
DRYADE: a new approach for discovering closed frequent trees in heterogeneous
tree databases

Alexandre Termier�, Marie-Christine Rousset & Michèle Sebag
CNRS & Université Paris-Sud (LRI) - INRIA (Futurs)

Building 490, Université Paris-Sud, 91405 Orsay Cedex, France.
�termier, mcr, sebag�@lri.fr

Abstract

In this paper we present a novel algorithm for discover-
ing tree patterns in a tree database. This algorithm uses a
relaxed tree inclusion definition, making the problem more
complex (checking tree inclusion is NP-complete), but al-
lowing to mine highly heterogeneous databases. To obtain
good performances, our DRYADE algorithm discovers only
closed frequent tree patterns.

1. Introduction

With the rapid growth of structured documents (eg.,
XML documents) available online, discovering frequent
tree structures in huge collections of tree data becomes a
crucial issue for information extraction. In this paper, we
propose a novel algorithm for discovering frequent trees.
It has two main distinguishing features. First, it handles
a tree inclusion definition which is more general than all
those considered in the existing tree mining literature, thus
leading to the discovery of non trivial pattern trees even in
highly heterogeneous collections of tree data. Second, it
computes closed frequent trees, which has the advantage to
provide a compact representation of frequent trees without
loss of information. The paper is structured as follows: in
section 2, we give the formal background for tree mining.
The state of the art is briefly reviewed in section 3. In sec-
tion 4 we describe the DRYADE algorithm, and in section 5
we give some experimental results. The section 6 concludes
this paper and provides some research perspectives.

2. Formal Background

Let � � ���� ���� ��� be a set of labels. A labelled tree
� � ����� �		
�� �� �� is an acyclic connected graph,

�Present address : ISIR, Osaka University, Japan

where � is the set of nodes, � � � � � is a binary re-
lation over � defining the set of edges, �		
�� � is a distin-
guished node called the root, and � is a labelling function
� � � �� � assigning a label to each node of the tree.

Let � � � and 
 � � . If there exists an edge ��� 
� � �,
then 
 is a child of �, and � is the parent of 
. If there exists
a path from � to 
 in the tree (��� 
� � ��), then 
 is a
descendant of �, and � is an ancestor of 
.

Ancestor tree inclusion : Let �� �
���� ��� �		
����� ��� and �� � ���� ��� �		
����� ���
be two trees. �� is included into �� (noted �� � ��) if
there exists an injective mapping � � �� �� �� such that:
1. � preserves the labels : 	� � �� ����� � ��������
and 2. � preserves the ancestor relationship : 	�� 
 � �� if
��� 
� � �� then ������ ��
�� � ��

� .

The set of mappings supporting the ancestor tree inclu-
sion (or tree inclusion when no confusion is possible) is
denoted 
������ ���. The set of occurrences of �� in
��, denoted �	������� ���, is defined as the set of nodes
���		
�����, where � ranges over 
������ ���. Simi-
larly, the set of images of �� in �� is the set of trees �����
where � ranges over 
������ ���.

Frequent trees : Let �� � ���� ���� ��� be a tree
database. The datatree � is the tree whose root is an unla-
belled node, and whose subtrees are the trees ���� ���� ���.
Our goal is to find frequent trees in this datatree. Let � be
an absolute frequency threshold. � is a frequent tree of� if
� has at least � occurrences in � i.e. 
 �	�������� 
 � �.

A frequent tree � is closed if either i) � it is not included
in any other frequent tree, or ii) for any frequent tree � � such
that � � � �, there exists at least one node in �	��������
which is not contained in the image of � � in �.

Testing the ancestor tree inclusion is a NP-complete
problem [9]. In order to reduce the combinatorial explo-
sion, we impose a second order restriction on the trees to be
found by our algorithm DRYADE: from now on we restrict
the discovery task to trees that do not contain two siblings
with the same label. We call such trees patterns.



3. Related work

The first tree mining algorithms were proposed in 2002
by Asai et al. [1] and Zaki [13]. Both of these algorithms are
based on efficient enumeration techniques, but handle sim-
ple tree inclusion definitions where the sibling order must
be preserved by mapping �. Asai’s approach adds another
constraint : � must preserve the parent relationship instead
of the ancestor relationship, further restraining the admissi-
ble solutions.

