(a)}. AΓ̄/sig(TΓ) is empty,
thus (AΓ ∪ AΓ̄)/sig(TΓ) = {Publication(a)}, so
〈TΓ, (AΓ ∪ AΓ̄)/sig(TΓ)〉 is consistent. However,
〈O,AΓ ∪ AΓ̄〉 is inconsistent: FullPaperref v
¬JournPaper is implied by FullPaperref v ConfPaperref

and ConfPaperref v ¬JournPaper in O, and violated by
(AΓ ∪ AΓ̄) = {JournPaper(a), FullPaperref(a)}.

The algorithms and results of Section 5 will allow
checking that the following T 3

Γ is robust to consistency
checking:
T 3

Γ = {JournPaper v ∃hasAuthor,
JournPaper v ¬ConfPaperref ,
JournPaper v ¬FullPaperref ,
JournPaper v ¬ShortPaperref ,
Surveyref v JournPaper}. �

Theorem 1 shows that global consistency (see Defi-
nition 3) of a module-based DMS built from a module
robust to consistency checking can be verified by restrict-
ing the construction of the unsat queries to the integrity
constraints (ICs) implied by the module, and then by
evaluating their union against the dataset distributed
among the module-based DMS and the reference one.

Definition 3 (Global consistency): Let 〈T ,A〉 and
〈T ′,A′〉 be two consistent KBs. 〈T ′,A′〉 is globally
consistent w.r.t. 〈T ,A〉 iff 〈T ∪ T ′,A ∪A′〉 is consistent.
In the following, we consider the global consistency of
a module-based KB 〈TΓ,A′〉 w.r.t. a reference KB 〈T ,A〉

where TΓ is a module of T . From now on, if it is clear
from the context, we omit to mention the reference KB
when we refer to global consistency.

Theorem 1 (Global consistency checking): Let 〈T ,A〉 and
〈TΓ,A′〉 be consistent KBs such that TΓ is a module
robust to consistency checking of T w.r.t. a signature
Γ, and A′ is an Abox built upon Γ. Let qunsat(TΓ)
be the union of unsat queries obtained from the IC-
closure of TΓ. Then: 〈TΓ,A′〉 is globally consistent iff
ans(qunsat(TΓ),A/sig(TΓ) ∪ A′) = {false}.

Proof: We first show, based on the standard first
order semantics of DL-lite, that: 〈T ,A∪A′〉 is consistent
iff 〈TΓ,A/sig(TΓ)∪A′〉 is consistent. For one direction, this
follows from: 〈T ,A ∪ A′〉 |= 〈TΓ, (A ∪ A′)/sig(TΓ)〉 with
(A∪A′)/sig(TΓ) = A/sig(TΓ)∪A′. For the converse direction,
〈TΓ,A/sig(TΓ) ∪ A′〉 is consistent, so 〈TΓ, (A ∪ A′)/sig(TΓ)〉
is also consistent, since (A ∪ A′)/sig(TΓ) = A/sig(TΓ) ∪ A′.
Now, consider the subset (A∪A′)Γ̄ of A∪A′ built upon
sig(T)\Γ, and its complement (A ∪ A′)Γ. We therefore
get: 〈TΓ, ((A∪A′)Γ ∪ (A∪A′)Γ̄)/sig(TΓ)〉 is consistent. By
construction, (A ∪ A′)Γ̄ ⊆ A. Since the KB 〈T ,A〉 is
consistent and 〈T ,A〉 |= 〈T , (A∪A′)Γ̄〉, 〈T , (A∪A′)Γ̄〉 is
also consistent. As a result, Definition 2 applies and we
get: 〈T , (A∪A′)Γ∪(A∪A′)Γ̄〉 is consistent, i.e., 〈T ,A∪A′〉
is consistent.

Theorem 1 then follows from the two-step process for
checking consistency in a DL-lite KB 〈T ,A〉: computa-
tion of the IC-closure of the Tbox T and translation
of each IC in the IC-closure into a conjunctive unsat
query; the KB is consistent iff the union qunsat of all the
unsat queries is evaluated to false against A seen as a
relational database. Since checking the global consistency
(i.e., whether 〈T ,A ∪ A′〉 is consistent) is equivalent to
checking the consistency of 〈TΓ,A/sig(TΓ)∪A′〉, as shown
above, it can be done by evaluating the union of unsat
queries obtained from the IC-closure of TΓ (instead of T)
against the distributed dataset A/sig(TΓ) ∪ A′ (instead of
A ∪A′).

Corollary 1 provides a simple way to optimize global
consistency checking by evaluating a necessary and suf-
ficient subset of the unsat queries obtained from the IC-
closure of a module robust to consistency checking. It
directly follows from the fact that in Theorem 1 each KB

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 9

〈T ,A〉 and 〈TΓ,A′〉 taken in isolation is consistent. That
is, the only (implied) ICs that can be violated are those
requiring the two Aboxes in order to be checked.

