
Workshop Notes of the
International Workshop on
Parallel Data Mining

in conjuction with SIAM DM 2011

Alexandre Termier (Ed.)

Mesa, Arizona, U.S.A., 30th April 2011

Preface

Today is an exciting time to be a data mining researcher. There is a huge quantity of
available data, and a high demand for knowledge extraction from this data that only
data mining can provide. Moreover, with the democratization of parallel computing solu-
tions, be it multicore processors, GPUs, clusters or grids, there has never been more raw
computing power available.

There is a catch however: parallel computing power does not come for free. Designing
efficient parallel algorithms requires new skills, many of which are yet to discover. Most
current programming language does not make parallel programming easy, leading to new
research on different ways of programming. Then performance analysis, which is a crucial
point for data mining algorithms, get much more complex, as the scaling with the number
of computing elements must also be studied. Bad performance can be caused by an
inefficient usage of the underlying parallel system architecture. These problems quickly
arise as data mining algorithms often need to perform complex computations on huge
volumes of data, with irregular and unpredictable computing loads, and generating large
quantities of intermediate data and/or results. This pushes the parallel architectures to
their limits, forcing data mining researchers to get a precise understanding of how these
architectures work and to rethink existing algorithms.

The goal of this first Parallel Data Mining Worshop is to provide a venue for all
data mining researchers working on parallel data mining, whatever the parallel support
used. Despite differences in support, the main problems of parallelism remain the same,
discussions between researchers working on different parallel supports or different domains
of data mining will allow cross-fertilization and help everyone to progress.

This first edition of the workshop on a still young domain attracted a modest number of
3 submissions, which were all found satisfactory by the reviewers. Fortunately, the three
papers cover a range a parallel data mining problems: the first paper uses parallelism
on multicores for classification, the second one presents pattern matching techniques on
GPU, and the last one deals with load balancing of data mining tasks in grids and clouds.
This will give the workshop audience a nice overview of parallel data mining in various
environments, which will be completed with invited talks.

We thank the SDM conference for their support, the program comittee for their de-
tailed reviews, and the authors for the quality of their submissions.

Alexandre Termier

II

Program comittee

Chair: Alexandre Termier (Grenoble University, France)
Alexandre.Termier@imag.fr

Srinivasan Parthasarathy (Ohio State University, USA)

Georges Karypis (University of Minnesota, USA)

Shirish Tatikonda (IBM Almaden, USA)

Geoffrey C. Fox (Indiana University, USA)

Anne Laurent (University of Montpellier 2, France)

Jean-Francois Mehaut (Grenoble University, France)

Benjamin Negrevergne (Grenoble University, France)

Claudio Lucchese (ISTI-CNR Pisa, Italy)

Nicolas Hanusse (Bordeaux University, France)

Sadok Ben Yahia (Tunis-El Manar University, Tunisia)

Mario Rosario Guarracino (ICAR-CNR, Italy)

Domenico Talia (University of Calabria, Italy)

Maurice Tchuente (University of Yaounde 1, Cameroon)

III

Table of contents

Aerial Root Classifiers for Predicting Missing Values in Data Stream Decision Tree
Classification
Yang Hang, Simon Fong, Wei Chen 1-10

Monitoring Multiple Streams with Dynamic Time Warping using Graphic Processors
Jason Chang, Mi-Yen Yeh 11-20

Supporting Dynamic Load Balancing in a Parallel Data Mining Middleware
Tekin Bicer, Gagan Agrawal 21-30

IV

Schedule

Workshop date: April the 30th, 2011, 1.30pm - 4.30pm

• 1.30pm - 2.30pm: Invited talk: Pr. Gagan Agrawal, The Ohio State Uni-
versity

• 2.30pm - 3.00pm: Aerial Root Classifiers for Predicting Missing Values in Data
Stream Decision Tree Classification
Yang Hang, Simon Fong, Wei Chen

• 3.00pm - 3.30pm: Coffee break

• 3.30pm - 4.00pm: Monitoring Multiple Streams with Dynamic Time Warping
using Graphic Processors
Jason Chang, Mi-Yen Yeh

• 4.00pm - 4.30pm: Supporting Dynamic Load Balancing in a Parallel Data
Mining Middleware
Tekin Bicer, Gagan Agrawal

V

Aerial Root Classifiers for Predicting Missing Values in Data Stream

Decision Tree Classification

Yang Hang ∗ Simon Fong † Wei Chen ‡

Abstract
Data Stream Mining (DSM) is a new breed of data min-
ing algorithms that handles continuous data streams and
predicts (or classifies) a target value on the fly. Such data
streams are inevitably prone to have missing values. Some
common examples include temporary malfunction of a sen-
sor that feeds continuous data streams; and interruption on
a flow of data communication signals may give rise to miss-
ing data in the input of a data stream miner. Consequently,
the missing data lead to deterioration on the accuracy of the
data stream miner. Several techniques exist for dealing with
missing data in traditional data mining algorithms, such as
setting a default value or eliminating the records that have
missing data. Another classical technique is to estimate or
predict a missing value by statistically computing the mean
of all other values of the attribute. This does not work for
DSM because the training and testing by DSM is dynami-
cally done over a moving stream of data instead of scanning
through a complete dataset (as in traditional data mining).
Inspired by the aerial root in biology, we propose a method
that combines sliding window technique, feature selection,
Hoeffding tree classification as well as adventitious root con-
cept to deal with missing values. As a spontaneous sidekick
to the main DSM classifier, Aerial Root Classifier (ARC)
is implemented with sliding window for predicting missing
values, which may work even if concept-drift happens. A
row of ARC’s and HTA are running in parallel, with one
ARC corresponds to an attribute of the data stream. For
efficient operation, only a partial set of ARC’s are chosen
to be activated via dynamic Feature Selection. We built a
JAVA-based simulation system for conducting experiments
with various types of datasets. Improved accuracy was ob-
served by applying this new ARC algorithm.

1 Introduction.

Missing data has been a known problem in data mining
for the fact that seldom data can be perfectly collect-
ed from a perfect environment. Data are often infest-
ed with all kinds of transmission errors and external
interferences. For example, intermittent downtimes at
a faulty communication link, temporary unavailability
of a data source, and even human errors would result
in missing data in computing environment. As a pre-
processing step in knowledge discovery process, missing

∗Department of Computer and Information Science, University

of Macau.
†Department of Computer and Information Science, University

of Macau.
‡Department of Computer and Information Science, University

of Macau.

data are traditionally ignored or treated by assigning
a special value into the corresponding data field. The
special value can be either a default value arbitrarily set
by the user or a statistical mean of all other values per-
taining to the attribute. Although this preprocessing
approach in general works well in traditional data min-
ing, aspects of missing data or incomplete data are still
a pretty much unexplored research area in the emerging
data stream mining.

Amongst many DSM methods, real-time decision
tree classification is a favorite technique because it is
found useful in many applications that require instan-
t decision-making over the continuous input of data
streams. Hoeffding tree algorithm (HTA) is a famous
decision tree classification technique for high speed da-
ta stream mining [1]. In contrast of traditional data
mining, specifically induction-based decision tree, H-
TA has the following properties. Stationary and Un-
stationary data input: the HTA classifier should have
ability to process infinite volume of data arriving at vari-
able speeds. Limit memory space: only a limited mem-
ory space is available to the HTA classifier in online
service, which means the classifier has to scan only a
segment of input samples at a time. Very fast response:
the computation time is governed by QoS, which must
satisfy the real time requirement within a stringent time
threshold. High applicability for incomplete data: the
incoming data stream may be incomplete that carries
missing values; the classifier must be able to process
imperfect data. In the past, researchers often assumed
DSM algorithms were inputted with perfect data at con-
stant rate and without missing values. To the best of
our knowledge no work has been done in studying in-
complete data in DSM.

2 Previous work and motivation.

In the traditional preprocessing approach, it may be fine
that missing data being ignored when a large volume of
training dataset is used for constructing an information-
gain induced decision tree model (e.g. C4.5), as long
as the missing values represent only a minority of the
whole dataset. However, missing data is more impactful
to DSM because of the streamlined nature of the HTA

1

algorithm. The algorithm scans the input samples only
one at a time in order to relieve the bottlenecks of
time and memory of computation. As mentioned in
[2], that it may be sufficient to use a small number
of available samples when choosing the split attribute
at any given node for building a HTA decision tree.
The statistical method is known as Hoeffding bound
or additive Chernoff bound, which are used to solve
the difficult problem of deciding exactly how many
samples are necessary at each node by using a statistical
result [8] . For this reason, every sample matters
and counts in the computation of Hoeffding bound
algorithm. On the other hand, due to the dynamic
nature of moving data streams and the data stream
miner can only view a limited portion of the data at
a time, estimating a suitable figure for a missing data
from the full set of data becomes technically difficult.
In reality, the data samples from data stream might
fluctuate and they are perforated with incomplete values
as they arrive and to be mined a portion at a time.
Therefore, for stream mining, each pass of data input
has a limited size as large as the given sliding window.
One or several pieces of missing data may occupy a
significant population of the input data in a window.
The traditional preprocessing techniques for handling
missing values became undermined.

In our previous work [3], [4], we examined the effect
of Internet traffic on Hoeffding bound which is one of
the key performance indicators in stream mining. We
found that the fluctuation of data rate in real-time os-
cillates the error which causes frequent HTA tree re-
construction, that degrades the overall HTA accuracy
as a result. But the previous study was based on the
assumption that data are always complete (without any-
thing missing) in a given network environment. In this
paper, we propose a method called Aerial Root Classi-
fiers (ARC) that is based on HTA to deal with missing
values included in data stream. One ARC is supposed
to estimate missing values of a particular attribute of
the streaming data. A row of ARC’s operate in with
the main HTA classifer, which collectively predict the
missing values (if any) for their corresponding attribute
fields.. As the results of experimental comparison shown
in this paper, ARC-HTA improves the overall decision
tree classification accuracy in DSM comparing to the
existing methods. This paper is structured as follow:
Section 3 provides the relevant background knowledge
such as the decision tree classification for both tradi-
tional and DSM, preprocessing techniques and the ter-
m of ”aerial root” in biology. Section 4 proposes our
innovative method for predicting missing values in da-
ta stream; Section 5 discusses the experimental results
that show the performance of ARC-HTA in comparison

to the old ones. A conclusion then followed at the end.

3 Background.

3.1 Traditional decision tree classification. The
decision tree structure in DSM, which is similar to that
of traditional data mining, is represented by a tree-like
graph of paths leading to consequences through stages
of conditional tests. In this paper we generalized the
classifier to be named as a traditional decision tree
(TDT) model with classical algorithms such as ID3 [5],
C4.5 [6], and CART [7], etc. All of them need to
scan the full set of data from database at least once
to construct a tree-like format. When new data comes,
TDT has to scan the whole database once again to
update the decision tree model. This approach works
on not very large database or low speed data stream.
However, under the information booming, we are facing
a huge amount of data. Retraining the decision tree
model by scanning the whole database many times
may not be feasible for real-time applications nowadays.
For this reason, some researcher proposed incremental
computing methods of decision tree, which need not
multi-scanning the whole dataset, such as DSM.

3.2 Hoeffding tree algorithm (HTA) in DSM.
As highlighted in [2], it may be sufficient to use just
a small available data sample for choosing the split at-
tribute at any given node for a decision tree. This sta-
tistical method is known as Hoeffding bound or additive
Chernoff bound, which is used to solve the difficult prob-
lem of deciding exactly how many samples are necessary
at each node by using a statistical result [8], [9], [11],
[12], [13], [10]. Researchers from the literature cited
above attempted to innovate new algorithms that can
restrict the tree size in available memory so as to deal
with very large data amount.

VFDT (Very Fast Decision Tree) system [8] con-
structs a decision tree by using constant memory and
constant time per sample. It is a pioneer predictive tech-
nique that utilities Hoeffding bound. The tree is built
by recursively replacing leaves with decision nodes. The
sufficient statistics of attribute values are stored in each
leaf. Heuristic evaluation function is used to determine
split attributes converting from leaves to nodes. Nodes
contain the split attributes and leaves contain only the
class labels. The leaf represents a class that the sam-
ple labels. When a sample enters, it traverses the tree
from root to a leaf, evaluating the relevant attribute at
every single node. After the sample reaches a leaf, the
sufficient statistics are updated. At this time, the sys-
tem evaluates each possible condition based on attribute
values, if the statistics are enough to support the one
test over the others; a leaf is converted to a decision

2

node. The decision node contains the number of possi-
ble values for the chosen attribute about the split-test
installed.The main elements of VFDT include: Firstly,
state the tree only has a single leaf - the root of the
tree. Secondly, define the heuristic evaluation function
(denoted by G(.)), which builds a decision tree with
Information Gain like ID3.The Information Gain mea-
sures that amount of information which is necessary to
classify a sample that reaches the node in terms of (3.1).
The sufficient statistics estimates the merit of a discrete
attributes counts nijk, representing the number of sam-
ples of class k that reach the leaf where the attribute j
takes the value i. The information of the attribute j is
given by (3.2), where Pik is the probability of observing
the value of the attribute i given class k.Pi in(3.3) is the
probabilities of observing the value of attribute i.