In 2003, several attempts were done to extend the above
approaches and get rid of the constraint on the sibling or-
der [2, 5], using canonical representations of the unordered
trees to perform an efficient candidate enumeration.

In [12], we first introduced the general tree inclusion
considered in this paper and presented the (incomplete)
TreeFinder algorithm.

The most recent frequent tree algorithm to our best
knowledge was proposed by Chi et al. [6]. In
this CMTreeMiner algorithm, the search is restricted to
closed trees, entailing significant savings with respect to
both memory and computational resources. However,
CMTreeMiner is based on a tree inclusion definition where
the mapping preserves the parent relationship. Thus, as in
[1, 2, 5, 13], the complexity of testing the considered tree
inclusion is polynomial.

For truly heterogeneous databases, imposing either con-
straint (preserving the parent relationship or the sibling or-
der) puts severe restrictions on the target solutions: not han-
dling the variations in the order and nesting of the node
labels result in finding many equivalent subtrees, and ul-
timately missing worthy subtrees.

4 The DRYADE algorithm

The DRYADE algorithm presented in this section makes
use of the most general tree inclusion proposed in section 2.

The basic principle in DRYADE is to discover the closed
frequent patterns of depth 1, and then to hook them together
in order to build the higher depth closed frequent patterns
in a levelwise fashion. The specificity of the DRYADE ap-
proach is to intensively use task decomposition and refor-
mulation in order to perform all the frequency tests using
propositional algorithms, focusing on the different depth
levels of the closed frequent patterns to discover.

DRYADE is presented step-by-step in the following sub-
sections. The results of each step are illustrated on the ex-
ample datatree of figure 1, with � � �.

4.1 Discovering patterns of depth 1

The first step is to compute the closed frequent patterns
of depth 1. This task is delegated to a closed Frequent Item

��

��

��

�� �	 �


���

��

	��

���

��



��

���

���

��� ���

��	 ���

�


��
���

��


Figure 1. Datatree example Legend �� denotes a node
with label � and identifier � (unique). The target frequent tree in-
cludes all labels with lowercase letters; capital letters correspond-
ing to additional nodes.

Set algorithm, by reformulating the data as follows: for each
label � � �, create a matrix �� with as many lines as nodes
of label � and as many columns as existing distinct labels
in the datatree such that the boolean sign in the cell corre-
sponding to the node � and the label � � indicate that the node
� (of label �) has a descendant of label � �. Then a closed
Frequent Item Set algorithm applied to � � with threshold �
will provide all the closed frequent sets of descendants for
nodes of label � in the datatree. The patterns whose roots
are labelled by � and whose children are the nodes belong-
ing to the closed frequent itemsets found previously are all
the closed frequent patterns of depth 1 whose root has label
�. The tid-list for each closed frequent pattern of depth 1
provides the set of occurrences of the corresponding closed
frequent patterns of depth 1.

Here is the matrix of the labels of descendants of nodes
of label � in our example:

� � � � � � 	 
 � � 
 � �

1 X X X X X X X X X
7

12 X X X X X X X X X X
19 X

With threshold � � �, the closed frequent itemsets are
��� �� �� �� �� �� �� �� for occurrences ��� ���, and ��� for
occurrences ���� �
�. The closed frequent patterns of depth
1 are shown in figure 2.

We call�� the set of closed frequent patterns of depth 1.

4.2 Pattern hooking

Let � denote the current set of closed frequent patterns,
initialized to ��. DRYADE proceeds by hooking frequent
patterns of � � onto the patterns in � , to gradually obtain
deeper frequent trees.



� �

�

� � � � � �

�

� �

�

��

�

�

�

��


� ��� ���


� ��� ��� 

 ��� ��� 
� ���� ���
� ��� ���

Figure 2. The closed frequent patterns of
depth 1 and their occurrences list

The challenge here is to prevent redundant hookings (e.g.
resulting in non closed frequent patterns). To this aim, we
first define the set of candidate hookable patterns, and use
a propositional reformulation to determine which candidate
patterns can be hooked simultaneously.

