Enseignement 000 . .o 0

Quelques difficultés

de l'enseighement

de l'algorithmique

et de la programmation
aux débutants

Pierre Tchounikine

Université Grenoble Alpes

Les travaux de recherche sur l'enseignement de l'algorithmique et de la
programmation aux débutants confirment un certain nombre de constats que
les enseignants connaissent bien : les éléves et les étudiants ne déve-
loppent souvent qu’une compréhension rudimentaire des notions ensei-
gnées; les échecs et abandons sont nombreux; les résultats sont souvent
polarisés avec un groupe qui réussit bien et un autre en grande difficulté.

Cet article propose un éclairage sur trois difficultés spécifiques, diffé-
rentes mais non indépendantes, qui contribuent a cette situation : le nombre
de notions abordées et leurs interrelations; le role des modéles mentaux; et
la question du transfert. Ces problémes se posent tant au niveau des L1
universitaires que de l'enseignement au lycée (j'utiliserai le mot « étudiant »
comme un terme générique pour «étudiant», «étudiante» et «éléve»). Les
éléments de réflexion proposés ici s’appuient sur les travaux de recherche
sur l'enseignement de Llinformatique et notamment les syntheéses
présentées dans [2,5,6], mes travaux de recherche personnels et une longue
pratique de 'enseignement en L1.

)OO0 por:10.48556/SIF.1024.26.11 1024, le bulletin de la SIF — 11

Densité et complexité de l'articulation notionnelle

Pour expliquer ce qu’est un programme informatique il faut en montrer un.

Le respect des traditions peut amener & commencer par le traditionnel
«Hello World » (en C, figure 1.a). Le souhait d’en profiter pour présenter aux

étudiants un programme plus proche des exercices a venir peut amener a
utiliser un exemple comme celui proposé en figure 1.b (en Python).

def pgl():
print(“Merci de donner votre nom")
#include <stdio.h> nom=input()
int main(void) print("Bonjour"”, nom)
{ rep=input("Vous avez déja fait de 1'informatique oui/non ?")
printf ("Hello World! \n"); if rep=="oui":
return 0; print("Bon, c'est bien, mais attention ...")

}

else:
print("Pas de souci, on part de zéro, mais ...")
print("Il va falloir bosser !!!")

() (b)

Fig. 1. Exemples de programmes présentables en début d’enseignement.

Prenons le programme Python. Lorsqu’on le présente a des étudiants débu-
tants ils devinent sans difficultés comment il fonctionne et ne sont pas
surpris par ce que produit son exécution (sauf parfois par le fait que le
dernier «print» s’exécute dans tous les cas).

Relisons maintenant le code en nous demandant : quelles sont les notions
nécessaires a la compréhension de ce programme et de son exécution? Il est
possible de prendre cette question a différents niveaux de granularité, mais
ce qui est shr c’est que la liste des notions impliquées est longue : programme
et fonction ; langage, syntaxe, sémantique, interpréteur, exécuteur ; mots clés,
syntaxe graphique, indentation; instruction (simple, complexe); variable,
identificateur, place mémoire, affectation, type, chaine de caractere, booléens
(ainsi que les entiers ou les réels si 'on prend un exemple numérique);
expression, égalité; conditionnelle; entrée-sorties, fonctions «print» et
«input» (et donc, possiblement, parametre, effet de bord, librairie?); et la
liste n’est pas exhaustive.

Ce que cet exemple illustre c’est qu'un programme Python basique — du
type de ceux dont on pense qu’il est légitime d’attendre des étudiants qu’ils
soient capables de le construire eux-mémes deés les premiéres semaines d’en-
seignement — implique un nombre trés important de notions. En fait, ce
programme Python mobilise une bonne partie des notions abordées dans un
cours d’initiation.