G(Xj) = info(samples)− info(Xj)(3.1)

info(Xj) =
∑
i

Pi

(∑
k

−Pik log (Pik)

)
(3.2)

Pik = nijk/
∑
a

najk(3.3)

Pi =
∑
a

nija/
∑
a

∑
b

najb(3.4)

ε =

√
R2 ln (1/δ)

2N
(3.5)

For n independent observations of a real-valued
random variable r whose range is R, Hoeffding bound is
calculated as in (3.5). It illustrates that with confidence
level (1− δ), the true mean of r is at least (r̄ − ε) , where
r̄ is the observed mean of samples. For a probability
the range R is 1, and for an information gain the range
R is logClass#. An important part of VFDT is the
use of Hoeffding bound to choose a split attribute as
the decision node. Let Xa be the attribute with the
highest G(.), Xb be the attribute with second-highest
G(.). Therefore ∆Ḡ = Ḡ (Xa)− Ḡ (Xb) is the difference
between the two top quality attributes. If ∆Ḡ > ε with
N samples observed in leaf, while the Hoeffding bound
states with probability (1− δ) that Xa is the attribute
with highest value in G(.). Then the leaf is converted
into a decision node which splits on Xa.

In large volume continuously-changing data stream,
concept-drift might happen. VFDT is built on the as-
sumption of random samples drawn from a stationary
distribution that it cannot suit time-changing learning
approach. CVFDT (Concept-adapting Very Fast De-
cision Tree) [9] applies VFDT with a sliding window

technique. As the new samples arrive, they are inserted
into the beginning of the window; a corresponding num-
ber of samples are removed from the end of the window
so that the learner is up-to-date. Additionally, CVFDT
imports a parameter γ , where ∆Ḡ < ε < γ . γ is a
user-defined threshold that reduce the computation of
∆Ḡ . The choosing split attribute method of CVFDT
is the same as VFDT, both using Information Gain.

CV FDTNBC [10] adopts naive-Bayes Classifiers in
the leaf nodes of a decision tree induced by CVFDT
so as to detect concept-drift. Both CVFDT and
CV FDTNBC generate alternative sub-trees while con-
cept drift being detected. If the sub-tree accuracy is
higher than the old one, the alternative one will replace
the old one whose root node is a node. But since n-
odes close to the root node store a lot of samples, it
is difficult to detect concept drift quickly in the case
of abrupt concept drift. VFDTc [11] proposes to bring
a performance of Hoeffding tree similar to traditional
decision tree algorithms like C4.5. Besides large size
data, VFDTc also suits medium size data so that the
system can be any-time property. It uses two classifier
strategies at leaves: majority class classifier and naive-
Bayes classifier. For continuous attributes, naive Bayes
are efficiently derived from tree used to store numeric
attribute values. But the overhead is with respect to
the use of majority class because the former requires
the estimation much more probabilities than the latter
one. In the early study of HTAs, most of them concern
on how to build a decision tree with a high accuracy in
data stream, and how to deal with concept-drift prob-
lem. However, we investigate in this paper on how to
solve the missing values problem in DSM.

3.3 Methods of estimating missing values.
Missing values and noise data are unavoidable in real
world data stream. They are introduced because of var-
ious reasons, such as human fault in manual data entry,
incorrect measurements, and equipment errors. In gen-
eral, there are two ways of defining missing value rate
[14]: the percentage of predictor values that are missing
from the data set (the value-wise missing rate), and the
percentage of observations that contain missing values
(the case-wise missing rate). There are another three
different mechanisms of introduction of missing values:
missing completely at random (MCAR), missing at ran-
dom (MAR), and not missing at random (NMAR) [15],
[16]. Only MCAR case is where the analysis of the re-
maining complete data could give a valid classifier pre-
diction according to the assumption of equal distribu-
tions [16]. MCAR is introduced when the distribution
of an example having a missing value for an attribute
does not depend on either the observed data or the miss-

3

Figure 1: Aerial root in bio-system of a Banyan tree.

Figure 2: Abstract tree-like graph of aerial roots.

ing data. In this paper, we concern on the value-wise
MCAR missing data.

In DSM research, how to detect concept-change by
noise-carrying and missing values included data is an
open problem. Streaming Ensemble Algorithm (SEA)
[17] takes an ensemble approach using an unweighed
majority vote, similar to bagging to detect the concept-
change in data stream. Weighted Classifier Ensemble
(WCE) [18] is based on the author proof that a care-
fully weighed classifier ensemble built on a set of data
partition. WCE divides previous data into sequential
chunks of fixed size, builds from each chunk a classifi-
er to improve classification accuracy on the most recent
chunk. A Flexible Decision Tree (FlexDT) [19] is pro-
posed to embrace the concept-change and noise-carrying
data stream using fuzzy logic and sigmoidal function.
But its run time becomes slower than CVFDT because
of fuzzy functions.

3.4 Aerial root in biology. Decision tree structure
is derived from the life-form of a tree in nature. In
addition to the primary tree root, there is another type
called adventitious roots in nature, which grow from
positions away from the primary roots. Such roots grow
from the body of the main tree trunk and branches as
well (Figure 1). An aerial root is a typical adventitious
root growing above ground. They support the tree in
parallel together with the other roots. An abstract
tree-like structure of adventitious root bio-system is
presented in Figure 2. On top of the tree-like graph,
there are some aerial roots grown from the nodes and
the leaves of tree body to the normal root on the ground.
Each dashed line represents an aerial root in this tree.

4 Our proposed ARC-HTA algorithm.

Inspired by the aerial root in biology, we propose a
method for high speed data stream, combining sliding
window technique, feature selection, Hoeffding tree
classification as well as adventitious root concept to
tackle the problems of missing values. Concurrently
to the main HTA decision tree, multiple Aerial Root
Classifiers (ARCs) are implemented with sliding window
for predicting missing values, which may work even if
concept-drift happens. In maximum all the ARC’s are
used if the data fields of all the corresponding attributes
have missing data. This however doesn’t not scale up
well in performance especially if the data have many
attributes. Therefore, a feature selection technique is
applied to selectively activate only a partial set of ARC’s
in run time. In other words only those attributes that
are significant will receive the latest updated results
from their respective ARC’s. Otherwise, the ARC’s
are in dormant, and the least significant attributes
may retrieve estimated values from their ARC’s that
were updated some time ago. With this new ARC-
HTA scheme for subsiding adverse effect of missing
values and selectively activating ARC’s, we strike a
balance between improved accuracy and acceptable
computational requirements.

ARC is to be embedded into the operation of HTA
(that represents the main classifier), which we may
name it as ARC-HTA when they are running together
as one unified data stream mining software program.
Stream mining process is different from the traditional
train-then-test data mining. It works on a test-and-
train process which may keep an up-to-date decision
tree rule. Likewise, ARC is also working in the same
manner, using sliding window technique to train missing
value predictor with the data stream coming. The ARC
training process is running simultaneously with HTA
process. ARC-HTA is capitalizing on the fundamental
of Hoeffding tree algorithms, which uses Hoeffding

4

bound to choose split-attribute in a sequence of data
stream. To solve the problem of missing values, ARC’s
are used to predict the missing values, and the overall
tree sizes of ARC are kept within a sliding window size.
The feature selection mechanism decides which ARCs
should be updated during the DSM run time. Therefore,
ARC-HTA is consisted of two parts: the main classifier
is Hoeffding tree algorithm, which is applied for mining
streaming data; and Aerial root classifiers are used for
predicting missing values in parallel.

4.1 Main decision tree classifier - HTA. HTA
classifier scans parts of data stream and checks it across
with the Hoeffding bound and may choose a possible
split-attribute according to comparing the highest and
the second highest of G under the heuristic evaluation
(3.1) . We define a tree structure that is built in
terms of Hoeffding tree algorithm as HT; Xi is the
split-attribute which represents a node in tree structure,
n is the number of attributes (excluding class). C is
classified class label, which represents a labeled leaf in
tree structure. It is formalized as: HT (Xn) → C .
For example, there is a data stream that contains five
attributes (n=5),X = {X1, X2, X3, X4, X5} and a class
label C. Amongst them, the five attributes are used to
classify the target class C, where C represents a leaf in
tree-like graph of HT.

4.2 Missing values processor - ARC.

Definition 4.1. ARC: Let X = {X1, X2, . . . , Xn}, C
is the class label which is the predicted target in decision
tree. A Hoeffding tree (HT) using n attributes X to
classify the target class C and Xk is the attribute of
missing value.X∗ is the set of attributes excludes the
missing value, where X ∩ Xk = ∅. ARC structure
is illustrated as: ARCk (X∗, C) → Xk . ARC can
apply any classification method to predict the missing
values of an attribute in data stream. If k is the
number of attribute that contains a missing value, an
ARCk is constructed for predicting the missing values of
attribute Xk. ARC is updated with fresh incoming data
periodically bounded by the size of a sliding window
during HTA stream mining operation. The update
mechanism is combined with feature selection method
of data mining, so that the ARCs are necessary to be
refreshed only if the update condition is being met.

Definition 4.2. Feature selection: To reduce the com-
putation cost of ARC-HTA, we introduce feature selec-
tion method. The process to define the weight of at-
tributes relating to target class is different from tradi-
tional feature selection, the proposed one is applicable
for HTA within an available sliding window. Informa-

Figure 3: ARC-HTA flowchart.

tion gain is chosen as the selection method. During the
process of HTA to choose split attributes with Informa-
tion Gain, the rank of each attribute is recorded at the
same time. To reduce the computation resource, ev-
ery ARCi of Xi is assumed unnecessary to be updated
except the overall ARC error rate falls beyond to a pre-
defined bound. The weight of each attribute is decided
by the attributes rank of feature selection presented in
(4.6).

Definition 4.3. Update mechanism: Each ARC has
an error rate e, 0 ≤ e ≤ 1, the probability that
ARC will misclassify a randomly drawn test example
is e, calculated by (4.9). As §ARC Definition §, each
attribute Xi may have an ARCi to predict the missing
value in Xi. Combined with feature selection method,
we assign each attribute a weight, which indicates
relative importance to the target label C, as shown
in (4.6) and (4.7). The overall error rate of ARCs is
shown in(4.8). Equivalently, if an ARC classifies m

5

(very large) randomly drawn examples, the misclassified
number of examples is expected to be (m× E). A pre-
configured upper-bound β is the expected overall error
rate. The update condition is met only when β > E.
The priority of which ARC to be updated is relating
to the feature selection that ranks the attributes from
the highest pertinence the lowest. The update process
continues until E ≤ β.

ωi =
Ranki∑n
i=1Ranki

(4.6)

W =
n∑

i=1

ωi = 1(4.7)

E =
n∑

i=1

ωiei(4.8)

e =
CorrectClassifiedInstance#

TotalInstance#
(4.9)

4.3 ARC-HTA statement Aerial Root Classifier is
of a reversed tree growing approach, which uses the
missing value node as a predictive class label so that
an ARC can handle missing values. In data stream
mining, data is feeding in at a very fast speed so
that we are not able to multiple scan the whole data
to build ARCs. For this reason, we adopt a sliding
window technique which only needs to scan the most
recent data. Sliding window defines a window size that
only requires scanning the data within a window. The
window size can be time-based or item-based. In ARC-
HTA, we use an item-based window size to bind the
number of instances. As the aforementioned in the
previous definitions, Figure 5 indicates the work-flow
of ARC-HTA algorithm presented in the pseudo code
(Figure 4).

5 Experiments analysis.

5.1 Experiment platform. We build a decision tree
learning system based on Hoeffding tree algorithm,
which embeds ARC algorithm to deal with missing val-
ues in data stream. The method of ARC implementa-
tion is optional, that it has to deal with both nominal
and numeric data types. So far, we have imported the
popular methods of Mean mode, Naive Bayesian, C4.5
Decision Tree for nominal data, and Mean, Linear Re-
gression, Discretized Naive Bayesian, M5P for numeric
data. A simulation system is built based on JAVA open
source toolkit called WEKA and MOA stream mining,
including data stream generator and Hoeffding Tree al-
gorithm. The developing environment is under JAVA

HT: Hoeffding tree

ARC: Aerial root classifier

S: A sequence of instances

WS: Window size (the number of instances)

X: Set of attributes

δ: One minus the desired probability of choosing correct

attribute at any given node

β: The update strategy upper- and lower-bound

Procedure ARC (S, X, WS)

Load S into cache

FOR each xi from 1 to n in S:

 IF ARC is empty

 THEN BuildARC(X,WS)

 ELSE UpdateARC(X,WS,ββββ))

Use ARC to predict the missing value in xi

Until no attribute has missing values in X

Run HTA (S, δ) to build decision tree

 HT(X)�C

UpdateWeight(HT)

Return HT

BuildARC(X, WS):

FOR each xi from 1 to X.length in S:

IF xk has missing value

Use WS instances in S excluding xk to build ARC

Let X* = {x1, x2, …, xk-1, xk+1, … xn}

ARCk (X
*, C) � xk

Return ARC

UpdateStrategy(X,WS,ββββ):

W = {ω1, ω2,…, ωn}

IF current ARC’s error rate E≤ββββ

 Don’t need to update ARC

ELSE ELSE ELSE ELSE DO{

MaxWeightMaxWeightMaxWeightMaxWeight = arg maxω= arg maxω= arg maxω= arg maxωiiii

 BuildARC(BuildARC(BuildARC(BuildARC(xMaxWeightMaxWeightMaxWeightMaxWeight , WS))))

 RemoveRemoveRemoveRemove ωMaxWeightMaxWeightMaxWeightMaxWeight from W

} WHILE (E≤β)

Return ARC

Figure 4: Pseudo code of ARC-HTA.

6

JDK 1.5 and WEKA 3.6, The simulation system runs
on a 2.83 GHz 8G RAM PC.