Corollary 1: Let 〈T ,A〉 and 〈TΓ,A′〉 be consistent KBs
such that TΓ is a module robust to consistency check-
ing of T w.r.t. a signature Γ, and A′ is an Abox
built upon Γ. Then: 〈TΓ,A′〉 is globally consistent iff
ans(qopt

unsat(TΓ),A/sig(TΓ)∪A′) = {false}, where qopt
unsat(TΓ)

is the union of the unsat queries obtained from the
IC-closure of TΓ, without considering the integrity con-
straints involving relations from sig+(TΓ) only (i.e., of
the form rref).
Example (continued) The NI Surveyref v ¬FullPaperref

is in the IC-closure of the module T 3
Γ : it is im-

plied by Surveyref v JournPaper and JournPaper v
¬ConfPaperref in T 3

Γ . However, the corresponding unsat
query is useless to check global consistency (as it would
check the consistency of the reference DMS which is
known to be consistent), and can be discarded from the
unsat queries to evaluate. �

A global inconsistency may arise from an update of the
reference DMS or of the module-based DMS. Using the
above results, such a global inconsistency can be checked
on demand or on a periodical basis.

In addition, global consistency can also be checked
upon each module-based DMS’s update. Corollary 2
provides a way to simplify the unsat queries to be posed
to the reference DMS, in function of the update.

In the following, we assume w.l.o.g. that an update
adds or modifies a single tuple in the module-based
DMS. The generalization to an update involving several
tuples is obvious. Observe that deletions are not consid-
ered here since they cannot lead to a global inconsistency.
Indeed, DL-lite, as a FOL language, is monotonic.

Definition 4 (Unsat query relevant to update): Let TΓ be
a module defined w.r.t. a signature Γ. Let A and P be
an atomic concept and an atomic role in Γ respectively,
and A′(ref) and Q(ref) respectively be an atomic concept
and an atomic role in either Γ or sig+(TΓ).

An unsat query is relevant to an update A(a) iff it is of
one of the following forms:
• q():- A′(ref)(a) s.t. either A v ¬A′(ref) or A′(ref) v ¬A

is in the IC-closure of TΓ,
• q():- ∃Y Q(ref)(a, Y) s.t. either A v ¬∃Q(ref) or
∃Q(ref) v ¬A is in the IC-closure of TΓ,

• q():- ∃Y Q(ref)(Y, a) s.t. either A v ¬∃Q−(ref) or
∃Q−(ref) v ¬A is in the IC-closure of TΓ.

An unsat query is relevant to an update P (a, b) iff it is
of one of the following forms:
• q():- Q(ref)(a, b) s.t. either P v ¬Q(ref) or Q(ref) v
¬P , or P− v ¬Q−(ref) or Q−(ref) v ¬P

−, is in the IC-
closure of TΓ,

• q():- Q(ref)(b, a) s.t. either P v ¬Q−(ref) or Q−(ref) v
¬P , or P− v ¬Q(ref) or Q(ref) v ¬P−, is in the IC-
closure of TΓ,

• q():- ∃Y Q(ref)(a, Y) s.t. either ∃P v ¬∃Q(ref) or
∃Q(ref) v ¬∃P is in the IC-closure of TΓ,

• q():- ∃Y Q(ref)(Y, a) s.t. either ∃P v ¬∃Q−(ref) or
∃Q−(ref) v ¬∃P is in the IC-closure of TΓ,

• q():- ∃Y Q(ref)(Y, b) s.t. either ∃P− v ¬∃Q−(ref) or
∃Q−(ref) v ¬∃P

− is in the IC-closure of TΓ,
• q():- ∃Y R(ref)(b, Y) s.t. either ∃P− v ¬∃Q(ref) or
∃Q(ref) v ¬∃P− is in the IC-closure of TΓ,

• q():- ∃Y P (a, Y) ∧ Y 6= b s.t. (funct P) is in the IC-
closure of TΓ,

• q():- ∃Y P (Y, b) ∧ Y 6= a s.t. (funct P−) is in the IC-
closure of TΓ.

Corollary 2 (Global consistency upon local update):
Let 〈T ,A〉 and 〈TΓ,A′〉 be consistent KBs such that
TΓ is a module robust to consistency checking of
T w.r.t. a signature Γ, and A′ is an Abox built
upon Γ. Let µ be an update of A′ and µ(A′) its
result. Let qunsat(µ, TΓ) be the union of unsat queries
relevant to µ. Then: 〈TΓ, µ(A′)〉 is globally consistent iff
ans(qunsat(µ, TΓ),A/sig(TΓ)) = {false}.
Example (continued) Consider the update that amounts
to adding JournPaper(doi1) to a module-based DMS
built from the module T 3

Γ . Checking the global consis-
tency upon this update can be done by asking the union
of the unsat queries built from the IC-closure of T 3

Γ that
are relevant to the update: q1() :- ConfPaperref(doi1), q2()
:- FullPaperref(doi1), and q3() :- ShortPaperref(doi1). �

4.1.2 Robustness to query answering
A module of a Tbox T defined w.r.t. a signature Γ is
robust to query answering if it contains enough knowledge
to compute the answer set of any query built upon Γ
asked to any Abox associated with T .