Premier point important : cette complexité n’est pas liée a I'exemple choisi,
elle est inhérente & I'informatique. Le programme «Hello World » implique

12 — P. Tchounikine 1024, le bulletin de la SIF

également un bon nombre de notions, et les explications que 'on doit fournir
aux étudiants pour qu’ils comprennent une instruction comme «x = 1»
impliquent bien plus que les notions de variable et d’affectation. Il n’est bien
évidemment pas nécessaire que les étudiants maitrisent parfaitement toutes
les notions listées ci-dessus pour commencer 4 programmer mais, que 'on
commence I’enseignement en présentant du code ou pas, il est difficile de ne
pas les aborder, d’'une facon ou d’'une autre, dés les premieres séances.

Second point important : la plupart des notions impliquées sont fortement
interreliées. Quelle que soit la facon dont on présente les choses, 'étudiant
débutant doit donc percevoir et articuler de fagon concomitante (plutot que :
une a une, et petit a petit) des notions qui, par ailleurs, relévent de différents
registres. Ainsi, les notions de «variable», «mémoire», «type», «affectation »
et «évaluation» sont de natures trés différentes, mais il est difficile de les
aborder indépendamment les unes des autres.

L'une des caractéristiques importantes de ’enseignement de I'informatique
a des débutants est donc la densité et la complexité de I’articulation notion-
nelle. En quelques séances, les étudiants doivent comprendre ou, a minima,
développer une perception a peu pres cohérente de ce qui, représenté sous
forme d’une carte conceptuelle, correspond & un graphe de plusieurs dizaines
de nceuds densément interconnectés. Le nombre de notions a présenter
avant de pouvoir commencer a faire des exercices impose aux enseignants
d’adopter un rythme soutenu, et les étudiants débutants se voient quasi-
instantanément plongés dans un nouveau monde conceptuel auquel ils
doivent donner sens tres vite.

Les travaux de recherche montrent que cette caractéristique joue un role
important dans les difficultés des étudiants et la polarisation des résultats.
Nous (humains) apprenons de fagon constructive, en accrochant de nouvelles
connaissances a celles dont nous disposons déja et en bousculant, étendant
ou corrigeant celles-ci. Assimiler en méme temps plusieurs notions, en parti-
culier lorsqu’il est difficile de les percevoir a4 l'aune de ce que nous
connaissons déja (et qu’il y a de plus des faux amis, la notion de variable, par
exemple) est intrinsequement difficile et déstabilisant.

Les premiéres séances d’informatique sont donc treés différentes de celles
d’autres domaines — maths, physique, etc. — dans lesquels les étudiants ont
déja une base notionnelle sur laquelle s’appuyer pour comprendre et assi-
miler ce qui est vu en cours (domaines ou, par ailleurs, les premiers cours
reprennent souvent des éléments de 'année précédente, ce qui peut encore
accroitre la déstabilisation des étudiants face aux premiers cours d’informa-
tique ou, dés le départ, les étudiants doivent comprendre de nouvelles
notions). Lorsque chaque cours introduit plusieurs notions nouvelles et que
leur maitrise est nécessaire a la compréhension de celles du cours suivant, la
moindre difficulté contamine le reste. Par ailleurs, le fait d’apprendre et

Numeéro 26, décembre 2025 Difficultés de 'enseignement de I'algorithmique... — 13

réussir crée de la motivation et de la confiance, ce qui facilite les apprentis-
sages suivants, et a I'inverse ne rien comprendre de ce qu’il se passe crée une
dynamique négative, surtout quand les autres étudiants ont 'air de trouver
cela facile et que les messages d’erreurs et autres bugs ameénent a développer
des frustrations et des émotions négatives. Il s’enclenche donc des dyna-
miques positives (si 'on comprend assez rapidement les principes du
programme Python de la figure 1, la suite — boucles, conditionnelles imbri-
quées, etc. — ne pose généralement pas de difficulté spécifique) et négatives
(si 'on ne comprend pas trés vite, la suite devient impossible). Dit autre-
ment : si le fameux «déclic» (que je reformulerais en «l’étudiant dispose
d’'une carte conceptuelle suffisamment complete et cohérente pour lui
permettre de comprendre a peu pres ce qu’il se passe et commencer a réussir
quelques taches») ne se fait pas rapidement, les étudiants présentant les
atouts généraux de la réussite (assidus, motivés, tenaces, sans soucis maté-
riels ou personnels trop importants) peuvent rattraper le coup, mais pour les
autres cela devient trés vite mission impossible.