5.2 Synthetic data stream. Through a pro-
grammed JAVA function, the simulation system ran-
domly adds missing values according to the user’s pre-
defined parameters. The missing values are either added
to the beginning or near the end parts of the data
streams, because we want to observe the impacts of
missing data at start-up and when the HTA reached
equilibrium respectively. Usually HTA will be unstable
at start-up until it reaches certain size of input data.
Three different datasets are generated as:

Table 1: Synthetic datasets test.
Name Attr# AttrV al Class# Instance#
LED7 7 Nominal 10 1, 000, 000
LED24 24 Nominal 10 1, 000, 000
SEA 3 Numeric 2 1, 000, 000

LED7 is a relatively simple dataset, which only
contains 7 nominal attributes. In this experiment,
we configure the missing data percentages (MDP) as
20%, 40%, 60%, 80% and 100%, by which chances are
missing values (blanks) are randomly inserted across
the data stream. When MDP=0%, the data stream
is complete and free from missing values. A higher
MDP is used, usually lower HTA accuracy is observed.
Figure 7 presents the HTA accuracy comparison when
missing data is added towards the end of data stream
where the training HTA model is mature and the
accuracy is supposed to be stable. In this set of
experiment, we want to show the impact of missing
values to the data stream mining. Missing values
impair the accuracy dramatically if the algorithm does
not have any mechanism to deal with the incomplete
data. Essentially this observation is the impetus of
our research work. We are motivated to find a robust
method for dealing with missing values in data stream
mining.

LED24 is a more complicated data stream with 24
nominal attributes and a total of one million instances
records. We add a MDP 50% of noise into this
dataset. To handle the incomplete data, ARC-HTA
is applied with different window sizes: 250, 500, 750
and 1000 units. The C4.5 decision tree function in
WEKA is chosen as the method of ARC construction.
From the experiment result shown in Figure 8, we
find that it has few differences between window sizes
in a very large data stream. But actually smaller
window size obtains a faster ARC-HTA computing
speed. Besides, we compare ARC-HTA to one of
common missing value solutions using the means to

Figure 5: Accuracy comparison of missing values in
LED7 dataset.

Figure 6: Accuracy comparison of missing values in
LED24 dataset.

replace those missing values; we find that our proposed
method has a better performance in data stream mining
than using the mean value. ARC-HTA provides a
function to check the performance of missing values
replacement. Comparing to the non-missing values data
stream, the result indicates how many correct/wrong
number of instances are using different methods to
replace the missing values (as shown in Table 2).

SEA is a data stream consisted of 3 numeric at-
tributes and one nominal class and one million in-
stances. We also add MDP = 50% amount of noise into
this data. To handle incomplete data, we try ARC-HTA
in different window sizes of 500, 750 and 1000 units. The
ARC is built by M5P function in WEKA. From experi-
ment result in Figure 9, we find that ARC-HTA obtains
a dissatisfying result due to processing the pure numer-
ic attributes. Nevertheless the accuracy is still a little
higher than that provided by using means.

7

Figure 7: Accuracy comparison of missing values in SEA
dataset.

5.3 Real-world data stream test. In this exper-
iment, we use a set of real-world data stream down-
loaded from KDD Cup 98 competition provided by the
Paralyzed Veterans of America (PVA) [20]. We use the
learning dataset (127MB) with 481 attributes both in
numeric and nominal originally. The total number of
instances is 95,412, more than 70% of which contain
missing values. Likewise to the experiments in §5.2§,
we compare ARC-HTA with the missing values replace-
ment method in WEKA by using means, and the re-
sult is shown in Figure 8. Considering the number of
attributes is very large, we apply a small window size
(WS=100) for building ARC. A complete dataset given
by PVA is used for testing ARC-HTA (115MB). From
the experiment result, we notice that using mean val-
ues to replace the missing data by WEKA filter has the
worst HTA accuracy. Although ARC-HTA dealing with
missing values dataset cannot have accuracy as good
as the complete dataset can, ARC-HTA performance
is much better than using means by WEKA to replace
missing values.

Another dataset from real-world is imported in the
experiment. This dataset can be downloaded from U-
CI Machine Learning [21], which is named Localization
Data for Posture Reconstruction data. Though the ob-
servation of tag identification sensor of body location
activities the learning motivation is to classify the differ-
ent human activities. Original dataset has 7 attributes:
Sequence Name (Nominal, X1); Tag identifier ID (Nom-
inal, X2); Timestamp (Numeric, X3); Date (Date, X4);
X coordinate of the tag (Numeric, X5); Y coordinate
of the tag (Numeric,X6); Z coordinate of the tag (Nu-
meric, X7); and the Activity label (Nominal, C). It
contains 164,860 instances. After using the full data
with Information Gain filter as the feature selection,

Figure 8: CUP98 dataset of PVA using in ARC-HTA.

Figure 9: Information gain feature selection.

the result is shown in Figure 9. We find the attributes
of Date and Time is the most important attributes of
the mining target class Activity. Amongst those three
coordinates, X has the highest ranking, which is more
than 40% higher than both of Y and Z. Missing val-
ues are added into the completed dataset so that it be-
comes incomplete. The scenario is chosen the Missing
Completely At Random (MCAR) method. 40% of to-
tal instances are replaced by missing values, which are
65,944 instances added completely at random. The dis-
tributions of missing values in different attributes are:
8,056 in Person Sequence Name; 8,165 in Tag Identifier
Sensor; 7,921 in Timestamp; 8,051 in Date; 8,092 in X
Coordinate; 7,943 in Y Coordinate; 7,995 in Z Coordi-
nate; and 8,141 in Activity Target.

The tested dataset includes numeric, date, and
nominal attribute types. We choose linear regression
as the ARC method of numeric attributes, and Naive
Bayesian as that of nominal attributes. In the first

8

30

32

34

36

38

40

42

44

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000 150000 160000

Number of Instances

A
c
c
u
r
a
c
y

(
%
)

MCAR Non-MV ARC:PersonSeqName ARC:TagIdentifier ARC:Timestamp

ARC:X Coordinate ARC:Y Coordinate ARC:Z Coordinate ARC:Date ARCs with FS

Figure 10: ARC-HTA overall accuracy.

experiment, we test the computation time and accuracy
for each attribute one by one. In Table 2, ARC
of Timestamp attribute and ARC of Date attribute
have the better HTA accuracy than others. However,
because the former applies regression as ARC method,
the computation time of both ARC construction and
missing value replacement consumes much longer than
the latter one. The accuracy of these two ARCs
are the best, which is corresponding to the previous
result of feature selection, which indicates attributes
of Timestamp and Date highly relate to the target
class Activity label. As the process of Information
Gain feature selection, ARC-HTA update the ARCs of
these two features more frequently so that the missing
value predictors of these two attributes are always Date
ARCs being updated in parallel, the overall accuracy is
improved in Figure 10.

Table 2: Performance of ARC of each attribute.ARC T:
the time of building ARC for Xi; MV T: the time of
replacing missing values; T: the time of running HTA.
Meth: ARC method selection, NB: Nave Bayesian,
REG: Linear regression.
Attr# Meth ARCT MV T Acc T
X1 NB 1.29 1.87 35.64 2.59
X2 NB 1.37 1.49 35.71 2.61
X3 REG 16.00 16.06 38.41 2.61
X4 NB 2.65 2.73 37.11 2.63
X5 REG 11.69 11.73 33.26 2.56
X6 REG 24.15 24.19 36.38 2.70
X7 REG 18.87 18.92 35.72 2.56
C NB 1.28 1.57 38.29 2.65

X3X4 NB,REG 19.82 19.87 37.79 2.71

5.4 Experiment result summary. To make a short
conclusion of our experiments. See from Table 3,
we find the overall accuracy of HTA is improved by
ARC integrated in all datasets. The most obvious
improvement appears in the PVA dataset, which have
the most number of attributes. SEA dataset has the
least number of attributes with the lowest improvement.
In other words, the more number of attributes data
stream has, the more beneficial ARC-HTA obtains.
Though ARC-HTA has had the mechanism of ARC
updating, the running time of HTA with ARCs still is
longer than that without ARC. The time consuming
is also depending on the number of attributes in data
stream because the more attributes a data stream has,
the more ARCs it may have to maintain. Thus, in our
future work, we may try to find a balance between the
time and accuracy using ARCHTA so as to make the
biggest benifit to DSM.

Table 3: Experiment result summary. MVT: the HTA
running time of without ARC, ARCT: the HTA running
time with ARC; MVA: the HTA accuracy without
ARC; ARCA: the HTA accuracy with ARC;ImpA: the
accuracy improvement percentage
Data MV T ARCT MV A ARCA ImpA
LED7 2.450 3.23 92.127 96.397 4.63
LED24 8.237 15.82 82.814 88.641 7.04
SEA 4.696 9.82 87.682 89.920 2.554
PV A 14.16 52.46 36.17 53.36 47.53
UCI 2.70 22.63 34.1 37.79 10.82

6 Conclusion

In this paper we proposed a solution for predicting miss-
ing values, called Aerial Root Classifier with Hoeffding
Tree Algorithm (ARC-HTA), which can perform data
stream mining in the presence of missing values. The
technique ARC is inspired by observing the adventitious
roots in biology. ARC is a parallel process running a-
long with HTA which is the main decision tree, which
is reponsible for predicting missing values and for min-
ing the data streams respectively. ARC-HTA integrates
techinques of sliding window, feature selection and clas-
sification of DSM. The dynanmic ARC update mech-
anism is roburst to data stream even if concept-drift
appears. A JAVA-based simulation is run as experimen-
tal platform. Experiment results unanimously indicate
that ARC-HTA has a better performance in accuracy for
mining data streams in the presence of missing values,
than other existing methods. One reason is ascribed to
the predictive power of ARC in contrast to the other s-
tatistical counting methods for handling missing values,

9

for ARC computes the information gains of almost all
the other attributes that have non-missing data. As a
future work, we opt to continue the investigation into
the impact of noisy data or corrupted data as well as
irregular data stream patterns in DSM.

References

[1] M.M.,Gaber,A.Zaslavsky and S. KrishnaswamyMining
data streams: a review, SIGMOD Rec. 34, 2, Jun. 2005,
pp. 18-26.

[2] O.,Maron.,A.W.,Moore, Hoeffding races: Accelerating
Model Selection Search for Classification and Function
Approximation. Oded Maron, Andrew W. Moore NIPS,
1993, pp.59-66.

[3] H. Yang and S.Fong, Investigating the Impact of Bursty
Traffic on Hoeffding TreeAlgorithm in Stream Mining
over Internet, In proceeding of 2ndInternational Con-
ference on Evelving Internet (INTERNET), 2010,Va-
lencia, Spain, 2010, pp.147-152.

[4] H. Yang and S.Fong, The Impacts of Data Stream
Mining on Real-Time Business Intelligence, 2nd Inter-
national conference on IT and Budsiness Intelligence,
Novermber 12-14, 2010, Nagpur, India. pp.9 -19.

[5] Induction on decision tress. Machine Learning, 1, 1986,
pp. 81-106.

[6] J.R.,Quinlan,C4.5: Programs for machine learning.
Morgan Kaufmann series in machine learning. Kluwer
Academic Publishers, 1993.

[7] L.Breima, Friedman, J.H., Olshen, R.A., and C.J.
Stone,Classification and regression trees, California,
USA, Wadsworth, 1984.

[8] P. Domingos, and G.Hulten,Mining high-speed data
streams. In Proceedings of the Sixth ACM SIGKDD
international Conference on Knowledge Discovery and
Data Mining,. ACM, New York, 2000, pp. 71-80.

[9] G.Hulten, L.Spencer,, and P.Domingos,Mining time-
changing data streams. In Proceedings of the Seventh
ACM SIGKDD international Conference on Knowledge
Discovery and Data Mining (San Francisco, California,
August 26 - 29, 2001). KDD ’01. ACM, New York, NY,
2001, pp. 97-106.

[10] S.Nishimura, M.Terabe,K.Hashimoto and K.Mihara,
Learning Higher Accuracy Decision Trees from Concept
Drifting Data Streams. In Proceedings of the 21st
international Conference on industrial, Engineering
and Other Applications of Applied intelligent Systems:
vol. 5027. Springer-Verlag, Heidelberg, 2008, pp.179-
188.

[11] J.Gama, P. Medas and P.Rodrigues, Learning decision
trees from dynamic data streams. In Proceedings of the
2005 ACM Symposium on Applied Computing, ACM,
New York, 2005, pp.573-577.

[12] T. Wang, Z. Li, X.Hu, Y.Yan, and H.Chen. A New
Decision Tree Classification Method for Mining High-
Speed Data Streams Based on Threaded Binary Search

Trees. Emerging Technologies in Knowledge Discovery
and Data Mining. Springer. 2009, pp. 256-267.

[13] P. Pfahringer, G.Holmes, and R.Kirkby.New Options
for Hoeffding Trees, Advances in Artificial Intelligence,
Springer, 2007, pp. 90-99.

[14] Y.Ding and J. S.Simonoff, An Investigation of Missing
Data Methods for Classification Trees Applied to Bina-
ry Response Data, J. Mach. Learn. Res. 11, 2010, pp.
131-170.

[15] K. Lakshminarayan, S.A. Harp and T.
Samad,Imputation of missing data in industrial
databases, Appl. Intell. 11 (1999), 259275.

[16] R.J. Little and D.B. Rubin,Statistical Analysis with
Missing Data, Wiley, New York (1987).

[17] W. Nick Street and YongSeog Kim,A streaming ensem-
ble algorithm (SEA) for large-scale classification, Pro-
ceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining,
August 26-29, 2001, San Francisco, California. 2001,
pp.377-382.

[18] H.Wang,F. Wei,S. Philip,J.Han,Mining concept-
drifting data streams using ensemble classifiers,
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
August 24-27, 2003, Washington, D.C.

[19] S.Hashemi and Y.Yang, Flexible decision tree for data
stream classification in the presence of concept change,
noise and missing values. Data Min. Knowl. Discov. 19,
1 (Aug. 2009), 2009, pp. 95-13

[20] The Second International Knowledge Discov-
ery andData Mining Tools Competition, Spon-
sored by theAmerican Association for Artificial
Intelligence (AAAI)Epsilon Data Mining Lab-
oratoryParalyzed Veterans of America (PVA).
http://www.kdnuggets.com/meetings/kdd98/kdd-
cup-98.html

[21] A.Frank and A.Asuncion. UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and
Computer Science.