Definition 5 (Robustness to query answering):
Let TΓ be a module of a Tbox T w.r.t. a signature Γ ⊆
sig(T). TΓ is robust to query answering iff for every Abox
A consistent with T and for every query q built upon Γ:
ans(q, 〈T ,A〉) = ans(q, 〈TΓ,A/sig(TΓ)〉).

Example (continued) The algorithms and results
of Section 5 will enable to check that the
following module is robust to query answering:
T 4

Γ = {JournPaper v ∃hasAuthor,
Publicationref v ∃hasTitleref ,
Publicationref v ∃hasAuthor,
∃hasTitleref v Publicationref ,
ConfPaperref v Publicationref ,
JournPaper v Publicationref ,
ShortPaperref v ConfPaperref ,
FullPaperref v ConfPaperref ,
Surveyref v JournPaper}.

However, the module T 3
Γ is not robust to query

answering, as shown by the following counter-
example. Consider the Abox A = {ConfPaperref(a)}
for the reference Tbox O and the query
q(x):- ∃y hasAuthor(x, y) built upon Γ. a ∈ ans(q, 〈T ,A〉)
because ConfPaperref v ∃hasAuthor is implied by
O, but ans(q, 〈T 3

Γ ,A/sig(T 3
Γ)〉) = ∅ since, although

ConfPaperref(a) ∈ A/sig(T 3
Γ), ConfPaperref v ∃hasAuthor

is not implied by T 3
Γ . �

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 10

Theorem 2 shows that if a module-based DMS is built
from a module robust to query answering, global query
answering (see Definition 6) can be done by computing
the perfect rewriting of the query using the module only,
and then by evaluating it against the dataset distributed
among the module-based DMS and the reference one.

Definition 6 (Global answer set): Let 〈T ,A〉 and 〈T ′,A′〉
be consistent KBs, and q a query over 〈T ′,A′〉.
The global answer set of q w.r.t. 〈T ,A〉, denoted
global ans(q, 〈T ,A〉, 〈T ′,A′〉), is: ans(q, 〈T ∪T ′,A∪A′〉).
In the following, we consider the global answer sets of
queries over a module-based KB 〈TΓ,A′〉 and w.r.t. a
reference KB 〈T ,A〉 where TΓ is a module of T . From
now on, if it is clear from the context, we omit to mention
the reference KB when we refer to global answer sets.

Theorem 2 (Global query answering): Let 〈T ,A〉 and
〈TΓ,A′〉 be KBs such that TΓ is a module of T w.r.t. Γ
which is robust to query answering, and A′ is built upon
Γ. Let q be a conjunctive query built upon Γ and qrew(TΓ)
its perfect rewriting w.r.t. TΓ. If 〈TΓ,A′〉 is globally
consistent, then: global ans(q, 〈T ,A〉, 〈TΓ,A′〉) =
ans(qrew(TΓ),A/sig(TΓ) ∪ A′).

Proof: By definition, global ans(q, 〈T ,A〉, 〈TΓ,A′〉) =
ans(q, 〈T ∪TΓ,A∪A′〉) = ans(q, 〈T ,A∪A′〉) since T |= TΓ.
From the global consistency of 〈TΓ,A′〉, we get the
consistency of 〈T ∪ TΓ,A∪A′〉 from Definition 3, i.e., of
〈T ,A ∪ A′〉. Definition 5 now applies and we get:
ans(q, 〈T ,A ∪ A′〉) = ans(q, 〈TΓ, (A ∪ A′)/sig(TΓ)〉) =
ans(q, 〈TΓ,A/sig(TΓ) ∪ A′〉), since (A ∪ A′)/sig(TΓ) =
A/sig(TΓ) ∪ A′.

Theorem 2 then follows from the fact that in DL-lite
ans(q, 〈TΓ,A/sig(TΓ) ∪A′〉) can be obtained by evaluating
the perfect rewriting qrew(TΓ) of q w.r.t. TΓ against the
distributed dataset A/sig(TΓ) ∪ A′.

Observe that Theorem 2 applies when a module-based
DMS is globally consistent. From a practical viewpoint,
this means that a module robust to query answer-
ing should also be robust to consistency checking, so
that global consistency can be effectively checked by
a module-based DMS. In general, Theorem 2 does not
hold when a module-based DMS is globally inconsistent.
The reason is that any tuple – of the arity of a query –
built from the Aboxes of the reference and module-based
DMSs (i.e., A∪A′) is then an answer, while it may not be
possible to exhibit every such tuple at the module-based
DMS level which only has a partial view of those two
Aboxes (i.e., A/sig(TΓ) ∪ A′).
Example (continued) Consider again the module T 4

Γ of
O w.r.t. Γ = {JournPaper, hasAuthor} that is robust to
query answering. Let the dataset D in Figure 1 be the
Abox A associated with O. Let A′ = {JournPaper(doi1)}
be the Abox associated with T 4

Γ . 〈T 4
Γ ,A′〉 is globally

inconsistent since doi1 cannot be at the same time both a
journal paper and a (full) paper in conference proceed-
ings. As a result, ”1998” (like any other constant in A) is
a global answer to the query q(x):- JournPaper(x). How-
ever, that answer cannot be obtained from, as ”1998” is
not in, A/sig(T 4

Γ) ∪ A′. �

4.2 Safe personalization in module-based data man-
agement

We investigate now how the personalization of a module –
through updates – can preserve its global data manage-
ment skills. Indeed, it is often necessary to personalize
an extracted module so that it fully copes with the new
application needs.