Les implications pour la conduite de I’enseignement sont assez directes :

— expliquer aux étudiants cette caractéristique de ’enseignement de l'infor-
matique pour les aider a4 ne pas paniquer et a comprendre les efforts qu’ils
doivent faire («il faut travailler des le début» est une consigne générale
qui vaut pour tous les enseignements, mais qui prend un sens et une
importance spécifiques en informatique);

— g’assurer que les étudiants comprennent les notions et ne développent pas
des modeles mentaux obérant la suite des enseignements (cf. section
suivante) en leur demandant de reformuler les choses avec leurs mots (par
exemple, ce qu’est un type ou une structure de contrdle) ou encore de
critiquer des bouts de code qui «marchent» mais sont incorrects ou discu-
tables (par exemple des constructions comme «expression booléenne ==
true» ou l'utilisation d’'un «return» qui brise indiment une conditionnelle
ou une boucle) : contrairement & beaucoup d’autres domaines les étudiants
peuvent utiliser des notions d’'une facon qui leur semble satisfaisante ou,
en tout cas, leur permet d’obtenir un programme «qui marche», alors
qu’en fait ils ne les comprennent pas vraiment;

— ne pas penser que 8’'il y a un groupe d’étudiants qui avance bien cela veut
dire que les autres ne travaillent pas assez (de fagon contre-intuitive, les
étudiants ayant rapidement compris les bases peuvent avancer et réussir
en travaillant beaucoup moins que certains autres qui se débattent et s’en-
ferrent en essayant de suivre sans maitriser les concepts de base);

— réfléchir avec attention aux choix pédagogiques que I'on opére (choix des
notions traitées et des notions omises ou seulement mentionnées, degré de
simplification — voire, de correction — auquel on présente les choses) en

N

fonction des étudiants et des objectifs a terme de l’enseignement (par

14 — P. Tchounikine 1024, le bulletin de la SIF

exemple, insister dés le départ sur la notion de type pour préparer le

passage du paradigme impératif au paradigme orienté objet);

— garder en téte que des explications qui sont claires et pertinentes lorsque
I'on dispose d’'une carte conceptuelle cohérente (comme c’est le cas pour
Penseignant) peuvent étre incompréhensibles, voire contre-productives,
lorsque la carte conceptuelle avec laquelle on les recoit est clairsemée ou
inexacte (comme c'est le cas, a des degrés variables, pour tous les
étudiants).

Il est également possible de chercher a gérer ces difficultés en réfléchissant a

Porganisation des enseignements et & sa cohérence avec les points évoqués ci-

dessus. En effet, la structure d’enseignement standard (enseignement a un

groupe d’étudiants, TP et projets en binémes) ameéne a gérer de facon

synchrone des étudiants qui ne peuvent pas avancer au méme rythme, et il

est difficile d’aider les étudiants qui présentent des difficultés conceptuelles

sans abandonner ceux qui ont passé l'obstacle et dont il faut nourrir la
motivation.

Pour essayer de gérer ou au moins de limiter cet écueil il est possible de
s’'inspirer des initiatives visant a ’aborder de facon radicale, par exemple les
modeles de type «mastery learning» : le programme d’enseignement est
découpé en étapes ciblant chacune un petit nombre de notions et de compé-
tences ; pour chaque étape, I'étudiant dispose de ressources lui permettant de
travailler & son rythme (par exemple, documents ou vidéos et exercices auto-
corrigés); lorsque I'étudiant se sent prét il passe un test (par exemple, des
exercices de programmation tirés au hasard d’'une banque d’exercices); si le
test démontre une bonne maitrise des notions et compétences de cette étape
il passe a la suivante, et sinon il continue a travailler et s’entrainer a I’étape
courante avant de repasser le test (jusqu'au succeés, sans pénalité liée au
nombre d’essais). Différentes formes de support additionnel peuvent étre
proposées, par exemple le fait de passer les tests avec des enseignants ou
tuteurs (ce qui permet de faire un point avec 1’étudiant) ou encore de
proposer des séances de questions-réponses apportant a la fois une aide et un
rythme de référence. Confer, par exemple, les expériences relatées dans [3,4].