Candidate hooking patterns. A binary relation on the
closed patterns is defined as follows. Pattern � is hookable
on pattern � iff i) the root label of � is one of the leaf labels
in � ; ii) there exists at least one occurrence � of � and one
occurrence 
 of � such that � is an ancestor of 
.

This binary relation induces a stratification on the cur-
rent closed patterns (which is updated at each level). As
formally proved in [11], the search can be restricted with no
loss of information by hooking patterns � on � , where i)
� is maximal wrt the stratification order, we thus call � a
root pattern; ii) � is immediately below � (e.g. there is no
� such that � is hookable on � and � is hookable on �).
In our example (Fig. 4.1), the root pattern is ��, and only
patterns �� and �� are candidates to be hooked on ��.


�




�


� 
�

Figure 3. Stratification of ��

Closed hooking. Let � be a root pattern, and let �� �
���� ����� the candidate patterns to be hooked on pattern
� . In order to save redundant computations, we extract all
closed subsets of �� which can be simultaneously hooked
on � . As in section 4.1, this step is achieved using a propo-
sitional reformulation. To pattern � is associated the trans-
action matrix �� ; to each occurrence � of � in the data is
associated a transaction; the items in transaction � are the
patterns �� such that �� admits an occurrence 
 and � is
an ancestor of 
. As in section 4.1, a propositional (verti-
cal) Frequent Item Set algorithm can be used to construct all

closed subsets of �� which can be simultaneously hooked
on � . To each such closed subset � � ���� � ������ is as-
sociated a novel closed pattern, obtained by hooking every
��� on � . Due to space limitations, the interested reader is
referred to [11] for more detail. In our example, the patterns
���� ��� are hooked together on ��.

Pruning redundant leaves. From our example hooking
���� ��� on �� results in the pattern of figure 4.

�

�� �

���

� �

� �

REDUNDANT
LEAVES

����

Figure 4. Hooking ���� ��� on ��

The leaves of the root with label �� �� �� �� � represent
descendant relations between nodes of label � and nodes
of label �� �� �� �� �. This information is actually redundant
with the existance of the leaves of depth 2 having the same
labels. Hence the leaves of the root are redundant and must
be pruned.

To detect the closed frequent combinations of redundant
leaves, once again DRYADE uses a propositional closed Fre-
quent Item Set algorithm. The input is a matrix � having
as many lines there are occurrences of the pattern � whose
redundant leaves we want to discover, and as many columns
as potentially redundant leaves. The boolean sign in the cell
corresponding to the occurrence 	 and the leaf �
 indicate
that the leaf �
 is redundant for this occurrence. The closed
frequent itemsets of � are the redundant leaves that must
be pruned.

In our example after pruning the redundant leaves we
obtain the pattern �� of figure 5 a). The next iteration of
DRYADE will produce the final pattern �� shown in figure
5 b).

a) b)

�

��

�

�

�

�

���

� �

�

�

�

�

�

� � �

Figure 5. a) ��, occurrences ��� ��� b) ��, oc-
currences ��� ���

5 Experiments

This section briefly reports on the experimental vali-
dation of DRYADE, considering artificial and real-world



datasets.
Experimental setting. A stochastic problem generator

was implemented to test the scalabitily of DRYADE. More
details on this generator can be found in [11]. For each
order parameter values, 1,000 problems are independently
generated. The frequency threshold � is 15.

Comparison with WARMR. To our best knowledge, the
only frequent pattern algorithm that accommodates a fully
relational inclusion definition is WARMR [7]. With courtesy
of L. Dehaspe, we could experiment WARMR on the artifi-
cial datasets. As could have been expected, these experi-
ments show that WARMR is limited with respect to the size
and number of labels of the trees. Comparatively, DRYADE

scales up well, with computational cost lower by several or-
ders of magnitude. The performance gain is explained from
two specificities of DRYADE. First of all, DRYADE exploits
the specific tree-structure of the data, while WARMR aims at
the general extraction of relational patterns. Secondly, the
closure restriction severely reduces the computational and
memory resources needed.