Definition 7 (Personalization of a module): Let T be a
Tbox and let TΓ be a module of T w.r.t. Γ ⊆ sig(T). A
Tbox T ′ is a personalization of TΓ iff T ′ is obtained from
TΓ after a sequence of insertions or deletions of Tbox
constraints (i.e., PIs, NIs, or functionalities).

Definitions 8 and 9 exhibit safeness conditions both at
the Tbox and the Abox levels of a module-based DMS.
Theorems 3 and 4 then show that these conditions are
sufficient to perform global data management of any safe
instance of a safe personalization of a module.

A personalization of a module is safe provided that:
first, the updates cannot involve atomic concepts and
roles of the reference DMS’s Tbox other than those
in the signature of the module; second, the updates
must conform with the reference DMS’s Tbox; third,
the resulting updated Tbox must be a module of the
reference DMS’s Tbox with the same robustness(es) as
the personalized module.

Definition 8 (Safe personalization of a module): Let TΓ be
a module of a Tbox T w.r.t. Γ ⊆ sig(T). A personalization
T ′ of TΓ is safe w.r.t. T iff

1) sig(T) ∩ (sig(T ′)\sig(TΓ)) = ∅,
2) T is a module of T ∪ T ′ w.r.t. sig(T), and
3) T ′ is a module of T ∪T ′ w.r.t. sig(T ′)\sig+(TΓ) with

the same robustness(es) as TΓ.

Example (continued) Consider the personalization T ′ of
the module T 4

Γ obtained by adding the constraints (thus
the novel atomic role hasRightOnmod): hasAuthor v
hasRightOn−mod and ∃hasRightOn−mod v JournPaper,
stating that authors have rights on their journal papers.
T ′ is not a safe personalization of T 4

Γ w.r.t. O because
O is not a module of O ∪ T ′: ∃hasAuthor v JournPaper

(which is built upon the signature of O) is indeed
implied by O∪T ′ – actually by the above two constraints
– but not by O alone, thus does not conform with O.

In contrast, the algorithms and results of Section 5
will enable to check that T ′′, obtained by adding to T 4

Γ

the constraint hasAuthor v hasRightOn−mod, is a safe
personalization of T 4

Γ w.r.t. O. �
A safe instance of a personalization T ′ of a module TΓ

is an Abox built only upon the relations of Γ that remain
in T ′ after personalization of TΓ, plus the novel relations
introduced in T ′ by personalization of TΓ.

Definition 9 (Safe instance): Let TΓ be a module of a
Tbox T w.r.t. Γ ⊆ sig(T). Let T ′ be a personalization
of TΓ. A safe instance of T ′ is an Abox built upon
sig(T ′)\sig+(TΓ), where sig+(TΓ) is the set difference
between the signature of TΓ and Γ.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 11

Example (continued) Consider the above safe personal-
ization T ′′ of T 4

Γ w.r.t. O.
The Abox A1 is an instance of T ′′ that is

not safe because it states information on the re-
lation Publicationref which is in sig+(T 4

Γ): A1 =
{Publicationref(a), hasContactAuthormod(a, c)}.

In contrast, the Abox A2 is a safe instance of T ′: A2 =
{JournPaper(a), hasContactAuthormod(a, c)}. �

Theorems 3 and 4 result directly from Definitions 8
and 9 by adapting accordingly the proofs of Theorems 1
and 2.

Theorem 3 (Safe global consistency checking): Let 〈T ,A〉
and 〈T ′,A′〉 be consistent KBs, such that T ′ is a safe
personalization of a module TΓ of T w.r.t. Γ, TΓ being ro-
bust to consistency checking, and A′ is a safe instance of
T ′. Let qunsat(T ′) be the union of unsat queries obtained
from the IC-closure of T ′. Then: 〈T ′,A′〉 is globally
consistent iff ans(qunsat(T ′),A/sig(T ′) ∪ A′) = {false}.

Theorem 4 (Safe global query answering): Let 〈T ,A〉 and
〈T ′,A′〉 be KBs, such that T ′ is a safe personalization of a
module TΓ of T w.r.t. Γ, TΓ being robust to query answer-
ing, and A′ is a safe instance of T ′. Let q be a query built
upon sig(T ′)\sig+(TΓ) and qrew(T ′) its perfect rewrit-
ing w.r.t. T ′. If 〈T ′,A′〉 is globally consistent, then:
global ans(q, 〈T ,A〉, 〈T ′,A′〉) = ans(qrew(T ′),A/sig(T ′) ∪
A′).

Remark 1: Similarly to Corollary 1, safe global consis-
tency checking can be optimized by evaluating the unsat
queries obtained from a necessary and sufficient subset
of the IC-closure of the personalized module: those that
are not built upon relations of the reference DMS only
(i.e., of the form rref), and those built only upon novel
relations resulting from personalization (i.e., of the form
rmod).