La mise en ceuvre de ce type de modele pose des problémes organisa-
tionnels importants (et probablement rédhibitoires dans la plupart de nos
structures d’enseignement), et par ailleurs n’a pas que des avantages. Ainsi,
si ce type d’enseignement semble amener les étudiants & développer des
connaissances moins parcellaires et moins fragiles, il ouvre la porte a des
comportements de procrastination ou d’efforts a minima (juste suffisants
pour passer le test)!. Les principes, propriétés et limites de cette approche

1. Il y a la un point de discussion incident : que faire d'une méthode d’enseignement qui permet aux
étudiants qui jouent le jeu de mieux réussir mais qui donne de moins bons résultats que la méthode
d’enseignement standard pour les autres, surtout quand ces derniers sont les plus nombreux ?

Numeéro 26, décembre 2025 Difficultés de 'enseignement de I'algorithmique... — 15

peuvent cependant étre une source d’inspiration pour l'organisation des
enseignements (rythme, contréle continu, etc.) et 'attention aux étudiants
au sein de nos structures plus traditionnelles.

Autre source d’inspiration : les travaux de recherche sur la charge cogni-
tive. Les situations de résolution de probléme ameénent les étudiants a
engager des efforts cognitifs liés a la tache (au fait de comprendre et
résoudre le probléme) et 4 Papprentissage (au fait d’apprendre). Les travaux
montrent que, lorsque les efforts liés a la tiche sont trop importants, cela
affecte négativement les apprentissages. Ce constat général s’applique direc-
tement a nos exercices d’'informatique standards («construire un algorithme
ou un programme qui...»), avec le facteur aggravant que la complexité des
interrelations entre les notions impliquées augmente fortement la charge
cognitive. Faire travailler les éleves sur des exercices corrigés (lecture et
analyse de programmes existants) ou sur des exercices d’arrangement et de
modification de bouts de code sont des moyens de limiter cet écueil. Il est
bien évident que l'on ne devient pas compétent en algorithmique et en
programmation sans construire des algorithmes et des programmes : les
activités de résolution de probléme sont fondamentales. Cela ne veut pas
dire qu’il ne faut enseigner que via ce type d’activité.

RoOle des modeles mentaux

Pour réfléchir et résoudre des problemes nous (humains) avons besoin
d’outils psychologiques qui nous aident a structurer nos processus de pensée.
Nous développons donc des modeles mentaux de, par exemple, la notion de
variable ou de ce qu’il se passe quand on lance l'interpréteur Python sur le
code présenté en figure 1. Sans surprise, les modeles mentaux que déve-
loppent les étudiants ne sont pas toujours corrects ni pertinents, et cela crée
des obstacles aux apprentissages.

a=1 a=1 B 11=[1,2, 3]
b=2 b=2 1=[] 12=11
c=a+b c=a/4.6 + b 1.append(3) 12.append (4)
(@) (b) (© (d)
lecture des données import random
f=open ("data.txt") x=random.randint (1, 10)

(€ V)

Fig. 2. Affectations en Python.

16 — P. Tchounikine 1024, le bulletin de la SIF

Prenons les instructions Python présentées en figure 2. Le modele selon
lequel une variable est «une boite avec une valeur dedans»? et une affec-
tation est «le fait de mettre une valeur dans la boite», modeles que 'on
enseigne ou que les étudiants construisent spontanément, permettent de
comprendre certains aspects de ce qu’il se passe quand on lance 'interpré-
teur, mais certains seulement : cela marche bien pour le code (a); cela ne
rend pas compte du transtypage en (b) ou encore de la premiere instruction
en (c¢), qui vise moins & «mettre une liste vide dans 1» qu’a indiquer que 1 est
une liste et donc permettre les opérations associées aux listes; cela marche
assez bien pour expliquer et comprendre une partie de ’acces partagé créé en
(d), mais une partie seulement; pour (e), ces modeles marchent mal. Les
modeles véhiculant 'idée qu'une variable c’est «un identifiant, un type et une
valeur», et qu'un type c’est «un ensemble de valeurs et un ensemble d’opéra-
tions» permettent de compléter la vision de ce qu’il se passe pour certains de
ces cas (mais il y a peu de chances que les étudiants développent sponta-
nément ce type de modele, d’ou limportance des points d’attention
mentionnés précédemment).