10

Monitoring Multiple Streams with Dynamic Time Warping using
Graphic Processors

Jason Chang
Dept. of Electrical Engineering
National Taiwan University

jsc@ntu.edu.tw

Mi-Yen Yeh
Institute of Information Science

Academia Sinica
miyen@iis.sinica.edu.tw

Abstract

In this paper, we present an approach for efficiently moni-

toring multiple data streams using graphic processor units

(GPUs). Given reference patterns, similar subsequences

in streams are matched under the dynamic time warping

(DTW) distance and reported continuously. DTW distance

is adopted since it offers scaling and shifting flexibility in

the time axis. However, it suffers from high computation

complexity, not to mention online matching among multiple

streams. To overcome these issues, we exploit the advan-

tages of GPUs: high levels of parallelism at low cost. We

first show how to speed up DTW in a parallel way by using

GPUs in CUDA language. Then, according to the existing

online subsequence method under DTW distance, we pro-

pose GSPRING, which conducts online matching in multiple

streams with multiple patterns concurrently by utilizing the

massive threads of GPUs. We demonstrate that with the

experiments on the NVIDIA graphic cards, our proposed al-

gorithm can achieve speedup of up-to-15-times compared to

a CPU-based approach when nearly a thousand streams are

monitored simultaneously.

1 Introduction

Subsequence matching is an important application for
monitoring data streams. Given a query pattern, users
have considerable interest in continuously monitoring
similar subsequences when a data stream continues to
evolve. Examples include pattern matching in speech
recognition and intrusion pattern detection in video
surveillance. To adapt the high arrival speed and
huge volume of data streams, a real-time approach is
required.

The dynamic time warping (DTW) algorithm [1] is
used to measure the similarity between two sequences
of data with different lengths. It finds the optimal
alignment between sequences and warps either one of
them non-linearly by stretching or shrinking them along
the time axis. Since it offers elastic time scaling and
shifting capabilities in the similarity comparison, DTW

has been widely used in many applications such as
speech and handwriting recognition.

However, the computation cost of DTW is in
quadratic time, not to mention the time complexity
of searching all possible matched subsequences in data
streams under DTW distance. To do this, an online
algorithm, SPRING [2], is proposed. Suppose that the
length of the given pattern is m, SPRING spends O(m)
time to identify if a subsequence is matched at the ar-
rival of each data point. For a stream of length n, the
total time cost for SPRING to report all matched sub-
sequences is O(mn). This computation cost is still very
high if the length of the query pattern or the stream is
long. Moreover, to the best of our knowledge, none
of the existing subsequence matching methods using
DTW distance yet meets the requirement of real-time
responses in the environment of multiple query patterns
and multiple streams.

In search of a better solution, we notice a grow-
ing interest in leveraging the high parallelism of pro-
grammable processors, especially Graphic Processing
Units (GPUs). Originally designed to accelerate 2D/3D
graphic renderings, these units are now used to cope
with heavy workload in many research communities.
The computing power of GPUs has increased so rapidly
in recent years that, today a commonly available GPU
may contain hundreds of processors and several giga-
bytes of memory. In single precision arithmetic com-
puting, for example, GPUs outperform CPUs by orders
of magnitude in terms of processing speed. As a result
of the large number of processors and their excellent
performance, GPUs are better suited for multithread-
ing SIMD (Single Instruction Multiple Data) compu-
tation than conventional CPUs. Scientific researchers
have been quick to discover the benefit of utilizing GPUs
in general computation work, which helps the emergence
of General-Purpose computing on Graphics Processing
Units (GPGPU).

Among the GPU designers, NVIDIA is currently
one of the largest. In addition to hardware equipment,

11

NVIDIA provides a software environment called Com-
pute Unified Device Architecture (CUDA), which in-
cludes development toolkits and runtime infrastructure.
In this environment, programmers can focus on devel-
oping codes, and are able to leave runtime scheduling
and resource management issues to CUDA. The user
programs can then be executed in a massively parallel
fashion on hundreds of GPU processors.

To realize our objective of developing an ap-
proach that permits online monitoring of multiple data
streams with multiple patterns using DTW, we propose
GSPRING under NVIDIA’s CUDA environment. First,
we show how DTW can be parallelized using GPUs. To
overcome the data dependency problem, we calculate
the cells and fill the table along the diagonal direction.
The degree of parallelism can be maximized to m, the
length of query pattern, in optimal situations. Further
parallelism is achieved by applying the computing model
of CUDA. A two-dimensional array of blocks is declared
and each block handles one single pair of stream com-
parison. Based on that fact that hundreds to thousands
of comparisons can be processed simultaneously, we fur-
ther show how GSPRING deals with continuously arriv-
ing streams and online reports matched subsequences.
The challenge here is how to maximize the paralleliza-
tion while reducing the communication overhead be-
tween CPU and GPUs. We attempt to fill the GPU
memory with the monitored stream data and the query
patterns to minimize data exchange frequency. In ad-
dition, kernel function returns only when all the data
processing is completed or any subsequence match is
found.

To demonstrate the superiority of the proposed
DTW parallelization and GSPRING, we conduct ex-
tensive experiments using synthetic data sets. For com-
parisons, we also implement the original version of the
DTW and SPRING methods on CPU. We measure the
run time and memory usage of all methods. The results
show that the parallelized DTW is 30 times faster than
the sequential DTW on CPU, while GSPRING gains 15
times speed-up compared to SPRING on CPU.

This paper makes the following contributions:

1. A parallel algorithm GSPRING is proposed and
implemented on NVIDIA’s CUDA environment. It
can be executed in a massively parallel fashion on
hundreds of GPU processors.

2. GSPRING is capable of reporting matched subse-
quences under DTW distance in real time.

3. GSPRING realizes simultaneously monitoring of
multiple streams with multiple query patterns in
a continuously arriving data stream environment.

Figure 1: Thread execution model on CUDA. (Modified
from [10])

4. Experiments show the speed-up of GSPRING on
GPU may up to 15 times compared to SPRING on
CPU.

The remainder of the paper is organized in the
following way. Preliminaries are provided in Section 2,
which includes background knowledge, the motivation,
and the problem statement. Section 3 is dedicated
to our parallel algorithm implementations, which is
followed in Section 4 by presentation of our impressive
experiment results. Finally, conclusions are drawn in
Section 5.

2 Preliminaries

First, we introduce the GPU and CUDA programming
model. This is followed by a brief review of fundamental
concepts including DTW and SPRING algorithms. Fi-
nally, we use an example to demonstrate how SPRING
algorithm works.

2.1 The GPU and CUDA programming model.
In recent years, GPUs have evolved from pure game or
3D applications to general-purpose computations, espe-
cially useful in scientific research. In the data mining
and database communities, becoming increasingly pop-
ular is the use of GPU in applications such as cluster-
ing [3][4], relational joins, sorting, and tree search in
databases [5][6][7], quantile and frequency counting in
data streams [8], database compression [9], and so on.

CUDA is a parallel computing architecture devel-
oped by NVIDIA. It may be regarded as an extension
of C language and is easy for programmers to learn. Us-

12

Figure 2: Memory model on CUDA. (Modified from
[10])

ing CUDA enables programmers to create and manage
large numbers of threads on NVIDIA GPUs. GPU pro-
cedures are also called kernel functions, executed over
multiple threads. To fully utilize the computing power
of GPUs, programs must be developed in a multithread-
ing model. As demonstrated in Fig. 1,the basic execu-
tion unit in GPU is a thread. Up to 512 threads can
be grouped into a thread group in a block. A grid is
composed of multiple blocks aligned in a 2-dimensional
array. Finally, a CUDA program can delcare an array
of grids.

The memory model of GPUs is shown in Fig. 2.
The register residing in the SIMD processors is the
fastest in terms of read/write speed. It has the scope
for only a single thread. The shared memory (SM),
usually 16 KB, is efficient for information exchange
among threads. Note that only the threads within the
same block are able to share the same SM. The device
memory (DM), which is the largest part of memory in a
GPU, is globally available to all threads. The access
to DM may incur significant overheads compared to
access to registers and SMs. Finally, if there is any data
exchange between CPU and GPU, the memory copy is
carried out between DM and the main memory of CPU
(MM), which is a costly operation.

In practice, CUDA programs use a large number of
threads to execute the same piece of code over different
data concurrently. This is the SIMD concept, which
can avoid unnecessary program execution branches that
significantly influence performance. Another benefit of

the large number of threads is that they keep processors
busy enough to hide the expensive latency of the device
memory access.

2.2 Review of DTW and SPRING. The Dy-
namic Time Warping (DTW) distance between two se-
quences is computed as follows. Given two sequences
X = (x1, x2, ..., xn) of length n and Y = (y1, y2, ..., ym)
of length m, their DTW distance D(X,Y) is defined as:

(2.1)

D(X,Y) = f(n,m)

f(t, i) = ||xt − yi||+ min

 f(t, i− 1)
f(t− 1, i)
f(t− 1, i− 1)

f(0, 0) = 0, f(t, 0) = f(0, i) =∞
(t = 1, ..., n; i = 1, ...,m).

where ||xt − yi|| = (xt − yi)2. The DTW distance
is computed using a time warping table, which stores
the values of the function f(t, i) of (2.1). This is whole
sequence matching since the two sequences are aligned
head-to-head and end-to-end.

The SPRING algorithm, derived from DTW, is
designed to online detect high-similarity subsequences
of X when it is a semi-infinite data stream. Essentially,
SPRING also computes a warping table but with some
slight variations. There are two differences between
SPRING and the original DTW. First, given a query
pattern Y = (y1, y2...ym), one extra value is padded as
Y ′ = (y0, y1, ..., ym), where y0 = (−∞ : +∞) represents
a don’t care value and always gives zero distance. Let
X be a stream of length n, the minimum distance
D(X[ts : te], Y) can be derived from the warping table
of X and Y ′. The computation is shown in (2.2). Each
cell in the table keeps both the distance value d(t, i) and
the starting position, s(t, i), of the current d(t, i) value
(Fig. 3).

(2.2)

D(X[ts : te], Y) = d(te,m) = min{d(t,m)}
d(t, i) = ||xt − yi||+ dbest

dbest = min

 d(t, i− 1)
d(t− 1, i)
d(t− 1, i− 1)

d(t, 0) = 0, d(0, i) =∞
(t = 1, ..., n; i = 1, ...,m).

In addition to the distance d(t, i), the matrix con-
tains the starting position:

13

(2.3)

s(t, i) =

 s(t, i− 1), d(t, i− 1) = dbest
s(t− 1, i), d(t− 1, i) = dbest
s(t− 1, i− 1), d(t− 1, i− 1) = dbest.

Finally, we can obtain the starting position of
D(X[ts : te], Y) as:

(2.4) ts = s(te,m)

The second difference is that SPRING continues to
track the minimum distance dmin, the start point ts,
and the end point te of the candidate subsequences ob-
tained thus far. Since in SPRING, among all overlapped
candidate subsequences, only the one with smallest dis-
tance is reported. The dmin value continues to be com-
pared with the given threshold ε. Once the qualified
subsequence is guaranteed not to be replaced by further
upcoming subsequences, SPRING reports it and its cor-
responding dmin, ts, and te. Then, after resetting some
cells in the table, SPRING repeats the matching algo-
rithm. Due to space limitations, the detailed algorithm
of SPRING can be found at [2].

Figure 3: Illustration of the SPRING Algorithm

To demonstrate how SPRING algorithm works, an
illustrative example adapted from [2] is given in Fig.
3. Suppose we have ε = 15, X = (5, 12, 6, 10, 6, 5, 13),
and Y = (11, 6, 9, 4). Each cell (t, i) in the table
contains d(t, i), at upper, and s(t, i), in parenthesis.
When t = 3, the distance d(3, 4) of the candidate
subsequence X[2 : 3] is 14, which is below ε. At
t = 4, d(4, 4) = 38, which is larger than ε, but we
do not report X[2 : 3] since d(4, 3) = 2. This is
because X[2 : 3] might be replaced by the upcoming
and overlapped subsequences. At t = 5, the optimal
subsequence X[2 : 5] is recognized. It is reported until
t = 7 since at this time we can ensure that none of the
upcoming subsequences will have smaller distance and
overlap it. After the reporting, we need to investigate
the cells of column t = 7. For cells whose si ≤ te, their
distance value needs to be reset to infinity. The final

state of column t = 7 is shown in the rightmost column
of Fig. 3. As a result, except for cell d(7, 1), distance
values in other cells are all reset.

3 Multiple Stream Monitoring under DTW
using GPUs

We state the problem as the following: Given a set
of user-given query patterns Y1, Y2, ...YM with length
m, our goal is to monitor them among multiple data
streams X1, X2, ..., XN concurrently. Under the DTW
distance, an immediate report is given as long as any
subsequence is found to satisfy a given error threshold.
To achieve this goal, we parallelize the SPRING algo-
rithm and port the program to the GPU environment
using CUDA. The modified GPU version of SPRING
algorithm is named GSPRING.

In the following sections, first we give an overview of
GSPRING at §3.1. How the endless streams are loaded
to the GPU is discussed as well. Then, two important
functions of the GSPRING kernel are illustrated in §3.2
and §3.3, respectively. Finally, we show how multiple
streams can be monitored with multiple query patterns
in §3.4.