Remark 2: Corollary 2 can also be adapted to safe global
consistency upon update, provided a slight extension of
the definition of an unsat query relevant to an update
(Definition 4): updates now concern both atomic con-
cepts and roles of the form A or Amod, and P or Pmod

respectively; and unsat queries relevant to an update are
defined from the minimal subset of ICs for checking safe
global consistency (Remark 1).

4.3 Optimizing practical module-based data man-
agement using minimal modules
In general, several (possibly personalized) modules of a
Tbox may exist for a same signature of interest. Notably,
a module always exists since a Tbox is a module of
itself (robust to both consistency checking and query
answering).

To compare the existing modules for a given Tbox
and a given signature, we define minimal modules based
on the notions of syntactic minimality and of semantic
minimality. Syntactic minimality deals with redundancy
within a module, while semantic minimality deals with
the amount of useless extra-knowledge captured within
a module w.r.t. the given signature and expected robust-
ness(es).

Definition 10 (Minimal module): Let T ′ be a (safely per-
sonalized) module of a Tbox T w.r.t. Γ, possibly robust
to query answering and/or consistency checking.
• T ′ is syntactically minimal iff any strict subset of T ′

is not equivalent to T ′.
• T ′ is semantically minimal iff for any (safely and

identically personalized) module T ′′ of T w.r.t. Γ
with the same robustness(es): if T ′ |= T ′′ then
T ′′ ≡ T ′.

• T ′ is minimal iff it is both syntactically and seman-
tically minimal.

It is worth noticing that minimal modules are
desirable, since non-minimality induces useless
extra-computation in practical module-based DMSs
(e.g., QuOnto5), as illustrated below.
Example (continued) Consider again the module T 3

Γ

that is robust to consistency checking. T 3
Γ is not –

semantically – minimal, as the constraint Surveyref v
JournPaper is neither required by a module w.r.t. Γ
nor by its robustness to consistency checking. The is-
sue is that at (global) consistency checking time, such
a constraint is used – by state of the art algorithms
(e.g., [11]) – to compute the IC-closure of the module,
thus may lead to the generation of useless ICs and to
the construction and evaluation of the corresponding
unsat queries. Here, the useless generated constraints
would be: Surveyref v ¬ConfPaperref , Surveyref v
¬FullPaperref , and Surveyref v ¬ShortPaperref .

Now, consider again the module T 4
Γ that is robust to

query answering. T 4
Γ is not – syntactically – minimal, as

the constraint JournPaper v ∃hasAuthor is redundant:
it is implied by JournPaper v Publicationref and
Publicationref v ∃hasAuthor in T 4

Γ . The issue is that
at (global) query answering time, such a constraint is
used – by state of the art algorithms (e.g., [11]) – to
compute the perfect rewriting of a query, leading to
useless computation. For intance, consider the query
q(x):- ∃y hasAuthor(x, y). From q and Publicationref v
∃hasAuthor, PerfectRef(q, T 4

Γ) first produces q′(x):-
Publicationref(x) from which in turn it produces
q′′(x):- JournPaper(x) using JournPaper v
Publicationref . This reformulation is redundant since
from q and JournPaper v ∃hasAuthor, PerfectRef(q, T 4

Γ)
also produces q′′(x):- JournPaper(x). �

5 ALGORITHMS FOR ROBUST MODULE-BASED
DATA MANAGEMENT
We provide here algorithms for extracting modules from
a DL-lite Tbox (Section 5.1), checking safe module per-
sonalization (Section 5.2) – checking whether an instance
is safe is trivial –, and minimizing a module (Section 5.3).

5.1 Extracting robust modules
The ERM algorithm for extracting robust modules from
a given DL-lite Tbox (Algorithm 1) relies on the notion
of (deductive) closure of a Tbox.

5. http://www.dis.uniroma1.it/quonto/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 12

Definition 11 (Closure of a Tbox): The closure of a Tbox
T is the Tbox cl(T) made of every constraint (PI, NI, and
functionality) implied by T (i.e., cl(T) = {α | T |= α}).

The following theorem characterizes the main proper-
ties of the closure of a Tbox that will be used later on.

Theorem 5 (Properties of Tbox closure): Let T be a DL-
lite Tbox.

1) The size of cl(T) is at most quadratic in the size of
sig(T).

2) Computing cl(T) is polynomial in the size of
sig(T).

3) T and cl(T) are equivalent and for any constraint
α built upon sig(T): T |= α iff α ∈ cl(T).

Proof: The first item follows from the fact that the
number of atomic concepts, respectively of atomic roles,
is bounded by the size #sig(T) of sig(T). It follows that
the number of possible B v C in T is bounded by 18×
#sig(T)2 since there are 3 × #sig(T) possible B’s and
6 × #sig(T) possible C’s, as a B is of the form A, ∃P ,
or ∃P−, while a C is of the form B or ¬B; the number
of possible R v E in T is bounded by 8 × #sig(T)2

since there are 2×#sig(T) possible R’s and 4×#sig(T)
possible E’s, as a R is of the form P or P−, while a E is
of the form R or ¬R; the number of possible (funct R)
is bounded by 2 × #sig(T) since there are 2 × #sig(T)
possible R’s as mentioned above. As a result, the size of
cl(T) is at most quadratic in the size of sig(T).