De méme, les modeles selon lesquels «un ordinateur c’est essentiellement
un processeur qui travaille sur de la mémoire» et «chaque ligne d’un
programme Python définit une action qui va étre appliquée» marchent assez
bien. Un étudiant ayant développé cette fagon de voir les choses a peu de
raisons de la remettre en question : il n’y a pas besoin de déclarer les
variables en Python, les instructions que les étudiants sont amenés a lire ou
écrire sont trés souvent des actions sur des variables, et pour les lignes de
type «if» ou «while» la notion d’action peut étre facilement étendue a
«passer a un autre bout de code ». Malheureusement, cela va poser des soucis
pour comprendre les typages évoqués ci-dessus (une ligne comportant une
affectation a en fait plusieurs effets) ou les codes en (e) et (f). Comprendre
que, outre la spécification d’'une action sur des variables, une ligne de code
puisse avoir des finalités aussi différentes que de définir une structure
(e.g. une fonction), d’aider les programmeurs qui reliront le programme (ou
nourrir le générateur de documentation), permettre la gestion de la mémoire
et la vérification de la cohérence des opérations (typage), donner accés au
contenu de librairies ou interfacer des opérations liées au systéme d’exploi-
tation est loin d’étre intuitif. Et, bien entendu, expliquer tout cela dés que
I'on commence a lire ou écrire des programmes, i.e. dés les premiers cours,
n’est probablement pas une bonne idée (cf. section précédente).

Premiére implication : il est important d’enseigner, trés explicitement, des
modeles permettant de comprendre ce qu’il se passe a 'exécution. Ne pas le
faire (ce qui, d’apres les enquétes, est assez fréquent), c’est-a-dire laisser les

2. La fagon de parler des notions informatiques que je reprends ici correspond au type de discours
que l'on entend fréquemment dans un cours d’initiation, pas a ce que je propose d’enseigner.

Numeéro 26, décembre 2025 Difficultés de 'enseignement de I'algorithmique... — 17

éleves développer un modeéle mental idiosyncratique de comment fonctionne
Pexécution du code, ouvre la porte a des conceptualisations potentiellement
contre-productives. Il est d’autant plus important d’enseigner ces modeles
que lorsque nous (humains) avons développé un modele qui nous est utile, il
nous est tres difficile d’en changer, et c’est un comportement assez rationnel.
Il ne suffit donc pas d’expliquer comment il faut voir les choses, i.e. le modeéle
dont on pense qu’il va le mieux aider les étudiants & un stade donné d’ap-
prentissage, il faut également identifier et déstabiliser les fagcons de voir qui
sont improductives ou déléteres.

Seconde implication : un modele étant une simplification de la réalité
guidée par un but, le but poursuivi et I'intention du modele (ce qu’il permet
de comprendre et de faire) sont des choix d’enseignement majeurs. Comme
on 'a vu au début de cet article, 'un des besoins les plus urgents et impor-
tants de la plupart des étudiants est de gérer la masse de nouvelles notions
(et d’interrelations entre ces notions) des premiers cours. Les modeles
proposés aux étudiants devraient donc, a minima, prendre en compte ce
point.