3.1 Overview of GSPRING. The workflow and al-
gorithm of GSPRING are shown in Fig. 4 and Algorithm
1, respectively. In our implementation, CPU controls
most of the program flow while GPU focuses on com-
puting. Initially, the CPU needs to load incoming data
streams and copy them to the DM of GPU. In our de-
sign, GSPRING loads n data points each time for each
stream. After launching the GSPRING kernel, which is
the whole procedure done by GPU as shown in the blue
shaded area in Fig. 4, the control transfers to the GPU
while the CPU remains idle. The GPU starts those
heavy computing jobs such as filling the DTW table
and checking if any subsequence is found. Once a quali-
fied subsequence appears, the kernel function stops and
returns the control to the CPU. The matched results
must be copied back from the DM of the GPU and be
output. As a feature of a data stream environment, the
program loops repeatedly to deal with the continuously
arriving data.

To port the SPRING algorithm on CUDA, we must
break down all tasks and clarify which parts should be
implemented on GPU. The GSPRING kernel function of
our implementation is shown in Procedure 1. An impor-
tant contribution of GSPRING is that it parallelized the
most time-consuming tasks of SPRING on CUDA. They
are tableFilling, which handles the DTW table filling
work of SPRING, and checkReport, which checks if a
candidate subsequence should be reported and report it.
Moreover, because of the control change between CPU

14

checkOffset
tableFilling

checkReport

output subsequences

load parts of streams

initialization

copy data to DM

launch

need to report
subsequences?

Yes

No
copy data from DM

launch kernel
functions

comparison of
stream data in
GPU finished?

Yes

No

CPU GPU

initialization

return

Figure 4: The GSPRING algorithm diagram: Solid lines
represent program flow. Dotted lines represent data
exchange between CPU and GPU.

and GPU, we should have a mechanism that keeps the
current position of the compared stream pair. This is
to make sure the threads can continue their computing
works accurately in the next kernel launch. Note that
data consistency is a key issue in parallel computing.
Programs should guarantee that data writing is com-
pleted before the data is read. For example, to avoid
possible race conditions, thread synchronization should
be conducted at the end of each step after calling of
tableFilling completes.

Algorithm 1 GSPRING

Input:
Xi, i = 1..N continously arriving data streams
Yj , j = 1..M query patterns with length=m

1: copy Y1...YM and ε to DM of GPU
2: while read data until length of each Xi = n do
3: copy X1...XN to DM of GPU
4: finish← 0
5: while finish 6= 1 do
6: launch GSPRING kernel function()
7: copy report and offset data from DM of GPU
8: finish← 1
9: for all k ∈ Xi do

10: if subsequence is found then
11: report dmin, ts, te
12: end if
13: if offset ≤ n then
14: finish← 0
15: end if
16: end for
17: end while
18: end while

Procedure 1 GSPRING kernel function
Input:
N: number of Xi

M: number of Yj
n: length of each Xi

m: length of each Yj
ε, report threshold

1: bi← blockIdx.y ∗ gridDim.x+ blockIdx.x . block
. id in the grid

2: tid← threadIdx.x . thread id in the block
3: shared dmin, ts, te, report . shared by all threads

. in the block
4: read offset from DM
5: if offset > n then
6: return . end kernel,return to host
7: end if
8: step← 0
9: while (step+ offset) < (n+m+ 1)) ∧ (report 6= 1)

do
10: tableFilling(step, tid,offset)
11: syncthreads()
12: if step ≥ m then . thread 1 at top of column
13: checkReport(tid, ε, dmin, ts, te)
14: if tid = 1 ∧ dtw[x][y].d ≤ eps ∧ dtw[x][y].d <

dmin then
15: if a matched subseqence should be re-

ported then
16: keep current dtw cell for future ref
17: end if
18: end if
19: if reach the last column of DTW table then
20: keep current dtw cells for future ref
21: end if
22: end if
23: step← step+ 1
24: syncthreads()
25: end while

3.2 Parallelization of the DTW table filling
using CUDA. The first task is the DTW table filling.
Due to the data-dependent nature of the DTW table,
intuitive parallel programming methods are not easily
applied. Further investigation of (2.1)(2.2) and its
computing flow provides insight into how to overcome
the data dependency problem. Fig. 5(a) shows that
since d(i, j) depends on d(i − i, j), d(i, j − 1) and
d(i−1, j−1), we can calculate d(i+ 1, j) and d(i, j+ 1)
simultaneously once d(i, j) is obtained. Therefore, a
parallel DTW approach is achieved by implementing the
computation flow proceeding in the diagonal direction.

Given two sequences, a stream X = (x1, x2, ..., xn)
of length n that is under processing, and the query

15

Procedure 2 tableFilling

1: procedure tableFilling(step,tid,offset)
2: if tid ≤ step then
3: if step < m then
4: x← tid+ offset− 1 . calculate the x,y
5: y ← step− tid+ 1 . coordinates
6: else
7: x← step−m+ tid+ offset− 1
8: y ← m− tid+ 1
9: end if

10: dtw[x][y].d← ||xt − yi||+ min(dtw[x− 1][y],
dtw[x][y − 1], dtw[x− 1][y − 1])

11: dtw[x][y].s← starting position, depends
on the source of above min value

12: end if
13: end procedure

pattern Y = (y1, y2, ..., ym) of length m, the detailed
parallelization procedure is shown in Fig. 5(b)(c)(d).
In the first step, there is only one thread (t1) active,
which calculates d(1, 1). This enables d(2, 1) and d(1, 2)
to be calculated by thread t1 and t2 in the second step.
The maximum degree of parallelism appears when the
step number equals m and thereafter, meaning that
a total of m threads can work at the same time, as
shown in Fig. 5(d). In practice, the maximum degree of
parallelism can not exceed the actual number of threads
(#t) provided by GPU, which is 512 on CUDA. If m >
#t, however, we can still resolve it by assigning some
threads to handle more than one cell of computation.
The only trade-off is slightly lower performance due to
the task switching of those threads.

On the other hand, to reduce the expensive memory
access latency, we use SM instead of DM for the data
exchange by threads within the same block. Due to the
size limit of SM, only the most frequently used data
including the current and previous two diagonals are
stored in SM (Fig. 5(a)). This results in a significant
improvement in DTW tableFilling work.

It is noted that, when the table filling work reaches
the end of the currently loaded X sequence, the values
in cells of the last column, column n at Fig. 5(f) must
be kept (line 19-21 in GSPRING kernel) for referencing
in the next new loop of the GSPRING kernel function.

The pseudo code of our CUDA implementation is
shown in Procedure 2 tableFilling where offset repre-
sents the starting position of the table to compute at
each kernel launch. This procedure is called by every
thread at each step with step number step and thread
id tid as input. The dtw[x][y] represents a cell on DTW
table stores the d(t, i) and s(t, i) value of (2.2) and
(2.3) respectively. The number of pre-allocated work-

Figure 5: (a)The data dependency of the DTW table.
(b)-(f)Steps of the DTW parallelization.

ing threads equals m. However, active thread numbers
correspond to the current step number. When the cur-
rent step number is less than m, only the step number of
threads is active, with the others remaining idle(line2).
When the step number is equivalent to or greater than
m, all the threads will be active and working. Since each
thread executes the same piece of code over different
parts of data, it has to maintain its own index includ-
ing the x and y coordinates of the currently processed
DTW table in order to indicate the cell to which it is re-
sponsible. This is referred to at line 3-9 of tableFilling.

Finally, the total number of steps of the computa-
tion is analyzed as follows. For the original SPRING
algorithm, the required steps equal the number of cells,
also indicating the table size. Thus, m × n represents
the total number of steps. The complexity is O(mn).
For our parallel version, we divide the computation
into three parts. First, the triangular part before the
step number equals m which requires m− 1 steps, Fig.
5(b)(c). The second part is the steps of which the active
thread numbers equal m, shown in Fig. 5(d)(e). Third,
the remaining part, where the active thread numbers are
less than m, is depicted in Fig. 5(f), and is similar to
the first part. Hence, the total number of steps of par-
allel DTW is (m−1)+(n−m+1)+(m−1) = m+n−1
and the complexity is O(m+ n− 1).

3.3 Check and Report of Matched Subse-
quences While the tableFilling computes the DTW
distance between the subsequence of a stream and
a query pattern, the task of checking and report-
ing matched subsequences is done by the procedure
checkReport in Procedure 3. When current dmin is a
qualified candidate (line2), all threads execute line 3-10
to verify against their assigned cells. If a report is neces-
sary, all threads verify if a reset is necessary for each cell
in the current column as indicated in line 17-19. Again,

16

to guarantee data consistency among multiple threads,
the syncthreads() function provided by CUDA must
be called after the concurrent data writes by multiple
threads. This is done in line 8-9 of checkReport. Al-
though calling syncthreads() may slow down the over-
all performance, it is unavoidable in a parallel comput-
ing environment.

It is noted that before the report to CPU, the
current column under computing, say column k at Fig.
6(b), must be kept. This is shown in the line 14-
18 in GSPRING kernel). On the other hand, all the
threads in the position keeping task as well as the
checkReport function itself are fully utilized, most
of the working steps can be reduced from m to 1 as long
as m <= 512. For m > 512, total working steps can be
reduced to dm/512e.

Before the end of the describing of tabileFiling
and checkReport tasks, we have the following imple-
mentation review and remarks.

1. The main program on the CPU loads incoming data
streams and temporarily retains them. It should
only copy the data to the DM on the GPU and
launch the kernel function until enough sequences
are prepared, such as length(Xi) ≥ n. This
is a tradeoff between reducing the memory copy
overhead and delaying the report response time.

2. When GPU deals with the new coming n points of
the stream, calculation of the first column requires
reference to ascendant data. It is vital to handle
with considerable care the computation work, es-
pecially at the beginning and end of each currently
loaded X sequence of length n. When reaching
the end of the sequence, the values in cells of the
last column should be retained(Fig. 5(f)). At the
beginning of the processing, it is necessary to refer-
ence to previously retained position for the correct
distance computation.

3. Once the current step number equals or is larger
than m, i.e. when thread 1 is processing the cell
on the top row of the table, the subsequence match
checks, as in the procedure checkReport need to be
conducted at each step(line 12-13 of GSPRING).
When finding a match as in Fig. 6(b), the program
increases its offset to the next value, writes report
data to DM and prepares to return to CPU.

4. In subsequent GPU kernel launches, the program
must check its offset value when entering the GPU,
as the situation if Fig. 6(c). It proceeds only when
the offset value is not greater than n. It is necessary
for the parallelized table-filling process to resume

and to gradually increase its degree of parallelism
(Fig. 6(c)(d)).

5. Upon finding a matched subsequence or reaching
the end of the processing stream, it is important to
check if it is necessary to keep the d and ts values of
the current cell as in Fig. 6(b), before leaving the
kernel. If the current d value is smaller than ε, it
can be a candidate of a future subsequence match.
If it is not kept, a piece of a future subsequence
match might be lost when the kernel is re-entered.

Procedure 3 checkReport

1: procedure checkReport(tid,ε,dmin,ts,te)
2: if dmin ≤ ε then
3: report← 1
4: x← step−m+ offset . x position of

. current column
5: syncthreads()
6: end if
7: if (¬(dtw[x][tid].d ≥ dmin))∨(dtw[x][tid].s > te)

then
8: report← 0
9: syncthreads()

10: end if
11: if report = 1 then
12: if tid = 1 then . only thread 1 handles
13: report dmin, ts, te . the report work
14: offset← x+ 1
15: dmin ←∞
16: end if
17: if dtw[x][tid].s ≤ te then . reset the values
18: dtw[x][tid].d←∞ . of current column
19: end if
20: end if
21: end procedure

3.4 Multiple Subsequence Matching over Mul-
tiple Streams To realize simultaneously monitoring of
multiple streams over multiple query patterns, we here
show how GSPRING on CUDA conduct large numbers
of comparisons concurrently. As in Fig. 4, all the
streams to be compared are copied to the DM of the
GPU in the beginning. We declare a grid with a two-
dimensional array of blocks in CUDA. The dimension of
the two axes are N (number of X streams) and M (num-
ber of Y patterns) respectively. Each block contains m
threads and executes one pair of the comparison. The
execution model is shown as Fig. 1, where there are a
total of N ×M blocks executing N ×M comparisons
in the grid. Usually, N ×M × m will be much larger
than the actual processor numbers on GPU. However,

17

Figure 6: Some special steps of GSPRING algorithm. (a) First time entering the kernel, program begins at
offset=1. (b) When a subsequence is found, report the current (dmin,ts,te) values and increase the offset value.
(c)(d) Subsequent kernel entering, program begins at specific offset position. The degree of parallelism needs to
increase gradually from 1.

it is not a problem since CUDA will do the resource
scheduling for the overall program execution. The pro-
gram flow is the same as in Fig. 4.

Every time when the new n points of each stream
are copied to DM, all the blocks start their computing
from offset = 1, as in Fig. 6(a) at the first kernel
launch. Blocks that do not find any matches shall pro-
ceed along to the end of the currently loaded stream
(offset = n) and stop. If any blocks have matched sub-
sequences to report, they stop at the current position.
In the next kernel launches, only blocks with offset value
not exceeding n, as the case in Fig. 6(c) need to carry on
computing. Obviously, the execution time of the subse-
quent kernel launches is much shorter than the first.

Since every thread among all the blocks executes the
same piece of code over a shared memory space(DM),
it has to maintain its own indices including the thread
index inside a block and the block index inside a grid.
This can be achieved by using CUDA’s built-in variables
such as gridDim, blockDim, blockIdx and threadIdx. In
our implementation, the DM space in CUDA stores
all the query patterns Y1, Y2, ...YM and data streams
X1, X2, ..., XN . In addition, the DTW table, the offset
and the report structures of each pair of comparison are
also stored in DM. However, DM in CUDA is shared
among all the threads and does not provide any access
protection mechanism. To avoid data corruption, all
the memory read/write operations must be carefully
executed by keeping the correct address and offset.