The second item follows from the fact that checking
whether a Tbox T implies a constraint α is polynomial
in the size of T in DL-lite (Theorem 27 in [11]), this size
being bounded by that of its closure (first item).

Finally, the third item trivially follows from Definition
11: T |= cl(T) and T ⊆ cl(T), thus cl(T) |= T .

With the definition of closure in place, we provide
the Extract Robust Module (ERM) algorithm (Algorithm
1) that builds a module of a Tbox w.r.t. a signature
and the desired robustness(es). The resulting module is
semantically minimal and is obtained by filtering the
closure of the Tbox or the Tbox itself for keeping the
relevant constraints.

Theorem 6 (Properties of the ERM algorithm): Let
T be a DL-lite Tbox and Γ a subset of sig(T).
ERM(T ,Γ,RQA,RCC) terminates and returns a module
of T w.r.t. Γ, which is semantically minimal, robust
to query answering if RQA = true, and robust to
consistency checking if RCC = true.

Proof: Termination for lines 2–6 follows from the
finiteness of cl(T), and for lines 7–13 because in the
worst case T ⊆ TΓ, so TΓ = T ′Γ eventually.
TΓ, the output of ERM(T ,Γ,RQA,RCC), is a module

of Tbox T w.r.t. Γ (Definition 1) since TΓ ⊆ cl(T) and
the filtering condition of line 3.

If RCC = true, robustness to consistency checking is
guaranteed by the lines 5–6, which precisely extract all
(and only) the implied ICs exhibited in Corollary 1.

If RQA = true, robustness to query answering is
guaranteed by the lines 7–13, which precisely extract all
(and only) the PIs required for constructing the perfect

Algorithm 1: the ERM algorithm
ERM(T ,Γ,RQA,RCC)
Input: a DL-lite Tbox T , a signature Γ ⊆ sig(T), two
booleans RQA and RCC
Output: a module TΓ of T w.r.t. Γ, which is semantically
minimal, robust to query answering if RQA = true, and
robust to consistency checking if RCC = true
(1) TΓ ← ∅
(2) foreach α ∈ cl(T)
(3) if α is built upon Γ only
(4) TΓ ← TΓ ∪ {α}
(5) else if RCC = true and α is a NI X v ¬Y s.t. X or

Y is built upon Γ
(6) TΓ ← TΓ ∪ {α}
(7) if RQA = true
(8) sig← Γ; T ′Γ ← ∅
(9) while TΓ 6= T ′Γ
(10) T ′Γ ← TΓ ; sig′ ← sig
(11) foreach PI X v Y ∈ T s.t. Y is built upon sig′

(12) TΓ ← TΓ ∪ {X v Y }
(13) sig ← sig ∪ sigX (for X built upon the signature

sigX)
(14)return TΓ

rewriting of any conjunctive query q built upon Γ,
i.e., those used by PerfectRef(q, T) (Lemma 39 in [11]).

Finally, if RCC = false and RQA = false, TΓ is
semantically minimal since it is constructed from lines 1–
4, thus built upon Γ only. If RCC = true or RQA = true,
minimality results from the fact that only the required
constraints are added by lines 5–6 and 7–13.

Corollary 3 states the complexity of computing (ro-
bust) modules.

Corollary 3 (Complexity of module extraction): Let T be
a DL-lite Tbox and Γ ⊆ sig(T). Computing a module
of T w.r.t. Γ, possibly robust to query answering and/or
consistency checking, is polynomial in the size of sig(T).

Proof: The worst computational cost is that of a
module robust to both consistency checking and query
answering. ERM(T ,Γ, true, true) first computes a mod-
ule robust to consistency checking using lines 1–6. The
closure of T must be computed and then its con-
straints are filtered. This can be done in polynomial
time in the size of sig(T) according to Theorem 5. Then,
ERM(T ,Γ, true, true) filters T for robustness to query
answering. In the worst case, according to Theorem 5,
we have a number of iterations of the while loop that is
at most quadratic in the size of sig(T) (since TΓ ⊆ cl(T)),
each of which has to filter T whose size is at most
quadratic in the size of sig(T). As a result, the worst case
computation of a module of T w.r.t. Γ is polynomial in
the size of sig(T).

5.2 Checking safe personalization of a module
The Safe Personalization Checking (SPC) algorithm (Al-
gorithm 2) checks whether the personalization T ′ of a
module TΓ a of Tbox T w.r.t. a signature Γ is safe. It

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 13

Algorithm 2: The SPC algorithm
SPC(T ′, TΓ, T ,RQA,RCC)
Input: a Tbox T ′ that is a personalization of the module
TΓ of a Tbox T w.r.t. Γ ⊆ sig(T), and two booleans RQA
and RCC denoting respectively whether TΓ is robust to
query answering and/or consistency checking
Output: true if T ′ is safe, false otherwise
(1) if sig(T) ∩ (sig(T ′)\sig(TΓ)) 6= ∅
(2) return false
(3) if cl(T) 6= ERM(T ∪ T ′, sig(T), false, false)
(4) return false
(5) if cl(ERM(T ∪ T ′, sig(T ′)\sig+(TΓ),RQA,RCC)) 6=

cl(T ′)
(6) return false
(7) return true

proceeds by checking sequentially whether one of the
three conditions of Definition 8 is violated.