Ainsi, et pour prendre un exemple non anodin et non consensuel de lien
entre les deux écueils évoqués ci-dessus (complexité notionnelle, modeles
mentaux), I'initiation & la programmation en Python commence souvent par
taper quelques instructions dans la console et regarder ce que cela donne;
I’étape suivante consiste & créer un fichier .py dans lequel on écrit un
ensemble de lignes effectuant une téche (e.g. lire les coefficients dune
équation de second degré puis afficher les solutions) et a évaluer le contenu
du fichier; quelques semaines plus tard, on structurera le code en fonctions.
La progression semble logique : on part du plus simple et on complexifie.
Ceci étant, on prend le risque que les étudiants développent des modeles
mentaux inadéquats de ce qu’est un programme ou une fonction (notamment
une confusion entre un programme et un fichier contenant des lignes de
code), et que cela leur rende plus difficile le passage vers la définition de
fonctions ou encore la compréhension des problémes que posent les variables
globales. Dans la mesure ot, en toute hypothése, la notion de programme est
(explicitement ou implicitement) présente dés le premier cours, chercher a
baisser la complexité notionnelle en écrivant des lignes de code sans les
structurer en fonctions ne présente pas que des avantages3.

3. Autre approche possible : le premier extrait de code montré est une fonction (figure 1.b) et, dés
les premiers TD et TP, les étudiants définissent des fonctions et les exécutent en invoquant leur
nom (comme ils le font pour lancer leurs applications sur leur smartphone ou leur jeux sur ordina-
teur). La distinction entre fichier et programme est claire (un fichier peut contenir une ou plusieurs
fonctions), et par la suite les notions de procédure et de fonction (au sens de sous-programmes) et de
parameétres apparaissent comme un affinement notionnel (et non comme un bouleversement d’une
facon de procéder que l'on avait eu du mal a apprendre et «qui marche »).

18 — P. Tchounikine 1024, le bulletin de la SIF

L'une des spécificités de l'informatique est que les rétroactions de la
machine (le compilateur ou linterpréteur signale les erreurs de syntaxe,
Pexécution du programme permet de constater §’il fait ce que I'on avait prévu
ou pas) permettent d’aborder certaines parties de ’enseignement de facon
«descendante» (typiquement : expliquer une notion puis l'utiliser) mais
également, dans une certaine mesure, «ascendante » (typiquement : proposer
aux éleves de tester des choses sur machine, puis donner du sens a ce qu’ils
ont constaté). Comme les étudiants peuvent créer des programmes sans
vraiment comprendre toutes les notions impliquées, ce peut étre (et, en tout
cas, c’est parfois utilisé comme) une fagon de résoudre le probleme du
nombre de notions & enseigner. Que la pratique soit utilisée comme une
application d’'un enseignement préalable ou pour amener les étudiants a
commencer & comprendre par eux-mémes via une succession d’essais et
erreurs, la centralité des activités de programmation et du couperet de I'exé-
cution par la machine («¢a marche» ou «¢a ne marche pas») a un effet
majeur sur les modeéles mentaux que développent les étudiants. Comme le
fait qu'un programme «marche» ou «ne marche pas» peut étre lié a diffé-
rentes choses, et n’est en tout état de cause pas le point le plus important,
vérifier (dés les premiers cours) que les étudiants développent des conceptua-
lisations cohérentes est un enjeu majeur.

Probléme du transfert

Le transfert se définit habituellement comme le mécanisme par lequel nous
réutilisons nos connaissances dans un nouveau contexte.

En informatique, les phénomeénes de transfert vont par exemple jouer un
role dans la facon dont les étudiants vont aborder leur second langage de
programmation. Ainsi, les connaissances acquises dans le contexte de la
programmation par agencement de blocs (e.g. en Scratch) peuvent faciliter
ou, au contraire, rendre plus difficile, le passage 4 un langage textuel comme
Python. Les conceptions développées via 'usage d'un langage de program-
mation impératif vont influer sur le passage aux langages fonctionnels ou
orientés objets. Etc.