When executing the GSPRING kernel, each block
proceeds independently without any data exchange be-
tween blocks. As a result, synchronization between
blocks is not necessary. However, threads within the
same block still need to synchronize their pace at some
critical checkpoints to avoid race conditions.

4 Performance Evaluation

To evaluate the performance of subsequence match-
ing using GPU, we conduct several experiments. First
we implement the original sequential version of DTW
and SPRING algorithm using C language on the CPU.
Next, we implement the parallel version of DTW and
GSPRING algorithm using CUDA on GPU. Query pat-
terns and stream sequences are composed of synthetic
random-walk data. The experiments are performed on
a server with dual Intel E5420 2.5GHz CPU. A NVIDIA
Tesla C1060 GPU with 240 SIMD-processors and 4GB
memory is connected by PCI-Express interface. The op-
erating system is Linux 2.6.18 and the version of CUDA
is 3.0.

4.1 Performance of Sequential versus Parallel
version of DTW. We evaluated the total computation
time of both the sequential and the parallel DTW when
the number of sequences pairs to be compared varied
from 6.2k to 62k with stream length = 8192. The
results are shown in Fig. 7. We can see the speedup
between CPU and GPU is constantly around 30 times.

4.2 Performance of SPRING versus
GSPRING. We observed the speedup of GPU
under the impact of the compared sequence pair
number, the query pattern length, and the report rate.
We first presented the experimental results of under
each impact. Then, an overall discussion is given.

Experiments were conducted using the following
parameters: total stream length = 8192, the segment
length sending to GPU each time n = 1024 and the
similarity threshold was set to ε = 35000. We show the
total computation time of processing the whole streams
in seconds, and the speedup under different settings.

Impact of compared sequence pair numbers:

18

First we fixed the query pattern length as m = 512,
and varied the total compared sequence pair numbers
N ×M from 100 (10 × 10) to 961 (31 × 31), as shown
in Fig. 8(a), the speedup increased from 7.98 to 15.33.
GSPRING outperformed SPRING when large numbers
of pairs are compared concurrently.

Impact of query pattern length: Here we fixed
the total compared sequence pair number as N ×M =
30× 30, and varied the length of query pattern m from
64, 128, 256, 384 to 512. As shown in Fig. 8(b), the
speedup increased from 7.27 to 15.24. The speedup
value of m = 384 is 15.16, which is extremely close to
15.24 when m = 512.

Impact of report rate: Finally, varying the ε
value may change the output number of the matched
subsequences. By setting ε=45000, we have a very
loose criterion which results in large amount of matches.
This was the baseline for this experiment and defined
as 100% report rate. When the threshold is as high
as ε=30000, no matches could be found. We defined it
as 0% report rate. According to this experiment, our
default ε=35000 indicated its report rate as 54.4%.As
a result, the speedup value for 0% report rate is 15.2
while it is 13.82 for 100% report rate.

4.3 Discussion. The speedup performance of paral-
lelized DTW was double that of GSPRING. This can
be explained by the fact that the DTW algorithm is ex-
tremely straightforward without any branch conditions.
This kind of algorithm is most suitable in a SIMD-based
parallel environment. In contrast, GSPRING needs to
check the report condition at the end of every loop.
When GSPRING reports matched subsequences, the
first thread can cover most of the preparation works,
as shown at line 11-14 in Fig. 6(b). In addition, the
memory copy between CPU and GPU incurs significant
overheads. For these reasons, the speedup of GSPRING
was not as significant as the parallelized DTW.

To fully utilize the advantage of the GPU is to
launch as many threads concurrently as possible because
the large numbers of threads can sufficiently occupy the
SIMD-processors and maintain the overall computing
throughput at a high level. As explained in §4.2,
we allocate a block for each pair and 512 threads for
each block. Obviously, 100 pairs are not enough to
saturate the processors of GPU. With the number rising
to 961, the performance nearly doubles as shown in
Fig. 8(a). In addition, since the thread number in
each block equals the length of query patterns m, it
is evident in Fig. 8(b) that GPU performance cannot
be squeezed to the limit until m reaches 384. Finally,
to report a matched subsequence incurs lots of works
including leaving GPU kernel function, returning to

CPU and memory copy from DM of GPU to CPU.
More reports imply more overheads and result in worse
performance. Not to mention the reported subsequences
could be meaningless if threshold was set too low. Thus,
selecting a reasonable threshold ε helps to maintain high
performance and reporting quality.

5 Conclusion

In this study, first we showed how to parallelize DTW on
GPUs. Then the similar parallelization was adopted for
developing GSPRING, along with the online matching
and reporting mechanism designed between CPU and
GPUs. Moreover, the parallelization of multiple sub-
sequence matching among multiple streams on GPUs
is designed. The experiment results showed our GPU-
based methods had a significant speedup in the com-
putation time. Especially, GSPRING outperformed
SPRING by an up-to-15-times speedup, which indicates
the realization of the online real-time response in the
multiple stream environments.

References

[1] H. Sakoe and S. Chiba, Dynamic programming algo-
rithm optimization for spoken word recognition, IEEE
TASSP, 26 (1978), pp. 43–49.

[2] Y. Sakurai, C. Faloutsos and M. Yamamuro, Stream
Monitoring under the Time Warping Distance, In
Proceedings of ICDE’07, pp. 1046–1055, 2007.

[3] S. A. Shalom, M. Dash and M. Tue, Efficient K-Means
Clustering Using Accelerated Graphics Processors, In
Proceedings of DaWaK’08, pp. 166-175, 2008.

[4] C. Böhm, R. Noll, C. Plant and B. Wackersreuther,
Density-based clustering using graphics processors, In
Proceedings of CIKM’09, pp.661-670, 2009.

[5] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju,
Q. Luo and P. Sander, Relational joins on graphics
processors, In Proceedings of SIGMOD’08, pp. 511-
524,2008.

[6] N. Govindaraju, J. Gray, R. Kumar and D. Manocha,
GPUTeraSort: high performance graphics co-processor
sorting for large database management, In Proceedings
of SIGMOD’06, pp. 325-336,2006.

[7] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt and
P. Dubey, FAST: fast architecture sensitive tree search
on modern CPUs and GPUs, In Proceedings of SIG-
MOD’10, pp. 339-350, 2010.

[8] N. Govindaraju, N. Raghuvanshi, and D. Manocha,
Fast and approximate stream mining of quantiles and
frequencies using graphics processors, In Proceedings of
SIGMOD’05, pp. 611-622, 2005.

[9] W. Fang, B. He and Q. Luo, Database Compression on
Graphics Processors, In Proceedings of VLDB’10,2010.

[10] NVIDIA CUDA Programming Guide Version 3.0,
2010.

19

Figure 7: Runtime and speedup of sequential vs. parallel DTW algorithm.

(a) Impact of compared sequence pairs on runtime and speedup.

(b) Impact of query pattern length on runtime and speedup.

(c) Impact of report rate on runtime and speedup.

Figure 8: Experimental evaluation of SPRING on CPU vs. GSPRING on GPU.

20

Supporting Dynamic Load Balancing in a Parallel Data Mining Middleware

Tekin Bicer Gagan Agrawal
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{bicer,agrawal}@cse.ohio-state.edu

Abstract
As parallel data mining applications are being executed in
grid and cloud settings, there is a need for considering virtu-
alized, non-dedicated, and/or heterogeneous environments.
Supporting dynamic load balancing becomes an important
challenge in such environments. Particularly, two important
problems that need to be addressed are: Optimal distribu-
tion of tasks among disparate processing units and minimiz-
ing the runtime overhead of the system. With these goals,
this paper describes and evaluates an approach for enabling
parallel data mining with dynamic load balancing. Our ap-
proach is based on an API which deals with independent data
elements that can be processed by any processing resource in
the system.

We have extensively evaluated our dynamic load balanc-
ing system using two parallel data mining applications. Our
results show that the overheads of our scheme are extremely
low. Furthermore, our system successfully distributes tasks
among processing units even in highly heterogeneous con-
figurations.

1 Introduction
Increasingly, data mining needs to be performed in grid and
cloud environments, leading to the supporting execution in
non-dedicated and/or heterogeneous clusters. As science has
become increasingly data-driven, support for data-intensive
computing is becoming a crucial component of the cyber-
infrastructure or e-science. For example, community-driven
data grids have received significant attention recently [2].
Grids inherently comprise heterogeneous resources, and of-
ten include non-dedicated use of resources.

More recently, the trend is towards data-intensive com-
puting on the emerging cloud environments. Two common
characteristics of cloud environments are also leading to non-
dedicated use of resources, and/or execution in heteroge-
neous environments. The first is the use of virtualization
technologies, which enable applications to set up and deploy
a customized virtual environment suitable for their execu-
tion. The second is the pay-as-you-go model for resource
allocation and pricing. Consistent with the utility vision

of computing, recent research points to the progression of
clouds towards supporting fine-grained sharing of CPU cy-
cles (and memory) between instances [3, 4]. Current vir-
tualization technologies (for example, Xen [5]) can already
allow a change in CPU cycle percentage and/or memory al-
location at any point during the execution. Thus, in a cloud
environment, it is quite possible that an application may be
executed on a set of machines that differ in CPU cycle per-
centage allocation, and furthermore, this allocation can even
change over time for each node.

Overall, there is clearly a need for executing data-
intensive applications with dynamic load balancing, and
harnessing the net processing power available in the cluster.
This paper presents an approach for addressing this problem.
Our approach has been implemented in the context of a data-
intensive computing middleware, FREERIDE-G [6, 7]. This
middleware system uses a specialized API for developing
scalable data-intensive applications. It supports remote data
analysis, which implies that data is processed on a different
set of nodes than the ones in which it is hosted. Our
work on supporting dynamic load balancing exploits the
processing structure supported by our API, particularly, the
fact that independent data elements can be processed by
any processing resources in the system. This enables us
to dynamically assign tasks to the processing units without
considering the order or dependencies of the tasks.

We have evaluated how effectively our dynamic load
balancing system can perform using two data mining appli-
cations. Our results show that the overheads of our system
are negligible. Furthermore, our load balancing approach
can effectively distribute jobs among the processing units
even in highly heterogeneous configurations.

2 Background
This section gives an overview of an API on which our
work is based. We then describe the remote data analysis
paradigm and the FREERIDE-G system, which uses this API
and supports remote data analysis.

21

FREERIDE
{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = Process(e) ;
RObj(i) = Reduce(RObj(i),val) ;

}
Global Reduction to Combine RObj

}

Map-Reduce
{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = Process(e) ;
}
Sort (i,val) pairs using i
Reduce to compute each RObj(i)

}

Figure 1: Processing Structure: FREERIDE(top) and Map-
Reduce(bottom)

2.1 API for Parallel Data-Intensive Computing: Be-
fore describing our alternative API, we initially review the
map-reduce API which is now being widely used for data-
intensive computing.

The map-reduce programming model can be summa-
rized as follows [8]. The user of the map-reduce library
expresses the computation as two functions: Map and Re-
duce. Map, written by the user, takes a set of input points
and produces a set of intermediate {key, value} pairs. The
map-reduce library groups together all intermediate values
associated with the same key and passes them to the Reduce
function. The Reduce function, also written by the user, ac-
cepts a key and a set of values for that key. It merges together
these values to form a possibly smaller set of values. Typi-
cally, only zero or one output value is produced per Reduce
invocation.

Now, we describe the alternative API this work is based
on. This API has been used in a data-intensive computing
middleware, FREERIDE, developed at Ohio State [9, 10].
This middleware system for cluster-based data-intensive pro-
cessing shares many similarities with the map-reduce frame-
work. However, there are some subtle but important dif-
ferences in the API offered by these two systems. First,
FREERIDE allows developers to explicitly declare a reduc-
tion object and perform updates to its elements directly,
while in Hadoop/map-reduce, the reduction object is implicit
and not exposed to the application programmer. Another im-
portant distinction is that, in Hadoop/map-reduce, all data

elements are processed in the map step and the intermedi-
ate results are then combined in the reduce step, whereas in
FREERIDE, both map and reduce steps are combined into a
single step in which each data element is processed and re-
duced before the next data element is processed. This choice
of design avoids the overhead due to sorting, grouping, and
shuffling, which can be significant costs in a map-reduce im-
plementation.

Hadoop/map-reduce provides Combiner function which
can partially decrease the sorting, grouping and data trans-
fer overheads. More specifically, if a Combiner function
is defined in the system, the pairs are grouped in different
lists according to their key values on local machine. When
the number of pairs exceeds a threshold, Combiner func-
tion reduces the pairs and emits the new ones. Typically,
Combiner function is similar to Reduce function, however
it processes the pairs that are already in local memory. Re-
duce function, on the otherhand, needs to collect the emitted
pairs. FREERIDE-G processing structure naturally accumu-
lates {key, value} pairs right after their generation which
avoids the mentioned overheads in map-reduce.

The following functions must be written by an applica-
tion developer as part of the API:
Local Reductions: The data instances owned by a processor
and belonging to the subset specified are read. A local
reduction function specifies how, after processing one data
instance, a reduction object (declared by the programmer),
is updated. The result of this process must be independent
of the order in which data instances are processed on each
processor. The order in which data instances are read from
the disks is determined by the runtime system.
Global Reductions: The reduction objects on all processors
are combined using a global reduction function.
Iterator: A parallel data-intensive application comprises
of one or more distinct pairs of local and global reduction
functions, which may be invoked in an iterative fashion.
An iterator function specifies a loop which is initiated after
the initial processing and invokes local and global reduction
functions.