Real world data. A corpus of XML documents from the
AFP press agency, kindly given by the Xyleme company,
was considered. This corpus includes 3396 documents, with
depth in ��� 
�, and branching factor in ��� ��, involving 32
different labels. Most of these documents share a complex
structure (28 parent/child edges, average depth 2.15). Find-
ing this common structure took 19.3 hours (Athlon 1 GHz,
1 Gb memory). The analysis of the computational time,
omitted due to lack of space, shows that over 80% of the ef-
fort was spent to computing the closed frequent patterns of
depth 1. It must be noted that DRYADE was implemented on
the top of the propositional ECLAT algorithm [3]. Indeed,
the cost of this first step could be trimmed up to an order
of magnitude, using instead the closed CHARM algorithm
[14]. This way, DRYADE will hopefully make it feasible to
mine a few thousands of real-world XML documents and
find worthy patterns in a couple of hours.

6 Conclusion and perspectives

A new algorithm for discovering closed frequent trees in
a datatree was presented in this paper. The main motivation
for this DRYADE algorithm is to face with highly hetero-
geneous data, involving many variations in their structures.
The challenge was therefore to tackle efficiently a very gen-
eral, fully relational definition of tree inclusion. This chal-
lenge was addressed using two different strategies. The
first one is to restrict the search to closed solutions, as in
[10, 14, 6]. The second one is based on the reformulation of
several search operations in a propositional language. This
way, DRYADE can benefit from any progress made in the
rapidly evolving field of propositional Frequent Itemt Set
algorithms.

This work opens several perspectives for further re-
search. First of all, along the phase transition paradigm
[4], ongoing studies are performed to determine the criti-
cal values for the order parameters, especially the number
of labels. Another promising perspective is to extend the
same approach to other types of structured data, e.g. DAGs
and graphs, along the same lines as [8].

Acknowledgments

We acknowledge Luc Dehaspe and Chris Borgelt, who
kindly made available their WARMR and ECLAT algorithms
to us. Thanks also go to Jérôme Azé, Jérôme Maloberti and
Mary Felkin, for their help on this work.

References

[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto,
and S. Arikawa. Efficient substructure discovery from large
semi-structured data. In SDM2002, Arlington, 2002.

[2] T. Asai, H. Arimura, T. Uno, and S. ichi Nakano. Discover-
ing frequent substructures in large unordered trees. In Dis-
covery Sciences’03, Sapporo, 2003.

[3] C. Borgelt. Efficient implementations of apriori and eclat.
In FIMI 2003, Melbourne, FL, USA, 2003.

[4] M. Botta, A. Giordana, L. Saitta, and M. Sebag. Relational
learning as search in a critical region. Journal of Machine
Learning Research, 4:431–463, 2003.

[5] Y. Chi, Y. Yang, and R. R. Muntz. Mining frequent rooted
trees and free trees using canonical forms. Technical report,
UCLA, 2004.

[6] Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz. Cmtreem-
iner: Mining both closed and maximal frequent subtrees. In
PAKDD’04, Sidney, 2004.

[7] L. Dehaspe. Frequent pattern discovery in first-order logic.
Phd, K.U.Leuven, Leuven, Belgium, dec 1998.

[8] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based al-
gorithm for mining frequent substructures from graph data.
In PKDD’00, Lyon, 2000.

[9] P. Kilpeläinen. Tree Matching Problems with Applications
to Structured Text Databases. PhD thesis, University of
Helsinki, Novembre 1992. TR A-1992-6.

[10] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing frequent closed itemsets for association rules. In ICDT
’99, Jerusalem, Israel.

[11] A. Termier. Phd. Technical Report 1388, LRI, May 2004.
http://www.lri.fr/�termier/publis/phdTermierEN.ps.gz.

[12] A. Termier, M.-C. Rousset, and M. Sebag. Treefinder: a first
step towards xml data mining. In ICDM’02, Maebashi.

[13] M. J. Zaki. Efficiently mining frequent trees in a forest. In
8th ACM SIGKDD, 2002.

[14] M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm
for closed itemset mining. In Proc. 2nd SIAM ICDM, Ar-
lington, Avril 2002.