Pour les débutants, le point sur lequel la question du transfert joue un réle
central et majeur reléve cependant de I'algorithmique : il s’agit du transfert
entre situations de résolutions de problemes, i.e. de la capacité a se rendre
compte que le probleme a résoudre présente des similarités avec des
probléemes déja rencontrés, et de s’en servir pour résoudre ce nouveau
probléme. Pour prendre quelques exemples typiques : se rendre compte que
«calculer 1a moyenne d’une liste de températures» c’est la méme chose que le
«calculer la moyenne d’une liste de notes» que l'on a traité en cours, et que
Pon peut donc utiliser le méme schéma algorithmique; que «chercher le

Numeéro 26, décembre 2025 Difficultés de 'enseignement de I'algorithmique... — 19

maximum d’une liste de températures» présente des similarités avec «cal-
culer la moyenne d’une liste de températures» (il faut passer sur tous les
éléments, on peut donc utiliser le méme type de boucle), mais que le trai-
tement a effectuer est différent; ou encore que «déterminer s’il y a un 20
dans la liste des notes» nécessite, comme pour «calculer la moyenne d’une
liste de notes», de parcourir cette liste (il y a des éléments communs réutili-
sables donc), mais que I'on n’a pas toujours besoin de parcourir toute la liste
et qu’il faut donc faire attention aux conditions d’arrét.

En tant qu’enseignants nous sommes souvent perplexes, pour ne pas dire
désemparés, devant 'incapacité de certains étudiants a voir que le probleme
proposé est similaire, voire identique a I’habillage preés, & un exercice déja
traité. Pourtant, cela correspond tout & fait aux résultats des travaux de
recherche sur le transfert. Il a été montré que les humains ont des capacités
générales de transfert (mais le fait que I'on puisse les améliorer par appren-
tissage est une question ouverte). En tant qu’enseignants, nous nous
appuyons plus ou moins implicitement sur ces capacités. Cependant, les
travaux empiriques montrent que cela marche souvent assez mal, et que les
résultats sont généralement trés en-decd de nos espérances (et de nos
croyances). Si 'on recentre sur 'informatique, et pour reprendre une polé-
mique ancienne mais toujours trés actuelle : I’hypothése selon laquelle I'algo-
rithmique et la programmation améliorent les capacités de résolution de
probléme était au coeur des travaux de Seymour Papert sur Logo (dont
Scratch est le successeur), les travaux empiriques des années 80 ont mené a
la conclusion que ce n’était généralement pas le cas, mais cette hypotheése
(positive, sympathique, enthousiasmante, gratifiante) reste cependant soli-
dement ancrée dans la téte de la plupart des enseignants d’informatique et,
par exemple, du renouveau des idées de Papert via la notion de «pensée
informatique » (computational thinking) proposée par Wing [7]. S’il y a certes
des expériences positives, la plupart des travaux sur la question montrent
malheureusement des résultats modestes, voire inexistants [1]. (Ceci ne doit
cependant pas nous conduire & arréter les travaux sur le sujet, notamment
car la question du transfert pose des probléemes méthodologiques qui rendent
les travaux extrémement complexes, ce qui peut et doit nous amener a consi-
dérer les résultats actuels, tant positifs que négatifs, avec précaution.)

L'une des raisons qui rendent ce constat (et donc sa prise en compte)
difficile est que les mécanismes d’abstraction et d’instanciation et l'utili-
sation de schémas (au sens large : types de boucle, schémas algorithmiques,
design patterns, types de problémes, frameworks) pour analyser les situa-
tions et résoudre les problémes sont des compétences fondamentales de I'in-
formatique. En tant qu’experts nous «voyons» les similarités (c’est le propre
de T'expertise) et nous savons que cette compétence est centrale. Mais, par

20 — P. Tchounikine 1024, le bulletin de la SIF

définition, les débutants ne sont pas des experts, et il est toujours difficile de
savoir ce que «voient» les autres.

Les implications sont assez simples : il ne faut pas penser que multiplier
les exemples d'un schéma algorithmique suffit pour que les étudiants en
inferent des structures abstraites pertinentes qu’ils pourront mobiliser pour
interpréter et résoudre de nouveaux problémes similaires; le transfert
spontané marchant trés mal, il faut aider les étudiants a détecter les simila-
rités entre problémes et entre solutions.