Throughout the execution of the application, the reduc-
tion object is maintained in main memory. After every itera-
tion of processing all data instances, the results from multi-
ple threads in a single node are combined locally depending
on the shared memory technique chosen by the application
developer. After local combination, the results produced by
all nodes in a cluster are combined again to form the final
result, which is the global combination phase. The global
combination phase can be achieved by a simple all-to-one
reduce algorithm. If the size of the reduction object is large,
both local and global combination phases perform a parallel
merge to speed up the process. The local combination and
the communication involved in the global combination phase
are handled internally by the middleware and is transparent

22

to the application programmer.
Fig. 1 further illustrates the distinction in the processing

structure enabled by FREERIDE and map-reduce. The
function Reduce is an associative and commutative function.
Thus, the iterations of the for-each loop can be performed
in any order. The data-structure RObj is referred to as the
reduction object.

Our recent work has shown a substantial performance
improvement with our API [11]. In addition, we believe
that this API offers a significant advantage in supporting
dynamic load balancing. Since, almost all of the execution
time is spent in the local reduction stage, the processing
can be distributed between the nodes in a non-uniform and
dynamic fashion. In comparison, with a map-reduce API,
for most applications, significant amount of time is spent on
both map and reduce stages. Moreover, the reduce stage is
dependent on a large intermediate data structure, which can
make dynamic load balancing very difficult to support.

2.2 Remote Data Analysis and FREERIDE-G: Our
support for dynamic load balancing is in the context of sup-
porting transparent remote data analysis. In this model, the
resources hosting the data, the resources processing the data,
and the user may all be at distinct locations. Furthermore,
the user may not even be aware of the specific locations of
data hosting and data processing resources.

If we separate the concern for supporting dynamic load
balancing, co-locating data and computation, if feasible,
achieves the best performance. However, there are several
scenarios co-locating data and computation may not be
possible. For example, in using a networked set of clusters
within an organizational grid for a data processing task, the
processing of data may not always be possible where the
data is resident. There could be several reasons for this.
First, a data repository may be a shared resource, and cannot
allow a large number of cycles to be used for processing
of data. Second, certain types of processing may only be
possible, or preferable, at a different cluster. Furthermore,
grid technologies have enabled the development of virtual
organizations [12], where data hosting and data processing
resources may be geographically distributed.

The same can also apply in cloud or utility computing.
A system like Amazon’s Elastic Compute Cloud has a sep-
arate cost for the data that is hosted, and for the computing
cycles that are used. A research group sharing a dataset may
prefer to use their own resources for hosting the data. The
research group which is processing this data may use a dif-
ferent set of resources, possibly from a utility provider, and
may want to just pay for the data movement and processing
it performs. In another scenario, a group sharing data may
use a service provider, but is likely to be unwilling to pay for
the processing that another group wants to perform on this
data. As a specific example, the San Diego Supercomput-

ing Center (SDSC) currently hosts more than 6 Petabytes of
data, but most potential users of this data are only allowed to
download, and not process this data at SDSC resources. The
group using this data may have its own local resources, and
may not be willing to pay for the processing at the same ser-
vice provider, thus forcing the need for processing data away
from where it is hosted.

When co-locating data and computation is not possible,
remote data analysis offers many advantages over another
feasible model, which could be referred to as data staging.
Data staging implies that data is transferred, stored, and then
analyzed. Remote data analysis requires fewer resources
at the data analysis site, avoids caching of unnecessary or
process once data, and may abstract away details of data
movement from application developers and users.

We now give a brief overview of the design and im-
plementation of the FREERIDE-G middleware. More de-
tails are available from our earlier publications [13, 7]. The
FREERIDE-G middleware is modeled as a client-server sys-
tem, where the compute node clients interact with both data
host servers and a code repository server. The overall system
architecture is presented in Figure 2.

A data host runs on every on-line data repository node
in order to automate data retrieval and its delivery to the
end-users’ processing node(s). Because of its popularity, for
this purpose we used Storage Resource Broker, a middle-
ware that provides distributed clients with uniform access
to diverse storage resources in a heterogeneous computing
environment. The code repository is used to store the im-
plementations of the FREERIDE-G-based applications, as
specified through the API. A compute node client runs on
every end-user processing node in order to initiate retrieval
of data from a remote on-line repository, and perform appli-
cation specific analysis of the data, as specified through the
API implementation. The processing is based on the generic
loop we described earlier, and uses application specific iter-
ator and local and global reduction functions.

Figure 2 demonstrates the interaction of system compo-
nents. Once data processing on the compute node has been
initiated, data index information is retrieved by the client and
a plan of data retrieval and analysis is created. In order to
create this plan, a list of all data chunks is extracted from the
index. From the work-list a schedule of remote read requests
is generated to each data repository node. After the creation
of the retrieval plan, the SRB-related information is used by
the compute node to initiate a connection to the appropriate
node of the data repository and to authenticate such connec-
tion. The connection is initiated through an SRB Master,
which acts as a main connection daemon. To service each
connection, an SRB Agent is forked to perform authentica-
tion and other services, with MCAT metadata catalog pro-
viding necessary information to the data server. Once the
data repository connection has been authenticated, data re-

23

Compute Node

Retrieval
Metadata
Data &

client
SRB

MPICH−G2

Globus Toolkit

FREERIDE−G

Parallel Reduction

Execution
Data Analysis

Code
Loader

Resource Allocation

Code Repository
Agent
SRB

MCAT

SRB Master

Data Host

Data Analysis Planning

API functions

Figure 2: FREERIDE-G System Architecture

trieval through an appropriate SRB Agent can commence.
To perform data analysis, the code loader is used to retrieve
application specific API functions from the code repository
and to apply them to the data.

3 Supporting Dynamic Load Balancing for Remote
Data Analysis

In this section, we describe our dynamic load balancing ap-
proach and its implementation in the context of FREERIDE-
G.

3.1 Our Approach: In the previous version of our mid-
dleware, the workflow of the application was set at the very
beginning of the execution. Moreover, the jobs were evenly
distributed among the compute nodes and each compute
node was responsible for processing only its own jobs. If the
compute nodes have different processing powers, the static
job distribution may result in a large slowdown. Specifically,
the compute nodes which have high throughput will have to
wait until the slowest compute node finishes its execution.

Our approach for supporting dynamic load balanc-
ing exploits the properties of the processing structure of
FREERIDE-G. Let us consider the processing structure sup-
ported by our middleware, shown earlier in Figure 1. As-
sume that the set of data elements to be processed is E. Fur-
thermore, suppose a subset Ei of these elements is processed
by the processor i, resulting in RObj(Ei). Let G be the
global reduction function, which combines the reduction ob-
jects from all nodes, and generates the final results.

The key observation in our approach is as follows.
Consider any possible disjoint partition E1, E2, . . . , En of
the processing elements between n nodes. The result of the

C 0 C n....

D 0 D n....

JSStep 3

Group 1

Group 2

Step 2

Step 1

Figure 3: Load Balancing System’s Workflow

global reduction function,

(3.1) G(RObj(E1), RObj(E2), . . . , RObj(En))

will be same for any such disjoint partition of the element set
E. In other words, if E1, E2, . . . , En and E′

1
, E′

2
, . . . , E′

n

are two disjoint partitions of the element set E, then,

(3.2) G(RObj(E1), RObj(E2), . . . , RObj(En)) =

G(RObj(E′

1
), RObj(E′

2
), . . . , RObj(E′

n))

If we examine the Equation (3.2), we can conclude that
the processing structure that supports independent data ele-
ments can be exploited for dynamic load balancing system.

24

Specifically, any element, Ei, can be requested by any pro-
cessing unit in the system during the execution. Therefore,
the processing units which have high throughput can request
and process more data elements than the others.

Input: dataNodes, List of data nodes that were
registered to job scheduler

Result: job, which is assigned to compute node
/* Execute request handler loop */
while true do

compNode← ReceiveReq();
if CheckAssigned(compNode) then

SetProcessed(compNode, dataNodes);
end
dataNode← AvailDataNode(dataNodes);
chunkNumb← GetChunkNumb(compNode);
job← CreateJob(dataNode, chunkNumb);
Transfer(job, compNode);
if IsNotEmpty(job) then

Assign(compNode,dataNode);
end

end
Algorithm 1: Assigning jobs to Compute Nodes

However, implementing such a dynamic scheme is also
challenging. If all compute nodes request every chunk from
a central scheduler, the overheads can be very high. Thus,
while our approach is based on a central job scheduler, this
scheduler works at a higher granularity. A compute node
makes a request for a set of chunks to the job scheduler.
The scheduler, then, returns a job, which includes the data
node and the set of assigned chunk information. This chunk
information consist of the exact offset addresses of the data
elements in the data node. When the compute node receives
the job, it starts retrieving the specified chunks from the data
node.

A compute node again contacts the scheduler after the
set of chunks have been retrieved from the data host and
processed. This process is repeated until there is no more
data to be processed. This scheduler is able to balance the
workload between compute nodes with different processing
power, while keeping the overheads very low.

3.2 Detailed Design and Implementation: We now dis-
cuss how our approach is implemented in FREERIDE-G.
Figure 3 shows the interaction among the system elements.
Group 1 refers to the compute nodes, C0···n, which are re-
sponsible for the processing of the data elements. Data nodes
are represented with D0···n in Group 2 where the data ele-
ments, i.e. chunks, are stored. It should also be noted that
Group 1 and Group 2 are geographically separated. The JS,
job scheduler, collects the necessary data information from

Input: numbChunks, Number of chunks per job
request

: scheduler, Job Scheduler
Result: Final ReductionObject

/* Execute outer sequential loop */
while true do

/* Execute job request loop */
while true do

job← RequestJob(numbChunks, scheduler);
if CheckJob(job) then

break;
end
dataNode← GetDataNode(job);
chunksInfo← GetChunksInfo(job);
foreach chunk info cinfo in chunksInfo do
{* Retrieve data chunk chk with cinfo

from dataNode *};
{* Process retrieved data chunk *};
{* Update reduction object *};

end
end
{* Perform Global Reduction *};

end
Algorithm 2: Processing Chunks on Compute Node

Group 2 and then distributes the jobs to the compute nodes
in Group 1.

Initially, the metadata information about the data needs
to be prepared by data nodes in Group 2. The data in the
system is stored in several files in which data is packed in
data chunks (block). The metadata information about these
chunks are stored into an index file. In this, each data chunk
location is described with a data file name, offset address and
the size of the data chunk. Each of these index information
also corresponds to a metadata information of the smallest
job in the system. Several of these index information can be
combined and coarse-grained jobs can be generated.

After index information is generated, each data node
in Group 2 prepares its specific node information which
consists of the address information, available bandwidth of
the data node and the chunk information of the data. It is
then registered to the scheduler.

Job scheduler, on the other hand, waits for the data
node registration requests. Whenever a registration request
is received, the scheduler adds the data node information to
the dataNodes list. This interaction is illustrated by Step 1 in
Figure 3.

After data nodes are registered and chunk information
are specified in the scheduler, the job requests are handled.
Algorithm 1 shows how the scheduler manages the compute
nodes, which is also shown in Figure 3 with Step 2. At first,

25

the scheduler waits for the job requests from the compute
nodes. When a job request is received, the scheduler checks
if any of the chunks in the system was previously assigned
to the requesting compute node. If so, the scheduler sets
them as processed. Then, it creates another job with a new
set of chunk information from the most suitable data node
in the system. The main consideration for the scheduler
in choosing a data node is effectively dividing the available
bandwidth from each data node. Therefore, if the bandwidth
between all pairs of compute nodes and data nodes is the
same, the data node mapping will be done in a round
robin fashion. If available bandwidths vary, more compute
nodes’ requests will be mapped to the data nodes with
higher bandwidth, as long as they still have data that needs
to be processed. Since the data and compute nodes are
geographically separated, the bandwidth utilization and data
node mapping are crucial for the overall execution time.
After creating the job from a data node, it is transfered to
the requesting compute node.

When a compute node receives a job from scheduler,
it extracts the chunk information and starts requesting the
chunks from the corresponding data node. With the retrieval
of the data, the compute node starts executing the local
reduction phase. When the data processing stage is finished,
the compute node asks for another job. This continues
until all the chunks are consumed. At last, all compute
nodes finalize their execution with global combination. This
process is shown in Algorithm 2.

4 Experimental Results
In this section, we report results from a number of experi-
ments that evaluate our approach for supporting load balanc-
ing.

Two data-intensive applications we used are k-means
clustering and Principal Component Analysis. Most of our
experiments with k-means used a 25.6 GB dataset, whereas
a 17 GB dataset was used for PCA. While our experiments
with k-means involved only 1 iteration over the dataset, those
for PCA had 3 iterations. As a result, the total amount of
requested data is 51 GB for PCA application. All the datasets
are divided into 4096 data blocks. Therefore, the sizes of
each data block for k-means and PCA are 6.4 MB and 4 MB,
respectively.

The configuration used for our experiments is as fol-
lows. Our compute nodes have dual processor Opteron 254
(single core) with 4GB of RAM and are connected through
Mellanox Infiniband (1 Gb). We report experiments from
the use of 4, 8, and 16 computing nodes. The number of data
hosting nodes is always 4, and the data blocks are evenly
distributed among these 4 nodes.

4.1 Effectiveness and Overheads: In this set of experi-
ments, we evaluated the effectiveness and overheads of our

Figure 4: Evaluating Overheads using K-means clustering
(25.6 GB dataset)

Figure 5: Evaluating Overheads using PCA (17 GB dataset)

dynamic load balancing system. For this experiment, we ex-
ecuted each of the two different versions of the middleware
in two different environments. The two versions of the mid-
dleware are: Without load balancing system support, WOLB,
and with load balancing system support, WTLB. WOLB is the
first version of the FREERIDE-G, and is not able to balance
the load among the compute nodes. Thus, the data elements
are distributed evenly between the compute nodes and all the
compute nodes have to wait until the slowest compute node
finishes its processing. On the other hand, the enhanced ver-
sion, WTLB, can dynamically balance the load between com-
pute nodes.