Theorem 7 (Properties of the SPC algorithm): Let T be a
Tbox and TΓ a module of T w.r.t. a signature Γ ⊆
sig(T), the robustness of which is specified by two
booleans RQA and RCC (RQA = true iff it is robust
to query answering, RCC = true iff it is robust to
consistency checking). Let T ′ be a personalization of TΓ:
SPC(T ′, TΓ, T ,RQA,RCC) terminates and returns true
iff T ′ is a safe personalization of TΓ w.r.t. T .

Proof: Termination directly follows from the finite-
ness of the closure of a Tbox and from the termination
of the ERM algorithm (Theorem 6).

As for correctness, line 1 of Algorithm 2 obviously
checks whether the first item 1 of Definition 8 is falsified.
For checking whether T is not a module of T ∪ T ′
w.r.t. sig(T), the second item of Definition 8, based
on the properties of the closure of a Tbox (item 3.
of Theorem 5), line 3 of Algorithm 2 compares the
closure of T with the closure of a semantically minimal
module of T ∪T ′ w.r.t. sig(T). The latter is computed by
ERM(T ∪ T ′, sig(T), false, false), as the result of the loop
starting at Line 2 in Algorithm 1. Finally, for checking
whether the third item of Definition 8 is falsified, line
5 of Algorithm 2 compares the closure of T ′ with the
closure of a semantically minimal module of T ∪ T ′
w.r.t. sig(T ′)\sig+(TΓ) with the same robustness(es) as
TΓ. Because of the lines 7–13 of Algorithm 1 that work
on T instead of cl(T) like the previous lines, when
RQA = true, it may not be the case that ERM(T ∪
T ′, sig(T ′)\sig+(TΓ),RQA,RCC) outputs the closure of
a module. Therefore, comparing the closure of T ′ with
the closure of ERM(T ∪ T ′, sig(T ′)\sig+(TΓ),RQA,RCC)
is necessary in line 5 of Algorithm 2 for checking the last
item of Definition 8.

Corollary 4 states the complexity of checking whether
a personalization of a module is safe. It directly follows
from the polynomial time and size of the closure con-
struction (Theorem 5).

Corollary 4 (Complexity of checking safeness): Let T ′ be
the personalization of a (possibly robust) module TΓ of

a Tbox T w.r.t. a signature Γ ⊆ sig(T). Deciding whether
T ′ is a safe personalization of TΓ w.r.t. T is polynomial
in the size of sig(T ∪ T ′).

5.3 Computing minimal modules by reduction

As mentioned in Section 4, minimal modules play an
important role for the efficiency of practical module-
based data management.

We build minimal modules by computing syntactically
minimal modules from (possibly personalized) seman-
tically minimal modules. To do so, we introduce the
notion of reduction of a Tbox for removing redundant
constraints. This operation is dual to that of closure.

Definition 12 (Tbox Reduction): The reduction of a Tbox
T , denoted red(T), is obtained by starting from red(T) =
T , then applying exhaustively the following rule until no
more constraints can be removed from red(T):
If α ∈ red(T) and red(T)\{α} |= α, then:
remove α from red(T).

The following theorem characterizes the main proper-
ties of the reduction of a Tbox.

Theorem 8 (Properties of Tbox reduction): Let T be a
Tbox.

1) Computing red(T) is polynomial in the size of
sig(T).

2) T and red(T) are equivalent.
3) Any strict subset of red(T) is not equivalent to T .

Proof: The first item results from the fact that the size
of a Tbox is bounded by that of its closure and checking
whether a Tbox implies a constraint is polynomial in the
size of that Tbox in DL-lite (Theorem 27 in [11]), that size
being bounded by that of its closure. The last two items
directly follow from Definition 12.

Corollary 5 provides a simple means to compute (pos-
sibly personalized) minimal modules. It follows from
Definition 8, Theorem 6 (which states that ERM outputs
semantically minimal modules), and Theorem 8.

Corollary 5 (Computation/complexity of minimal modules):
Let T be a Tbox and Γ ⊆ sig(T). Let T ′
be a safe personalization of (the reduction of)
ERM(T ,Γ,RQA,RCC). red(T ′) is minimal and is
computed in polynomial time in the size of sig(T ′).

6 CONCLUSION

The modules introduced in this paper generalize both
the modules obtained by extracting a subset of a Tbox
w.r.t. selected relations (e.g., [3], [4], [7], [9]) or by for-
getting about relations (e.g., [5], [6], [8], [10]).

In addition, in contrast with existing work, we have
considered the problem of safe personalization of mod-
ules built from an existing reference DMS. This raises
new issues to check easily that a module-based DMS
evolves independently but coherently w.r.t. the reference
DMS from which it has been built. We have introduced
two notions of module robustness that make possible to
build locally the relevant queries to ask to the reference

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. V, NO. N, MONTH YEAR 14

database in order to check global consistency (possibly
upon each update), and to obtain global answers for local
queries. We have provided polynomial time algorithms
that extract minimal and robust modules from a refer-
ence ontological schema expressed as a DL-lite Tbox.