La difficulté qui se pose alors est que le fait d’enseigner d’'une fagon qui
favorise le transfert peut entrer en tension avec d’autres considérations.
Ainsi, I’enseignement 4 un niveau abstrait (par exemple, ’enseignement de
schémas algorithmiques génériques) favorise le transfert mais, malheureuse-
ment, les travaux montrent qu'un enseignement & un niveau abstrait est
souvent tres difficile pour des débutants (ils n’ont pas assez de connaissances
pour relier ces abstractions & des choses qu’ils connaissent déja et les
comprendre vraiment). Inversement, proposer des exercices instanciés sur
des cas concrets et des domaines sémantiques familiers des étudiants (par
exemple, la gestion de notes) facilite 'apprentissage mais, malheureusement,
les détails de surface ont souvent un effet négatif sur les modeles et les
schémas de résolution que développent les étudiants. De méme, faire
travailler les étudiants débutants sur des exercices résolus est treés efficace
(beaucoup plus que de les laisser sécher sur des tiches de construction d’al-
gorithmes ou de programmes) mais, malheureusement, ameéne a travailler
sur des cas particuliers et ne favorise donc pas 'abstraction.

Il faut donc trouver le difficile et délicat équilibre permettant d’aider les
étudiants a aller au-dela des exercices travaillés sans les perdre par trop
d’abstraction. Typiquement, proposer a des étudiants débutants d’analyser
un exercice comme un probléme d’optimisation est sans doute un peu ambi-
tieux. En revanche, analyser une répétition en termes de types de boucle
(«Pour», «Tant que») est devenu une pratique standard (dit autrement : ces
structures se sont révélées des abstractions accessibles et utiles). Mettre en
évidence des schémas algorithmiques de type «boucle de lecture et vérifi-
cation de données» (lire puis relire une donnée en boucle tant qu’elle ne
respecte pas les critéres de validité) ou «application d’un traitement & I’en-
semble des éléments d’une liste» est une option possible. Autres exemples :
«boucle pour chercher combien» (et la notion d’accumulateur), «boucle pour
chercher si» (et les notions de criteres et de drapeau), «boucle pour chercher
tous les», etc. Quels que soient les choix opérés, les travaux montrent que
Iintroduction de termes permettant de nommer des buts intermédiaires (ce
qu’il faut faire pour mettre en place les schémas algorithmiques enseignés)
contribue aux transferts futurs.

Numeéro 26, décembre 2025 Difficultés de 'enseignement de I'algorithmique... — 21

[1]
[2]

[3]

[4]

[5]

[6]

[7]

Références

Peter J. Denning, and Matti Tedre. 2019. Computational thinking. MIT Press.

Mark Guzdial, and Benedict du Boulay. 2019. The History of Computing Education
Research. In S. A. Fincher & A. V. Robins (Eds.) The Cambridge Handbook of
Computing Education Research. Cambridge, UK: Cambridge University Press,
p. 11-39.

Brendan McCane, Claudia Ott, Nick Meek, and Anthony V. Robins. 2017. Mastery
learning in introductory programming. In Proceedings of the Nineteenth Austra-
lasian Computing Education Conference, ACM, New York, NY, USA, p. 1-10.
Claudia Ott, Brendan McCane, and Nick Meek. 2021. Mastery Learning in CS1-An
Invitation to Procrastinate?: Reflecting on Six Years of Mastery Learning. In Procee-
dings of the 26th ACM Conference on Innovation and Technology in Computer
Science Education V1, New York, p. 18-24.

Anthony V. Robins. 2019. Novice programmers and introductory programming. In S.
A. Fincher & A. V. Robins (Eds.) The Cambridge Handbook of Computing Education
Research. Cambridge, UK: Cambridge University Press, p. 327-376.

Anthony V. Robins, Lauren E. Margulieux, and Briana B. Morrison. 2019. Cognitive
sciences for computing education. In S. A. Fincher & A. V. Robins (Eds.) The
Cambridge Handbook of Computing Education Research. Cambridge, UK:
Cambridge University Press, p. 231-275.

Janet Wing. 2006. Computational thinking. Communications of the ACM, 49(3),
p. 33-35.

22 — P. Tchounikine 1024, le bulletin de la SIF