The two environments in which we executed these two
versions were the regular homogeneous cluster, and an envi-
ronment with slowdown. Here, half of the compute nodes

26

are slowed down by 50% of their real processing power. The
regular environment is also referred to as no slowdown.

In Figure 4, we present results from k-means applica-
tion. The overheads of the load balancing system in no
slowdown environments are 2.69% for 8 and close to 0%
for 4 and 16 compute node cases. This shows that the imple-
mentation of our dynamic scheme is very efficient, and does
not cause noticeable overheads.

In the slowdown environment, the speedups of the
system range from 1.46 to 1.50 over the static partitioning
system.

We can further analyze the costs of our load balancing
implementation. The absolute overhead of the system can be
calculated with the expected execution time of FREERIDE-
G with WOLB (slowdown) configuration , say timeexp,
which has the perfect data distribution among its compute
nodes; and the execution time of WTLB (slowdown) con-
figuration , say timewtlb. The perfect data distribution for
WOLB (slowdown), in this case, means the data distribu-
tion among the compute nodes that satisfy the same execu-
tion time for every compute node. For instance, if half of the
compute nodes in the system are limited to use 50% percent-
age of their CPU power and can process 450 data chunks dur-
ing the execution, then the compute nodes which have 100%
percentage CPU utilization are expected to process 900 data
chunks in the same time period. With such configuration,
the data chunks are perfectly distributed and the execution
time of the system, timeexp, is optimum. Consequently, the
absolute overhead can be found with:

(4.3) overheadabsolute =
timewtlb − timeexp

timeexp

If we apply (4.3) to Figure 4, then the absolute overheads
of our system are again close to 0% for the three compute
node cases. The retrieval and the processing time of the
assigned data dominate the communication time between the
scheduler and the compute nodes. Moreover, the scheduler
can successfully select the appropriate data node in which
compute node can benefit from the available bandwidth and
maximize its data transfer speed.

In Figure 5, the same combination of versions and
environments are repeated with PCA as the application. The
overheads of the no slowdown version and the absolute
overheads are close to 0%. The speedups of our system with
slowdown version change from 1.49 to 1.52, considering
without load balancing system with slowdown version.

4.2 Overheads With Different Slowdown Ratios: The
experiments that we reported in previous section, half of the
compute nodes were 50% slowed down. In this subsection,
we evaluate our system’s performance with two additional
slowdown ratios: 25% and 75%. These slowdowns are
applied to half of the compute nodes, again.

Figure 6: K-means clustering with Different Slowdown
Ratios (6.4 GB dataset, 8 comp. nodes)

In Figure 6, we evaluated the k-means clustering appli-
cation with 8 compute nodes and a 6.4 GB dataset. The abso-
lute overheads, in each case, are close to 0%. The speedups
of our system with respect to WOLB are 1.21, 1.53, and 2.57
for 25%, 50% and 75% slowdowns, respectively. The higher
slowdown ratios indicate longer execution times for slow
processing units. Furthermore, the system should wait for
the slowest processing unit in case of static job assignment,
i.e. WOLB configuration. On the other hand, the faster com-
pute nodes can consume slow compute nodes’ data elements
with WTLB configuration which results in high speedups.

Same experiment was repeated with PCA and the results
are shown in Figure 7. The absolute overheads are 3.50%,
1.63% and 4.07% for the three cases. Furthermore, the
speedups over the static case are 1.23, 1.49 and 2.42 for
25%, 50% and 75% slowdown ratios, respectively. As we
mentioned before, the PCA has three iterations, and requests
more data elements (3 times) than k-means application.
Moreover, the volume of retrieved data is significantly larger
than the other configurations. Thus, the overheads become
more visible.

4.3 Distribution of Data Elements with Varying Slow-
down Ratios: In this section, we focused on how success-
fully our system distributes data elements among the com-
pute nodes. In previous sections, the slowdown ratios were
kept same for all the applied compute nodes. However, in
this set of experiments, we varied the slowdown ratios be-
tween 8 compute nodes. More specifically, the slowdown
ratios are increased by 12.5% for each of the compute node
starting from 0%.

We showed the number of processed data elements for
each of the compute node in Figure 8. The last bar in

27

Figure 7: PCA with Different Slowdown Ratios (4 GB
dataset, 8 comp. nodes)

the figure shows the expected number of data elements that
need to be processed in case of perfect CPU utilization
for all compute nodes. The number of processed chunks
ranges from 109 to 161 for consecutively slowed down
processing units. The absolute overhead of our system is
again very close to 0%. These results show that our system
can successfully distribute the chunks even in a highly
heterogeneous environment.

In Figure 9, we repeated our experiment with PCA
application. Note that the total number of chunks is three
times more than the k-means clustering application due to the
iterations. The number of processed chunks ranges from 233
to 477 for consecutively slowed down compute nodes. The
absolute overhead in this case is 8.5%. The basic reasons of
this overhead are the high imbalance in the CPU utilization
among the processing units, and the number of iterations
which results in more job requests to the scheduler.

4.4 Overheads with Different Assignment Granularity:
In all experiments reported in previous subsections, the
scheduler was set to assign 4 data chunks for every job
request. In this subsection, the number of assigned data
chunks per request is varied. K-means clustering application
with 6.4 GB dataset was used for the evaluation; and the
assigned data chunks per request were changed to 4, 16, 64
and 256, respectively.

The results are shown in Figure 10. The absolute over-
heads are 0.72%, 1.58%, 6.31% and 16.01% for 4, 16, 64,
and 256 data chunks cases, respectively. The load balancing
system’s overhead increases with the increasing number of
data chunks per request, and a fine-grained assignment re-
sults in the best performance for our system. This is because
the overheads of dynamic load balancing are still very low

Figure 8: K-means clustering with Different Slowdown
Distribution (6.4 GB dataset, 8 comp. nodes)

with fine-grained assignments. At the same time, the per-
formance with coarse-grained assignments is worse, because
we do not achieve perfect load balance.

5 Related Work
The topics of data-intensive computing and map-reduce have
received much attention within the last 2-3 years. Projects in
both academia and industry are working towards improving
map-reduce. CGL-MapReduce [14] uses streaming for all
the communications, and thus improves the performance to
some extent. Mars [15] is the first attempt to harness GPU’s
power for map-reduce.

Yahoo’s map-reduce system, Hadoop, is one of the pop-
ular implementations. Even though, our system and Hadoop
share important similarities, the differences are significant.
Hadoop assigns tasks to the racks where data locality is max-
imized and high throughput is satisfied. Our system, on the
other hand, works in the context of remote data analysis in
which exploiting such locality is not possible. However, our
system minimizes the data retrieval time through exploiting
bandwidth usage of the data nodes which results in optimum
computation throughput.

Lin et al. extended Hadoop with MOON [16] which pro-
vides better performance in unreliable volunteer computing
systems using a small set of dedicated nodes. Our dynamic
load balancing system extends our previous work which fo-
cuses on fault tolerance [17] in data-intensive computing
environments. We believe our system can also perform well
in such unreliable environments.

Farivar et al. introduced an architecture named
MITHRA [18] and integrated the Hadoop map-reduce with
the power of GPGPUs in the heterogeneous environments.
Zaharia et al. [19] improved Hadoop response times by de-

28

Figure 9: PCA with Different Slowdown Distribution (4 GB
dataset, 8 comp. nodes)

signing a new scheduling algorithm in a virtualized data cen-
ter. Seo et al. [20] proposed two optimization schemes,
prefetching and pre-shuffling, to improve Hadoop’s overall
performance in a shared map-reduce environment. Ranger
et al. [21] have implemented Phoenix, a map-reduce system
for multi-cores.

Facebook uses Hive [22] as the warehousing solution
to support data summarization and ad-hoc querying on top
of Hadoop. Yahoo has developed Pig Latin [23] and
Map-Reduce-Merge [24], both of which are extensions to
Hadoop, with the goal being to support more high-level
primitives and improve the performance. Google has devel-
oped Sawzall [25] on top of map-reduce to provide higher-
level API. Microsoft has built Dryad [26], which is more
flexible than map-reduce, since it allows execution of com-
putations that can be expressed as DAGs.

OpenMP is an API which supports parallel shared mem-
ory processing on many architectures and supports differ-
ent scheduling strategies such as static, dynamic and guided
work sharing. However, the programmer should involve
solving the data dependencies and synchronization issues.
These are automatically handled by our framework.

6 Conclusions
In this work, we developed and evaluated a dynamic load
balancing scheme for a data-intensive computing middle-
ware. We focused on heterogeneous environments such as
non-dedicated machines in grids and virtualized machines in
clouds. We proposed an approach which effectively solves
the problem of task distribution among processing units that
show different processing performance.

Two data-intensive applications were used in order to
evaluate the system. Our results show that the overheads

Figure 10: Performance with Different Number of Chunks
per Request (k-means, 6.4 GB dataset, 4 comp. nodes)

of our system are very small. Moreover, our approach can
successfully distribute tasks among processing units even in
highly heterogeneous configurations.

References

[1] R. E. Bryant, “Data-intensive supercomputing: The case
for disc,” School of Computer Science, Carnegie Mellon
University, Tech. Rep. Technical Report CMU-CS-07-128,
2007.

[2] T. Scholl, A. Reiser, and A. Kemper, “Collaborative query co-
ordination in community-driven data grids,” in Proceedings of
the Conference on High Performance Distributed Computing
(HPDC), Jun. 2009.

[3] J. Heo, X. Zhu, P. Padala, and Z. Wang, “Memory overbook-
ing and dynamic control of xen virtual machines in consol-
idated environments,” in Proceedings of the IFIP/IEEE In-
ternational Symposium on Integrated Network Management
(IM09), June 2009, pp. 630–637.

[4] H. Lim, S. Babu, J. Chase, and S. Parekh, “Automated
control in cloud computing: Challenges and opportunities,”
in Proceedings of the 1st Workshop on Automated Control for
Datacenters and Clouds (ACDC09), June 2009, pp. 13–18.

[5] P.Barham, B.Dragovic, K.Fraser, S.Hand, T.Harris, A.Ho,
R.Neugebauer, I.Pratt, and A.Warfield, “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP03), 2003, pp. 64–
177.

[6] L. Glimcher and G. Agrawal, “A Performance Prediction
Framework for Grid-based Data Mining Applications,” in In
proceedings of International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2007.

[7] ——, “A Middleware for Developing and Deploying Scalable
Remote Mining Services,” in In proceedings of Conference on
Clustering Computing and Grids (CCGRID), 2008.

29

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of OSDI, 2004,
pp. 137–150.

[9] R. Jin and G. Agrawal, “A middleware for developing parallel
data mining implementations,” in Proceedings of the first
SIAM conference on Data Mining, Apr. 2001.

[10] ——, “Shared Memory Parallelization of Data Mining Al-
gorithms: Techniques, Programming Interface, and Perfor-
mance,” in Proceedings of the second SIAM conference on
Data Mining, Apr. 2002.

[11] W. Jiang, V. T. Ravi, and G. Agrawal, “Comparing map-
reduce and freeride for data-intensive applications,” in Pro-
ceedings of the 2009 IEEE Cluster. IEEE, 2009.

[12] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
Grid: Enabling Scalable Virtual Organizations,” International
Journal of Supercomputing Applications, 2001.

[13] L. Glimcher, R. Jin, and G. Agrawal, “FREERIDE-G: Sup-
porting Applications that Mine Data Repositories,” in In pro-
ceedings of International Conference on Parallel Processing
(ICPP), 2006.

[14] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data
intensive scientific analyses,” in IEEE Fourth International
Conference on e-Science, Dec 2008, pp. 277–284.

[15] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in
Proceedings of PACT 2008. ACM, 2008, pp. 260–269.

[16] H. Lin, J. Archuleta, X. Ma, W. Feng, Z. Zhang, and M. Gard-
ner, “Moon: Mapreduce on opportunistic environments,” in
ACM International Symposium on High Performance Dis-
tributed Computing (HPDC), June 2010.

[17] T. Bicer, W. Jiang, and G. Agrawal, “Supporting fault tol-
erance in a data-intensince computing middleware,” in Pro-
ceedings of the 24th International Parallel and Distributed
Processing Symposium (IPDPS), April 2010.

[18] R. Farivar, A. Verma, E. Chan, and R. Campbell, “Mithra:
Multiple data independent tasks on a heterogeneous resource
architecture,” in Proceedings of the 2009 IEEE Cluster.
IEEE, 2009.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica, “Improving mapreduce performance in heteroge-
neous environments,” in Proceedings of OSDI. USENIX
Association, 2008, pp. 29–42.

[20] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng,
“Hpmr: Prefetching and pre-shuffling in shared mapreduce
computation environment,” in Proceedings of the 2009 IEEE
Cluster. IEEE, 2009.

[21] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski,
and C. Kozyrakis, “Evaluating mapreduce for multi-core
and multiprocessor systems,” in Proceedings of 13th HPCA.
IEEE Computer Society, 2007, pp. 13–24.

[22] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. An-
thony, H. Liu, P. Wyckoff, and R. Murthy, “Hive - a warehous-
ing solution over a map-reduce framework,” PVLDB, vol. 2,
no. 2, pp. 1626–1629, 2009.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,”
in Proceedings of SIGMOD Conference. ACM, 2008, pp.
1099–1110.

[24] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. P. Jr., “Map-
reduce-merge: simplified relational data processing on large
clusters,” in Proceedings of SIGMOD Conference. ACM,
2007, pp. 1029–1040.

[25] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Inter-
preting the data: Parallel analysis with sawzall,” Scientific
Programming, vol. 13, no. 4, pp. 277–298, 2005.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the 2007 EuroSys Conference.
ACM, 2007, pp. 59–72.

30

	proceedings
	allPapers
	PDM11_2_ws_final
	PDM11_3_ws_final
	PDM11_4_ws_final