[5] extracts modules from DL-lite schemas following a
forgetting approach. It proposes an alternative to our re-
sult about global query answering, which applies under
the severe constraints that the dataset of the reference
DMS has to be modified (write access is required).

Compared to the algorithm developed by [7] for ex-
tracting modules from acyclic EL ontological schemas,
our approach handles possibly cyclic DL-liteA schemas,
while keeping data consistency and query answering
reducible to standard database queries [11].

In contrast with the recent work on extracting modules
from DL-lite ontological schema [4], we focus on the
DL-liteA fragment for which consistency checking and
query answering are FOL-reducible. This is crucial when
ontologies are used as schemas over large datasets stored
and queried as relational databases.

Datalog± [15] is an extension of Datalog that has
also been designed for query answering over ontologies.
Since it captures the fragment of DL-lite that we consider,
our results can be easily transposed into it.

Contrarily to recent works in distributed databases,
data replication can be avoided while guaranteeing
global consistency. Our approach is a good trade-off
between the NoSQL approaches and the SQL approaches
for managing distributed data stores (see [16] for a sur-
vey). While most of the NoSQL approaches are schema-
less, our approach makes possible to handle useful
schema constraints. It provides efficient means to check
global consistency, a stronger property than eventual
consistency that is prevalent in distributed data stores.
On the other hand, we are more flexible than the SQL
approaches since global consistency is checked periodi-
cally and not at each update of the reference DMS.

In the next future, we plan to evaluate our approach, in
particular to compare the size of the modules extracted
by our algorithm to the results provided by [17], [18].
We also plan to apply our algorithms to the real use-
case of the MyCorporisFabrica DMS, mentioned in the
introduction, which has been developed manually as a
personalization of the (reference) Foundational Model of
Anatomy DMS. Finally, we plan to extend our approach
to distributed module-based DMSs, where answering
queries combines knowledge of several modules asso-
ciated with possibly several reference DMSs.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[2] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, Eds., Modular
Ontologies: Concepts, Theories and Techniques for Knowledge Modular-
ization, ser. Lecture Notes in Computer Science. Springer, 2009,
vol. 5445.

[3] S. Ghilardi, C. Lutz, and F. Wolter, “Did i damage my ontology?
a case for conservative extensions in description logics,” in KR,
2006.

[4] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer,
F. Wolter, and M. Zakharyaschev, “Minimal module extraction
from DL-Lite ontologies using QBF solvers,” in IJCAI, 2009.

[5] Z. Wang, K. Wang, R. W. Topor, and J. Z. Pan, “Forgetting concepts
in DL-Lite,” in ESWC, 2008.

[6] B. Konev, D. Walther, and F. Wolter, “Forgetting and uniform
interpolation in extensions of the description logic EL,” in De-
scription Logics, 2009.

[7] B. Konev, C. Lutz, D. Walther, and F. Wolter, “Semantic modularity
and module extraction in description logics,” in ECAI, 2008.

[8] B. Konev, D. Walther, and F. Wolter, “Forgetting and uniform
interpolation in large-scale description logic terminologies,” in
IJCAI, 2009.

[9] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler, “Just
the right amount: extracting modules from ontologies,” in WWW,
2007.

[10] K. Wang, Z. Wang, R. W. Topor, J. Z. Pan, and G. Antoniou,
“Concept and role forgetting in ALC ontologies,” in ISWC, 2009.

[11] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati, “Tractable reasoning and efficient query answering in
description logics: The dl-lite family,” JAR, vol. 39, no. 3, pp. 385–
429, 2007.

[12] O. Palombi, G. Bousquet, D. Jospin, S. Hassan, L. Revéret, and
F. Faure, “My corporis fabrica: A unified ontological, geometrical
and mechanical view of human anatomy,” in 3DPH, 2009.

[13] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[14] M. Y. Vardi, “The complexity of relational query languages,” in
STOC, 1982.

[15] A.Cali, G.Gottlob, and T. Lukasiewicz, “Datalog+-: a unified
approach to ontologies and integrity constraints,” in Proc. Intl.
Conf. on Database Theory (ICDT), 2009.

[16] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Record,
vol. 39, no. 4, pp. 12–27, 2010.

[17] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler, “Ex-
tracting modules from ontologies: A logic-based approach,” in
OWLED, 2007.

[18] ——, “Modular reuse of ontologies: Theory and practice,” J. Artif.
Intell. Res. (JAIR), vol. 31, pp. 273–318, 2008.

François Goasdoué is an Associate Professor
of Computer Science at Université Paris-Sud,
where he is member of the LRI (Laboratoire
de Recherche en Informatique). His areas of
research are Databases, Knowledge Represen-
tation & Reasoning, and the Semantic Web.

Marie-Christine Rousset is a Professor of
Computer Science at the Université de Greno-
ble, where she is member of the LIG (Labora-
toire d’Informatique de Grenoble). Her areas of
research are Knowledge Representation & Rea-
soning, Information Integration, Pattern Mining,
and the Semantic Web.

